Computational Complexity

Lecture 11: Approximation Algorithms

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

March 8, 2021

- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP

What will we do today?

- Approximation algorithms
- Limits of approximation algorithms

- Many NP-complete problems are decision problems asking for an exact/optimal solutions
- Idea behind approximation: perhaps less than optimal solutions are enough, and easier to compute

Example: Vertex Cover

- Let G = (V, E) be an undirected graph. A subset $C \subseteq V$ is a vertex cover of G if each edge in E has at least one endpoint in C.
- Decision problem dec-VC: given G and $k \in \mathbb{N}$, does G have a vertex cover of size k?
- We can find the size *k*_{min} of the smallest vertex cover—and a smallest vertex cover—by calling an algorithm for dec-VC a linear number of times.

Example: Vertex Cover

- Let G = (V, E) be an undirected graph. A subset $C \subseteq V$ is a vertex cover of G if each edge in E has at least one endpoint in C.
- Decision problem dec-VC: given G and $k \in \mathbb{N}$, does G have a vertex cover of size k?
- We can find the size *k*_{min} of the smallest vertex cover—and a smallest vertex cover—by calling an algorithm for dec-VC a linear number of times.
- For approximation algorithms, we consider the following problem (say, opt-VC):
 Input: an undirected graph G = (V, E)
 Output: a vertex cover C ⊂ V of G

where we measure the quality of vertex covers C by their size (the closer to k_{\min} , the better)

Definition (Approximation algorithms for VC)

Let $\rho < 1$. A ρ -approximation algorithm for vertex cover is an algorithm that, when given a graph G = (V, E) as input, outputs a vertex cover C of G of size at most $1/\rho$ of the minimum size of any vertex cover of G.

• (Sometimes these are called $1/\rho$ -approximation algorithms.)

Approximation algorithm for Vertex Cover

■ For example, a polynomial-time 1/2-approximation algorithm for vertex cover:

```
C := \emptyset; G' := G;
while G' has edges do

take some (arbitrary) edge e = \{v_1, v_2\} of G';

add v_1, v_2 to C and remove all edges containing v_1 or v_2 from G';

end

return C:
```

- Every edge in G has an endpoint in C, so C is a vertex cover
- The edges e_1, \ldots, e_m used to construct C are pairwise disjoint, and |C| = 2m
- Every vertex cover of G must hit each of e_1, \ldots, e_m , so must have size $\geq m$

Limits of approximation algorithms

- For vertex cover, we have a polynomial-time 1/2-approximation algorithm. Can we get a polynomial-time 2/3-approximation algorithm, or even one for each $\rho < 1$?
- The Cook-Levin Theorem turns out to be not strong enough to rule this out.

Definition $(val(\varphi))$

Let φ be a propositional formula in CNF. Then val (φ) is the maximum ratio of clauses of φ that can be satisfied simultaneously by any truth assignment.

Thus, if φ is satisfiable, then val $(\varphi) = 1$, and if φ is not satisfiable, then val $(\varphi) < 1$.

Definition (Approximation algorithms for MAX3SAT)

Let $\rho < 1$. A ρ -approximation algorithm for MAX3SAT is an algorithm that, when given a 3CNF formula φ as input, outputs a truth assignment α that satisfies at least a $\rho \cdot val(\varphi)$ fraction of clauses of φ .

Limits of approximation algorithms

- To rule out ρ -approximation algorithms, we would need something like:
 - If $\varphi \in \mathsf{3SAT}$, then $\mathsf{val}(\varphi) = 1$
 - If $\varphi \not\in \mathsf{3SAT}$, then $\mathsf{val}(\varphi) < \rho$
- What the Cook-Levin Theorem gives us is a reduction *R* with:
 - If $x \in L$, then val(R(x)) = 1
 - If $x \notin L$, then $1 \frac{1}{|x|} \le \operatorname{val}(R(x)) < 1$ you can satisfy all clauses except for one

 \blacksquare So we cannot take any fixed ρ and rule out $\rho\text{-approximation algorithms}$

Definition (PCP verifier)

Let $L \subseteq \{0,1\}^*$ and let $q, r : \mathbb{N} \to \mathbb{N}$ be functions. We say that *L* has an (r(n), q(n))-*PCP verifier* if there is a polynomial-time probabilistic algorithm *V* with:

- (Efficiency) When given as input $x \in \{0,1\}^n$ and when given random access to a string $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$ (the proof), V uses at most r(n) random coin flips and makes at most q(n) nonadaptive queries to locations of π .
 - **•** Random access: V can query an oracle that gives the *i*-th bit of π .
 - Nonadaptive queries: the queries do not depend on the answers for previous queries.
- V always outputs either 0 or 1.
- (Completeness) If x ∈ L, then there exists a proof π ∈ {0,1}* of length at most q(n)2^{r(n)} such that ℙ[V^π(x) = 1] = 1.
- (Soundness) If x ∉ L, then for every proof π ∈ {0,1}* of length at most q(n)2^{r(n)}, it holds that P [V^π(x) = 1] ≤ 1/2.

Definition (PCP(r(n), q(n)))

Let $q, r : \mathbb{N} \to \mathbb{N}$ be functions. The class PCP(r(n), q(n)) consists of all decision problems $L \subseteq \{0, 1\}^*$ for which there exist constants c, d > 0 such that L has a $(c \cdot r(n), d \cdot q(n))$ -PCP verifier.

Theorem (PCP)

 $\mathsf{NP} = \mathsf{PCP}(\log n, 1).$

• q(n) = O(1), $r(n) = O(\log n)$, so the length $q(n)2^{r(n)}$ of proofs is polynomial

• A constant number q(n) = O(1) of random queries to the proof

The PCP Theorem and approximation algorithms

• The PCP Theorem is equivalent to the following statement:

Theorem (PCP; the approximation view)

There exists some $\rho < 1$ such that for all $L \in NP$ there is a polynomial-time reduction R from L to 3SAT where for all $x \in \{0, 1\}^*$:

- if $x \in L$ then val(R(x)) = 1;
- if $x \notin L$ then $val(R(x)) < \rho$.
- For example: there exists some $\rho < 1$ such that if there exists a polynomial-time ρ -approximation algorithm for MAX3SAT, then P = NP.

Ruling out polynomial-time ρ -approximation for MAX3SAT for some ρ

- **Statement:** there exists some $\rho < 1$ such that if there exists a polynomial-time ρ -approximation algorithm for MAX3SAT, then P = NP.
 - Let L = 3SAT. Then there exists some ρ < 1 such that there is a polynomial-time reduction R from 3SAT to 3SAT where, for all x ∈ {0,1}*:</p>
 - if $\varphi \in 3SAT$ then $val(R(\varphi)) = 1$;
 - if $\varphi \notin 3SAT$ then $val(R(\varphi)) < \rho$.
 - Suppose that there exists a polynomial-time ρ -approx. algorithm A for MAX3SAT.
 - We can then solve 3SAT in polynomial time as follows:
 - **T**ake an arbitrary input φ for 3SAT.
 - Produce $\psi = R(\varphi)$ in polynomial time
 - \blacksquare Run A on ψ and count the fraction δ of clauses that are satisfied
 - If $\delta \ge \rho$, then $\varphi \in 3$ SAT; if $\delta < \rho$, then $\varphi \notin 3$ SAT.

- Approximation algorithms
- Limits of approximation algorithms
- PCP Theorem

- Subexponential-time algorithms
- The Exponential Time Hypothesis (ETH)

Bonus: polynomial-time 1/2-approximation for MAX3SAT