Recap

What we saw last time..

- (Deterministic) Turing machines
- Decision problems
- Polynomial time and the class P
What will we do today?

- The universal Turing machine
- Nondeterministic Turing machines
- More complexity classes: EXP, NP, coNP
- Polynomial-time reductions
- NP-hardness and NP-completeness
We can encode Turing machines into binary strings, such that:

1. each string $s \in \{0, 1\}^*$ represents some Turing machine M

2. each Turing machine M is represented by infinitely many strings $s \in \{0, 1\}^*$

3. given a TM M, we can efficiently compute a string s that represents M

Idea:

- Write out the tuple (Γ, Q, δ), together with starting and halting states, in an appropriate alphabet, and then encode into binary

- Allow padding (cf. comments in programming languages)
Proposition

There exists a TM U such that for every $x, s \in \{0, 1\}^*$ it holds that $U(x, s) = M_s(x)$, where M_s is the TM represented by the string s.

Moreover, if M_s halts on x in time T, then $U(x, s)$ halts in time $C \cdot T \log T$, where C depends only on s (and not on x).

- U is an efficient universal Turing machine: it can simulate other TMs in an efficient way.
(In)tractability

- **Tractability**: there exists a polynomial-time algorithm that solves the problem

- **Intractability**: there exists no polynomial-time algorithm that solves the problem

 (or sometimes: all algorithms that solve the problem take exponential time, in the worst case)

- How do we find out which of these two is the case for—for example—the problem of 3-coloring?
"I can’t find an efficient algorithm, I guess I’m just too dumb."
"I can’t find an efficient algorithm, because no such algorithm is possible!"
Showing intractability: using NP-completeness

“I can’t find an efficient algorithm, but neither can all these famous people.”
Definition (DTIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A language $L \subseteq \Sigma^*$ is in $\text{DTIME}(T(n))$ if there exists a Turing machine that decides L and that runs in time $O(T(n))$.

Definition (the complexity classes P and EXP)

$$P = \bigcup_{c \geq 1} \text{DTIME}(n^c)$$
$$\text{EXP} = \bigcup_{c \geq 1} \text{DTIME}(2^{n^c})$$
The complexity class NP

Definition (the complexity class NP)

A problem \(L \subseteq \Sigma^* \) is in the complexity class \(NP \) if there is a polynomial \(p : \mathbb{N} \rightarrow \mathbb{N} \) and a polynomial-time Turing machine \(\mathbb{M} \) (the verifier) such that for every \(x \in \Sigma^* \):

\[
x \in L \quad \text{if and only if} \quad \text{there exists some } u \in \{0, 1\}^{p(|x|)} \text{ such that } \mathbb{M}(x, u) = 1.
\]

The string \(u \in \{0, 1\}^{p(|x|)} \) is called a certificate for \(x \) if \(\mathbb{M}(x, u) = 1 \).
Let’s see why the (decision) problem of 3-coloring is in NP.

Let $G = (V, E)$ be a graph with m nodes.

Consider as witness a binary string u of length $2m$, where the coloring of each node i is given by the i’th pair of bits—say, 01 for red, 10 for green, and 11 for blue.

Given G and u, we can check in polynomial time if the coloring given by u is proper.
A nondeterministic Turing machine (NTM) M is a variant of a (deterministic) Turing machine, where some things are modified.

- Instead of a single transition function δ, there are two transition functions δ_1, δ_2.
- At each step, one of δ_1, δ_2 is chosen nondeterministically to determine the next configuration.
- (As halting states, it has an accept state q_{acc} and a reject state q_{rej}.)

- We write $M(x) = 1$ if there is some sequence of nondeterministic choices such that M reaches the state q_{acc} on input x.
- The machine M runs in time $T(n)$ if for every input x and every sequence of nondeterministic choices, M halts within $T(|x|)$ steps.
Definition (NTIME)

Let \(T : \mathbb{N} \rightarrow \mathbb{N} \) be a function. A problem \(L \subseteq \Sigma^* \) is in \(\text{NTIME}(T(n)) \) if there exists a nondeterministic Turing machine that decides \(L \) and that runs in time \(O(T(n)) \).

