
Computational Complexity

Lecture 7: the Polynomial Hierarchy

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

February 22, 2021

Recap
What we saw last time..

Space-bounded computation

Limits on memory space

L, NL, PSPACE

Logspace reductions

NL-completeness

What will we do today?

The Polynomial Hierarchy

Bounded quantifier alternation

Alternating Turing machines

Example problem

We saw that 3COL is NP-complete, but how about the following problem?

3COL-Extension = { (G ,V0) | G = (V ,E) is an undirected graph, V0 ⊆ V ,
and each 3-coloring of the vertices in V0 can
be extended to a proper 3-coloring
of the entire graph G }

There seems to be no single
(polynomial-size) certificate for yes-inputs

It is a “∀∃-type” question

We need a different complexity class
to capture the complexity of 3COL-Extension

The complexity class Σp
2

Definition (NP)

A language L ⊆ {0, 1}∗ is in the class NP if there is a polynomial q : N→ N and a
polynomial-time Turing machine M such that for every x ∈ {0, 1}∗:

x ∈ L if and only if there exists some u ∈ {0, 1}q(|x |) such that M(x , u) = 1.

Definition (coNP)

A language L ⊆ {0, 1}∗ is in the class coNP if there is a polynomial q : N→ N and a
polynomial-time Turing machine M such that for every x ∈ {0, 1}∗:

x ∈ L if and only if for all u ∈ {0, 1}q(|x |) it holds that M(x , u) = 1.

The complexity class Σp
2

Definition (Σp
2)

A language L ⊆ {0, 1}∗ is in the class Σp
2 if there is a polynomial q : N→ N and a

polynomial-time Turing machine M such that for every x ∈ {0, 1}∗:

x ∈ L if and only if there exists u1 ∈ {0, 1}q(|x |) such that
for all u2 ∈ {0, 1}q(|x |) it holds that M(x , u1, u2) = 1.

The complexity class Πp
2

Definition (Πp
2)

A language L ⊆ {0, 1}∗ is in the class Σp
2 if there is a polynomial q : N→ N and a

polynomial-time Turing machine M such that for every x ∈ {0, 1}∗:

x ∈ L if and only if for all u1 ∈ {0, 1}q(|x |)

there exists u2 ∈ {0, 1}q(|x |) such that M(x , u1, u2) = 1.

It turns out that 3COL-Extension is Πp
2-complete.

The complexity classes Σp
i

Definition (Σp
i)

Let i ≥ 1. A language L ⊆ {0, 1}∗ is in the class Σp
i if there is a polynomial q : N→ N

and a polynomial-time Turing machine M such that for every x ∈ {0, 1}∗:

x ∈ L if and only if there exists u1 ∈ {0, 1}q(|x |) such that
for all u2 ∈ {0, 1}q(|x |)

...
for all ui ∈ {0, 1}q(|x |)

it holds that M(x , u1, . . . , ui) = 1. if i is even,

...
there exists ui ∈ {0, 1}q(|x |)

such that M(x , u1, . . . , ui) = 1. if i is odd.

The complexity classes Πp
i

Definition (Πp
i)

Let i ≥ 1. A language L ⊆ {0, 1}∗ is in the class Πp
i if there is a polynomial q : N→ N

and a polynomial-time Turing machine M such that for every x ∈ {0, 1}∗:

x ∈ L if and only if for all u1 ∈ {0, 1}q(|x |)

there exists u2 ∈ {0, 1}q(|x |) such that
...
for all ui ∈ {0, 1}q(|x |)

it holds that M(x , u1, . . . , ui) = 1. if i is odd,

...
there exists ui ∈ {0, 1}q(|x |)

such that M(x , u1, . . . , ui) = 1. if i is even.

The Polynomial Hierarchy (PH)

Definition (Σp
0, Π

p
0, PH)

Σp
0 = Πp

0 = P PH =
⋃
i≥0

Σp
i .

Some relations:

Πp
i = { L | L ∈ Σp

i }

Σp
1 = NP, Πp

1 = coNP

Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2,

Πp
i ⊆ Σp

i+1 ⊆ Πp
i+2

Σp
i ⊆ Σp

i+1, Πp
i ⊆ Πp

i+1

Σp
i ∪ Πp

i ⊆ PSPACE

PH ⊆ PSPACE

P

Σp
1

Πp
1

Σp
2

Πp
2

Σp
3

Πp
3

PSPACE· · ·

“Collapse” of the hierarchy

Statements like “P 6= NP” and “NP 6= coNP” are widely believed conjectures

We can use these as assumptions to show some results

E.g., assuming that P 6= NP, NP-complete problems are not in P.

