Computational Complexity
University of Amsterdam, February–March 2021

Lecturer: Ronald de Haan
Teaching assistant: Simon Rey

Course catalogue
Datanose
Canvas

Lectures

Monday 15:00–17:00 (online; Zoom link available on Canvas)
Friday 9:00–11:00 (online; Zoom link available on Canvas)

Exercise session

Thursday 13:00–15:00 (online; Zoom link available on Canvas)

Textbook

Computational Complexity: A Modern Approach, by Sanjeev Arora and Boaz Barak.



(Cartoon by Stefan Szeider—based on the original cartoon from the book Computers and Intractability: A Guide to the Theory of NP-Completeness (1979) by Michael Garey and David S. Johnson.)

Homework and exam

Homework exercises will generally be made available on Mondays and have to be handed in on Monday one week later, before the start of the lecture. Please hand in your solutions to the homework assignments via Canvas. When computing the average grade for the exercises, the lowest score will be dropped.

Besides the exercises there will be a take-home final exam. The exam will be open book, which means you are allowed to use the book and any notes you made. The final grade for the course will be the average of the grade for the exercises and the final exam.

Schedule

TimeLocationTopic
1 Feb.  15–17 online Lecture 1: Introduction to computational complexity
Book: 1.0–1.3, 1.6
For visualizations of Turing machines, you can visit https://turingmachinesimulator.com/
(the Turing machines shown there are bidirectional, see Claim 1.8 in the book).
Slides
4 Feb.  13–15 online Exercise session on asymptotic notation, Turing machines
Exercise sheet
Book: 0.3, 1.1–1.3, 1.6
5 Feb.  9–11 online Lecture 2: P, NP, coNP, reductions
Book: 1.4, 1.7, 2.0–2.2, 2.6
Slides
8 Feb.  15–17 online Lecture 3: NP-completeness, Cook-Levin Theorem, search vs. decision problems
Book: 2.3–2.5, 2.7
Slides
Homework 1 (due at: 15 Feb., 15:00)
Use this template (pdf) for typesetting Slitherlink gadgets.
11 Feb.  13–15 online Exercise session
Exercise sheet
12 Feb.  9–11 online Lecture 4: Diagonalization, time hierarchy theorems, Ladner's Theorem
Book: 3.0–3.3
Slides
15 Feb.  15–17 online Lecture 5: Relativization, Baker-Gill-Solovay Theorem
Book: 3.4
Slides
Homework 2 (due at: 22 Feb., 13:00)
18 Feb.  13–15 online Exercise session
Exercise sheet
19 Feb.  9–11 online Lecture 6: Space complexity, PSPACE, L, NL
Book: Chapter 4
Slides
22 Feb.  15–17 online Lecture 7: Polynomial Hierarchy
Book: Chapter 5
('Parody news article' about the collapse of the PH)
Slides
Homework 3 (due at: 1 Mar., 13:00)
25 Feb.  13–15 online Exercise session
Exercise sheet
26 Feb.  9–11 online Lecture 8: Recap and question session
Slides (annotated)
1 Mar.  15–17 online Lecture 9: Circuit complexity, Karp-Lipton Theorem
Book: Chapter 6
Slides
Homework 4 (due at: 8 Mar., 13:00)
4 Mar.  13–15 online Exercise session
Exercise sheet
5 Mar.  9–11 online Lecture 10: Probabilistic algorithms, BPP
Book: 7.1–7.3
Slides
8 Mar.  15–17 online Lecture 11: Approximation, PCP Theorem
Book: 11.0–11.4
Homework 5 (due at: 15 Mar., 13:00)
11 Mar.  13–15 online Exercise session
12 Mar.  9–11 online Lecture 12: Subexponential-time complexity, Exponential Time Hypothesis
14.0–14.2 of the book Parameterized Algorithms, by Cygan et al.
15 Mar.  15–17 online Lecture 13: Average-case complexity and Impagliazzo's Five Worlds
Book: 9.0, 9.2, 18.0–18.2, 18.4
18 Mar.  13–15 online Exercise session
19 Mar.  9–11 online Lecture 14: Recap and question session
Final take-home exam
(Will be made available on 22 Mar. and is due at 29 Mar., 17:00)