Computational Complexity

Lecture 3: NP-completeness and the Cook-Levin Theorem

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

February 8, 2021
Recap

What we saw last time...

- The universal Turing machine
- Nondeterministic Turing machines
- More complexity classes: EXP, NP, coNP
- Polynomial-time reductions
- NP-hardness and NP-completeness
What will we do today?

- Prove that NP-complete problems exist :-)
- The Cook-Levin Theorem
- Concrete reductions between problems
- Search vs. decision problems
Our first NP-complete problem

Definition

The decision problem TM-SAT is defined as follows:

\[
\text{TM-SAT} = \{ (\alpha, x, 1^n, 1^t) \mid \text{there exists } u \in \{0, 1\}^n \text{ such that } M_\alpha \text{ outputs 1 on input } (x, u) \text{ within } t \text{ steps} \}
\]

Or, described in a different format:

Input: A binary string \(\alpha \), a binary string \(x \), a unary string \(1^n \), and a unary string \(1^t \).

Question: Does there exist a binary string \(u \in \{0, 1\}^n \) such that \(M_\alpha \) outputs 1 on input \((x, u) \) within \(t \) steps?
Proposition

TM-SAT is NP-complete

Proof (sketch).

Membership in NP: guess \(u \), and verify by simulating \(M_\alpha \).

NP-hardness:

Take an arbitrary \(L \in \text{NP} \). Then there exists a polynomial \(p \) and a TM \(M \) such that for all \(x \in \{0, 1\}^* \) there exists some \(u \in \{0, 1\}^p(|x|) \) such that \(M(x, u) = 1 \) iff \(x \in L \).

Let \(q \) be a polynomial bounding the running time of \(M \).

Define \(R \) by: \(R(x) = (\text{repr}(M), x, 1^p(|x|), 1^q(|x|+p(|x|))) \)
Propositional logic formulas φ are built from atomic propositions x_1, x_2, \ldots using Boolean operators $\land, \lor, \rightarrow, \neg$.

For example, $\varphi_1 = (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3)$.

A truth assignment is a function $\alpha : \text{Vars}(\varphi) \rightarrow \{0, 1\}$ that maps the atomic propositions to 1 (true) or 0 (false).

For example, $\alpha_1 = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0\}$.

The truth $\varphi[\alpha]$ of a formula φ under a truth assignment α is defined inductively, following the standard meaning of the operators.

For example, $\varphi_1[\alpha_1] = 0$.
Definition

The decision problem Formula-SAT is defined as follows:

\[
\text{Formula-SAT} = \{ \varphi \mid \varphi \text{ is a propositional logic formula and there exists a satisfying truth assignment } \alpha \text{ for } \varphi \}\]

Or, described in a different format:

\text{Input:} \quad \text{A propositional logic formula } \varphi.

\text{Question:} \quad \text{Is } \varphi \text{ satisfiable?}
Propositional satisfiability of CNF formulas

Definition

The decision problem CNF-SAT is defined as follows:

\[
\text{CNF-SAT} = \{ \varphi \mid \varphi \text{ is a propositional logic formula in CNF and there exists a satisfying truth assignment } \alpha \text{ for } \varphi \}\]

Or, described in a different format:

Input: A propositional logic formula \(\varphi \) in CNF.

Question: Is \(\varphi \) satisfiable?

- Conjunctive Normal Form (CNF): a conjunction of disjunctions of literals.

- For example: \(\varphi_1 = (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \)
The Cook-Levin Theorem

Theorem (Cook 1971, Levin 1969)

CNF-SAT is NP-complete.
Polynomial-time computation in a picture

For a single-tape TM

For each \(t, i \in \{1, \ldots, T\} \)
and each \(\gamma \in \Gamma \):
introduce a proposition \(c_{t, i, \gamma} \)

For each \(t, i \in \{1, \ldots, T\} \):
introduce a proposition \(h_{t, i} \)

For each \(t \in \{1, \ldots, T\} \)
and each \(q \in Q \):
introduce a proposition \(s_{t, q} \)
Proof of Cook-Levin Theorem

- Take an arbitrary $L \in \text{NP}$. Then there exist polynomials $p, q : \mathbb{N} \rightarrow \mathbb{N}$ and a TM M running in time $q(n)$ such that for each $x \in \{0, 1\}^*$:

 $x \in L$ if and only if there exists $u \in \{0, 1\}^{p(|x|)}$ such that $M(x, u) = 1$.

- W.l.o.g., assume that M is single-tape and that q_{acc} and q_{rej} are ‘sinks’

- Take $T = q(|x| + p(|x|))$. That is, $T \geq$ running time of $M(x, u)$.

- We will construct a formula φ (over the variables $c_{t,i,\gamma}$, $h_{t,i}$, $s_{t,q}$) that is satisfiable if and only if $x \in L$

- φ is the conjunction of several clauses (see next slides).
Initialize tape contents:

- \((c_{1,i,x_i})\) for \(1 \leq i \leq |x|\)
- \((c_{1,i,0} \lor c_{1,i,1})\) for \(|x| < i \leq |x| + p(|x|)\)
- \((c_{1,i,\square})\) for \(|x| + p(|x|) < i \leq T\)

Other initial conditions:

- \((h_{1,1})\)
- \((s_{1,q_{\text{start}}})\)
At most one symbol per cell (at each time):

- \((\neg c_{t,i,\gamma} \lor \neg c_{t,i,\gamma'})\) for \(1 \leq i, t \leq T\) and all \(\gamma, \gamma' \in \Gamma\) with \(\gamma \neq \gamma'\)

At most one tape head position at each time:

- \((\neg h_{t,i} \lor \neg h_{t,i'})\) for \(1 \leq i, i', t \leq T\) with \(i \neq i'\)

At most one state at each time:

- \((\neg s_{t,q} \lor \neg s_{t,q'})\) for \(1 \leq t \leq T\) and \(q, q' \in Q\) with \(q \neq q'\)
Correct transitions.

