
Computational Complexity

Lecture 1: Introduction

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

February 1, 2021

Overview of practical information

Lecturer: Ronald de Haan (me@ronalddehaan.eu)

TA: Simon Rey (S.Rey@uva.nl)

Course web page: https://staff.science.uva.nl/r.dehaan/complexity2021/

Canvas page: https://canvas.uva.nl/courses/21489

Discourse: https://talk.computational-complexity.nl/

Book: Computational Complexity: A Modern Approach (Arora & Barak, 2009)

me@ronalddehaan.eu
S.Rey@uva.nl
https://staff.science.uva.nl/r.dehaan/complexity2021/
https://canvas.uva.nl/courses/21489
https://talk.computational-complexity.nl/

What will we do today?

Getting to know each other a bit

Some explanations about the course and the topic

Practical things about the course

Fundamentals of computational complexity:
Turing machines, big O notation, decision problems, the complexity class P

Some first introductions

Let me ask you a question (poll)

Get to know some of the other students a bit (breakout rooms):

1 (a) Your name
(b) Which programme you’re in (Logic, AI, CLS, Math, PhD, other)
(c) Anything else you want to say about yourself

2 One thing that you expect or want to learn in this course

What is Computational Complexity?

The study of what you can compute with limited resources

E.g.: time, memory space, random bits
but also: nondeterminism, oracles

Computability theory studies what can be computed in principle

Computational complexity theory studies what can be computed realistically

What is Computational Complexity? (ct’d)

Main methodology: distinguish different degrees of difficulty (complexity classes)

There is an entire ‘zoo’ of complexity classes:
https://www.complexityzoo.net/
(currently listing 545 classes)

One central question: the P versus NP problem
(one of the $1M Millennium Prize Problems)

https://www.complexityzoo.net/

Relation to other fields
(Or in other words: a bit of marketing)

Computation plays a role in many areas of society and science

Therefore, computational complexity is relevant for many areas, e.g.:

Computer science, cryptography

Economics, game theory

Artificial intelligence

Biology

etc.

Some courses at the UvA that are related

Recursion Theory (block 1)

Kolmogorov Complexity (block 5)

Knowledge Representation and Reasoning (block 6)

Quantum Computing (blocks 4+5)

Machine Learning Theory (blocks 4+5)

Computational Social Choice (block 5)

The time periods in which these courses are taught might change in 2021/2022.

Discourse

We’ll use an online discussion board (using the Discourse system):
https://talk.computational-complexity.nl/

Questions about the material
(If you know the answer to someone else’s question, feel free to answer)

Reflecting on the material

Summarizing the material together

Feel free to start discussion topics on any of these

https://talk.computational-complexity.nl/

Feedback

During the course:

Please give your ideas for improvement, e.g., anonymously on Discourse

Especially about logistics (related to online activities)

After the course:

Please fill in the course evaluation questionnaire (for the OC and lecturer)

Example of change w.r.t. last year:
design homework assignments so that they involve as little as possible “tedious
details”, which might distract from the main purpose of the homework

Course activities

Lectures:

Online, twice 45 minutes, with 15 minute break in between, not recorded

Volunteer ‘lecture vigilans’: alert the lecturer when (i) a break is overdue
or when (ii) there are unanswered questions in the chat

Exercise sessions:

Online, discuss previous homework assignments, practice with material

Homework assignments (50% of grade):

Five assignments, best four grades count, hand in via Canvas

Take-home exam (50% of grade):

At the end, open book, one week time to complete exam

Online discussions, question answering

Interactive exercise: graph coloring

You are given an undirected graph

The task is to color each node with one of k colors so that
no two connected nodes have the same color

Example application: nodes are regions with their own radio station, colors are
radio frequencies, and two nodes are connected if the regions border each other;
assign radio frequencies without conflict (in the border areas)

Color this graph with 2 colors
https://tiny.cc/2col

https://tiny.cc/2col

Color this graph with 3 colors
https://tiny.cc/3col

https://tiny.cc/3col

On your mark, get set, go!

Coloring in breakout rooms (5 minutes)

After that, we’ll discuss your successes, frustrations, etc. ;-)

Quadratic vs. Exponential

Important difference between
algorithms that run in time, say, n2

vs. algorithms that run in time, say, 2n

Illustration (time needed for 1010 steps per second):

n n2 steps 2n steps
2 0.00000002 msec 0.00000002 msec
5 0.00000015 msec 0.00000019 msec
10 0.00001 msec 0.0001 msec
20 0.00004 msec 0.10 msec
50 0.00025 msec 31.3 hours
100 0.001 msec 9.4 × 1011 years
1000 0.100 msec 7.9 × 10282 years

of atoms in universe ≈ 1080

Model of computation
Turing machines

Definition (Turing machines; TMs)

A Turing machine M is a tuple (Γ,Q, δ), where:
Γ is the alphabet: a finite set of symbols,
including 0, 1, � (the blank symbol),
and . (the start symbol)
Q is a finite set of states, including a
designated start state qstart and
a designated halting state qhalt
δ : Q × Γk → Q × Γk−1 × {L,R, S}k is a
transition function, for some k ≥ 2
(the number of tapes of the machine)

Model of computation (ct’d)

Definition (TM computing a function)

A TM M computes the following (partial) function f , where for each x ∈ Σ∗:
f (x) = y if M halts on input x with output y ,
f (x) = undefined if M does not halt on input x

Definition (running time)

Let M be a TM and g : N→ N be a function. Then M runs in time g(n) if for each
input x ∈ Σn of length n, the machine M halts after (at most) g(n) steps.

Note: we will switch (often implicitly) between
the conceptual level (“algorithms”)
and the fully formal level (“Turing machines”)

Asymptotic analysis
Big O notation

Typically, we are interested in how (roughly)
the running time scales, not in all the details

We use what is called asymptotic analysis

Definition (Big O)

Let f , g : N→ N. We say that f is O(g) if there
exists a constant c ∈ N and an n0 ∈ N such
that f (n) ≤ c · g(n) for all n ≥ n0.

Note: in addition to “f is O(g)”, the following
are also used: “f = O(g)”, “f ∈ O(g)”,
“f (n) is O(g(n))”, etc.

For example,
4n2 + 3n + 10 is O(n2)

Take c = 8
and n0 = 4

Decision problems

To simplify the theory, we restrict our attention to yes/no questions

Definition (Decision problems)

A decision problem is a function f : Σ∗ → {0, 1} where for each input x ∈ Σ∗

the correct output f (x) is either 0 or 1.

Alternatively: a formal language L ⊆ Σ∗ where x ∈ L if and only if f (x) = 1.

For decision problems, we typically look at TMs that have two halting states:
qacc (for accept: f (x) = 1)
and qrej (for reject: f (x) = 0)

The complexity class P

Definition (polynomial-time computability)

A function f : Σ∗ → Σ∗ is polynomial-time computable
(or computable in polynomial time)
if there exist a TM M and a constant c ∈ N such that:

M computes f
M runs in time O(|x |c)

Definition (the complexity class P)

Pis the class (set) consisting of all decision problems
L ⊆ Σ∗ that are computable in polynomial time.

Recap

2-coloring vs. 3-coloring

n2 vs. 2n

Turing machines

Decision problems

Polynomial time and the class P

Next time

The universal Turing machine

Nondeterministic Turing machines

More complexity classes: NP and coNP

Polynomial-time reductions

