# **Computational Complexity**

Lecture 4: Diagonalization and the Time Hierarchy Theorems

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

February 12, 2021

## Recap What we saw last time..

- Proof that NP-complete problems exist
- The Cook-Levin Theorem
- Concrete reductions between problems
- Search vs. decision problems

### What will we do today?

- Diagonalization arguments
- Time Hierarchy Theorems
- $P \neq EXP$

### Warm-up: Cantor's diagonal argument

- We show:  $\mathcal{P}(\mathbb{N})$  is uncountable
- Suppose that it is countably infinite. Then there is some bijection  $f : \mathbb{N} \to \mathcal{P}(\mathbb{N})$ .
- Consider the set  $S \in \mathcal{P}(\mathbb{N})$ such that for all  $i \in \mathbb{N}$  it holds that  $i \in S$  iff  $i \notin f(i)$
- Then S ≠ f(i) for each i ∈ N, so f is not a bijection.



### Diagonalization over TMs: uncomputable functions

 $\{0, 1]$ 

 $\beta \in$ 

- We show that there exists an uncomputable function
  UC : {0,1}\* → {0,1}
- Define UC: for all  $\alpha \in \{0, 1\}^*$ , UC( $\alpha$ ) = 0, if  $\mathbb{M}_{\alpha}(\alpha)$  = 1, and UC( $\alpha$ ) = 1 otherwise.
- Suppose that UC is computable. Then there exists some M<sub>β</sub> that computes UC: M<sub>β</sub>(α) = UC(α) for all α ∈ {0,1}\*.
- In particular,  $\mathbb{M}_{\beta}(\beta) = \mathsf{UC}(\beta)$ . By def. of UC:  $\mathbb{M}_{\beta}(\beta) \neq \mathsf{UC}(\beta)$ .  $\notin$



### Theorem

If  $f, g : \mathbb{N} \to \mathbb{N}$  are time-constructible functions such that  $f(n) \log f(n)$  is o(g(n)), then  $\mathsf{DTIME}(f(n)) \subsetneq \mathsf{DTIME}(g(n))$ .

- Assumption of time-constructibility rules out 'weird' functions.
  - f is time-constructible if  $f(n) \ge n$  and there exists a TM that computes the function  $x \mapsto f(|x|)$  in time O(f(|x|)), for each  $x \in \{0, 1\}^*$
- We will prove  $DTIME(n) \subsetneq DTIME(n^{1.5})$

## $\mathsf{DTIME}(n) \subsetneq \mathsf{DTIME}(n^{1.5})$

- Consider a TM  $\mathbb{D}$  that, on input  $\alpha \in \{0, 1\}^*$ , simulates  $\mathbb{M}_{\alpha}(\alpha)$  for  $|\alpha|^{1.4}$  steps, and:
  - if  $\mathbb{M}_{\alpha}(\alpha)$  outputs some  $b \in \{0, 1\}$ within  $|\alpha|^{1.4}$  steps, then  $\mathbb{D}(\alpha)$  outputs 1 - b
  - otherwise,  $\mathbb{D}(\alpha)$  outputs 1

diagonalization

- The language *L* decided by  $\mathbb{D}$  is in DTIME $(n^{1.5})$ 
  - Simulating M<sub>α</sub>(α) for T steps can be done in time c · T log T, and c · n<sup>1.4</sup> log n<sup>1.4</sup> is O(n<sup>1.5</sup>)

## $\mathsf{DTIME}(n) \subsetneq \mathsf{DTIME}(n^{1.5})$

- Consider a TM  $\mathbb{D}$  that, on input  $\alpha \in \{0, 1\}^*$ , simulates  $\mathbb{M}_{\alpha}(\alpha)$  for  $|\alpha|^{1.4}$  steps, and:
  - if  $\mathbb{M}_{\alpha}(\alpha)$  outputs some  $b \in \{0, 1\}$ within  $|\alpha|^{1.4}$  steps, then  $\mathbb{D}(\alpha)$  outputs 1 - b
  - otherwise,  $\mathbb{D}(\alpha)$  outputs 1

### diagonalization

- We show that  $L \notin \text{DTIME}(n)$ .
  - Suppose that  $L \in \text{DTIME}(n)$ . Then there is some TM M that decides L and runs in time  $d \cdot n$ , for some  $d \in \mathbb{N}$ .
  - Simulating  $\mathbb{M}$  on input x takes time  $d'd \cdot |x| \cdot \log(d \cdot |x|)$ , for some  $d' \in \mathbb{N}$ .
  - There is some  $n_0 \in \mathbb{N}$  such that for all  $n \ge n_0$  it holds that  $n^{1.4} \ge d' dn \log(dn)$ .
  - Let  $\alpha$  be a string of length  $\geq n_0$  that represents  $\mathbb{M}$ :  $\mathbb{M} = \mathbb{M}_{\alpha}$
  - Then  $\mathbb{M}_{\alpha}(\alpha)$  outputs  $\mathbb{D}(\alpha)$  within  $|\alpha|^{1.4}$  steps  $\mathbb{M}_{\alpha}$  runs in time  $d \cdot n \leq n^{1.4}$
  - By definition of  $\mathbb{D}$ ,  $\mathbb{D}(\alpha) = 1 \mathbb{D}(\alpha)$ .  $\not = 1 \mathbb{D}(\alpha)$ .

- The functions  $2^n$  and  $2^{2n}$  are time-constructible, and  $2^n \log 2^n = n \cdot 2^n$  is  $o(2^{2n})$ .
- Then by the Deterministic Time Hierarchy Theorem,  $DTIME(2^n) \subsetneq DTIME(2^{2n})$ .
- $\mathsf{P} = \cup_{c \in \mathbb{N}} \mathsf{DTIME}(n^c) \subseteq \mathsf{DTIME}(2^n) \subsetneq \mathsf{DTIME}(2^{2n}) \subseteq \mathsf{EXP}$
- So,  $P \neq EXP$ .

### Theorem

If  $f, g : \mathbb{N} \to \mathbb{N}$  are time-constructible functions such that f(n+1) is o(g(n)), then  $\mathsf{NTIME}(f(n)) \subsetneq \mathsf{NTIME}(g(n))$ .

• As a result: NP  $\subseteq$  NEXP, where NEXP =  $\cup_{c \in \mathbb{N}}$  NTIME( $2^{n^c}$ ).

### Ladner's Theorem

- Question: is it the case that all problems in NP are either (i) in P or (ii) NP-complete?
- If P = NP, then this is trivially true.
- If  $P \neq NP$ , then no:

### Theorem (Ladner 1975)

Suppose that  $P \neq NP$ . Then there exists a language  $L \in NP \setminus P$  that is not NP-complete.

Proof uses a diagonalization argument.

- Diagonalization arguments
- Time Hierarchy Theorems
- $P \neq EXP$

- Can we use diagonalization to attack  $P \stackrel{?}{=} NP$ ? (Spoiler: no.)
- Limits of diagonalization
- Relativizing results
- Oracles