Computational Complexity

Lecture 8: Some Sort of Recap

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

Recap What we saw last time...

- The classes Σ_i^p and Π_i^p
- The Polynomial Hierarchy
- $\Sigma_i^{\rm p}$ -complete and $\Pi_i^{\rm p}$ -complete QBF problems
- Characterizations using oracles and ATMs

What will we do today?

- Reflecting on what we've seen before
- Mostly using examples (of games)

One-/two-liner overview of complexity classes

- L: deterministic algorithm, logarithmic space (and polynomial time)
- NL: nondeterministic algorithm, logarithmic space (and polynomial time)
- P: solvable in (deterministic) polynomial time
- NP: solutions (for yes-answers) can be guessed/checked in polynomial time
- coNP: solutions (for no-answers) can be guessed/checked in polynomial time
- Σ_2^p : solutions (for yes-answers) have " $\exists \forall$ structure"
- Π_2^p : solutions (for yes-answers) have " $\forall \exists$ structure"
- PSPACE: (non)deterministic algorithm, polynomial space (and exponential time) OR: unbounded "∃∀∃∀∃··· structure"
- EXP: solvable in (deterministic) exponential time

Some oracle questions..

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know...
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes
- Is it the case that EXP^{EXP} = EXP? No
- Is it the case that $DTIME(n^2)^{DTIME(n^2)} = DTIME(n^2)$? No
- Is it the case that $NTIME(n)^{NTIME(n)} = NTIME(n)$? We don't know...

P vs. NP

- Polls on P $\stackrel{?}{=}$ NP have been held among computational complexity researchers:
 - In 2002, see: https://tiny.cc/pnp-poll1
 - In 2012, see: https://tiny.cc/pnp-poll2
 - In 2019, see: https://tiny.cc/pnp-poll3
- In these papers, there are some very interesting opinions on the question (and some nerdy jokes)
- Short answer: we have no clue (really), why P = NP or $P \neq NP$ would be true, but most think that $P \neq NP$.

Quiz example #1: checking if a given solution is unique

- What is the complexity of this problem?
- *Input*: A propositional formula φ , and a satisfying truth assignment α for φ . *Question*: Is α the only satisfying assignment for φ ?

Quiz example #2: finding a minimal equivalent DNF formula

- What is the complexity of this problem?
- Input: A propositional formula φ , and 1^k for some $k \in \mathbb{N}$.

Question: Is there a DNF formula ψ of size $\leq k$ such that $\varphi \equiv \psi$?

Quiz example #3: equivalence of propositional logic formulas

- What is the complexity of this problem?
- *Input*: Two propositional formulas φ_1, φ_2 .

Question: $\varphi_1 \equiv \varphi_2$?

Quiz example #4: 2SAT

■ What is the complexity of this problem?

■ *Input*: A propositional 2CNF formula φ .

Question: Is φ satisfiable?

Quiz example #5: satisfiability of modal logic K

■ What is the complexity of this problem?

■ *Input*: A basic modal logic formula φ .

Question: Is φ satisfiable?

Quiz example #6: satisfiability of modal logic S5

- What is the complexity of this problem?
- *Input*: A modal logic formula φ .

Question: Is there an S5 Kripke model where φ is true?

■ Theorem: if there is an S5 Kripke model where φ is true, then there exists an S5 Kripke model with at most $|\varphi|$ states where φ is true.

Quiz example #7: Tiling I

- What is the complexity of this problem?
- *Input*: A set of 4-sided tile types, and $n, m \in \mathbb{N}$.

Question: Can we use these tile types to fill an $n \times m$ grid, so that

(1) the outsides of the grid all have side s_0 , and

(2) neighboring tiles have matching sides?

Quiz example #8: Tiling II

- What is the complexity of this problem?
- *Input*: A set of 4-sided tile types, and $n \in \mathbb{N}$.

Question: Can we use these tile types to fill an $n \times m$ grid, for some $m \in \mathbb{N}$, so that

- (1) the outsides of the grid all have side s_0 , and
- (2) neighboring tiles have matching sides?

Quiz example #9: Greedy Spiders

■ What is the complexity of this problem?

■ *Input*: An instance *I* of the *greedy spiders* puzzle.

Question: Is there a solution for 1?

Quiz example #10: Generalized Geography

What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/ Generalized_geography)

■ *Input:* An instance *I* of *generalized geography*.

Question: Does Player 1 have

 $a\ winning\ strategy?$

Quiz example #10: Generalized Geography

What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/ Generalized_geography)

■ *Input:* An instance *I* of *generalized geography*.

Question: Does Player 1 have

a winning strategy?

Quiz example #11: Game of the Amazons (2 players)

■ What is the complexity of this problem?
(See: https://en.wikipedia.org/wiki/Game_of_the_Amazons)

■ *Input*: A (2-player) Game of the Amazons position (on an $n \times n$ board). *Question*: Does Player 1 have a winning strategy?

Quiz example #12: Game of the Amazons (1 player)

■ What is the complexity of this problem?

(See: https://en.wikipedia.org/wiki/Game_of_the_Amazons)

■ *Input*: A (1-player) Game of the Amazons position (on an $n \times n$ board), and 1^k for some $k \in \mathbb{N}$.

Question: Can Player 1 make at least k consecutive moves?

Quiz example #13: reachability in succinctly represented graphs

■ What is the complexity of this problem?

■ *Input*: A propositional logic formula $\varphi(x_1, ..., x_n, x'_1, ..., x'_n)$, and two binary vectors $s, t \in \{0, 1\}^n$.

Question: Consider the directed graph G = (V, E), where:

 $V = \{0,1\}^n$, and for each $\overline{v}, \overline{w} \in V$,

 $(\overline{v},\overline{w})\in E$ if and only if $\varphi[\overline{u},\overline{w}]$ is true.

Is t reachable from s in G?

Quiz example #14: 3-colorability for succinctly represented graphs

■ What is the complexity of this problem?

■ *Input*: A propositional logic formula $\varphi(x_1, ..., x_n, x'_1, ..., x'_n)$, and two binary vectors $s, t \in \{0, 1\}^n$.

Question: Consider the undirected graph G = (V, E), where:

 $V=\{0,1\}^n$, and for each $\overline{v},\overline{w}\in V$,

 $\{\overline{v},\overline{w}\}\in {\it E}$ if and only if $\varphi[\overline{u},\overline{w}]$ is true.

Is G 3-colorable?

Next time

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem