409006 |
^cos2tan/2
|
( meta → meta' )
x → (1-(tan(x/2))^2)/(1+(tan(x/2))^2)
|
40A006 |
^1-x^2/1+x^2
|
( meta → meta' )
x → (1-x^2)/(1+x^2)
|
40C006 |
^sin2tan/2
|
( meta → meta' )
x → 2 tan(x/2)/(1+(tan(x/2))^2)
|
40D006 |
^2x/1+x^2
|
( meta → meta' )
x → 2x/(1+x^2)
|
40F006 |
^tan2tan/2
|
( meta → meta' )
x → 2 tan(x/2)/(1-(tan(x/2))^2)
|
410006 |
^addtTAN/2
|
( meta → meta' )
x → tan(x/2)
|
413006 |
^cos2tan
|
( meta → meta' )
x → 1/sqrt(1+(tan(x))^2)
|
415006 |
^sin2tan
|
( meta → meta' )
x → tan(x)/sqrt(1+(tan(x))^2)
|
421006 |
^tan2exp
|
( meta → meta' )
x → (exp(i2x)-1)/(i*(exp(i2x)+1))
|
423006 |
^asin2ln
|
( meta → meta' )
x → = i*ln(x+sqrt(x^2-1))+π/2.
|
425006 |
^acos2ln
|
( meta → meta' )
x → ln(x+sqrt(x^2-1))/i
|
428006 |
^sin/cos
|
( meta → meta' )
x → sin(x)/cos(x)
|
42B006 |
^cos*tan
|
( meta → meta' )
x → cos(x)*tan(x)
|
42D006 |
^sqrt1-sin^2
|
( meta → meta' )
x → sqrt(1-(sin(x))^2).
|
42F006 |
^sqrt1-cos^2
|
( meta → meta' )
x → sqrt(1-(cos(x))^2).
|
432006 |
^atan2asin
|
( meta → meta' )
x → asin(x/sqrt(x^2+1))
|
435006 |
^asin2atan
|
( meta → meta' )
x → atan(x/sqrt(1-x^2))
|
438006 |
^pi/2-acos
|
( meta → meta' )
x → π/2-acos(x)
|
439006 |
^pi/2-meta
|
( meta → meta' )
x → π/2-x
|
43B006 |
^pi/2-asin
|
( meta → meta' )
x → π/2-asin(x)
|
43E006 |
^atan2ln
|
( meta → meta' )
x → i/2*ln((i+x)/(i-x))
|
441006 |
^2*1-cos/sin
|
( meta → meta' )
x → (1-cos(2x))/sin(2x)
|
443006 |
^2*sin/1+cos
|
( meta → meta' )
x → sin(2x)/(1+cos(2x))
|
445006 |
^sin2exp
|
( meta → meta' )
x → (e^(i*x)-1/e^(i*x))/(2i)
|
447006 |
^cos2exp
|
( meta → meta' )
x → (e^(i*x)+1/e^(i*x))/2
|
449006 |
^sinh2exp
|
( meta → meta' )
x → (e^x-1/e^x)/2
|
44B006 |
^cosh2exp
|
( meta → meta' )
x → (e^x+1/e^x)/2
|
44D006 |
^tanh2exp
|
( meta → meta' )
x → (e^2x-1)/(e^2x+1)
|
44F006 |
^asinh2ln
|
( meta → meta' )
x → ln(x+sqrt(x^2+1))
|
451006 |
^acosh2ln
|
( meta → meta' )
x → ln(x+sqrt(x^2-1))
|
453006 |
^atanh2ln
|
( meta → meta' )
x → ln((1+x)/(1-x))/2
|
455006 |
^xroot2expln
|
( meta1 meta2 → meta' )
x y → exp(ln(y)/x)
|
458006 |
^exp2sincos
|
( meta → meta' )
Returns EXP of meta as EXP[RE]*[COS+i*SIN].
|