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1. Some functional analytic preliminaries

Let H be a separable Hilbert space. We denote unbounded linear operators on H by (L,D), where
D is a linear subspace of H and L:D → H is a linear mapping. We write (L1,D1) ⊂ (L2,D2)
if D1 ⊂ D2 and L1 = L2|D1 . If D is dense in H then we write the adjoint (L,D)∗ of (L,D) as
(L∗,D∗). If D∗ is again dense in H then we write the adjoint (L,D)∗∗ of (L,D)∗ as (L∗∗,D∗∗).

Let D be dense in H and let (L,D) be symmetric. Then (L,D)∗ is a closed extension of
(L,D) and every symmetric extension of (L,D) is contained in (L,D)∗ (cf. [1, Lemma XII.4.1]).
Furthermore, (L,D)∗∗ is the minimal closed extension of (L,D) and it is symmetric. We have the
inclusions

(L,D) ⊂ (L,D)∗∗ ⊂ (L,D)∗.

Put
B(v, w) := (L∗v, w)− (v, L∗w), v, w ∈ D∗. (1.1)

Then
D∗∗ = {v ∈ D∗ | B(v, w) = 0 ∀w ∈ D∗}.

Let λ ∈ C. Put

Nλ := {v ∈ D∗ | L∗v = λv}
and

n+ := dimNi,

n− := dimN−i.

The cardinalities n+ and n− are called the deficiency indices of the symmetric operator (L,D).
We will always assume that these are finite. We will keep the assumptions and notations of this
paragraph in the remainder of this section.

Proposition 1.1. (a) There is the orthogonal direct sum

D∗ = D∗∗ +Ni +N−i.

(b) If Imλ > 0 then dimNλ = n+ and if Imλ < 0 then dimNλ = n− .
(c) For λ ∈ C\R there is the (generally non-orthogonal) direct sum

D∗ = D∗∗ +Nλ +Nλ .

Proof. See [1, Lemma XII.4.10] for (a) and [1, Theorem XII.4.19] for (b). Part (c) follows from
(b), the linear independence of eigenvectors for distinct eigenvalues and the fact that the domain
D∗∗ of a symmetric operator L∗∗ cannot contain eigenvectors for non-real eigenvalues.
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If (L,D) has a self-adjoint extension (L̃, D̃) then

(L,D)∗∗ ⊂ (L̃, D̃) ⊂ (L,D)∗.

Conversely, we have:

Proposition 1.2. Let D∗∗ ⊂ D̃ ⊂ D∗. Let L̃ := L∗|D̃. Equivalent statements are:

(a) (L̃, D̃) is self-adjoint;

(b) D̃ = {v ∈ D∗ | B(v, w) = 0 ∀w ∈ D̃};
(c) ∃ isometric bijection U :Ni → N−i such that D̃ = {v + w + Uw | v ∈ D∗∗, w ∈ Ni}.
Proof. The equivalence of (a) and (b) is by the definition of self-adjoint operator. For the
equivalence of (a) and (c) see [1, Theorem XII.4.12].

Note that, by (c) of Proposition 1.2, the equality n+ = n− is a necessary and sufficient condition
for the existence of a self-adjoint extension of (L,D).

Let C(Z), H := L2(Z) and D := Cc(Z) respectively consist of all complex-valued functions on
Z, of all square integrable functions on Z and of all functions u on Z such that u(n) 6= 0 for only
finitely many n. Then D is dense in H. Define the linear operator L on C(Z) by

(Lu)(n) := a(n)u(n+ 1) + b(n)u(n) + a(n− 1)u(n− 1), (1.2)

where a(n) and b(n) are real and a(n) > 0. Then

∞∑
n=−∞

(Lu)(n) v(n) =

∞∑
n=−∞

u(n) (Lv)(n), u ∈ Cc(Z), v ∈ C(Z).

Hence the operator (L,D) is symmetric and L∗ is the restriction of L to D∗, so we can write
(L,D)∗ = (L,D∗). Note that D∗ can be characterized as

D∗ = {u ∈ H | Lu ∈ H}.

Clearly, dim(Nλ) ≤ 2. Also, u ∈ Nλ iff ū ∈ Nλ. Hence

n+ = n− ≤ 2.

