[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5.5.2 Basic Operations and Function Application

393006 ^metaadd ( Meta1 Meta2 → Meta1+Meta2 )
Adds 2 meta objects with trivial simplifications. metaadd checks for Meta1/2=Z0 ONE.
3AB006 ^MetaAdd ( Meta2 Meta1 → Meta2+Meta1 )
Adds 2 meta objects with trivial simplifications. Checks for infinities then call metaadd.
1CE006 ^ckaddt+ ( Meta1 Meta2 → Meta1+Meta2 )
Adds 2 meta objects with trivial simplifications.
394006 ^metasub ( Meta1 Meta2 → Meta1+Meta2 )
Subtracts 2 meta objects with trivial simplifications. metasub checks for Meta1/2=Z0 ONE.
3AD006 ^MetaSub ( Meta2 Meta1 → Meta2-Meta1 )
Subtracts 2 meta objects with trivial simplifications. Checks for infinities then call metasub.
1CF006 ^ckaddt- ( Meta1 Meta2 → Meta1+Meta2 )
Subtracts 2 meta objects with trivial simplifications.
395006 ^metamult ( Meta1 Meta2 → Meta1*Meta2 )
Multiplies 2 meta objects with trivial simplifications. Checks for meta1, meta2= Z0 or Z1, checks for xNEG.
3AF006 ^MetaMul ( Meta2 Meta1 → Meta2*Meta1 )
Multiplies 2 meta objects with trivial simplifications. Checks for infinities/0 then call metamult.
1CD006 ^ckaddt* ( Meta1 Meta2 → Meta1*Meta2 )
Multiplies 2 meta objects with trivial simplifications.
396006 ^metadiv ( Meta2 Meta1 → Meta2/Meta1 )
Divides 2 meta objects with trivial simplifications. Checks for infinities and 0, meta2 =1 or Z-1, checks for xNEG.
3B1006 ^MetaDiv ( Meta2 Meta1 → Meta2/Meta1 )
Divide 2 meta objects with trivial simplifications. Checks for infinities and 0 then call metadiv.
3F1006 ^DIVMETAOBJ ( o1...on #n ob → {o1/ob...on/ob} )
Division of all elements of a meta by ob. Tests if o=1.
397006 ^meta^ ( Meta ob → Meta&ob&^ )
Elevates expression to a power. If ob=1, just returns the expression. Tests for present of xNEG in the end of meta for integral powers.
399006 ^metapow ( Meta2 Meta1 → Meta2^Meta1 )
Elevates expression to a power (any other expression). If length of Meta1 is ONE, calls meta^.
3B5006 ^MetaPow ( Meta2 Meta1 → Meta2^Meta1 )
Power. Checks for infinities then calls metapow.
39B006 ^metaxroot ( Meta2 Meta1 → Meta2&XROOT&Meta1 )
Root of expression.
3B9006 ^metaneg ( meta → meta )
Checks only for meta finishing by xNEG.
3BA006 ^metackneg ( meta → meta )
Like <REF>metaneg but checks for meta=ob ONE.
3B7006 ^MetaNeg ( Meta → Meta )
Negates meta. Only checks for final <REF>xNEG in meta.
502006 ^xSYMRE ( meta → meta' )
Meta complex real part. Expands only + - * / ^.
504006 ^xSYMIM ( meta → meta' )
Meta complex imaginary part. Expands only + - * / ^.
50E006 ^addtABS ( Meta → Meta' )
Meta ABS. Does a CRUNCH first to find sign.
510006 ^addtABSEXACT ( Meta → Meta' )
Meta ABS. No crunch, sign is only found using exact methods.
511006 ^addtSIGN ( Meta → Meta' )
Meta SIGN.
513006 ^addtARG ( Meta → Meta' )
Meta ARG.
12D006 ^addtXROOT ( Meta2 Meta1 → Meta' )
Meta XROOT. XROOT(o2,o1) is o1^[1/o2], compared to o2^o1.
12F006 ^addtMIN ( Meta2 Meta1 → Meta' )
Meta MIN.
131006 ^addtMAX ( Meta2 Meta1 → Meta' )
Meta MAX.
133006 ^addt< ( Meta2 Meta1 → Meta' )
Meta <.
135006 ^addt<= ( Meta2 Meta1 → Meta' )
Meta <=.
