Computational Complexity

Lecture 7: the Polynomial Hierarchy

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

February 22, 2021
Recap

What we saw last time..

- Space-bounded computation
- Limits on memory space
- L, NL, PSPACE
- Logspace reductions
- NL-completeness
What will we do today?

- The Polynomial Hierarchy
- Bounded quantifier alternation
- Alternating Turing machines
We saw that 3COL is NP-complete, but how about the following problem?

3COL-Extension = \{ (G, V_0) \mid G = (V, E) is an undirected graph, V_0 \subseteq V, and each 3-coloring of the vertices in V_0 can be extended to a proper 3-coloring of the entire graph G \}

There seems to be no single (polynomial-size) certificate for yes-inputs

It is a "\(\forall \exists\)-type" question

We need a different complexity class to capture the complexity of 3COL-Extension
The complexity class Σ_2^p

Definition (NP)

A language $L \subseteq \{0, 1\}^*$ is in the class NP if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine M such that for every $x \in \{0, 1\}^*$:

$$x \in L \text{ if and only if } \text{there exists some } u \in \{0, 1\}^{q(|x|)} \text{ such that } M(x, u) = 1.$$

Definition (coNP)

A language $L \subseteq \{0, 1\}^*$ is in the class coNP if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine M such that for every $x \in \{0, 1\}^*$:

$$x \in L \text{ if and only if } \text{for all } u \in \{0, 1\}^{q(|x|)} \text{ it holds that } M(x, u) = 1.$$
The complexity class Σ^p_2

Definition (Σ^p_2)

A language $L \subseteq \{0, 1\}^*$ is in the class Σ^p_2 if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine M such that for every $x \in \{0, 1\}^*$:

$$x \in L \text{ if and only if } \exists u_1 \in \{0, 1\}^{q(|x|)} \text{ such that for all } u_2 \in \{0, 1\}^{q(|x|)} \text{ it holds that } M(x, u_1, u_2) = 1.$$
The complexity class Π^p_2

Definition (Π^p_2)

A language $L \subseteq \{0, 1\}^*$ is in the class Σ^p_2 if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine M such that for every $x \in \{0, 1\}^*$:

$$x \in L \text{ if and only if } \forall u_1 \in \{0, 1\}^{q(|x|)} \exists u_2 \in \{0, 1\}^{q(|x|)} \text{ such that } M(x, u_1, u_2) = 1.$$

It turns out that 3COL-Extension is Π^p_2-complete.
The complexity classes Σ^p_i

Definition (Σ^p_i)

Let $i \geq 1$. A language $L \subseteq \{0, 1\}^*$ is in the class Σ^p_i if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine M such that for every $x \in \{0, 1\}^*$:

$$x \in L \text{ if and only if } \exists u_1 \in \{0, 1\}^{|x|} q(|x|) \text{ such that }$$

$$\text{for all } u_2 \in \{0, 1\}^{|x|} q(|x|)$$

$$\vdots$$

$$\text{for all } u_i \in \{0, 1\}^{|x|} q(|x|)$$

$$\text{it holds that } M(x, u_1, \ldots, u_i) = 1. \text{ if } i \text{ is even},$$

$$\vdots$$

$$\text{there exists } u_i \in \{0, 1\}^{|x|} q(|x|)$$

$$\text{such that } M(x, u_1, \ldots, u_i) = 1. \text{ if } i \text{ is odd}.$$
The complexity classes Π^p_i

Definition (Π^p_i)

Let $i \geq 1$. A language $L \subseteq \{0,1\}^*$ is in the class Π^p_i if there is a polynomial $q : \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time Turing machine M such that for every $x \in \{0,1\}^*$:

$x \in L$ if and only if

for all $u_1 \in \{0,1\}^{q(|x|)}$

there exists $u_2 \in \{0,1\}^{q(|x|)}$ such that

\vdots

for all $u_i \in \{0,1\}^{q(|x|)}$

it holds that $M(x, u_1, \ldots, u_i) = 1$. if i is odd,

\vdots

there exists $u_i \in \{0,1\}^{q(|x|)}$

such that $M(x, u_1, \ldots, u_i) = 1$. if i is even.
The Polynomial Hierarchy (PH)

Definition (Σ₀, Π₀, PH)

\[Σ₀ = Π₀ = P \]

\[PH = \bigcup_{i \geq 0} Σ_i^p. \]

- Some relations:
 - \(Π_i^p = \{ \overline{L} | L \in Σ_i^p \} \)
 - \(Σ_1^p = NP, Π_1^p = coNP \)
 - \(Σ_i^p \subseteq Π_{i+1}^p \subseteq Σ_{i+2}^p, \)
 \(\Pi_i^p \subseteq \Sigma_{i+1}^p \subseteq \Pi_{i+2}^p \)
 - \(Σ_i^p \subseteq Σ_{i+1}^p, Π_i^p \subseteq Π_{i+1}^p \)
 - \(Σ_i^p \cup Π_i^p \subseteq \text{PSPACE} \)
 - \(PH \subseteq \text{PSPACE} \)
“Collapse” of the hierarchy

- Statements like “P ≠ NP” and “NP ≠ coNP” are widely believed conjectures
- We can use these as assumptions to show some results
 - E.g., assuming that P ≠ NP, NP-complete problems are not in P.
- For some results, stronger conjectures seem necessary
- Another conjecture: “the PH does not collapse”
 - “the PH collapses to P” \(\text{PH} = \text{P} \)
 - “the PH collapses to the \(i \)th level” \(\text{PH} = \Sigma^p_i \)

Theorem

Let \(i \geq 1 \). If \(\Sigma^p_i = \Pi^p_i \), then \(\text{PH} = \Sigma^p_i \).

