393006 |
^metaadd
|
( Meta1 Meta2 → Meta1+Meta2 )
Adds 2 meta objects with trivial
simplifications. metaadd checks for
Meta1/2=Z0 ONE .
|
3AB006 |
^MetaAdd
|
( Meta2 Meta1 → Meta2+Meta1 )
Adds 2 meta objects with trivial
simplifications. Checks for infinities then
call metaadd .
|
1CE006 |
^ckaddt+
|
( Meta1 Meta2 → Meta1+Meta2 )
Adds 2 meta objects with trivial
simplifications.
|
394006 |
^metasub
|
( Meta1 Meta2 → Meta1+Meta2 )
Subtracts 2 meta objects with trivial
simplifications. metasub checks for
Meta1/2=Z0 ONE .
|
3AD006 |
^MetaSub
|
( Meta2 Meta1 → Meta2-Meta1 )
Subtracts 2 meta objects with trivial
simplifications. Checks for infinities then
call metasub .
|
1CF006 |
^ckaddt-
|
( Meta1 Meta2 → Meta1+Meta2 )
Subtracts 2 meta objects with trivial
simplifications.
|
395006 |
^metamult
|
( Meta1 Meta2 → Meta1*Meta2 )
Multiplies 2 meta objects with trivial
simplifications. Checks for meta1, meta2= Z0
or Z1 , checks for xNEG .
|
3AF006 |
^MetaMul
|
( Meta2 Meta1 → Meta2*Meta1 )
Multiplies 2 meta objects with trivial
simplifications. Checks for infinities/0
then call metamult .
|
1CD006 |
^ckaddt*
|
( Meta1 Meta2 → Meta1*Meta2 )
Multiplies 2 meta objects with trivial
simplifications.
|
396006 |
^metadiv
|
( Meta2 Meta1 → Meta2/Meta1 )
Divides 2 meta objects with trivial
simplifications. Checks for infinities and
0, meta2 =1 or Z-1 , checks for xNEG .
|
3B1006 |
^MetaDiv
|
( Meta2 Meta1 → Meta2/Meta1 )
Divide 2 meta objects with trivial
simplifications. Checks for infinities and 0
then call metadiv .
|
3F1006 |
^DIVMETAOBJ
|
( o1...on #n ob → {o1/ob...on/ob} )
Division of all elements of a meta by ob.
Tests if o=1.
|
397006 |
^meta^
|
( Meta ob → Meta&ob&^ )
Elevates expression to a power. If ob=1, just
returns the expression. Tests for present of
xNEG in the end of meta for integral powers.
|
399006 |
^metapow
|
( Meta2 Meta1 → Meta2^Meta1 )
Elevates expression to a power (any other
expression). If length of Meta1 is ONE , calls
meta^ .
|
3B5006 |
^MetaPow
|
( Meta2 Meta1 → Meta2^Meta1 )
Power. Checks for infinities then calls
metapow .
|
39B006 |
^metaxroot
|
( Meta2 Meta1 → Meta2&XROOT&Meta1 )
Root of expression.
|
3B9006 |
^metaneg
|
( meta → meta )
Checks only for meta finishing by xNEG .
|
3BA006 |
^metackneg
|
( meta → meta )
Like <REF>metaneg but checks for meta=ob
ONE .
|
3B7006 |
^MetaNeg
|
( Meta → Meta )
Negates meta. Only checks for final <REF>xNEG
in meta.
|
502006 |
^xSYMRE
|
( meta → meta' )
Meta complex real part.
Expands only + - * / ^.
|
504006 |
^xSYMIM
|
( meta → meta' )
Meta complex imaginary part.
Expands only + - * / ^.
|
50E006 |
^addtABS
|
( Meta → Meta' )
Meta ABS.
Does a CRUNCH first to find sign.
|
510006 |
^addtABSEXACT
|
( Meta → Meta' )
Meta ABS.
No crunch, sign is only found using exact
methods.
|
511006 |
^addtSIGN
|
( Meta → Meta' )
Meta SIGN.
|
513006 |
^addtARG
|
( Meta → Meta' )
Meta ARG.
|
12D006 |
^addtXROOT
|
( Meta2 Meta1 → Meta' )
Meta XROOT.