Thus (L,D) has self-adjoint extensions.
Define the Wronskian of two functions u and v on Z by

[u, v](n) := a(n)
(
u(n+ 1) v(n)− u(n) v(n+ 1)

)
. (1.3)

Then
(Lu)(n) v(n)− u(n) (Lv)(n) = [u, v](n)− [u, v](n− 1). (1.4)

Hence

[u, v](n)− [u, v](m) =

n∑
k=m+1

(
(Lu)(k) v(k)− u(k) (Lv)(k)

)
.

It follows (on letting n tend to ∞ respectively −∞) that the limits

[u, v](±∞) := lim
n→±∞

[u, v](n)
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exist for +∞ respectively −∞ if u, Lu, v, Lv are L2 at +∞ respectively −∞. In particular, if
u, v ∈ D∗ then these limits exist and, by (1.1) and (1.4),

B(u, v) = lim
n→∞,m→−∞

([u, v̄](n)− [u, v̄](m)).

Hence
B(u, v) = [u, v̄](∞)− [u, v̄](−∞), u, v ∈ D∗.

If u, v are functions on Z satisfying Lu = λu, Lv = λv for some λ ∈ C, then it follows from
(1.4) that [u, v] := [u, v](n) is independent of n.

We make now the following three assumptions.

1) a(n) is bounded as n→ −∞. Then, for u, v ∈ D∗, we have [u, v̄](−∞) = 0, hence

B(u, v) = [u, v̄](∞).

2) For λ ∈ C\R the space {u ∈ C(Z) | Lu = λu, u is L2 at −∞} has dimension one. Say that it
is spanned by Fλ.

3) For λ ∈ C\R there exists fλ ∈ C(Z) such that Lfλ = λfλ, fλ is L2 at ∞ and Fλ, fλ are
linearly independent.

Now there are two possibilities for given λ ∈ C\R:

(i) Fλ is not L2 at ∞. Then (L,D∗) is self-adjoint.

(ii) Fλ is L2 at ∞. Then the possible self-adjoint extensions (L, D̃) of (L,D) are given by

D̃ := {u ∈ D∗ | [u, eiθ Fi + e−iθ F−i](∞) = 0}, (1.5)

where θ ∈ [0, 2π).

In case (ii) we can assume that fλ moreover satisfies [fλ, e
iθ Fi + e−iθ F−i](∞) = 0. Indeed,

replace fλ in (ii) by another solution f̃λ := fλ + cFλ of Lu = λu and find c such that [f̃λ, e
iθ Fi +

e−iθ F−i](∞) = 0. Such c exists because [Fλ, e
iθ Fi + e−iθ F−i](∞) 6= 0. This last inequality holds

because otherwise Fλ would be in D̃ by (1.5), while an eigenvector with nonreal eigenvalue cannot
be in the domain of a self-adjoint operator.

Let λ ∈ C\R. Define the Green kernel by

Gλ(m,n) :=


Fλ(n) fλ(m)

[Fλ, fλ]
, n ≤ m,

fλ(n)Fλ(m)

[Fλ, fλ]
, n > m.

(1.6)

Fix a self-adjoint extension (L, D̃) of (L,D).

Proposition 1.3. Let λ ∈ C\R. The resolvent (λ− L)−1 of (L, D̃) satisfies

((λ− L)−1f)(m) =

∞∑
n=−∞

Gλ(m,n) f(n), f ∈ H. (1.7)

Proof. Since (L, D̃) is self-adjoint, (λ−L)−1 is a continuous one-to-one mapping from H onto D̃.
Hence, for each m ∈ Z, f 7→ ((λ − L)−1f)(m) is a continuous linear functional on H. Thus (1.7)
holds for a certain kernel Gλ(m,n) such that Gλ(m, . ) ∈ H. Thus, the proposition will follow if
we can prove that (1.7) holds, with Gλ given by (1.6), for all f in the dense subspace D of H.
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Thus let f ∈ D and Gλ given by (1.6). By the properties of fλ and Fλ we see that Gλ(m, . ) ∈ H
for all m, and that Gλf ∈ D̃, where (Gλf)(m) denotes the right hand side of (1.7). We will finish
the proof by showing that (λ− L)(Gλf) = f . Indeed,

