An alternative proof of Brafman's generating function for Legendre polynomials

Informal note by Tom Koornwinder, T.H.Koornwinder@uva.nl, 26 July 2013
Brafman $[1,(13)]$ gave a generating function for Legendre polynomials:

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{(s)_{n}(1-s)_{n}}{n!n!} P_{n}(x) z^{n}={ }_{2} F_{1}\left(\begin{array}{c}
s, 1-s \\
1
\end{array} ; \frac{1-\rho-z}{2}\right){ }_{2} F_{1}\binom{\left.s, 1-s ; \frac{1-\rho+z}{2}\right)}{1} \tag{1}\\
(-1 \leq x \leq 1,|z|<1)
\end{array}
$$

where

$$
\rho:=\left(1-2 x z+z^{2}\right)^{1 / 2}
$$

He obtained it as a special case of a generating formula for Jacobi polynomials which followed from an expansion of an Appell F_{4} function in terms of Jacobi polynomials.

Here I will provide an alternative proof of (1). First observe that by [2, 3.6(3)],

$$
P_{\nu}(z)={ }_{2} F_{1}\left(\begin{array}{c}
1+\nu,-\nu \\
1
\end{array} \frac{1}{2}-\frac{1}{2} z\right)
$$

we have on the right-hand side of (1) a product $P_{-s}(\rho+z) P_{-s}(\rho-z)$ of Legendre functions. We can rewrite (1) as

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} P_{n}(x) z^{n}=P_{-s}(\rho+z) P_{-s}(\rho-z) \tag{2}
\end{equation*}
$$

where (putting $x=1$) the c_{n} are such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} z^{n}=P_{-s}(1-2 z) \tag{3}
\end{equation*}
$$

In order to prove (2), plug in the integral representation [3, (10.10(42)],

$$
P_{n}(x)=\pi^{-1} \int_{0}^{\pi}\left(x+i\left(1-x^{2}\right)^{\frac{1}{2}} \cos \phi\right)^{n} d \phi
$$

Thus, by (3), the left-hand side of (2) equals

$$
\pi^{-1} \int_{0}^{\pi} P_{-s}\left(1-2 z\left(x+i\left(1-x^{2}\right)^{\frac{1}{2}} \cos \phi\right)\right) d \phi
$$

Now we see that this equals the right-hand side of (2) by the product formula for Legendre functions,

$$
P_{\nu}(z) P_{\nu}(w)=\pi^{-1} \int_{0}^{\pi} P_{\nu}\left(z w+\sqrt{\left(1-z^{2}\right)\left(1-w^{2}\right)} \cos \phi\right) d \phi
$$

which follows by integration from the addition formula $[2,3.11(1)]$ for Legendre functions, and which is valid as long as $\left(1-z^{2}\right)\left(1-w^{2}\right)$ has positive real part and the arguments of the Legendre functions stay away from $(-\infty,-1]$.

It is tempting to try a similar proof for Brafman's addition formula for Jacobi polynomials [1, (12)] by using the product formula [4, (4.1)]. However, we would need there an integral representing $R_{\nu}^{(\alpha, \beta)}(x) R_{\nu}^{(\beta, \alpha)}(y)$ rather than $R_{\nu}^{(\alpha, \beta)}(x) R_{\nu}^{(\alpha, \beta)}(y)$.

Note added December 21, 2018 In 2013 Wadim Zudilin discussed the generating function (1) with me in connection with his paper [5] joint with Wan. This gave rise to the present note.

References

[1] F. Brafman, Generating functions of Jacobi and related polynomials, Proc. Amer. Math. Soc. 2 (1951), 942-949.
[2] A. Erdëlyi et al., Higher transcendental functions, Vol. 1, McGrawHill, 1953.
[3] A. Erdëlyi et al., Higher transcendental functions, Vol. 2, McGrawHill, 1953.
[4] M. Flensted-Jensen and T. Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 254-262.
[5] J. Wan and W. Zudilin, Generating functions of Legendre polynomials: a tribute to Fred Brafman, J. Approx. Theory 164 (2012), 488-503.