For some results, stronger conjectures seem necessary

Another conjecture: “the PH does not collapse”

“the PH collapses to P” PH = P

“the PH collapses to the ith level” PH = Σp
i

Theorem
Let i ≥ 1. If Σp

i = Πp
i , then PH = Σp

i .
If P = NP, then PH = P.

QBF problems complete for Σp
i and Πp

i

ΣiSAT = {ϕ = ∃u1∀u2 . . .Qiui ψ(u1, . . . , ui) : ϕ is a true QBF },
where each uj = (uj ,1, . . . , uj ,`) is a sequence of propositional variables,
∃uj stands for ∃uj ,1∃uj ,2 . . . ∃uj ,`, and ∀uj for ∀uj ,1∀uj ,2 . . . ∀uj ,`

ΠiSAT = {ϕ = ∀u1∃u2 . . .Qiui ψ(u1, . . . , ui) : ϕ is a true QBF },

Theorem
Let i ≥ 1. Then ΣiSAT is Σp

i -complete and ΠiSAT is Πp
i -complete

(both under polynomial-time reductions).

Oracle characterizations of Σp
i and Πp

i

Theorem
Let i ≥ 2. Then Σp

i = NPΣi−1SAT and Πp
i = coNPΣi−1SAT.

(Or replace Σi−1SAT by any Σp
i−1-complete or Πp

i−1-complete problem.)

This is often written as: Σp
i = NPΣp

i−1 and Πp
i = coNPΣp

i−1

Configuration graphs

Configurations C consist of:
(1) tape contents
(2) tape head positions
(3) state q ∈ Q

Configuration graph of a TM M
on some input x :

Nodes are all the
configurations that are
reachable from the initial
configuration C0
Edge from C to C ′ if
applying one of the transition
functions in C results in C ′

•C0

•C1 •C2

•C3 •C4
• C5

•

• • • •

• •• •

Alternating Turing machines

Definition (Alternating Turing machines; ATMs)

Instead of a single transition function δ, there are two transition functions δ1, δ2.

The set Q \ {qacc, qrej} is partitioned into Q∃ and Q∀.

Executions of alternating TMs are defined using a labeling procedure on the
configuration graph. Repeatedly apply, until a fixpoint is reached:

Label each configuration with qacc with “accept.”
If a configuration c with q ∈ Q∃ has an edge to a configuration c ′ that is labeled
with “accept,” then label c with “accept.”
If a configuration c has a state q ∈ Q∀ and both configurations c ′, c ′′ that are
reachable from it in the graph are labeled with “accept,” then label c with “accept.”

The TM accepts the input if the starting configuration is labeled with “accept.”

The TM runs in time T (n) if for every input x and for every possible sequence of
transition function choices, the machine halts after at most T (|x |) steps.

Alternating Turing machines (ct’d)

• = reject

• = accept

•C0 ∃

• ∃ • ∃

• ∃ • ∀
•∀

• ∀

• • • •

• ∀ • ∃• ∀ • ∀

• • • •

• •• •

•

• •

• •
•

•

 so the ATM accepts the input

ATIME, ΣiTIME, and ΠiTIME

Definition (ATIME)

Let T : N→ N be a function. A decision problem L ⊆ {0, 1}∗ is in ATIME(T (n)) if
there exists an ATM that decides L and that runs in time O(T (n)).

Definition (ΣiTIME)

Let T : N→ N be a function. A decision problem L ⊆ {0, 1}∗ is in ΣiTIME(T (n)) if
there exists an ATM that decides L, that runs in time O(T (n)), whose initial state is
in Q∃, and that on every input and on every path in the configuration graph alternates
at most i − 1 times between Q∃ and Q∀.

ΠiTIME is defined similarly to ΣiTIME, with the difference that the initial state of
the ATM is in Q∀

ATM characterizations

Theorem

PSPACE =
⋃
c≥0

ATIME(nc).

Theorem
Let i ≥ 1. Then:

Σp
i =

⋃
c≥0

ΣiTIME(nc) Πp
i =

⋃
c≥0

ΠiTIME(nc).

An overview of complexity classes

L NL P

NP

coNP

Σp
2

Πp
2

Σp
3

Πp
3

PH PSPACE EXP
⊆ ⊆

⊆

⊆

⊆

⊆

⊆
⊆

⊆

⊆

⊆
⊆ ⊆ ⊆⊆

?
= ?

=
?
=

(

(

Recap

The classes Σp
i and Πp

i

The Polynomial Hierarchy

Σp
i -complete and Πp

i -complete QBF problems

Characterizations using oracles and ATMs

Next time

A “breather”

Time to reflect on what we’ve done so far

Requests for things to recap?