(
(λ− L)(Gλf)

)
(m)

= −a(m)(Gλf)(m+ 1) + (λ− b(m))(Gλf)(m)− a(m− 1)(Gλf)(m− 1)

=
( m−1∑
n=−∞

+

∞∑
n=m+1

+

m∑
n=m

)(
−a(m)Gλ(m+ 1, n) + (λ− b(m))Gλ(m,n)− a(m− 1)Gλ(m− 1, n)

)
f(n)

=
((λ− L)fλ)(m)

[Fλ, fλ]

m−1∑
n=−∞

Fλ(n)f(n) +
((λ− L)Fλ)(m)

[Fλ, fλ]

∞∑
n=m+1

fλ(n)f(n)

+
(
− a(m)Fλ(m)fλ(m+ 1) + (λ− b(m))fλ(m)Fλ(m)− a(m− 1)fλ(m)Fλ(m− 1)

)
f(m)/[Fλ, fλ]

= 0 + 0 +
fλ(m)

[Fλ, fλ]
((λ− L)Fλ)(m)f(m) +

a(m)

[Fλ, fλ]
(Fλ(m+ 1) fλ(m)− Fλ(m)fλ(m+ 1))f(m)

= f(m).

See Rudin [4, Def. 12.17] for the definition of a resolution of the identity on a σ-algebra. If E
is a resolution of the identity and v, w are elements of the corresponding Hilbert space then put

Ev,w(ω) := (E(ω)v, w),

where ω is in the σ-algebra. We formulate the spectral theorem for a self-adjoint operator (cf. for
instance [4, Theorem 13.30].

Theorem 1.4. To every self-adjoint operator (L,D) in H corresponds a unique resolution E of
the identity on the Borel subsets of the real line such that

(Lv,w) =

∫ ∞
−∞

t dEv,w(t), v ∈ D, w ∈ H.

The resolution of the identity E in the above theorem may be calculated explicitly in terms of
the resolvent of L (cf. [1, Theorem XII.2.10]):

Theorem 1.5. Let (L,D) and E be as in Theorem 1.4 and let (a, b) be an open interval in R.
Then

Ev,w((a, b)) = lim
δ↓0

lim
ε↓0

1

2πi

∫ b−δ

a+δ

[((s− iε− L)−1v, w)− ((s+ iε− L)−1v, w)] ds, v, w ∈ H.
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2. The q-hypergeometric q-difference equation and its solutions

Let 0 < q < 1. For definitions and elementary facts about q-hypergeometric functions the reader is
referred to Gasper & Rahman [2, Ch.1].

First form. Consider the equation

(c− abz)U(qz) +
(
−(c+ q) + (a+ b)z

)
U(z) + (q − z)U(q−1z) = 0, a, b, c ∈ C\{0}. (2.1)

Any solution of (2.1) may be considered up to multiplication by a function f satisfying f(z) = f(qz),

(e.g. f(z) = z2πin
q log e, n ∈ Z). We look for solutions of the form U(z) =

∑∞
k=0 ck z

k+λ (c0 = 1,
convergent around 0) and U(z) =

∑∞
k=0 ck z

−k+λ (c0 = 1, convergent around∞). The two solutions
of the first type are

U1(z) :=2φ1(a, b; c; q, z), c 6= q−n for n ∈ Z+,

U2(z) :=z1−
q log c

2φ1

(
qa

c
,
qb

c
;
q2

c
; q, z

)
, c 6= qn+2 for n ∈ Z+,

and the two solutions of the second type are

U3(z) :=z−
q log a

2φ1

(
a,
qa

c
;
qa

b
; q,

qc

abz

)
, a 6= q−n−1b for n ∈ Z+,

U4(z) :=z−
q log b

2φ1

(
b,
qb

c
;
qb

a
; q,

qc

abz

)
, a 6= qn+1b for n ∈ Z+.