XROOT(o2,o1) is o1^[1/o2], compared to o2^o1.
|
12F006 |
^addtMIN
|
( Meta2 Meta1 → Meta' )
Meta MIN.
|
131006 |
^addtMAX
|
( Meta2 Meta1 → Meta' )
Meta MAX.
|
133006 |
^addt<
|
( Meta2 Meta1 → Meta' )
Meta <.
|
135006 |
^addt<=
|
( Meta2 Meta1 → Meta' )
Meta <=.
|
137006 |
^addt>
|
( Meta2 Meta1 → Meta' )
Meta >.
|
139006 |
^addt>=
|
( Meta2 Meta1 → Meta' )
Meta >=.
|
13B006 |
^addt==
|
( Meta2 Meta1 → Meta' )
Meta ==.
|
13D006 |
^addt!=
|
( Meta2 Meta1 → Meta' )
Meta !=.
|
13F006 |
^addt%
|
( Meta2 Meta1 → Meta' )
Meta %.
|
141006 |
^addt%CH
|
( Meta2 Meta1 → Meta' )
Meta %CH.
Meta2*(1+Meta'/100)=Meta1.
|
143006 |
^addt%T
|
( Meta2 Meta1 → Meta' )
Meta %T.
|
145006 |
^addtMOD
|
( Meta2 Meta1 → Meta' )
Meta MOD.
|
147006 |
^addtTRNC
|
( Meta2 Meta1 → Meta' )
Meta TRNC.
|
149006 |
^addtRND
|
( Meta2 Meta1 → Meta' )
Meta RND.
|
14B006 |
^addtCOMB
|
( Meta2 Meta1 → Meta' )
Meta COMB.
|
14D006 |
^addtPERM
|
( Meta2 Meta1 → Meta' )
Meta PERM.
|
14F006 |
^addtOR
|
( Meta2 Meta1 → Meta' )
Meta OR.
|
151006 |
^addtAND
|
( Meta2 Meta1 → Meta' )
Meta AND.
|
153006 |
^addtXOR
|
( Meta2 Meta1 → Meta' )
Meta XOR.
|
506006 |
^addtCONJ
|
( meta → meta' )
Meta complex conjugate.
|
523006 |
^addtLN
|
( Meta → Meta' )
Meta LN.
|
535006 |
^addtCOS
|
( Meta → Meta' )
Meta COS.
|
537006 |
^addtSIN
|
( Meta → Meta' )
Meta SIN.
|
539006 |
^addtTAN
|
( Meta → Meta' )
Meta TAN.
|
53B006 |
^addtSINACOS
|
( meta → meta' )
If meta stands for x, meta' stands for
sqrt[1-x^2].
|
53C006 |
^addtASIN
|
( Meta → Meta' )
Meta ASIN.
|
53E006 |
^addtACOS
|
( Meta → Meta' )
Meta ACOS.
|
540006 |
^addtATAN
|
( Meta → Meta' )
Meta ATAN.
|
542006 |
^addtSINH
|
( Meta → Meta' )
Meta SINH.
|
544006 |
^addtCOSH
|
( Meta → Meta' )
Meta COSH.
|
546006 |
^addtTANH
|
( Meta → Meta' )
Meta TANH.
|
549006 |
^addtATANH
|
( Meta → Meta' )
Meta ATANH.
|
54C006 |
^addtASINH
|
( Meta → Meta' )
Meta ASINH.
|
54F006 |
^addtACOSH
|
( Meta → Meta' )
Meta ACOSH.
|
551006 |
^addtSQRT
|
( Meta → Meta' )
Meta SQRT.
|
554006 |
^addtSQ
|
( Meta → Meta' )
Meta SQ.
|
556006 |
^addtINV
|
( Meta → Meta' )
Meta INV.
|
558006 |
^addtEXP
|
( Meta → Meta' )
Meta EXP.
Does not apply EXP[-..]=1/EXP[..] .
|
559006 |
^xSYMEXP
|
( Meta → Meta' )
Meta EXP.
Applies EXP[-..]=1/EXP[..] .
|
55A006 |
^addtD->R
|
( Meta → Meta' )
Meta D→R.
|
55C006 |
^addtR->D
|
( Meta → Meta' )
Meta R→D.
|
55E006 |
^addtFLOOR
|
( Meta → Meta' )
Meta FLOOR.
|
560006 |
^addtCEIL
|
( Meta → Meta' )
Meta CEIL.
|
562006 |
^addtIP
|
( Meta → Meta' )
Meta IP.
|
564006 |
^addtFP
|
( Meta → Meta' )
Meta FP.
|
566006 |
^addtXPON
|
( Meta → Meta' )
Meta XPON.
|
568006 |
^addtMANT
|
( Meta → Meta' )
Meta MANT.
|
56A006 |
^addtLNP1
|
( meta → meta )
Meta LNP1.
|
56C006 |
^addtLOG
|
( meta → meta )
Meta LOG.
|
56E006 |
^addtALOG
|
( meta → meta )
Meta ALOG.
|
570006 |
^addtEXPM
|
( meta → meta )
Meta EXPM.
|
574006 |
^addtFACT
|
( Meta → Meta' )
Meta FACT.
|
577006 |
^addtNOT
|
( Meta → Meta' )
Meta NOT.
|