Computational Complexity

Lecture 6: Space complexity

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

February 19, 2021

Recap

What we saw last time..

m Limits of diagonalization, relativizing results
m Oracles

m There exist A, B C {0,1}* such that PA = NPA and P& £ NPE.

- What will we do today?

Space-bounded computation

Limits on memory space

L, NL, PSPACE, NPSPACE

Logspace reductions

NL-completeness

- Space-bounded computation

m Instead of measuring the number T(n) of steps, we will measure the number S(n)
of tape cells used

m For time bounds, T(n) < n typically makes no sense

m In less than n steps, the machine cannot even read the input

m However, for space bounds, S(n) < n does make sense in some situations

m For space-bounded computation:
m The input tape is read-only

m We count how many tape cells on the ‘work tapes’ are used

S| seace and nseace

Definition (SPACE)

Let S: N — N be a function. A decision problem L C ¥* is in SPACE(S(n)) if there
exists a Turing machine that decides L and that on inputs of length n its tape heads
(excluding on the input tape) visit at most c - S(n) tape cells.

Definition (NSPACE)

Let S: N — N be a function. A decision problem L C ¥* is in NSPACE(S(n)) if there
exists a nondeterministic Turing machine that decides L and that on inputs of length n
its tape heads (excluding on the input tape) visit at most ¢ - S(n) tape cells.

- Some first relations between time and space

If S : N — N js a space-constructible function, then:

DTIME(S(n)) C SPACE(S(n)) € NSPACE(S(n)) € DTIME(20(5(m)),

m Assumption of space-constructibility rules out ‘weird’ functions.

m S is space-constructible if there exists a TM that computes the function x — S(|x|)
in space O(S(|x])), for each x € {0,1}*

- Some space classes
Definition

PSPACE = |J SPACE(n°) L = SPACE(log n)
c>1
NPSPACE = |J NSPACE(n°) NL = NSPACE(log n)
c>1

m By the previous theorem, then L C NL C P and PSPACE C NPSPACE C EXP.

m What is an example of a problem in PSPACE? SAT

m What is an example of a problem in NL? Reachability in graphs

- Space Hierarchy Theorem

If f,g : N — N are space-constructible functions such that f(n) is o(g(n)), then:

SPACE(f(n)) € SPACE(g(n)) and NSPACE(f(n)) C NSPACE(g(n)).

m As a result: L C PSPACE and NL C NPSPACE.

- Quantified Boolean Formulas

Definition (QBFs)

A quantified Boolean formula (QBF) (in prenex form) is of the form

Qux1@Qox2 - - - QmXm @(X1, - .., Xm), where each Q; is one of the two quantifiers 3 or V,
where the variables x1, . .., x, range over {0,1}, and where ¢ is a propositional formula
(without quantifiers).

Truth of QBFs is defined recursively, based on the typical semantics of 3 and V.

m For example, Ix1Vx2 (x1 V —x2) A (x1 V x2) is a QBF

Definition (TQBF)
The language TQBF consists of all QBFs that are true.

- PSPACE-completeness

TQBF is PSPACE-complete (under polynomial-time reductions).

m Why is TQBF in PSPACE?

m Use a recursive algorithm. ° 1
For ¢ = 3x; 1, recurse on ¥[x; — 0] and ¢[x; — 1], y \ /
and return 1 if and only if at least one of the . .

recursive calls returns 1. Similarly for ¢ = Vx; 1. (3/ \/1 (3/ \/1
[] [] [] [

m This takes exponential time, but polynomial space:

m The recursion depth is linear in |¢|. K
m Space can be reused. 01
m With polynomial space, we keep track {x1 = 0,x — 1}

of the position in the recursion tree,
and if we're going up or down.

- Savitch's Theorem

Theorem (Savitch 1970)

For every space-constructible S : N — N with S(n) > log n:

NSPACE(S(n)) C SPACE(S(n)?).

m So, in particular, PSPACE = NPSPACE.

m Proof strategy (for PSPACE = NPSPACE):

m Show that TQBF is NPSPACE-complete and in PSPACE.

- Logspace reductions

. . ? :
m To investigate L = NL, we need reductions that are weak enough.

m Since L C NL C P, every problem in L U NL is reducible to each other using
polynomial-time reductions.

m You can solve any problem in L U NL in polynomial time.

m Reduction: solve the problem, and output a trivial yes-input or a trivial no-input.

- Logspace reductions (ct'd)

A function f : {0,1}* — {0, 1}* is implicitly logspace computable if:
m f is polynomially bounded, i.e., there exists some ¢
such that |f(x)| < |x|¢ for every x € {0,1}*, and

m the languages Lr = { (x,i) | f(x)i =1} and Ly = { (x,i) | i < |f(x)] }
are in the complexity class L, where f(x); denotes the ith bit of f(x).

Definition

A language B is logspace-reducible to a language C (also written B <, C) if there is a
function f : {0,1}* — {0, 1}* that is implicitly logspace computable and for

each x € {0,1}* it holds that x € B if and only if f(x) € C.

- NL-completeness

A language B is NL-complete if B € NL and C <, B for every C € NL.

Logspace reductions are transitive: if B <, C and C <; D, then B <, D.

If B<,Cand CelL,then BelL.

So, if any NL-complete language is in L, then L = NL.

- An NL-complete problem

m Consider graph reachability in directed graphs:

PATH ={ (G,s,t) | G =(V,E) is a directed graph, s,t € V,

and t is reachable from s in G }

m PATH is NL-complete. Why is it in NL? o __,°
m Keep the current and next node in memory (logspace). s
[} [}
m Guess the next node, check if they are connected, /)
and forget the previous node. 4 o
~—

Start at s, accept if you reach t.

Keep the length of the path you already visited in memory (logspace),
and stop when it is longer than |V/| (to avoid looping forever).

- Immerman-Szelepcsényi Theorem

Theorem (Immerman 1988, Szelepcsényi 1987)

For every space-constructible S : N — N with S(n) > log n:

NSPACE(S(n)) = coNSPACE(S(n)).

m In particular: NL = coNL.

- An overview of complexity classes

PSPACE —SEXP

-
coNL \ / NPSPACE

coNPSPACE

e

Space-bounded computation

Limits on memory space

L, NL, PSPACE = NPSPACE

Logspace reductions

NL-completeness

N

m Complexity classes between P and PSPACE
m The Polynomial Hierarchy
m Bounded quantifier alternation

m Alternating Turing machines

