Computational Complexity

Lecture 3: NP-completeness and the Cook-Levin Theorem

Ronald de Haan me@ronalddehaan.eu

University of Amsterdan

Recap What we saw last time...

- The universal Turing machine
- Nondeterministic Turing machines
- More complexity classes: EXP, NP, coNP
- Polynomial-time reductions
- NP-hardness and NP-completeness

What will we do today?

- Prove that NP-complete problems exist :-)
- The Cook-Levin Theorem
- Concrete reductions between problems
- Search vs. decision problems

Our first NP-complete problem

Definition

The decision problem TM-SAT is defined as follows:

TM-SAT = {
$$(\alpha, x, 1^n, 1^t)$$
 | there exists $u \in \{0, 1\}^n$ such that \mathbb{M}_{α} outputs 1 on input (x, u) within t steps }

Or, described in a different format:

Input: A binary string
$$\alpha$$
, a binary string x , a unary string 1^n , and a unary string 1^t .

Question: Does there exist a binary string
$$u \in \{0,1\}^n$$
 such that \mathbb{M}_{α} outputs 1 on input (x,u) within t steps?

TM-SAT is NP-complete

Proposition

TM-SAT is NP-complete

Proof (sketch).

Membership in NP: guess u, and verify by simulating \mathbb{M}_{α} .

NP-hardness:

Take an arbitrary $L \in NP$. Then there exists a polynomial p and a TM \mathbb{M} such that for all $x \in \{0,1\}^*$ there exists some $u \in \{0,1\}^{p(|x|)}$ such that $\mathbb{M}(x,u) = 1$ iff $x \in L$.

Let q be a polynomial bounding the running time of \mathbb{M} .

Define *R* by: $R(x) = (\text{repr}(\mathbb{M}), x, 1^{p(|x|)}, 1^{q(|x|+p(|x|))})$

Propositional logic

- Propositional logic formulas φ are built from atomic propositions x_1, x_2, \ldots using Boolean operators $\wedge, \vee, \rightarrow, \neg$.
- For example, $\varphi_1 = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3)$.
- A truth assignment is a function $\alpha : \mathsf{Vars}(\varphi) \to \{0,1\}$ that maps the atomic propositions to 1 (true) or 0 (false).
- For example, $\alpha_1 = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0\}$.
- The truth $\varphi[\alpha]$ of a formula φ under a truth assignment α is defined inductively, following the standard meaning of the operators.
- For example, $\varphi_1[\alpha_1] = 0$.

Propositional satisfiability

Definition

The decision problem Formula-SAT is defined as follows:

Formula-SAT =
$$\{ \varphi \mid \varphi \text{ is a propositional logic formula and there } \text{exists a satisfying truth assignment } \alpha \text{ for } \varphi \}$$

Or, described in a different format:

```
Input: A propositional logic formula \varphi.
```

Question: Is φ satisfiable?

Propositional satisfiability of CNF formulas

Definition

The decision problem CNF-SAT is defined as follows:

$$\label{eq:cnf-sat} {\sf CNF-SAT} = \{ \ \varphi \ | \ \varphi \ \textit{is a propositional logic formula in CNF and there} \\ \textit{exists a satisfying truth assignment} \ \alpha \ \textit{for} \ \varphi \ \}$$

Or, described in a different format:

Input: A propositional logic formula
$$\varphi$$
 in CNF.

Question: Is φ satisfiable?

- Conjunctive Normal Form (CNF): a conjunction of disjunctions of literals.
- For example: $\varphi_1 = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3)$

The Cook-Levin Theorem

Theorem (Cook 1971, Levin 1969)

CNF-SAT is NP-complete.

Polynomial-time computation in a picture

For a single-tape TM

For each $t, i \in \{1, \dots, T\}$ and each $\gamma \in \Gamma$: introduce a proposition $c_{t,i,\gamma}$

For each $t, i \in \{1, ..., T\}$: introduce a proposition $h_{t,i}$

For each $t \in \{1, ..., T\}$ and each $q \in Q$: introduce a proposition $s_{t,q}$

Proof of Cook-Levin Theorem

■ Take an arbitrary $L \in NP$. Then there exist polynomials $p, q : \mathbb{N} \to \mathbb{N}$ and a TM \mathbb{M} running in time q(n) such that for each $x \in \{0,1\}^*$:

$$x \in L$$
 if and only if there exists $u \in \{0,1\}^{p(|x|)}$ such that $\mathbb{M}(x,u) = 1$.

- W.l.o.g., assume that M is single-tape and that q_{acc} and q_{rej} are 'sinks'
- Take T = q(|x| + p(|x|)). That is, $T \ge \text{running time of } \mathbb{M}(x, u)$.

- We will construct a formula φ (over the variables $c_{t,i,\gamma}$, $h_{t,i}$, $s_{t,q}$) that is satisfiable if and only if $x \in L$
- lacksquare φ is the conjunction of several clauses (see next slides).

Initialize tape contents:

•
$$(c_{1,i,0} \lor c_{1,i,1})$$
 for $|x| < i \le |x| + p(|x|)$

•
$$(c_{1,i,\square})$$
 for $|x| + p(|x|) < i \le T$

Other initial conditions:

$$\blacksquare$$
 $(h_{1,1})$

$$\blacksquare$$
 $(s_{1,q_{\mathsf{start}}})$

■ At most one symbol per cell (at each time):

■ At most one tape head position at each time:

At most one state at each time:

$$lacksquare (
eg s_{t,q} ee
eg s_{t,q'})$$
 for $1 \leq t \leq T$ and $q,q' \in Q$ with $q \neq q'$

■ Correct transitions.

