Computational Complexity

Lecture 2: Reductions, NP and NP-completeness

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

February 5, 2021

Recap

What we saw last time..

m (Deterministic) Turing machines
m Decision problems

m Polynomial time and the class P

- What will we do today?

m The universal Turing machine

Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

m NP-hardness and NP-completeness

- Representing Turing machines as (binary) strings

m We can encode Turing machines into binary strings, such that:

each string s € {0,1}* represents some Turing machine M
each Turing machine M is represented by infinitely many strings s € {0,1}*

given a TM M, we can efficiently compute a string s that represents M

m ldea:

m Write out the tuple (T, Q,d), together with starting and halting states, in an
appropriate alphabet, and then encode into binary

m Allow padding (cf. comments in programming languages)

- Efficient universal Turing machine

Proposition

There exists a TM U such that for every x,s € {0,1}* it holds that U(x, s) = M(x),
where M is the TM represented by the string s.

Moreover, if M halts on x in time T, then U(x, s) halts in time C - T log T, where C
depends only on s (and not on x).

m U is an efficient universal Turing machine: it can simulate other TMs in an
efficient way.

- (In)tractability

m Tractability: there exists a polynomial-time algorithm that solves the problem

m Intractability: there exists no polynomial-time algorithm that solves the problem

(or sometimes: all algorithms that solve the problem take
exponential time, in the worst case)

m How do we find out which of these two is the case for—for example—the problem
of 3-coloring?

Showing intractability: without any theory

“l can’t find an efficient algorithm, | guess I’'m just too dumb.”

- Showing intractability: the ideal case

“l can’t find an efficient algorithm, because no such algorithm is possible!”

Showing intractability: using NP-complet

“l can’t find an efficient algorithm, but neither can all these famous people.”

- Polynomial vs. exponential time

Definition (DTIME)

Let T:N — N be a function. A language L C ¥* is in DTIME(T (n)) if there exists a
Turing machine that decides L and that runs in time O(T(n)).

Definition (the complexity classes P and EXP)

P= U DTIME(n®) EXP = U DTIME(2™)

c>1 c>1

- The complexity class NP

Definition (the complexity class NP)

A problem L C ¥* is in the complexity class NP if there is a polynomial p: N — N and
a polynomial-time Turing machine M (the verifier) such that for every x € ¥*:

x €L ifand only if there exists some u € {0, 1}*(*) such that M(x, u) = 1.

The string u € {0,1}P(X) is called a certificate for x if M(x, u) = 1.

- Example: 3-coloring

m Let's see why the (decision) problem of 0 e

3-coloring is in NP.
m Let G = (V, E) be a graph with m nodes. e

m Consider as witness a binary string u of
length 2m, where the coloring of each node i °
is given by the i'th pair of bits—
say, 01 for red, 10 for green, and 11 for blue.

m Given G and u, we can check in polynomial
time if the coloring given by u is proper. s=01101101

- Nondeterministic Turing machines

A nondeterministic Turing machines (NTM) M is a variant of a (deterministic) Turing
machine, where some things are modified.

m Instead of a single transition function ¢, there are two transition functions d1, d5.

m At each step, one of 01, 05 is chosen nondeterministically to determine the next
configuration.

(As halting states, it has an accept state gacc and a reject state gyej.)

We write M(x) = 1 if there is some sequence of nondeterministic choices such
that M reaches the state g.cc on input x.

The machine M runs in time T(n) if for every input x and every sequence of
nondeterministic choices, M halts within T(|x]|) steps.

- Nondeterministic polynomial time (NP)

Definition (NTIME)

Let T:N — N be a function. A problem L C X* isin NTIME(T(n)) if there exists a
nondeterministic Turing machine that decides L and that runs in time O(T(n)).

Proposition (characterization of NP)

NP = | J NTIME(n®)
c>1

- The complexity class coNP

Definition (the complexity class coNP)
A problem L C ¥* isiin coNP if L € NP, where L= { x € ¥* | x ¢ L }.

Proposition (verifier characterization of coNP)

A problem L C ¥* is in coNP if there is a polynomial p : N — N and a polynomial-time
Turing machine M (the verifier) such that for every x € X*:

x e L ifandonlyif for all ue {0,1}P(*) it holds that M(x, u) = 1.

NP C EXP.

Proof (idea).

m Iterate over all possible witnesses u € {0,1}P(X), and check if M(x, u) = 1.
m If for any u this is the case, return 1—otherwise, return 0.

m There are 2P(X)) such strings u, and so this takes time 2P(X) . g(|x|), for some
polynomial q.

An overview of complexity classes
(That we've seen so far..)

- Polynomial-time reductions

Definition (polynomial-time reductions)

A problem Ly C Y* is polynomial-time reducible to X ——— ()
a problem Ly C X* if there is a polynomial-time

computable function f : ¥* — X* (the reduction)

such that for every x € ¥* it holds that:

? — ?
x € Ly ifandonly if f(x) € L. x € Ly Flx) € Lt

m We write L1 <, L to indicate that L; is
polynomial-time reducible to L.

- NP-hardness and NP-completeness

Definition (NP-hardness)

A problem L C Y* is NP-hard if every problem in NP is polynomial-time reducible to L.

Definition (NP-completeness)

A problem L C ¥* is NP-complete if L € NP and L is NP-hard.

- Some properties

Polynomial-time reductions are transitive.
That is, if L; < L> and L, <p L3, then L <p Ls.

Proposition

Take two problems L1, Ly C X*. If Ly is polynomial-time reducible to L, and L, € P,
then L; € P.

- Some properties (ct'd)

Take an NP-complete problem L C ¥*. If L € P, then P = NP.
In other words, assuming that P # NP, L & P.

Proof.

Since deterministic TMs can be seen also as nondeterministic TMs, we get P C NP.

We show that if L € P, then NP C P.

(1) Take an arbitrary problem M € NP.

(2) Since L is NP-complete, M <, L.

(3) Since L € P, then also M € P.

Since M was arbitrary, we know that NP C P. O]

Showing intractability: using NP-complet

“l can’t find an efficient algorithm, but neither can all these famous people.”

N

m The universal Turing machine

Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

m NP-hardness and NP-completeness

N

m Proving that NP-complete problems exist :-)

