
Computational Complexity

Lecture 12: Subexponential-time complexity and the ETH

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

March 12, 2021

Recap

Approximation algorithms

Limits of approximation algorithms

PCP Theorem

What will we do today?

Consider exponential-time and subexponential-time algorithms

A new assumption: ETH

Use this assumption to derive exponential-time lower bounds

Our favorite example: 3SAT

Let’s find some exponential-time algorithms for 3SAT

Take some 3CNF formula ϕ = c1 ∧ · · · ∧ cm with var(ϕ) = {x1, . . . , xn}.

Consider this naive algorithm:

Iterate over all truth assignments α : var(ϕ)→ {0, 1}

If α satisfies ϕ, for some α, return 1; otherwise, return 0

This algorithm takes time 2n · O(mc), for some c ∈ N

Can we do better?

Our favorite example: 3SAT (ct’d)

Arecursive(ϕ):

if ϕ contains only clauses of size at most 2 then
decide if ϕ is satisfiable in polynomial time, and return the answer;

else
take some clause cj in ϕ of size 3;
for each of the 7 truth assignments α to var(cj) that satisfy cj do

if Arecursive(ϕ[α]) = 1 then
return 1;

end
end
return 0;

end

This algorithm Arecursive takes time 1.92n · O(mc), for some c ∈ N
Recursion tree has branching factor 7 and depth n/3, so is of size O(7n/3) = O(1.92n)

Can we keep improving the base of the exponential? Is there some limit?

Functions between polynomial and exponential

polynomial-time 2m, m2, n ·m2, etc.

exponential-time 2n ·m

subexponential-time nlog n ·m2, 2
√
n ·m, etc.

“P 6= NP”

“ETH”

P 6= NP not enough to rule out subexponential-time algorithms

The assumption P 6= NP is not enough to rule out subexponential-time algorithms
for NP-complete problems

Typical strategy to rule out polynomial-time algorithms:

Take some NP-complete L.

Assume P 6= NP.

Suppose that L is solvable in polynomial time.

Then P = NP.
only works for polynomial time

The Exponential-Time Hypothesis (ETH)

Definition (δq)

For q ≥ 3, let δq be the infimum of the set of constants c for which there exists an
algorithm solving q-SAT in time O(2cn) ·mO(1), where n is the number of variables in
the q-SAT input and m the number of clauses.

Definition (Exponential-Time Hypothesis; ETH)

Exponential-Time Hypothesis (unproven conjecture): δ3 > 0.

ETH and subexponential-time algorithms for 3SAT

The ETH implies that there is no 2o(n)-time algorithm for 3SAT:

Suppose that some 2o(n)-time algorithm A for 3SAT exists.

Suppose also that the ETH is true: δ3 > 0.

Then there is some c such that no 2cn ·mO(1)-time algorithm for 3SAT exists.

For large enough n, A runs in time 2cn ·mO(1).

So we can solve 3SAT in time 2O(n), but—assuming the ETH—not in time 2o(n).

E.g., not in time 2O(n/log n), 2O(
√
n) or nO(log n).

The ETH implies P 6= NP—or in other words: P = NP implies that the ETH is false

Showing ETH-based lower bounds for other problems

Take VC as example—solvable in time 2O(v), where v is the number of vertices.

Can we show a matching lower bound—i.e., VC not solvable in time 2o(v)?

Idea:
Use reduction from 3SAT to VC

v of VC needs to increase at most linearly in n of 3SAT

In the reduction that we have, v is linear in n +m

I Suppose VC is solvable in time 2o(v) using some algorithm A

I Idea to construct a 2o(n)-time algorithm for 3SAT:
I use reduction from 3SAT to VC

I then run A to solve the resulting VC instance

I Only works in time 2o(n) if v is linear in n.

Sparsification Lemma

Sparsification Lemma

For each ε > 0, there is a constant κ(ε) such that every 3CNF formula ϕ with n
variables and m clauses can be expressed as:

ϕ ≡
t∨

i=1

ψi ,

where t ≤ 2εn and each ψi is a 3CNF formula on the same variables as ϕ and
with κ(ε) · n clauses.

Moreover, this disjuction
∨t

i=1 ψi can be computed in time 2εn ·mO(1).

Assuming the ETH, 3SAT cannot be solved in time 2o(n+m)

Assume the ETH, i.e., δ3 > 0.

Suppose that 3SAT can be solved in time 2o(n+m) with some algorithm A.

Take some c with 0 < c < δ3.

We will show that 3SAT is solvable in time 2cn ·mO(1):

Take some 3CNF formula ϕ with n variables and m clauses.

Let ε = c/2.

Construct the ψi ’s from the Sparsification Lemma (using the value ε = c/2)

Run the algorithm A on these ψi ’s.

Return 1 if some ψi is satisfiable; return 0 otherwise.

This runs in time 2cn ·mO(1).
For large enough n, running A on ψi takes time 2εnmO(1) – since |ψi | is linear in n.

Lower bound for VC using the ETH

Suppose VC is solvable in time 2o(v) using some algorithm A, where v is the
number of vertices.

Idea to construct a 2o(n+m)-time algorithm for 3SAT:

Take some 3CNF formula ϕ

Use polynomial-time reduction R from 3SAT to VC:
R(ϕ) = (G , k) with G = (V ,E), where v = |V | = O(n +m)

Then run A to decide if G has a vertex cover of size k
(which is the case if and only if ϕ is satisfiable)

This runs in time |ϕ|O(1) + 2o(v) = 2o(n+m).

So, assuming the ETH, there is no 2o(v)-time algorithm for VC.

Strong Exponential-Time Hypothesis (SETH)

Definition (δq; repeated)

For q ≥ 3, let δq be the infimum of the set of constants c for which there exists an
algorithm solving q-SAT in time O(2cn) ·mO(1), where n is the number of variables in
the q-SAT input and m the number of clauses.

Definition (Strong Exponential-Time Hypothesis; SETH)

Strong Exponential-Time Hypothesis (unproven conjecture):

lim
q→∞

δq = 1.

The SETH is a stronger assumption than the ETH

SETH implies that CNF-SAT cannot be solved in time O(2cn) for any c < 1

Recap

Considered exponential-time and subexponential-time algorithms

Assumption about (impossibility of) subexponential-time algorithms: ETH

How to use the ETH to derive exponential-time lower bounds

Next time

Average-case complexity

Impagliazzo’s Five Worlds