For $1 \le i, t \le T - 1$, $\gamma \in \Gamma$, and $q \in Q$:

$$\blacksquare \ (c_{t,i,\gamma} \land h_{t,i} \land s_{t,q}) \rightarrow (c_{t+1,i,\gamma'} \land h_{t+1,i} \land s_{t+1,q'}) \qquad \text{if } \delta(q,\gamma) = (q',\gamma',\mathsf{S})$$

$$\bullet \ (c_{t,i,\gamma} \land h_{t,i} \land s_{t,q}) \rightarrow (c_{t+1,i,\gamma'} \land h_{t+1,i+1} \land s_{t+1,q'}) \quad \text{ if } \delta(q,\gamma) = (q',\gamma',\mathsf{R})$$

$$\bullet (c_{t,i,\gamma} \wedge h_{t,i} \wedge s_{t,q}) \rightarrow (c_{t+1,i,\gamma'} \wedge h_{t+1,i-1} \wedge s_{t+1,q'}) \quad \text{if } \delta(q,\gamma) = (q',\gamma',\mathsf{L})$$

■ No change when the tape head is away:

$$\blacksquare \ (c_{t,i,\gamma} \land \neg h_{t,i}) \to c_{t+1,i,\gamma} \quad \text{ for } 1 \leq t \leq \mathit{T}-1 \text{, } 1 \leq i \leq \mathit{T} \text{ and } \gamma \in \Gamma$$

- The machine must accept:
 - $S_{T,q_{acc}}$

■ The formula φ is satisfiable if and only if there exists some $u \in \{0,1\}^{p(|x|)}$ such that $\mathbb{M}(x,u)=1$, and thus if and only if $x \in L$.

lacktriangle The conjuncts of arphi can be equivalently rewritten as clauses (of size \leq 4)

$$(a \land b \land c) \rightarrow (d \land e \land f) \mapsto (\neg a \lor \neg b \lor \neg c \lor d) \land (\neg a \lor \neg b \lor \neg c \lor e) \land (\neg a \lor \neg b \lor \neg c \lor f)$$

- \blacksquare Computing φ takes polynomial time.
 - Polynomial number of atomic propositions and clauses

Definition

The decision problem 3SAT is defined as follows:

$${\sf 3SAT} = \{ \ \varphi \ | \ \varphi \ \text{is a propositional logic formula in 3CNF and there} \\ {\sf exists \ a \ satisfying \ truth \ assignment \ } \alpha \ {\sf for} \ \varphi \ \}$$

Or, described in a different format:

Input: A propositional logic formula φ in 3CNF.

Question: Is φ satisfiable?

■ 3CNF: each clause (disjunction) contains at most 3 literals

3SAT is NP-complete

Theorem (Cook 1971, Levin 1969)

3SAT is NP-complete.

- The formula that we constructed is in 4CNF. So 4SAT is NP-complete. We give a polynomial-time reduction from 4SAT to 3SAT.
- We replace each clause $c = (\ell_1 \lor \ell_2 \lor \ell_3 \lor \ell_4)$ of length 4 by:

$$(\ell_1 \vee \ell_2 \vee z_c) \wedge (\neg z_c \vee \ell_3 \vee \ell_4),$$

where z_c is a fresh variable.

■ The resulting formula φ' is satisfiable if and only if the original formula φ is satisfiable.

The web of reductions

3COL is NP-complete

Theorem (Karp 1972)

3COL is NP-complete.

■ We will show NP-hardness by reduction from 3SAT.

Gadgets

${\sf Gadgets}$

for each variable x_i

for each clause c_j

$$\varphi = (\neg x_1 \vee \neg x_2 \vee x_3)$$

$$\varphi = (\neg x_1 \lor \neg x_2 \lor x_3), \ \alpha = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 1\}$$

$$\varphi = (\neg x_1 \lor \neg x_2 \lor x_3), \ \alpha = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 1\}$$

$$\varphi = (\neg x_1 \lor \neg x_2 \lor x_3), \ \alpha = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 1\}$$

$$\varphi = (\neg x_1 \lor \neg x_2 \lor x_3), \ \alpha = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0\}$$

$$\varphi = (\neg x_1 \lor \neg x_2 \lor x_3), \ \alpha = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0\}$$

Search vs. decision

■ Does NP-completeness tell us something useful about the search problems on which our decision problems are based?

Proposition

Suppose that P = NP. Then for every $L \in NP$ and each verifier \mathbb{M} for L, there exists a polynomial-time Turing machine \mathbb{B} that on input $x \in L$ outputs a certificate u for x.

Hamiltonian cycles in grid graphs

For the homework..

■ A grid graph *G*..

..and a Hamiltonian cycle in G.

Slitherlink

For the homework..

■ A Slitherlink instance *I*..

..and a solution for I.

Recap

- Prove that NP-complete problems exist :-)
- The Cook-Levin Theorem
- Concrete reductions between problems
- Search vs. decision problems

Next time

- Diagonalization arguments
- Time Hierarchy Theorems
- \blacksquare P \neq EXP