Computational Complexity

Lecture 10: Probabilistic Algorithms

Ronald de Haan me@ronalddehaan.eu

University of Amsterdan

Recap

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- \blacksquare The Karp-Lipton Theorem: if NP \subseteq P/poly, then $\Sigma_2^p = \Pi_2^p$

What will we do today?

- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP

Randomized algorithms

- Randomized (or probabilistic) algorithms are a realistic extension of deterministic algorithms
- They have access to a random number generator (or random coin flips)

- The outcome of such algorithms is a random variable
- The running time of such algorithms is a random variable

Example problem

- *Input*: you're given $m \in \mathbb{N}$ and you have access to an oracle O that can give you a value $O(i) \in \{a, b\}$, for each $i \in \{1, ..., 2^m\}$
- Promise: m is even and for exactly half of the i's it holds that O(i) = a, and so for the other half, O(i) = b
- Task: output some $i \in \{1, ..., 2^m\}$ such that O(i) = a

- When we consider deterministic (non-randomized) algorithms, what worst-case running time (and # of oracle queries) can we achieve for this problem?
 - We need $2^m/2 + 1 = 2^{m-1} + 1$ queries in the worst case, and $\Theta(2^m)$ time

Monte Carlo algorithm

```
i := 0:
while i < k do
   randomly pick j \in \{1, \dots, 2^m\};
   query the oracle: o_i := O(i);
   if o_i = a then
       return j:
   else
      i:=i+1;
   end
end
randomly pick j \in \{1, \dots, 2^m\};
return i:
```

- Runs for k rounds, so takes time $O(k \cdot m)$
- Probability of a correct answer: $1 (1/2)^{k+1}$

- Works for any value of k
- The running time does not vary randomly
- Non-zero error probability

Las Vegas algorithm

while True do randomly pick $j \in \{1, ..., 2^m\}$; query the oracle: $o_j := O(j)$; if $o_j = a$ then return j;

end

end

- The running time varies randomly (and is polynomial in expectation)
- Zero error probability

- Probability of a correct answer (given that it halted): 1
- Expected running time O(m):

$$O(m) \cdot [1 \cdot 1/2 + 2 \cdot (1/2)^2 + 3 \cdot (1/2)^3 + \cdots] = O(m)$$
 because $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{2^i} = 2$

Probabilistic Turing machines

Definition

Probabilistic Turing machines (PTM) are variants of (deterministic) TMs, where:

- There are two transition functions δ_1, δ_2 .
- At each step, one of δ_1, δ_2 is chosen randomly, both with probability 1/2. (Each such choice is made independently.)
- (As halting states, it has an accept state q_{acc} and a reject state q_{rei} .)
- $\mathbb{M}(x)$ denotes the random variable corresponding to the output of \mathbb{M} on input x.
- \mathbb{M} runs in time T(n) if for every input x and every sequence of nondeterministic choices, \mathbb{M} halts within T(|x|) steps, regardless of the random choices made.

BPTIME and BPP

Definition (BPTIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A problem $L \subseteq \{0,1\}^*$ is in BPTIME(T(n)) if there exists a PTM \mathbb{M} that runs in time O(T(n)), such that for each $x \in \{0,1\}^*$:

$$\mathbb{P}\left[\ \mathbb{M}(x) = L(x) \ \right] \geq 2/3,$$

where
$$L(x) = 1$$
 if $x \in L$, and $L(x) = 0$ if $x \notin L$.

- BP: Bounded-error Probabilistic
- These are Monte Carlo algorithms with two-sided (bounded) error

Definition (BPP)

$$\mathsf{BPP} = \bigcup_{c} \mathsf{BPTIME}(n^c).$$

Characterization of BPP

Theorem

A problem $L \subseteq \{0,1\}^*$ if and only if there exists a polynomial-time deterministic $TM \ \mathbb{M}$ and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for each $x \in \{0,1\}^*$:

$$\mathbb{P}_{r \in_{R}\{0,1\}^{p(|x|)}}[M(x,r) = L(x)] \ge 2/3.$$

(Here \in_R denotes (sampling from) the uniform distribution.)

