Computational Complexity

Lecture 6: Space complexity

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

Recap

What we saw last time..

- Limits of diagonalization, relativizing results
- Oracles
- There exist $A, B \subseteq \{0,1\}^*$ such that $P^A = NP^A$ and $P^B \neq NP^B$.

What will we do today?

- Space-bounded computation
- Limits on memory space
- L, NL, PSPACE, NPSPACE
- Logspace reductions
- NL-completeness

Space-bounded computation

- Instead of measuring the number T(n) of steps, we will measure the number S(n) of tape cells used
- For time bounds, T(n) < n typically makes no sense
 - In less than *n* steps, the machine cannot even read the input
- However, for space bounds, S(n) < n does make sense in some situations
- For space-bounded computation:
 - The input tape is read-only
 - We count how many tape cells on the 'work tapes' are used

SPACE and NSPACE

Definition (SPACE)

Let $S: \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \Sigma^*$ is in SPACE(S(n)) if there exists a Turing machine that decides L and that on inputs of length n its tape heads (excluding on the input tape) visit at most $c \cdot S(n)$ tape cells.

Definition (NSPACE)

Let $S: \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \Sigma^*$ is in NSPACE(S(n)) if there exists a *nondeterministic* Turing machine that decides L and that on inputs of length n its tape heads (excluding on the input tape) visit at most $c \cdot S(n)$ tape cells.

Some first relations between time and space

Theorem

If $S : \mathbb{N} \to \mathbb{N}$ is a space-constructible function, then:

$$\mathsf{DTIME}(S(n)) \subseteq \mathsf{SPACE}(S(n)) \subseteq \mathsf{NSPACE}(S(n)) \subseteq \mathsf{DTIME}(2^{O(S(n))}).$$

- Assumption of space-constructibility rules out 'weird' functions.
 - S is space-constructible if there exists a TM that computes the function $x \mapsto S(|x|)$ in space O(S(|x|)), for each $x \in \{0,1\}^*$

Some space classes

Definition

$$\mathsf{PSPACE} = \bigcup_{c \geq 1} \mathsf{SPACE}(n^c) \qquad \qquad \mathsf{L} = \mathsf{SPACE}(\log n)$$

$$\mathsf{NPSPACE} = \bigcup \; \mathsf{NSPACE}(n^c) \qquad \qquad \mathsf{NL} = \mathsf{NSPACE}(\log n)$$

- By the previous theorem, then $L \subseteq NL \subseteq P$ and PSPACE $\subseteq NPSPACE \subseteq EXP$.
- What is an example of a problem in PSPACE?

SAT

■ What is an example of a problem in NL?

Reachability in graphs

Space Hierarchy Theorem

Theorem

If $f,g:\mathbb{N}\to\mathbb{N}$ are space-constructible functions such that f(n) is o(g(n)), then:

$$\mathsf{SPACE}(f(n)) \subsetneq \mathsf{SPACE}(g(n))$$
 and $\mathsf{NSPACE}(f(n)) \subsetneq \mathsf{NSPACE}(g(n)).$

 \blacksquare As a result: L \subsetneq PSPACE and NL \subsetneq NPSPACE.

Quantified Boolean Formulas

Definition (QBFs)

A quantified Boolean formula (QBF) (in prenex form) is of the form $Q_1x_1Q_2x_2\cdots Q_mx_m\ \varphi(x_1,\ldots,x_m)$, where each Q_i is one of the two quantifiers \exists or \forall , where the variables x_1,\ldots,x_m range over $\{0,1\}$, and where φ is a propositional formula (without quantifiers).

Truth of QBFs is defined recursively, based on the typical semantics of \exists and \forall .

■ For example, $\exists x_1 \forall x_2 \ (x_1 \lor \neg x_2) \land (x_1 \lor x_2)$ is a QBF

Definition (TQBF)

The language TQBF consists of all QBFs that are true.

PSPACE-completeness

Theorem

TQBF is PSPACE-complete (under polynomial-time reductions).

