
Computational Complexity

Homework Sheet 4

Hand in via Canvas before March 8, 2021, at 13:00

Exercise 1 (3pt). Define:

P/log =
⋃

c,d∈N
DTIME(nc)/(d log n).

That is, P/log is the class of all languages that can be decided in polynomial time with O(log n) bits of advice. Prove
that SAT 6∈ P/log, unless P = NP.

• Hint: iterate over all possible advice strings of length O(log n).

• Hint: you may assume that for any string x that represents a propositional formula ϕ and any truth assignment α
to (some of) the variables of ϕ, one can in polynomial-time encode the formula ϕ[α] as a string x′ that is of the
same length as x—where ϕ[α] is obtained from ϕ by instantiating each variable z in the domain of α by α(z).

Exercise 2 (2pt). Let P/1 be the class of languages that can be decided in polynomial time with a single bit of advice
(for each input size). That is P/1 =

⋃
c∈N DTIME(nc)/1. Prove that P (P/1.

• Hint: use the following undecidable language UHALT:

UHALT = { 1n | n’s binary expansion encodes a pair (M, x)
such that M is a Turing machine that halts on input x }.

Exercise 3 (2pt). Let Pnu be the class of all decision problems L ⊆ {0, 1}∗ such that for each n ∈ N, the problem L∩
{0, 1}n is polynomial-time solvable. That is, for each n ∈ N, there exists a deterministic TM Mn and a constant cn
such that Mn decides L ∩ {0, 1}n and runs in time O(ncn).

In this exercise, you will show that Pnu is different from P/poly.1 You may opt for an easy variant (A) of this
exercise, for a total maximum of 11/2 points, or a harder variant (B) of this exercise, for a total maximum of 2 points.

(A) Prove that if Pnu = P/poly, then the Polynomial Hierarchy collapses.

(B) Prove that Pnu 6= P/poly.

– Hint: for (B), have a look at Sections 6.5 and 6.6 from the book [1].

Exercise 4 (3pt). Consider the following two complexity classes PNP[log] and PNP
|| :

• PNP[log] is the class of all decision problems L ⊆ {0, 1}∗ for which there exists a polynomial-time deterministic
oracle TM M and an oracle language O ∈ NP such that MO decides L, and a function f(n) : N → N that
is O(log n) such that for each input x ∈ {0, 1}∗, MO(x) makes at most f(|x|) queries to the oracle O.

• PNP
|| is the class of all decision problems L ⊆ {0, 1}∗ for which there exists a polynomial-time deterministic oracle

TM M and an oracle language O ∈ NP such that MO decides L, and for each input, MO makes their queries
to O in parallel.

1In fact, the class Pnu turns out to be not very interesting. You don’t have to prove this, but understanding why will help you solve
this exercise.

1

Making parallel oracle queries works as follows. The machine M may write an arbitrary number of oracle queries
q1, . . . , qm ∈ {0, 1}∗ on the oracle tape, separated by a designated symbol # (i.e., q1#q2# · · · #qm). Then, when
the machine M enters the designated query state qquery ∈ Q, instead of transitioning into qyes or qno depending
on the answer of the oracle query, the machine transitions into a designated state qdone, and the contents of the
oracle tape are replaced by the string b1#b2# · · · #bm that represents the answers b1, . . . , bm ∈ {0, 1} to the oracle
queries (e.g., 0#1#1#0), where bi = 1 if and only if qi is in the oracle language O. The machine M is only allowed
to make a single such combined query for each input x ∈ {0, 1}∗. In other words, it must compute (and write
down) all the oracle queries that it wants to make before getting an answer for any of them.

Prove that PNP[log] = PNP
|| .

• Hint: for showing that PNP
|| ⊆ PNP[log], choose an NP-complete oracle O, allowing you to solve different NP

problems by querying this single oracle—using the fact that for each L ∈ NP, there exists a polynomial-time
reduction from L to O.

Remark 1. Answers will be graded on two criteria: they should (1) be correct and intelligent, and also (2) concise
and to the point.

Remark 2. If you find a solution to one of the exercises in a paper or book, you can use this to inform your solution.
Make sure that you write down the solution in your own words, conveying that you understand what is going on.

Remark 3. You may work in pairs on this homework assignment. If you opt to do this, please register for a group
on Canvas (under People > Groups), and both of you should register for the same group. Then, only one submission
per group is needed, and both of you will get access to the feedback through Canvas.

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge University Press,
2009.

2