- This is analogous to the verifier definition of NP
 - Using a probabilistic interpretation of the certificates, rather than existentially quantifying over them

One-sided error: RP and coRP

Definition (RTIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A problem $L \subseteq \{0,1\}^*$ is in RTIME(T(n)) if there exists a PTM \mathbb{M} that runs in time O(T(n)), such that for each $x \in \{0,1\}^*$:

if
$$x \in L$$
, then $\mathbb{P}[\mathbb{M}(x) = 1] \ge 2/3$, if $x \notin L$, then $\mathbb{P}[\mathbb{M}(x) = 0] = 1$.

■ These are Monte Carlo algorithms with one-sided (bounded) error

Definition (RP)

$$\mathsf{RP} = \bigcup_{c>1} \mathsf{RTIME}(n^c).$$

One-sided error: RP and coRP (ct'd)

Definition (coRTIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A problem $L \subseteq \{0,1\}^*$ is in $\mathsf{coRTIME}(T(n))$ if there exists a PTM \mathbb{M} that runs in time O(T(n)), such that for each $x \in \{0,1\}^*$:

if
$$x \in L$$
, then $\mathbb{P}[\mathbb{M}(x) = 1] = 1$, if $x \notin L$, then $\mathbb{P}[\mathbb{M}(x) = 0] > 2/3$.

■ These are also Monte Carlo algorithms with one-sided (bounded) error

Definition (coRP)

$$\mathsf{coRP} = \bigcup \mathsf{coRTIME}(n^c),$$
 or equivalently: $\mathsf{coRP} = \{\ \overline{L} \mid L \in \mathsf{RP}\ \}.$

Definition (expected running time)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function and let \mathbb{M} be a PTM. Then \mathbb{M} runs in *expected* time T(n), if for each $x \in \{0,1\}^*$ it holds that $\mathbb{E}\left[\mathsf{time}_{\mathbb{M}}(x)\right] \leq T(|x|)$.

Definition (ZPTIME)

Let $T: \mathbb{N} \to \mathbb{N}$ be a function. A problem $L \subseteq \{0,1\}^*$ is in ZPTIME(T(n)) if there exists a PTM \mathbb{M} that runs in expected time O(T(n)), such that for each $x \in \{0,1\}^*$, whenever \mathbb{M} halts on x then $\mathbb{M}(x) = L(x)$.

■ These are Las Vegas algorithms

Definition (ZPP)

$$ZPP = \bigcup ZPTIME(n^c).$$

Error reduction

- We used the constant 2/3 in the definitions of BPP, etc.
- In fact, each constant > 1/2 would work, and even $> 1/2 + |x|^{-c}$.
- We can make the error probability very small

Theorem (Error reduction for BPP)

Let $L \subseteq \{0,1\}^*$ be a decision problem, and suppose that there exists a polynomial-time PTM $\mathbb M$ such that for each $x \in \{0,1\}^*$, $\mathbb P\left[\mathbb M(x) = L(x)\right] \ge 1/2 + 1/|x|^c$.

Then for every constant d>0, there exists a polynomial-time PTM \mathbb{M}' such that for each $x\in\{0,1\}^*$, $\mathbb{P}\left[\mathbb{M}'(x)=L(x)\right]\geq 1-1/2^{(|x|^d)}=1-2^{-|x|^d}$.

■ Idea: run M many times and output the majority answer

Some relations

- \blacksquare RP \subseteq BPP, coRP \subseteq BPP
- $RP \subseteq NP$, $coRP \subseteq coNP$
 - Homework!
- \blacksquare ZPP = RP \cap coRP
 - Homework!
- BPP ⊆ P/poly
 - Idea: by using error reduction, you can find some $r \in \{0,1\}^{p(n)}$ for each n that can be used as "certificate" to give the correct answer for each $x \in \{0,1\}^n$.
- BPP $\subseteq \Sigma_2^p$, BPP $\subseteq \Pi_2^p$

Recap

- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP

Next time

- Approximation algorithms
- The PCP Theorem