Thus, for c /∈ {qn | n ∈ Z} we have obtained two linearly independent solutions U1 and U2 around 0
and for a/b /∈ {qn | n ∈ Z} we have obtained two linearly independent solutions U3 and U4 around
∞. Because of Jackson’s transformation formula

2φ1

[
a, b

c
; q, z

]
=

(az; q)∞
(z; q)∞

2φ2

[
a, c/b

c, az
; q, bz

]
,

U1, U2, U3, U4 have one-valued analytic continuations to {z ∈ C\{0} | | arg(−z)| < π}. We can
express U1(z) as a linear combination of U3(z) and U4(z) over the ring of functions f satisfying
f(z) = f(qz) by

2φ1(a, b; c; q, z) =
(ca−1, b; q)∞
(c, ba−1; q)∞

(az, qa−1z−1; q)∞
(z, qz−1; q)∞

2φ1

(
a,
qa

c
;
qa

b
; q,

qc

abz

)
+

(cb−1, a; q)∞
(c, ab−1; q)∞

(bz, qb−1z−1; q)∞
(z, qz−1; q)∞

2φ1

(
b,
qb

c
;
qb

a
; q,

qc

abz

)
,

(2.2)

provided that z 6= 0, | arg(−z)| < π, c 6= q−n for n ∈ Z+, a/b 6= q−n for n ∈ Z (see Gasper &
Rahman, [2, 4.3.2]. Mimachi [3].

Second form. Substitute a := q
1
2 (α+β+1+iλ), b := q

1
2 (α+β+1−iλ), c := qα+1, and assume that

α > −1, β ∈ R, λ ∈ C. Then equation (2.1) becomes

(qα+1−qα+β+1z)U(qz)+
(
−(qα+1+q)+q

1
2 (α+β+1)(q

1
2 iλ+q−

1
2 iλ)z

)
U(z)+(q−z)U(q−1z) = 0. (2.3)
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The solutions take the form

U1(z) = 2φ1

[
q

1
2 (α+β+1+iλ), q

1
2 (α+β+1−iλ)

qα+1
; q, z

]
,

U2(z) = z−α 2φ1

[
q

1
2 (−α+β+1+iλ), q

1
2 (−α+β+1−iλ)

q−α+1
; q, z

]
, α /∈ N,

U3(z) = z−
1
2 (α+β+1+iλ)

2φ1

[
q

1
2 (α+β+1+iλ), q

1
2 (−α+β+1+iλ)

qiλ+1
; q, q1−β z−1

]
, λ /∈ iN + 2πZq log e,

U4(z) = z−
1
2 (α+β+1−iλ)

2φ1

[
q

1
2 (α+β+1−iλ), q

1
2 (−α+β+1−iλ)

q−iλ+1
; q, q1−β z−1

]
, λ /∈ −iN + 2πZq log e.

Identity (2.2) becomes

2φ1

[
q

1
2 (α+β+1+iλ), q

1
2 (α+β+1−iλ)

qα+1
; q, z

]

=
(q

1
2 (α−β+1−iλ), q

1
2 (α+β+1−iλ); q)∞

(qα+1, q−iλ; q)∞

(q
1
2 (α+β+1+iλ)z, q

1
2 (−α−β+1−iλ)z−1; q)∞

(z, qz−1; q)∞

×2φ1

[
q

1
2 (α+β+1+iλ), q

1
2 (−α+β+1+iλ)

qiλ+1
; q, q1−β z−1

]

+
(q

1
2 (α−β+1+iλ), q

1
2 (α+β+1+iλ); q)∞

(qα+1, qiλ; q)∞

(q
1
2 (α+β+1−iλ)z, q

1
2 (−α−β+1+iλ)z−1; q)∞

(z, qz−1; q)∞

×2φ1

[
q

1
2 (α+β+1−iλ), q

1
2 (−α+β+1−iλ)

q−iλ+1
; q, q1−β z−1

]
, (2.4)

provided that z 6= 0, | arg(−z)| < π, λ /∈ iZ + 2πZq log e.

