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Brafman [1, (13)] gave a generating function for Legendre polynomials:
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where
ρ := (1− 2xz + z2)1/2.

He obtained it as a special case of a generating formula for Jacobi polynomials which followed
from an expansion of an Appell F4 function in terms of Jacobi polynomials.

Here I will provide an alternative proof of (1). First observe that by [2, 3.6(3)],
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we have on the right-hand side of (1) a product P−s(ρ+ z)P−s(ρ− z) of Legendre functions. We
can rewrite (1) as
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where (putting x = 1) the cn are such that
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In order to prove (2), plug in the integral representation [3, (10.10(42)],
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Thus, by (3), the left-hand side of (2) equals
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Now we see that this equals the right-hand side of (2) by the product formula for Legendre
functions,
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which follows by integration from the addition formula [2, 3.11(1)] for Legendre functions, and
which is valid as long as (1−z2)(1−w2) has positive real part and the arguments of the Legendre
functions stay away from (−∞,−1].

It is tempting to try a similar proof for Brafman’s addition formula for Jacobi polynomials
[1, (12)] by using the product formula [4, (4.1)]. However, we would need there an integral
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Note added December 21, 2018 In 2013 Wadim Zudilin discussed the generating function
(1) with me in connection with his paper [5] joint with Wan. This gave rise to the present note.
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