
Computational Complexity

Lecture 2: Reductions, NP and NP-completeness

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

February 5, 2021

Recap
What we saw last time..

(Deterministic) Turing machines

Decision problems

Polynomial time and the class P

What will we do today?

The universal Turing machine

Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

NP-hardness and NP-completeness

Representing Turing machines as (binary) strings

We can encode Turing machines into binary strings, such that:

1 each string s ∈ {0, 1}∗ represents some Turing machine M

2 each Turing machine M is represented by infinitely many strings s ∈ {0, 1}∗

3 given a TM M, we can efficiently compute a string s that represents M

Idea:

Write out the tuple (Γ,Q, δ), together with starting and halting states, in an
appropriate alphabet, and then encode into binary

Allow padding (cf. comments in programming languages)

Efficient universal Turing machine

Proposition

There exists a TM U such that for every x , s ∈ {0, 1}∗ it holds that U(x , s) = Ms(x),
where Ms is the TM represented by the string s.

Moreover, if Ms halts on x in time T , then U(x , s) halts in time C · T logT , where C
depends only on s (and not on x).

U is an efficient universal Turing machine: it can simulate other TMs in an
efficient way.

(In)tractability

Tractability: there exists a polynomial-time algorithm that solves the problem

Intractability: there exists no polynomial-time algorithm that solves the problem

(or sometimes: all algorithms that solve the problem take
exponential time, in the worst case)

How do we find out which of these two is the case for—for example—the problem
of 3-coloring?

Showing intractability: without any theory

Showing intractability: the ideal case

Showing intractability: using NP-completeness

Polynomial vs. exponential time

Definition (DTIME)

Let T : N→ N be a function. A language L ⊆ Σ∗ is in DTIME(T (n)) if there exists a
Turing machine that decides L and that runs in time O(T (n)).

Definition (the complexity classes P and EXP)

P =
⋃
c≥1

DTIME(nc) EXP =
⋃
c≥1

DTIME(2n
c
)

The complexity class NP

Definition (the complexity class NP)

A problem L ⊆ Σ∗ is in the complexity class NP if there is a polynomial p : N→ N and
a polynomial-time Turing machine M (the verifier) such that for every x ∈ Σ∗:

x ∈ L if and only if there exists some u ∈ {0, 1}p(|x |) such that M(x , u) = 1.

The string u ∈ {0, 1}p(|x |) is called a certificate for x if M(x , u) = 1.

Example: 3-coloring

Let’s see why the (decision) problem of
3-coloring is in NP.

Let G = (V ,E) be a graph with m nodes.

Consider as witness a binary string u of
length 2m, where the coloring of each node i
is given by the i ’th pair of bits—
say, 01 for red, 10 for green, and 11 for blue.

Given G and u, we can check in polynomial
time if the coloring given by u is proper.

1 2

3

4

s = 01 10 11 01

Nondeterministic Turing machines

Definition
A nondeterministic Turing machines (NTM) M is a variant of a (deterministic) Turing
machine, where some things are modified.

Instead of a single transition function δ, there are two transition functions δ1, δ2.

At each step, one of δ1, δ2 is chosen nondeterministically to determine the next
configuration.

(As halting states, it has an accept state qacc and a reject state qrej.)

We write M(x) = 1 if there is some sequence of nondeterministic choices such
that M reaches the state qacc on input x .

The machine M runs in time T (n) if for every input x and every sequence of
nondeterministic choices, M halts within T (|x |) steps.

Nondeterministic polynomial time (NP)

Definition (NTIME)

Let T : N→ N be a function. A problem L ⊆ Σ∗ is in NTIME(T (n)) if there exists a
nondeterministic Turing machine that decides L and that runs in time O(T (n)).

Proposition (characterization of NP)

NP =
⋃
c≥1

NTIME(nc)

The complexity class coNP

Definition (the complexity class coNP)

A problem L ⊆ Σ∗ is in coNP if L ∈ NP, where L = { x ∈ Σ∗ | x 6∈ L }.

Proposition (verifier characterization of coNP)

A problem L ⊆ Σ∗ is in coNP if there is a polynomial p : N→ N and a polynomial-time
Turing machine M (the verifier) such that for every x ∈ Σ∗:

x ∈ L if and only if for all u ∈ {0, 1}p(|x |) it holds that M(x , u) = 1.

NP ⊆ EXP

Proposition

NP ⊆ EXP.

Proof (idea).

Iterate over all possible witnesses u ∈ {0, 1}p(|x |), and check if M(x , u) = 1.

If for any u this is the case, return 1—otherwise, return 0.

There are 2p(|x |) such strings u, and so this takes time 2p(|x |) · q(|x |), for some
polynomial q.

An overview of complexity classes
(That we’ve seen so far..)

P

NP coNP

EXP

⊆ ⊆

⊆ ⊆

Polynomial-time reductions

Definition (polynomial-time reductions)

A problem L1 ⊆ Σ∗ is polynomial-time reducible to
a problem L2 ⊆ Σ∗ if there is a polynomial-time
computable function f : Σ∗ → Σ∗ (the reduction)
such that for every x ∈ Σ∗ it holds that:

x ∈ L1 if and only if f (x) ∈ L2.

We write L1 ≤p L2 to indicate that L1 is
polynomial-time reducible to L2.

x f (x)

f (x) ∈ L2?x ∈ L1?

NP-hardness and NP-completeness

Definition (NP-hardness)

A problem L ⊆ Σ∗ is NP-hard if every problem in NP is polynomial-time reducible to L.

Definition (NP-completeness)

A problem L ⊆ Σ∗ is NP-complete if L ∈ NP and L is NP-hard.

Some properties

Proposition

Polynomial-time reductions are transitive.
That is, if L1 ≤p L2 and L2 ≤p L3, then L1 ≤p L3.

Proposition

Take two problems L1, L2 ⊆ Σ∗. If L1 is polynomial-time reducible to L2 and L2 ∈ P,
then L1 ∈ P.

Some properties (ct’d)

Proposition

Take an NP-complete problem L ⊆ Σ∗. If L ∈ P, then P = NP.
In other words, assuming that P 6= NP, L 6∈ P.

Proof.
Since deterministic TMs can be seen also as nondeterministic TMs, we get P ⊆ NP.

We show that if L ∈ P, then NP ⊆ P.

(1) Take an arbitrary problem M ∈ NP.

(2) Since L is NP-complete, M ≤p L.

(3) Since L ∈ P, then also M ∈ P.

Since M was arbitrary, we know that NP ⊆ P.

Showing intractability: using NP-completeness

Recap

The universal Turing machine

Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

NP-hardness and NP-completeness

Next time

Proving that NP-complete problems exist :-)