Third form. Let γ ∈ R, put v(n) := U(−qn+γ) (n ∈ Z) and multiply both sides of (2.3) by

q−
1
2 (α+β+1)−γ−n. Then equation (2.3) takes the form

(q
1
2 (α−β+1)−γ−n + q

1
2 (α+β+1)) v(n+ 1)− (qα+1 + q) q−

1
2 (α+β+1)−γ−n v(n)

+(q−
1
2 (α+β+1)−γ−n+1 + q−

1
2 (α+β+1)) v(n− 1) = (q

1
2 iλ + q−

1
2 iλ) v(n). (2.5)

We write the four solutions of (2.5) corresponding to U1, U2, U3, U4 as φ
(α,β,γ)
λ (n), ψ

(α,β,γ)
λ (n),

Φ
(α,β,γ)
λ (n) and Φ

(α,β,γ)
−λ (n). Their definitions are

φ
(α,β,γ)
λ (n) := 2φ1

[
q

1
2 (α+β+1+iλ), q

1
2 (α+β+1−iλ)

qα+1
; q,−qn+γ

]
,

ψ
(α,β,γ)
λ (n) := q−αn 2φ1

[
q

1
2 (−α+β+1+iλ), q

1
2 (−α+β+1−iλ)

q−α+1
; q,−qn+γ

]
, α /∈ N,

Φ
(α,β,γ)
λ (n) := q−

1
2 (α+β+1+iλ)n

2φ1

[
q

1
2 (α+β+1+iλ), q

1
2 (−α+β+1+iλ)

qiλ+1
; q,−q−n−γ−β+1

]
,

λ /∈ −iN + 2πZq log e.
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Identity (2.4) takes the form

φ
(α,β,γ)
λ (n) = cα,β,γ(λ) Φ

(α,β,γ)
λ (n) + cα,β,γ(−λ) Φ

(α,β,γ)
−λ (n),

where

cα,β,γ(λ) :=
(q

1
2 (α−β+1−iλ), q

1
2 (α+β+1−iλ); q)∞

(qα+1, q−iλ; q)∞

(−q 1
2 (α+β+1+iλ)+γ ,−q1− 1

2 (α+β+1+iλ)−γ ; q)∞
(−qγ ,−q1−γ ; q)∞

and λ /∈ iZ + 2πZq log e.

Fourth form. Put u(n) := w(n)v(n) where w(n) > 0 and

w(n)2 :=qn(α+1) (−qγ+n,−q1−β−γ ,−qβ+γ ; q)∞
(−qβ+γ+n,−q1−γ ,−qγ ; q)∞

=qn(α+β+1) (−q−n+1−β−γ ; q)∞
(−q−n+1−γ ; q)∞

.

Then

w(n) ∼
{

const. q
1
2n(α+1) as n→∞,

q
1
2n(α+β+1) as n→ −∞.

Now equation (2.5) takes the form

(Lu)(n) := a(n)u(n+ 1) + b(n)u(n) + a(n− 1)u(n− 1) = (q
1
2 iλ + q−

1
2 iλ)u(n), (2.6)

where

a(n) := (1 + q−β−γ−n)
1
2 (1 + q−γ−n)

1
2 ,

b(n) := −q− 1
2 (α+β+1)−γ+1 (1 + qα) q−n.

Thus the operator L in (2.6) has the form of L in (1.2) and assumption 1) of the previous section
is satisfied.

The solutions of (2.6) determined by their asymptotic behaviour as n→∞ are

u1(n) := w(n)φ
(α,β,γ)
λ (n) ∼ const. q

1
2n(α+1) as n→∞,

u2(n) := w(n)ψ
(α,β,γ)
λ (n) ∼ const. q

1
2n(−α+1) as n→∞ (α /∈ N),

while the solutions determined by their asymptotic behaviour as n→ −∞ are

u3(n) := w(n) Φ
(α,β,γ)
λ (n) ∼ q− 1

2 inλ as n→ −∞ (λ /∈ −iN + 2πZq log e),

u4(n) := w(n) Φ
(α,β,γ)
−λ (n) ∼ q 1

2 inλ as n→ −∞ (λ /∈ iN + 2πZq log e).

We conclude (α > −1, β ∈ R, λ ∈ C):

wφ
(α,β,γ)
λ is L2 at ∞ ,

for α /∈ N: wψ
(α,β,γ)
λ is L2 at ∞ ⇐⇒ α < 1,

for λ /∈ −iN + 2πZq log e: wΦ
(α,β,γ)
λ is L2 at −∞ ⇐⇒ Imλ < 0.
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Thus, in the generic case, assumptions 2) and 3) of the previous section are also satisfied. For the
self-adjoint extensions of L we have possibility (i) of the previous section, except if −1 < α < 1 for
which possibility (ii) holds.