For $1 \leq i, t \leq T - 1$, $\gamma \in \Gamma$, and $q \in Q$:

- $(c_{t,i,\gamma} \land h_{t,i} \land s_{t,q}) \rightarrow (c_{t+1,i,\gamma'} \land h_{t+1,i} \land s_{t+1,q'})$ if $\delta(q, \gamma) = (q', \gamma', S)$

- $(c_{t,i,\gamma} \land h_{t,i} \land s_{t,q}) \rightarrow (c_{t+1,i,\gamma'} \land h_{t+1,i+1} \land s_{t+1,q'})$ if $\delta(q, \gamma) = (q', \gamma', R)$

- $(c_{t,i,\gamma} \land h_{t,i} \land s_{t,q}) \rightarrow (c_{t+1,i,\gamma'} \land h_{t+1,i-1} \land s_{t+1,q'})$ if $\delta(q, \gamma) = (q', \gamma', L)$
No change when the tape head is away:

\[(c_{t,i,\gamma} \land \neg h_{t,i}) \rightarrow c_{t+1,i,\gamma}\] for \(1 \leq t \leq T - 1, 1 \leq i \leq T\) and \(\gamma \in \Gamma\)

The machine must accept:

\[ST, q_{\text{acc}}\]
The formula φ is satisfiable if and only if there exists some $u \in \{0, 1\}^{p(|x|)}$ such that $\overline{M}(x, u) = 1$, and thus if and only if $x \in L$.

The conjuncts of φ can be equivalently rewritten as clauses (of size ≤ 4)

- $(a \land b \land c) \rightarrow (d \land e \land f) \iff \neg a \lor \neg b \lor \neg c \lor d \land \neg a \lor \neg b \lor \neg c \lor e \land \neg a \lor \neg b \lor \neg c \lor f$

Computing φ takes polynomial time.

- Polynomial number of atomic propositions and clauses
The decision problem 3SAT is defined as follows:

\[
3\text{SAT} = \{ \varphi \mid \varphi \text{ is a propositional logic formula in 3CNF and there exists a satisfying truth assignment } \alpha \text{ for } \varphi \}
\]

Or, described in a different format:

- **Input:** A propositional logic formula \(\varphi \) in 3CNF.
- **Question:** Is \(\varphi \) satisfiable?

- **3CNF:** each clause (disjunction) contains at most 3 literals
3SAT is NP-complete

Theorem (Cook 1971, Levin 1969)

3SAT is NP-complete.

- The formula that we constructed is in 4CNF. So 4SAT is NP-complete. We give a polynomial-time reduction from 4SAT to 3SAT.

- We replace each clause $c = (\ell_1 \lor \ell_2 \lor \ell_3 \lor \ell_4)$ of length 4 by:

 $\left(\ell_1 \lor \ell_2 \lor z_c \right) \land \left(\neg z_c \lor \ell_3 \lor \ell_4 \right),$

 where z_c is a fresh variable.

- The resulting formula φ' is satisfiable if and only if the original formula φ is satisfiable.
The web of reductions

- Theorem 2.10 (Lemma 2.11)
 - SAT
 - dHAMPATH
 - HAMPATH
 - TSP
 - Ex 2.11
 - THEOREMS
 - Ex 2.19
 - QUADEQ
 - HAMCIRCLE
 - CLIQUE
 - VERTEXCOVER
 - MAXCUT
 - INTEGRALPROG
 - 3SAT
 - Exactone3SAT
 - 3COL
 - INDUCT
 - Ex 2.15
 - Ex 2.22
 - Ex 2.21
 - Ex 2.17
 - Ex 2.18
3COL is NP-complete

Theorem (Karp 1972)

3COL is NP-complete.

- We will show NP-hardness by reduction from 3SAT.
Gadgets
Gadgets

For each variable x_i:

For each clause c_j:

\[T \quad \neg x_i \quad x_i \]

\[\ell_1 \quad \ell_2 \quad \ell_3 \]
Example

\(\varphi = (\neg x_1 \lor \neg x_2 \lor x_3) \)
Example

\[\varphi = (\neg x_1 \lor \neg x_2 \lor x_3), \quad \alpha = \{ x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 1 \} \]
Example

\(\varphi = (\neg x_1 \lor \neg x_2 \lor x_3) \), \(\alpha = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 1\} \)
Example

\[\varphi = (\neg x_1 \lor \neg x_2 \lor x_3), \quad \alpha = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 1\} \]
Example
\[\varphi = (\neg x_1 \lor \neg x_2 \lor x_3), \quad \alpha = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0\} \]
Example

\[\varphi = (\neg x_1 \lor \neg x_2 \lor x_3) \], \alpha = \{x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0\} \]
Search vs. decision

Does NP-completeness tell us something useful about the search problems on which our decision problems are based?

Proposition

Suppose that $P = NP$. Then for every $L \in NP$ and each verifier M for L, there exists a polynomial-time Turing machine B that on input $x \in L$ outputs a certificate u for x.
Hamiltonian cycles in grid graphs

For the homework..

- A grid graph G

..and a Hamiltonian cycle in G.
A Slitherlink instance \(I \).

..and a solution for \(I \).
Recap

- Prove that NP-complete problems exist :-)
- The Cook-Levin Theorem
- Concrete reductions between problems
- Search vs. decision problems
Next time

- Diagonalization arguments
- Time Hierarchy Theorems
- $P \neq \text{EXP}$