157006 |
^SYMBINCOMP
|
( symb → ob1 .. obN #n )
( ob → ob #1 )
( {} → {} #1 )
Explodes symbolic object into meta. Other
objects are converted into one-object metas
by pushing #1 into the stack.
|
386006 |
^m-1&m+1
|
( meta → meta&1&+ meta&1&- )
Creates two copies of the meta. To the first
one, adds 1 and +, to the second one, adds 1
and -.
|
387006 |
^meta1/meta
|
( meta → meta 1&meta&/ )
Duplicates the meta, and inverts the
expression represented by it.
|
388006 |
^1&meta
|
( Meta → 1&Meta )
Prepends the number 1 to the meta.
|
389006 |
^meta/2
|
( Meta → Meta&2&/ )
Divides the expression by two.
|
38A006 |
^addt2
|
( Meta → Meta&2 )
Appends the number 2 to the meta.
|
38B006 |
^addt/
|
( Meta → Meta&/ )
Appends division to meta.
|
38C006 |
^meta2*
|
( Meta → 2&Meta&* )
Multiplies the expression by 2.
|
459006 |
^metai*
|
( meta → meta*i )
Multiplies meta by i.
|
38D006 |
^meta1-sq
|
( Meta → 1&Meta&SQ&- )
Changes x into 1-x^2, where x is the
original expression.
|
38E006 |
^metasq+1
|
( Meta → Meta&SQ&1&+ )
Changes x into x^2+1, where x is the
original expression.
|
38F006 |
^metasq-1
|
( Meta → Meta&SQ&1&- )
Changes x into x^2-1, where x is the
original equation.
|
390006 |
^meta-1
|
( Meta → Meta&1&- )
Subtracts one from the expression.
|
398006 |
^addt^
|
( Meat → Meta&^ )
Append power operator to meta object.
|
39C006 |
^top&addt*
|
( meta2 meta1 → meta2*meta1 )
top& addt* .
No checks.
|
39D006 |
^top&addt/
|
( meta2 meta1 → meta2/meta1 )
top& addt/ .
No checks.
|
39E006 |
^addti
|
( meta → meta&i )
Appends i (the Imaginary unit) to
expression.
|