Computational Complexity

Lecture 4: Diagonalization and the Time Hierarchy Theorems

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

February 12, 2021

Recap

What we saw last time..

Proof that NP-complete problems exist
The Cook-Levin Theorem
Concrete reductions between problems

Search vs. decision problems

- What will we do today?

m Diagonalization arguments
m Time Hierarchy Theorems

m P £EXP

- Warm-up: Cantor’s diagonal argument

ieN

m We show: P(N) is uncountable 1 23 45

f(l)J1fofo|1
m Suppose that it is countably .
infinite. Then there is some v f@joj1f1]o
s - '\ r ‘
bijection f : N — P(N). s f@)|1]1]lolo] -
2 4
m Consider the set S € P(N) 3 f(4) .
such that for all i € N it holds = £(5) — -
) - . 1if i e f(j)
that Siffigf (
at i€ Siff i & f(i) LOifiQf(j)
m Then S # f(i) for each i € N,
so f is not a bijection. %
S 0Oj0|1

- Diagonalization over TMs: uncomputable functions

m We show that there exists an
uncomputable function

uc: {0,1}* — {0,1}

m Define UC: for all @ € {0,1}*,
UC(a) =0, if My(a) =1, and
UC(«) = 1 otherwise.

m Suppose that UC is computable.
Then there exists some Mg that
computes UC: Mg(a) = UC(a)
for all a € {0,1}*.

m In particular, Mg(8) = UC(B).
By def. of UC: Mig(83) # UC(B). 4

B e {0,1}*

00
01

aec{0,1}*
0 1 00 01
0]0(1
* 1110
R
x|o| x|
-

1if Mjp(a) outputs 1

0 if Mg(c) outputs o # 1

* if Mg(a) does not halt

- Deterministic Time Hierarchy Theorem

Iff,g : N — N are time-constructible functions such that f(n)log f(n) is o(g(n)),
then DTIME(f(n)) C DTIME(g(n)).

m Assumption of time-constructibility rules out ‘weird’ functions.

m f is time-constructible if f(n) > n and there exists a TM that computes the
function x — f(|x|) in time O(f(|x|)), for each x € {0,1}*

m We will prove DTIME(n) C DTIME(n*®)

- DTIME(n) € DTIME(n'®)

m Consider a TM D that, on input a € {0,1}*,)
simulates M, (c) for |a|'# steps, and:

m if M, () outputs some b € {0,1} > diagonalization
within |a|!# steps, then D(a) outputs 1 — b

m otherwise, D(«) outputs 1 J

m The language L decided by I is in DTIME(n'*5)

m Simulating M, («) for T steps can be done in time ¢ T log T,
and ¢ - n'*log n'* is O(n'®)

- DTIME(n) € DTIME(n'®)

m Consider a TM D that, on input a € {0,1}*,)
simulates M, (c) for |a|'# steps, and:

m if M, () outputs some b € {0,1} > diagonalization
within |a|!# steps, then D(a) outputs 1 — b

m otherwise, D(«) outputs 1 J

m We show that L ¢ DTIME(n).

m Suppose that L € DTIME(n). Then there is some TM M that decides L
and runs in time d - n, for some d € N.

Simulating M on input x takes time d'd - |x| - log(d - |x

), for some d’ € N.
There is some ng € N such that for all n > ng it holds that n'* > d’dnlog(dn).

Let « be a string of length > ng that represents M:: Ml = M,
Then M, () outputs D(a) within |a|** steps — M, runs in time d - n < n**
By definition of D, D(a) = 1 — D(a). 4 — since the simulation of M, () finishes

m The functions 2" and 22" are time-constructible, and 2" log 2" = n- 2" is 0(22").

Then by the Deterministic Time Hierarchy Theorem, DTIME(2") C DTIME(22").

m P = Ucey DTIME(n€) € DTIME(2") C DTIME(22") C EXP

m So, P # EXP.

- Nondeterministic Time Hierarchy Theorem

Iff,g : N — N are time-constructible functions such that f(n+ 1) is o(g(n)),
then NTIME(f(n)) € NTIME(g(n)).

m As a result: NP C NEXP, where NEXP = U.cy NTIME(2™).

- Ladner’'s Theorem

m Question: is it the case that all problems in NP are
either (i) in P or (ii) NP-complete?

m If P = NP, then this is trivially true.
m If P £ NP, then no:

Theorem (Ladner 1975)

Suppose that P # NP.
Then there exists a language L € NP \ P that is not NP-complete.

m Proof uses a diagonalization argument.

N

m Diagonalization arguments
m Time Hierarchy Theorems

m P £EXP

N

m Can we use diagonalization to attack P L NP? (Spoiler: no.)

m Limits of diagonalization

Relativizing results

m Oracles

