Computational Complexity

Lecture 8: Some Sort of Recap

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

February 26, 2021

Recap What we saw last time..

- The classes Σ_i^p and Π_i^p
- The Polynomial Hierarchy
- $\Sigma_i^{\rm p}$ -complete and $\Pi_i^{\rm p}$ -complete QBF problems
- Characterizations using oracles and ATMs

What will we do today?

- Reflecting on what we've seen before
- Mostly using examples (of games)

One-/two-liner overview of complexity classes

- L: deterministic algorithm, logarithmic space (and polynomial time)
- NL: nondeterministic algorithm, logarithmic space (and polynomial time)
- P: solvable in (deterministic) polynomial time
- NP: solutions (for yes-answers) can be guessed/checked in polynomial time
- coNP: solutions (for no-answers) can be guessed/checked in polynomial time
- Σ_2^p : solutions (for yes-answers) have " $\exists \forall$ structure"
- Π_2^p : solutions (for yes-answers) have " $\forall \exists$ structure"
- PSPACE: (non)deterministic algorithm, polynomial space (and exponential time) *OR:* unbounded "∃∀∃∀∃ · · · structure"
- EXP: solvable in (deterministic) exponential time

• Is it the case that
$$P^P = P$$
?

• Is it the case that $P^P = P$? Yes

- Is it the case that $P^P = P$? Yes
- Is it the case that $NP^{NP} = NP?$

• Is it the case that $P^P = P$? Yes

■ Is it the case that NP^{NP} = NP? We don't know...

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE?

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes
- Is it the case that EXP^{EXP} = EXP?

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes
- Is it the case that EXP^{EXP} = EXP? No

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes
- Is it the case that EXP^{EXP} = EXP? No
- Is it the case that $DTIME(n^2)^{DTIME(n^2)} = DTIME(n^2)$?

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes
- Is it the case that EXP^{EXP} = EXP? No
- Is it the case that $DTIME(n^2)^{DTIME(n^2)} = DTIME(n^2)$? No

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes
- Is it the case that EXP^{EXP} = EXP? No
- Is it the case that $DTIME(n^2)^{DTIME(n^2)} = DTIME(n^2)$? No
- Is it the case that NTIME(n)^{NTIME(n)} = NTIME(n)?

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes
- Is it the case that EXP^{EXP} = EXP? No
- Is it the case that $DTIME(n^2)^{DTIME(n^2)} = DTIME(n^2)$? No
- Is it the case that NTIME(n)^{NTIME(n)} = NTIME(n)? We don't know...

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes
- Is it the case that EXP^{EXP} = EXP? No
- Is it the case that $DTIME(n^2)^{DTIME(n^2)} = DTIME(n^2)$? No
- Is it the case that NTIME(n)^{NTIME(n)} = NTIME(n)? We don't know...

P vs. NP

• Polls on $P \stackrel{?}{=} NP$ have been held among computational complexity researchers:

- In 2002, see: https://tiny.cc/pnp-poll1
- In 2012, see: https://tiny.cc/pnp-poll2
- In 2019, see: https://tiny.cc/pnp-poll3
- In these papers, there are some very interesting opinions on the question (and some nerdy jokes)

Short answer: we have no clue (really), why P = NP or $P \neq NP$ would be true, but most think that $P \neq NP$.

Quiz example #1: checking if a given solution is unique

What is the complexity of this problem?

Input: A propositional formula φ, and a satisfying truth assignment α for φ.
 Question: Is α the only satisfying assignment for φ?

 $\varphi \wedge \neg \propto''$

Quiz example #2: finding a minimal equivalent DNF formula

• What is the complexity of this problem?

■ *Input:* A propositional formula φ , and 1^k for some $k \in \mathbb{N}$. *Question:* Is there a DNF formula ψ of size $\leq k$ such that $\varphi \equiv \psi$?

Quiz example #3: equivalence of propositional logic formulas

• What is the complexity of this problem? coNP

• Input: Two propositional formulas φ_1, φ_2 .

