Today

- A bird’s eye overview of what we covered
- Quick intro into *parameterized complexity theory*
An overview of complexity classes

\[
\begin{align*}
P & \subseteq \text{coNP} \\
\text{NP} & \subseteq \Sigma^p_2 \subseteq \Sigma^p_3 \\
\text{PSPACE} & \subseteq \Sigma^p_2 \subseteq \Sigma^p_3 \\
\text{PH} & \subseteq \Sigma^p_2 \subseteq \Sigma^p_3 \\
\text{EXP} & \supseteq \text{PSPACE} \supseteq \text{PSPACE} \\
\end{align*}
\]
The Cook-Levin Theorem

Theorem (Cook 1971, Levin 1969)

3SAT is NP-complete.
The Time Hierarchy Theorems

Theorem

If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are time-constructible functions such that $f(n) \log f(n)$ is $o(g(n))$, then $\text{DTIME}(f(n)) \subsetneq \text{DTIME}(g(n))$.

Theorem

If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are time-constructible functions such that $f(n + 1)$ is $o(g(n))$, then $\text{NTIME}(f(n)) \subsetneq \text{NTIME}(g(n))$.
Theorem

If $S : \mathbb{N} \to \mathbb{N}$ is a space-constructible function, then:

$$\text{DTIME}(S(n)) \subseteq \text{SPACE}(S(n)) \subseteq \text{NSPACE}(S(n)) \subseteq \text{DTIME}(2^{O(S(n))}).$$

Theorem

If $f, g : \mathbb{N} \to \mathbb{N}$ are space-constructible functions such that $f(n)$ is $o(g(n))$, then:

$$\text{SPACE}(f(n)) \subset \text{SPACE}(g(n)) \quad \text{and} \quad \text{NSPACE}(f(n)) \subset \text{NSPACE}(g(n)).$$
Theorem (Baker, Gill, Solovay 1975)

There exist $A, B \subseteq \{0, 1\}^*$ such that $P^A = \text{NP}^A$ and $P^B \neq \text{NP}^B$.
Theorem

TQBF is PSPACE-complete.

Theorem

Let $i \geq 1$. Then $\Sigma_i \text{SAT}$ is Σ_i^p-complete and $\Pi_i \text{SAT}$ is Π_i^p-complete.
Theorem (Karp, Lipton 1980)

If $\text{NP} \subseteq \text{P/poly}$, then $\Sigma_2^p = \Pi_2^p$.
Probabilistic computation

\[P \subseteq ZPP \subseteq \text{coRP} \subseteq BPP \subseteq \text{RP} \]
Theorem (PCP)

\[\text{NP} = \text{PCP}(\log n, 1). \]

There exists some \(\rho < 1 \) such that for all \(L \in \text{NP} \) there is a polynomial-time reduction \(R \) from \(L \) to 3SAT where for all \(x \in \{0, 1\}^* \):

- if \(x \in L \) then \(\text{val}(R(x)) = 1 \);
- if \(x \notin L \) then \(\text{val}(R(x)) < \rho \).
ETH

Definition

Let δ_3 be the infimum of the set of constants c for which there exists an algorithm solving 3SAT in time $O(2^{cn}) \cdot m^{O(1)}$, where n is the number of variables in the q-SAT input and m the number of clauses.

The Exponential-Time Hypothesis (ETH) states that $\delta_3 > 0$.

Theorem

The ETH implies that there is no $2^{o(n)}$-time algorithm for 3SAT and that there is no $2^{o(n+m)}$-time algorithm for 3SAT.
Definition (distP)

$\langle L, D \rangle$ is in the class distP (also called: avgP) if there exists a deterministic TM M that decides L and a constant $\epsilon > 0$ such that for all $n \in \mathbb{N}$:

$$\mathbb{E}_{x \in_R D_n} \left[\text{time}_M(x)^\epsilon \right] \text{ is } O(n).$$
Parameterized complexity: with VC as example

- VC: given a graph G and $u \in \mathbb{N}$, does G have a vertex cover of size u?

- This problem is NP-complete, and the best algorithms that we have take exponential time in the worst case.

- This worst-case analysis takes into account every possible input.

- Can we take into account additional knowledge about the input that we might have to get more positive worst-case guarantees?
Suppose that we are dealing with an application where the value of u is always much smaller than the size of the graph G.

Can we restrict the exponential factor in the running time to just u?

Answer: yes!
Definition

A *parameterized problem* is a language $L \subseteq \Sigma^* \times \mathbb{N}$ of pairs (x, k), where x is called the *main input* and k is called the *parameter*.

Definition (FPT)

A parameterized problem $L \subseteq \Sigma^* \times \mathbb{N}$ is *fixed-parameter tractable* if there exist a polynomial p, a computable function f, and a deterministic TM M that, when given input (x, k), decides if $(x, k) \in L$ and runs in time $f(k) \cdot p(|x|)$.
Parameterized complexity landscape

Parameterized complexity: ‘dialogues’ with your problems

- VC: NP-complete, and no $2^{o(v)}$-time algorithm (assuming ETH)

- With u as parameter? Fixed-parameter tractable

- With $v - u$ as parameter? $W[1]$-complete

- With the degree d of the graph as parameter? para-NP-complete

- With the treewidth t of the graph as parameter? Fixed-parameter tractable

- Etc.