- Why is TQBF in PSPACE?
 - Use a recursive algorithm. For $\varphi = \exists x_i \ \psi$, recurse on $\psi[x_i \mapsto 0]$ and $\psi[x_i \mapsto 1]$, and return 1 if and only if at least one of the recursive calls returns 1. Similarly for $\varphi = \forall x_i \ \psi$.
 - This takes exponential time, but polynomial space:
 - The recursion depth is linear in $|\varphi|$.
 - Space can be reused.
 - With polynomial space, we keep track of the position in the recursion tree, and if we're going up or down.

$$\{x_1\mapsto 0, x_2\mapsto 1\}$$

Savitch's Theorem

Theorem (Savitch 1970)

For every space-constructible $S : \mathbb{N} \to \mathbb{N}$ with $S(n) \ge \log n$:

$$NSPACE(S(n)) \subseteq SPACE(S(n)^2).$$

■ So, in particular, PSPACE = NPSPACE.

- Proof strategy (for PSPACE = NPSPACE):
 - Show that TQBF is NPSPACE-complete and in PSPACE.

Logspace reductions

- To investigate $L \stackrel{?}{=} NL$, we need reductions that are weak enough.
- Since $L \subseteq NL \subseteq P$, every problem in $L \cup NL$ is reducible to each other using polynomial-time reductions.
 - lacksquare You can solve any problem in $L \cup NL$ in polynomial time.
 - Reduction: solve the problem, and output a trivial yes-input or a trivial no-input.

Logspace reductions (ct'd)

Definition

A function $f: \{0,1\}^* \to \{0,1\}^*$ is implicitly logspace computable if:

- f is polynomially bounded, i.e., there exists some c such that $|f(x)| \le |x|^c$ for every $x \in \{0,1\}^*$, and
- the languages $L_f = \{ (x, i) \mid f(x)_i = 1 \}$ and $L'_f = \{ (x, i) \mid i \leq |f(x)| \}$ are in the complexity class L, where $f(x)_i$ denotes the *i*th bit of f(x).

Definition

A language B is logspace-reducible to a language C (also written $B \leq_{\ell} C$) if there is a function $f:\{0,1\}^* \to \{0,1\}^*$ that is implicitly logspace computable and for each $x \in \{0,1\}^*$ it holds that $x \in B$ if and only if $f(x) \in C$.

NL-completeness

- A language B is NL-complete if $B \in NL$ and $C \leq_{\ell} B$ for every $C \in NL$.
- Logspace reductions are transitive: if $B \leq_{\ell} C$ and $C \leq_{\ell} D$, then $B \leq_{\ell} D$.
- If $B <_{\ell} C$ and $C \in L$, then $B \in L$.

 \blacksquare So, if any NL-complete language is in L, then L = NL.

An NL-complete problem

■ Consider graph reachability in directed graphs:

$$\mathsf{PATH} = \{ \ (G, s, t) \mid \ G = (V, E) \ \mathsf{is \ a \ directed \ graph}, \ s, t \in V, \\ \mathsf{and} \ t \ \mathsf{is \ reachable \ from} \ s \ \mathsf{in} \ G \ \}$$

- PATH is NL-complete. Why is it in NL?
 - Keep the current and next node in memory (logspace).
 - Guess the next node, check if they are connected, and forget the previous node.
 - Start at s, accept if you reach t.
 - Keep the length of the path you already visited in memory (logspace), and stop when it is longer than |V| (to avoid looping forever).

Immerman-Szelepcsényi Theorem

Theorem (Immerman 1988, Szelepcsényi 1987)

For every space-constructible $S: \mathbb{N} \to \mathbb{N}$ with $S(n) > \log n$:

$$NSPACE(S(n)) = coNSPACE(S(n)).$$

■ In particular: NL = coNL.

An overview of complexity classes

Recap

- Space-bounded computation
- Limits on memory space
- L, NL, PSPACE = NPSPACE
- Logspace reductions
- NL-completeness

Next time

- Complexity classes between P and PSPACE
- The Polynomial Hierarchy
- Bounded quantifier alternation
- Alternating Turing machines