A hypergeometric evaluation connected with the birthday problem

Tom Koornwinder, T.H.Koornwinder@uva.nl, November 22, 2011
By induction with respect to m (in fact by telescoping) we see that

$$
\begin{equation*}
1=\sum_{k=0}^{m} \frac{(-a)_{k}(-1)^{k}}{(a+1)^{k}} \frac{k+1}{a+1}+\frac{(-a)_{m+1}(-1)^{m+1}}{(a+1)^{m+1}} \tag{1}
\end{equation*}
$$

Hence, for $n \in \mathbb{Z}_{\geq 0}$ we have

$$
\begin{align*}
1 & =\sum_{k=0}^{n} \frac{n!}{(n-k)!(n+1)^{k}} \frac{k+1}{n+1} \tag{2}\\
& =\frac{1}{n+1}{ }_{2} F_{0}\left(\begin{array}{c}
-n, 2 \\
-
\end{array}-\frac{1}{n+1}\right) \tag{3}\\
& =\frac{n!}{(n+1)^{n}}{ }_{1} F_{1}\left(\begin{array}{c}
-n \\
-n-1
\end{array} ; n+1\right) \tag{4}
\end{align*}
$$

Note that (3) can be rewritten as an evaluation for Charlier polynomials in a special case:

$$
\begin{equation*}
C_{n}(-2 ; n+1)=n+1 \tag{5}
\end{equation*}
$$

Rewrite (2) as

$$
\begin{equation*}
1=\sum_{k=1}^{n} \frac{(n-1)!}{(n-k)!n^{k-1}} \frac{k}{n} \tag{6}
\end{equation*}
$$

Note that $\frac{(n-1)!}{(n-k)!n^{k-1}}$ is the chance that in a row of objects of n possible types, each type with equal probability, the first k objects have different types. Furthermore, the term $\frac{(n-1)!}{(n-k)!n^{k-1}} \frac{k}{n}$ is the chance that the first k objects have different types but among the first $k+1$ objects there are two of equal type. Therefore, the sum in the right-hand side of (6) must be equal to 1 .