Proposition (characterization of NP)

\[
\text{NP} = \bigcup_{c \geq 1} \text{NTIME}(n^c)
\]
The complexity class \(\text{coNP}\)

Definition (the complexity class \(\text{coNP}\))

A problem \(L \subseteq \Sigma^*\) is in \(\text{coNP}\) if \(\overline{L} \in \text{NP}\), where \(\overline{L} = \{ x \in \Sigma^* \mid x \not\in L \}\).

Proposition (verifier characterization of \(\text{coNP}\))

A problem \(L \subseteq \Sigma^*\) is in \(\text{coNP}\) if there is a polynomial \(p : \mathbb{N} \rightarrow \mathbb{N}\) and a polynomial-time Turing machine \(M\) (the *verifier*) such that for every \(x \in \Sigma^*\):

\[
x \in L \iff \text{for all } u \in \{0, 1\}^{p(|x|)} \text{ it holds that } M(x, u) = 1.
\]
Proposition

\(\text{NP} \subseteq \text{EXP}. \)

Proof (idea).

- Iterate over all possible witnesses \(u \in \{0, 1\}^{p(|x|)} \), and check if \(M(x, u) = 1 \).
- If for any \(u \) this is the case, return 1—otherwise, return 0.
- There are \(2^{p(|x|)} \) such strings \(u \), and so this takes time \(2^{p(|x|)} \cdot q(|x|) \), for some polynomial \(q \).
An overview of complexity classes

(That we’ve seen so far..)
Definition (polynomial-time reductions)

A problem $L_1 \subseteq \Sigma^*$ is polynomial-time reducible to a problem $L_2 \subseteq \Sigma^*$ if there is a polynomial-time computable function $f : \Sigma^* \rightarrow \Sigma^*$ (the reduction) such that for every $x \in \Sigma^*$ it holds that:

$$x \in L_1 \text{ if and only if } f(x) \in L_2.$$

We write $L_1 \leq_p L_2$ to indicate that L_1 is polynomial-time reducible to L_2.

\[x \rightarrow f(x) \]
\[x \in L_1? \iff f(x) \in L_2? \]
Definition (NP-hardness)

A problem $L \subseteq \Sigma^*$ is **NP-hard** if every problem in NP is polynomial-time reducible to L.

Definition (NP-completeness)

A problem $L \subseteq \Sigma^*$ is **NP-complete** if $L \in$ NP and L is NP-hard.
Some properties

Proposition

Polynomial-time reductions are transitive. That is, if $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

Proposition

Take two problems $L_1, L_2 \subseteq \Sigma^*$. If L_1 is polynomial-time reducible to L_2 and $L_2 \in P$, then $L_1 \in P$.
Proposition

Take an NP-complete problem $L \subseteq \Sigma^*$. If $L \in P$, then $P = NP$. In other words, assuming that $P \neq NP$, $L \notin P$.

Proof.

Since deterministic TMs can be seen also as nondeterministic TMs, we get $P \subseteq NP$.

We show that if $L \in P$, then $NP \subseteq P$.

(1) Take an arbitrary problem $M \in NP$.

(2) Since L is NP-complete, $M \leq^p L$.

(3) Since $L \in P$, then also $M \in P$.

Since M was arbitrary, we know that $NP \subseteq P$. \qed
Showing intractability: using NP-completeness

“I can’t find an efficient algorithm, but neither can all these famous people.”
Recap

- The universal Turing machine
- Nondeterministic Turing machines
- More complexity classes: EXP, NP, coNP
- Polynomial-time reductions
- NP-hardness and NP-completeness
Next time

- Proving that NP-complete problems exist :-)