
Computational Complexity

Lecture 9: Non-Uniform Complexity

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

March 1, 2021

What will we do today?

Non-uniform complexity

Circuit complexity

TMs that take advice

The Karp-Lipton Theorem

Non-uniformity

“Uniform”: the algorithm is the same, regardless of the input size

vs.

“Non-uniform”: there can be different algorithms for different input sizes

Boolean circuits

∧

∨ ∨

¬ ¬

x1 x2 x3

0 1 0

x1 x2 x3

¬ ¬

∨ ∨

∧Boolean circuits are very similar
to propositional formulas

Directed acyclic graphs
(instead of trees)

We view binary strings as
truth assignments

Example: (¬x1 ∨ x2) ∧ (¬x2 ∨ x3), x = 010,
and αx = {x1 7→ 0, x2 7→ 1, x3 7→ 0}

Boolean circuits

Definition (Circuits)

An n-input single-output Boolean circuit C is a directed acyclic graph with:
n sources (nodes with no incoming edges), labelled 1 to n, and
one sink (a node with no outgoing edges).

All non-source vertices are called gates, and are labelled with ∧, ∨, or ¬:
∧-gates and ∨-gates have in-degree 2 (exactly two incoming edges),
¬-gates have in-degree 1 (exactly one incoming edge).

If C is an n-input single-output Boolean circuit and x ∈ {0, 1}n is a string, then the
output C (x) of C on x is defined by plugging in x in the source nodes and applying the
operators of the gates, and taking for C (x) the resulting value in {0, 1} of the sink gate.

SIZE

Definition (Circuit families)

Let t : N→ N be a function. A t(n)-size circuit family is a sequence {Cn}n∈N of
Boolean circuits, where each Cn has n inputs and a single output, and |Cn| ≤ t(n) for
each n ∈ N.

Definition (SIZE(t(n)))

Let t : N→ N be a function. A language L ⊆ {0, 1}∗ is in SIZE(t(n)) if there exists a
constant c ∈ N and a (c · t(n))-size circuit family {Cn}n∈N such that for
each x ∈ {0, 1}∗:

x ∈ L if and only if Cn(x) = 1, where n = |x |.

The complexity class P/poly

Definition (P/poly)

P/poly =
⋃
c≥1

SIZE(nc).

In other words, P/poly is the class of all decision problems that can be decided by
a polynomial-size circuit family.

P ⊆ P/poly

(We consider only decision problems L ⊆ {0, 1}∗—i.e., binary alphabets.)

Theorem
P ⊆ P/poly.

Main idea:

Like in the proof of the Cook-Levin Theorem, we encode polynomial-time
computation in logic

Instead of using new, fresh variables we use nodes in the Boolean circuit
(to encode tape contents, tape head positions, etc)

In fact, P (P/poly (you will show this in the homework)

Turing machines that take advice

We can characterize P/poly (or more generally, non-uniform complexity classes)
also using TMs

The algorithm might differ per input size n, so we will have to give the TM
something that depends only on the input size

This is called advice

Advice characterization of P/poly

Definition (TIME(t(n))/a(n))

Let t, a : N→ N be functions. The class DTIME(t(n))/a(n) of languages decidable by
O(t(n))-time Turing machines with a(n) bits of advice contains every decision
problem L ⊆ {0, 1}∗ such that:

there exists a sequence {αn}n∈N with αn ∈ {0, 1}a(n) for each n ∈ N and
an O(t(n))-time deterministic Turing machine M such that for each x ∈ {0, 1}∗:

x ∈ L if and only if M(x , αn) = 1, where n = |x |.

Advice characterization of P/poly (ct’d)

Theorem

P/poly =
⋃

c,d≥1

DTIME(nc)/nd .

Main idea (for “⊆”):

Use a description of Cn as αn, and then compute Cn(x) in polynomial time

Main idea (for “⊇”):

The computation of M(x , αn) on inputs x ∈ {0, 1}n can be encoded as a
polynomial-size circuit Dn(·, αn), using ideas from the proof of the Cook-Levin Thm

The circuit Cn is Dn with αn “hardwired in”

P-uniform circuit families

Definition
A circuit family {Cn}n∈N is P-uniform if there exists a polynomial-time deterministic
TM that on input 1n outputs a description of Cn, for each n ∈ N.

Theorem
A decision problem L ⊆ {0, 1}∗ is in P if and only if decidable by a P-uniform circuit
family {Cn}n∈N.

The Karp-Lipton Theorem

Question: is SAT decidable by polynomial-size circuits (is it in P/poly)?

Perhaps by allowing the algorithm to change per input size, this might work

The answer: No (assuming that the PH does not collapse)

Theorem (Karp, Lipton 1980)

If NP ⊆ P/poly, then Σp
2 = Πp

2.

Proof of the Karp-Lipton Thm
The general argument

Suppose that NP ⊆ P/poly.

We show that then Πp
2 ⊆ Σp

2, by showing Π2SAT ∈ Σp
2.

We use the following lemma to swap the order of the quantifiers:

Lemma
If NP ⊆ P/poly, then there exists a polynomial-time algorithm that:

takes polynomial-length advice, and
given a propositional formula ϕ:

if ϕ is unsatisfiable, it outputs 0;
if ϕ is satisfiable, it outputs a satisfying truth assignment α for ϕ.

Idea behind the proof of the lemma: use self-reducibility of SAT.

Proof of the Karp-Lipton Thm
Completing the proof

∃
∀

poly
Key: we check that γ is correct;
because we don’t know whether
w is the right advice

Take an arbitrary instance of Π2SAT: ϕ = ∀u.∃v .ψ(u, v).

Let q be the polynomial bounding the size of the advice {αn}n∈N that can be used
to compute satisfying assignments for SAT, in polynomial time with TM M.

ϕ = ∀u.∃v .ψ(u, v) ∈ Π2SAT if and only if for all z ∈ {0, 1}m, ψ[u 7→ z] ∈ SAT.

This is the case if and only if:

there exists some w ∈ {0, 1}q(n) such that

for all z ∈ {0, 1}m

M uses w as advice to output the assignment γ
on input ψ[u 7→ z] and γ satisfies ψ[u 7→ z]

Thus, Π2SAT ∈ Σp
2, and therefore Πp

2 = Σp
2.

Recap

Non-uniform complexity

Circuit complexity

TMs that take advice

The Karp-Lipton Theorem: if NP ⊆ P/poly, then Σp
2 = Πp

2

Next time

Probabilistic algorithms

Complexity classes BPP, RP, coRP, ZPP