If \(P = \text{NP} \), then \(\text{PH} = \text{P} \).
QBF problems complete for Σ^p_i and Π^p_i

- $\Sigma_i\text{SAT} = \{ \varphi = \exists u_1 \forall u_2 \ldots Q_i u_i \psi(u_1, \ldots, u_i) : \varphi \text{ is a true QBF} \},$
 where each $u_j = (u_{j,1}, \ldots, u_{j,\ell})$ is a sequence of propositional variables,
 $\exists u_j$ stands for $\exists u_{j,1} \exists u_{j,2} \ldots \exists u_{j,\ell}$, and $\forall u_j$ for $\forall u_{j,1} \forall u_{j,2} \ldots \forall u_{j,\ell}$

- $\Pi_i\text{SAT} = \{ \varphi = \forall u_1 \exists u_2 \ldots Q_i u_i \psi(u_1, \ldots, u_i) : \varphi \text{ is a true QBF} \},$

Theorem

Let $i \geq 1$. Then $\Sigma_i\text{SAT}$ is Σ^p_i-complete and $\Pi_i\text{SAT}$ is Π^p_i-complete (both under polynomial-time reductions).
Oracle characterizations of Σ^p_i and Π^p_i

Theorem

Let $i \geq 2$. Then $\Sigma^p_i = \text{NP}^{\Sigma^p_{i-1}\text{SAT}}$ and $\Pi^p_i = \text{coNP}^{\Sigma^p_{i-1}\text{SAT}}$.

- (Or replace $\Sigma^p_{i-1}\text{SAT}$ by any Σ^p_{i-1}-complete or Π^p_{i-1}-complete problem.)

- This is often written as: $\Sigma^p_i = \text{NP}^{\Sigma^p_{i-1}}$ and $\Pi^p_i = \text{coNP}^{\Sigma^p_{i-1}}$
Configurations C consist of:
(1) tape contents
(2) tape head positions
(3) state $q \in Q$

Configuration graph of a TM M on some input x:

- Nodes are all the configurations that are reachable from the initial configuration C_0
- Edge from C to C' if applying one of the transition functions in C results in C'
Alternating Turing machines

Definition (Alternating Turing machines; ATMs)

- Instead of a single transition function δ, there are two transition functions δ_1, δ_2.
- The set $Q \setminus \{q_{\text{acc}}, q_{\text{rej}}\}$ is partitioned into Q_\exists and Q_\forall.
- Executions of alternating TMs are defined using a labeling procedure on the configuration graph. Repeatedly apply, until a fixpoint is reached:
 - Label each configuration with q_{acc} with “accept.”
 - If a configuration c with $q \in Q_\exists$ has an edge to a configuration c' that is labeled with “accept,” then label c with “accept.”
 - If a configuration c has a state $q \in Q_\forall$ and both configurations c', c'' that are reachable from it in the graph are labeled with “accept,” then label c with “accept.”
- The TM accepts the input if the starting configuration is labeled with “accept.”
- The TM runs in time $T(n)$ if for every input x and for every possible sequence of transition function choices, the machine halts after at most $T(|x|)$ steps.
Alternating Turing machines (ct’d)

$C_0 \exists \leadsto$ so the ATM accepts the input

- $\circ = \text{reject}$
- $\bullet = \text{accept}$
ATIME, Σ_iTIME, and Π_iTIME

Definition (ATIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \{0, 1\}^*$ is in $\text{ATIME}(T(n))$ if there exists an ATM that decides L and that runs in time $O(T(n))$.

Definition (Σ_iTIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \{0, 1\}^*$ is in $\Sigma_i\text{TIME}(T(n))$ if there exists an ATM that decides L, that runs in time $O(T(n))$, whose initial state is in Q_\exists, and that on every input and on every path in the configuration graph alternates at most $i - 1$ times between Q_\exists and Q_\forall.

$\Pi_i\text{TIME}$ is defined similarly to $\Sigma_i\text{TIME}$, with the difference that the initial state of the ATM is in Q_\forall.
Theorem

\[\text{PSPACE} = \bigcup_{c \geq 0} \text{ATIME}(n^c). \]

Theorem

Let \(i \geq 1 \). Then:

\[\Sigma_i^P = \bigcup_{c \geq 0} \Sigma_i \text{TIME}(n^c) \]
\[\Pi_i^P = \bigcup_{c \geq 0} \Pi_i \text{TIME}(n^c). \]
An overview of complexity classes

- $L \subseteq NL \subseteq P \subseteq coNP \subseteq \Sigma_2^p \subseteq \Pi_2^p \subseteq \Sigma_3^p \subseteq \Pi_3^p \subseteq PH \subseteq PSPACE \subseteq EXP$

- $P \cap coNP \subseteq \Sigma_2^p \cap \Pi_2^p \subseteq \Sigma_3^p \cap \Pi_3^p \subseteq PH$

- $P \cap coNP \cap \Sigma_2^p \cap \Pi_2^p \cap \Sigma_3^p \cap \Pi_3^p \subseteq PH \cap PSPACE \cap EXP$

- $PH \cap PSPACE \cap EXP$
The classes Σ^p_i and Π^p_i.

The Polynomial Hierarchy.

Σ^p_i-complete and Π^p_i-complete QBF problems.

Characterizations using oracles and ATMs.
Next time

- A “breather”
- Time to reflect on what we’ve done so far
- Requests for things to recap?