Quiz example #4: 2SAT

- What is the complexity of this problem? NL-complete
- A propositional 2CNF formula φ . Input: Is φ satisfiable? Question: in NP $(\gamma_{X_1}) \land (\chi_1 \lor \gamma \ltimes_2) \land (\kappa_2 \lor \gamma \ltimes_3)$ $\gamma K_2 \rightarrow \gamma K_2$ $\begin{pmatrix} X_3 \\ & \chi_2 \end{pmatrix} \xrightarrow{} & \chi_2 \\ & \chi_2 \xrightarrow{} & \chi_1 \end{pmatrix}$ ×2-)×2

Quiz example #5: satisfiability of modal logic K

What is the complexity of this problem? PSPACE-complete

Input: A basic modal logic formula φ .
Question: Is φ satisfiable?
Tableau - algorithm range in pohy-space

Quiz example #6: satisfiability of modal logic S5

- What is the complexity of this problem?
- Input: A modal logic formula φ .

Question: Is there an S5 Kripke model where φ is true?

Quiz example #6: satisfiability of modal logic S5

- What is the complexity of this problem? NP-complete
- Input: A modal logic formula φ .

Question: Is there an S5 Kripke model where φ is true?

Theorem: if there is an S5 Kripke model where φ is true, then there exists an S5 Kripke model with at most |φ| states where φ is true.

Quiz example #7: Tiling I

- What is the complexity of this problem?
- Input: A set of 4-sided tile types, and $n, m \in \mathbb{N}$. $\rightarrow 1^{\circ}$, 1°
 - Question: Can we use these tile types to fill an $n \times m$ grid, so that (1) the outsides of the grid all have side s_0 , and (2) neighboring tiles have matching sides?

NP-complete

Quiz example #8: Tiling II

- What is the complexity of this problem? PSPACE-complete
- Input: A set of 4-sided tile types, and $n \in \mathbb{N}$.
 - *Question:* Can we use these tile types to fill an $n \times m$ grid, for some $m \in \mathbb{N}$, so that
 - (1) the outsides of the grid all have side s_0 , and
 - (2) neighboring tiles have matching sides?

Quiz example #9: Greedy Spiders

- What is the complexity of this problem?
- *Input:* An instance *I* of the *greedy spiders* puzzle.
 - *Question:* Is there a solution for *I*?

Quiz example #10: Generalized Geography

 What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/ Generalized_geography)

- Input: An instance I of generalized geography.
 - *Question:* Does Player 1 have a winning strategy?

Quiz example #10: Generalized Geography

- What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/ Generalized_geography)
- Input: An instance I of generalized geography.
 - *Question:* Does Player 1 have a winning strategy?

Quiz example #11: Game of the Amazons (2 players)

- What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/Game_of_the_Amazons)
- Input: A (2-player) Game of the Amazons position (on an n × n board).
 Question: Does Player 1 have a winning strategy?

Quiz example #12: Game of the Amazons (1 player)

- What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/Game_of_the_Amazons)
- *Input:* A (1-player) Game of the Amazons position (on an $n \times n$ board), and 1^k for some $k \in \mathbb{N}$.
 - *Question:* Can Player 1 make at least *k* consecutive moves?

Quiz example #13: reachability in succinctly represented graphs

- What is the complexity of this problem?
- *Input:* A propositional logic formula $\varphi(x_1, ..., x_n, x'_1, ..., x'_n)$, and two binary vectors $s, t \in \{0, 1\}^n$.
 - Question: Consider the directed graph G = (V, E), where: $V = \{0, 1\}^n$, and for each $\overline{v}, \overline{w} \in V$, $(\overline{v}, \overline{w}) \in E$ if and only if $\varphi[\overline{u}, \overline{w}]$ is true.

Is t reachable from s in G?

Quiz example #14: 3-colorability for succinctly represented graphs

- What is the complexity of this problem?
- *Input:* A propositional logic formula $\varphi(x_1, ..., x_n, x'_1, ..., x'_n)$, and two binary vectors $s, t \in \{0, 1\}^n$.
 - *Question:* Consider the undirected graph G = (V, E), where: $V = \{0, 1\}^n$, and for each $\overline{v}, \overline{w} \in V$, $\{\overline{v}, \overline{w}\} \in E$ if and only if $\varphi[\overline{u}, \overline{w}]$ is true. Is *G* 3-colorable?

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem