Computational Complexity

Take-home exam

Hand in via Canvas before March 31 at 17:00

Definition 1. We say that a class \mathcal{C} of propositional formulas is *nice* if it has the following property:

• There is a polynomial-time algorithm that—given a formula $\varphi \in C$, a positive integer $k \in \mathbb{N}$, and a partial truth assignment α to (some of) the variables in $\operatorname{Var}(\varphi)$ —correctly decides if there exists a truth assignment $\beta : \operatorname{Var}(\varphi) \to \{0, 1\}$ that (i) extends α , (ii) satisfies φ , and (iii) that sets at least k variables among $\operatorname{Var}(\varphi)$ to true.

Exercise 1 (*6pt; a:* $1\frac{1}{2}pt$, *b:* $1\frac{1}{2}pt$, *c:* $1\frac{1}{2}pt$, *d:* $1\frac{1}{2}pt$).

- (a) Show that if the class of all 2CNF formulas is nice, then P = NP.
- (b) Specify a class C of propositional formulas that is nice, and such that for every (arbitrary) propositional formula φ , there exists some $\psi \in C$ that is logically equivalent to φ . Prove that this is the case.

In the rest of this exercise, we will show that the class of all propositional 3CNF formulas does not polynomial-size compile into any nice class C, unless the PH collapses.

Definition 2. Let C_1, C_2 be two classes of propositional formulas. The class C_1 polynomial-size compiles into C_2 if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $\varphi \in C_1$ there exists a $f(\varphi) \in C_2$ that is logically equivalent to φ and for which holds $|f(\varphi)| \leq p(|\varphi|)$. Note that there are no requirements on the running time to compute $f(\varphi)$.

Consider the following family $\{\varphi_n\}_{n \in \mathbb{N}}$ of propositional formulas, where each φ_n contains variables in $\{x_i, x_{i,j} \mid 1 \le i < j \le n\}$, and is defined as follows:

$$\varphi_n = \bigwedge_{1 \le i < j \le n} (\neg x_{i,j} \lor \neg x_i \lor \neg x_j)$$

(c) Let \mathcal{C} be a class of propositional formulas that is nice. Suppose that there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a family $\{\psi_n\}_{n \in \mathbb{N}}$ of propositional formulas such that for each $n \in \mathbb{N}$: (i) $\psi_n \in \mathcal{C}$, (ii) ψ_n is logically equivalent to φ_n , and (iii) $|\psi_n| \leq p(n)$.

Show that then there exists a polynomial-time algorithm that—given a graph G = (V, E) with n vertices, an integer $k \in \mathbb{N}$, and the formula ψ_n —decides if G has a clique of size k.

(d) Show that if 3CNF polynomial-size compiles into a class C that is nice, then $PH = \Sigma_2^p$. *Hint:* use the answer that you gave for (c). **Exercise 2** (*3pt; a: 1pt, b: 2pt*). Consider the following problem:

Restricted-Positive-1-in-3-SAT

Input: A propositional formula φ in 3CNF, where each clause contains only positive literals, and where each variable $x \in Var(\varphi)$ occurs at most 3 times in φ .

Question: Does there exist a truth assignment $\alpha : \operatorname{Var}(\varphi) \to \{0, 1\}$ such that α makes exactly one (positive) literal true in each clause of φ ?

Do the following:

- (a) Prove that RESTRICTED-POSITIVE-1-IN-3-SAT is solvable in time $O(1.45^n) \cdot p(|\varphi|)$, for some polynomial $p : \mathbb{N} \to \mathbb{N}$, where *n* is the number of variables in φ .
- (b) Prove that if the ETH is true, then RESTRICTED-POSITIVE-1-IN-3-SAT is not solvable in time $2^{o(n)}$, where *n* is the number of variables in φ .

Exercise 3 (1pt). Consider the following game, played on an $m \times m$ board where each of the positions on the board may be occupied by (i) a tile marked O, (ii) a tile marked X, or (iii) no tile at all. In other words, there are tiles marked with O and X, and in each position on the board there is at most one tile. The game is played by a single player, and for each of the m columns, this player has to play one of the following moves: (1) remove all tiles marked O from positions in this column, (2) remove all tiles marked X from positions in this column. The player wins the game if (a) for each of the columns she made a move, and after these moves (b) for each of the m rows, there is at least one tile remaining in this row.

Then consider the following problem, related to the game described above.

GAME-CAN-BE-WON

Instance: An $m \times m$ board of the game, where each of the positions is occupied by a tile marked with O, a tile marked with X, or no tile.

Question: Can the player win the game starting from this board position?

Show that the problem GAME-CAN-BE-WON is complete for some complexity class $K \in \{NP, coNP, \Sigma_2^p, \Pi_2^p, PSPACE\}$.