137006 ^addt> ( Meta2 Meta1 → Meta' )
Meta >.
139006 ^addt>= ( Meta2 Meta1 → Meta' )
Meta >=.
13B006 ^addt== ( Meta2 Meta1 → Meta' )
Meta ==.
13D006 ^addt!= ( Meta2 Meta1 → Meta' )
Meta !=.
13F006 ^addt% ( Meta2 Meta1 → Meta' )
Meta %.
141006 ^addt%CH ( Meta2 Meta1 → Meta' )
Meta %CH. Meta2*(1+Meta'/100)=Meta1.
143006 ^addt%T ( Meta2 Meta1 → Meta' )
Meta %T.
145006 ^addtMOD ( Meta2 Meta1 → Meta' )
Meta MOD.
147006 ^addtTRNC ( Meta2 Meta1 → Meta' )
Meta TRNC.
149006 ^addtRND ( Meta2 Meta1 → Meta' )
Meta RND.
14B006 ^addtCOMB ( Meta2 Meta1 → Meta' )
Meta COMB.
14D006 ^addtPERM ( Meta2 Meta1 → Meta' )
Meta PERM.
14F006 ^addtOR ( Meta2 Meta1 → Meta' )
Meta OR.
151006 ^addtAND ( Meta2 Meta1 → Meta' )
Meta AND.
153006 ^addtXOR ( Meta2 Meta1 → Meta' )
Meta XOR.
506006 ^addtCONJ ( meta → meta' )
Meta complex conjugate.
523006 ^addtLN ( Meta → Meta' )
Meta LN.
535006 ^addtCOS ( Meta → Meta' )
Meta COS.
537006 ^addtSIN ( Meta → Meta' )
Meta SIN.
539006 ^addtTAN ( Meta → Meta' )
Meta TAN.
53B006 ^addtSINACOS ( meta → meta' )
If meta stands for x, meta' stands for sqrt[1-x^2].
53C006 ^addtASIN ( Meta → Meta' )
Meta ASIN.
53E006 ^addtACOS ( Meta → Meta' )
Meta ACOS.
540006 ^addtATAN ( Meta → Meta' )
Meta ATAN.
542006 ^addtSINH ( Meta → Meta' )
Meta SINH.
544006 ^addtCOSH ( Meta → Meta' )
Meta COSH.
546006 ^addtTANH ( Meta → Meta' )
Meta TANH.
549006 ^addtATANH ( Meta → Meta' )
Meta ATANH.
54C006 ^addtASINH ( Meta → Meta' )
Meta ASINH.
54F006 ^addtACOSH ( Meta → Meta' )
Meta ACOSH.
551006 ^addtSQRT ( Meta → Meta' )
Meta SQRT.
554006 ^addtSQ ( Meta → Meta' )
Meta SQ.
556006 ^addtINV ( Meta → Meta' )
Meta INV.
558006 ^addtEXP ( Meta → Meta' )
Meta EXP. Does not apply EXP[-..]=1/EXP[..].
559006 ^xSYMEXP ( Meta → Meta' )
Meta EXP. Applies EXP[-..]=1/EXP[..].
55A006 ^addtD->R ( Meta → Meta' )
Meta D→R.
55C006 ^addtR->D ( Meta → Meta' )
Meta R→D.
55E006 ^addtFLOOR ( Meta → Meta' )
Meta FLOOR.
560006 ^addtCEIL ( Meta → Meta' )
Meta CEIL.
562006 ^addtIP ( Meta → Meta' )
Meta IP.
564006 ^addtFP ( Meta → Meta' )
Meta FP.
566006 ^addtXPON ( Meta → Meta' )
Meta XPON.
568006 ^addtMANT ( Meta → Meta' )
Meta MANT.
56A006 ^addtLNP1 ( meta → meta )
Meta LNP1.
56C006 ^addtLOG ( meta → meta )
Meta LOG.
56E006 ^addtALOG ( meta → meta )
Meta ALOG.
570006 ^addtEXPM ( meta → meta )
Meta EXPM.
574006 ^addtFACT ( Meta → Meta' )
Meta FACT.
577006 ^addtNOT ( Meta → Meta' )
Meta NOT.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

This document was generated by Carsten Dominik on May, 30 2005 using texi2html