Let [u, v](n) be the Wronskian of two functions u and v on Z, as defined by (1.3). This is
independent of n if u and v are both solutions of (2.6). Hence

[wΦ
(α,β,γ)
λ , w φ

(α,β,γ)
λ ]

= cα,β,γ(−λ) [wΦ
(α,β,γ)
λ , wΦ

(α,β,γ)
−λ ]

= cα,β,γ(−λ) lim
n→−∞

[wΦ
(α,β,γ)
λ , wΦ

(α,β,γ)
−λ ](n)

= cα,β,γ(−λ) lim
n→−∞

a(n)
(
(wΦ

(α,β,γ)
λ )(n+ 1) (wΦ

(α,β,γ)
−λ )(n)− (wΦ

(α,β,γ)
λ )(n) (wΦ

(α,β,γ)
−λ )(n+ 1)

)
= cα,β,γ(−λ) lim

n→−∞
(q−

1
2 (n+1)iλ q

1
2niλ − q− 1

2niλ q
1
2 (n+1)iλ)

= cα,β,γ(−λ) (q−
1
2 iλ − q 1

2 iλ).

Thus we have proved:

[wΦ
(α,β,γ)
λ , w φ

(α,β,γ)
λ ] = cα,β,γ(−λ) (q−

1
2 iλ − q 1

2 iλ). (2.7)

3. The Plancherel formula for the q-Jacobi transform

Let µ run from −∞ to +∞ over the real axis. With the parametrization

µ = q
1
2 iλ + q−

1
2 iλ (3.1)

this trajectory can be put in one-to-one correspondence with a broken line in the complex λ-plane
falling apart into three parts as given below. Put

a :=
2π

log q−1
.

1) µ runs from −∞ to −2 ⇐⇒ λ runs from a+ i∞ to a over the line Reλ = a.
2) µ runs from −2 to 2 ⇐⇒ λ runs from a to 0 over the line Imλ = 0.
3) µ runs from 2 to +∞ ⇐⇒ λ runs from 0 to +i∞ over the line Reλ = 0.

Note that Imµ < 0 in the infinite rectangle {λ ∈ C | Imλ > 0, 0 < Reλ < a} (to the right of the
contour in the λ-plane) and that Imµ > 0 in the three infinite rectangles {λ ∈ C | Imλ > 0, a <
Reλ < 2a}, {λ ∈ C | Imλ < 0, 0 < Reλ < a} and {λ ∈ C | Imλ > 0, −a < Reλ < 0} (to the left
of the contour in the λ-plane).

We consider first part 2) of the contour. Write λ[µ] for λ corresponding to µ on this contour,
also holomorphically extended to a neighbourhood of (µ1, µ2), where −2 < µ1 < µ2 < 2.

Let f, g ∈ Cc(Z), µ1 ≤ µ ≤ µ2, ε > 0. We suppose α, β, γ fixed and suppress these indices.
Then

((µ± iε− L)−1f, g)

=
∑
n≤m

w(n) Φ±λ[µ±iε](n)w(m)φλ[µ±iε](m) f(n) g(m)

[wΦ±λ[µ±iε], wφλ[µ±iε]]
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+
∑
n>m

w(n)φλ[µ±iε](n)w(m) Φ±λ[µ±iε](m) f(n) g(m)

[wΦ±λ[µ±iε], wφλ[µ±iε]]

=
∑
n≤m

Φ±λ[µ±iε](n)φλ[µ±iε](m)

[wΦ±λ[µ±iε], wφλ[µ±iε]]
w(n)w(m)

f(n) g(m) + f(m) g(n)

2
.

=
∑
n≤m

Φ±λ[µ±iε](n)φλ[µ±iε](m)

c(∓λ[µ± iε]) (q∓
1
2 iλ[µ±iε] − q± 1

2 iλ[µ±iε])
w(n)w(m)

f(n) g(m) + f(m) g(n)

2
.

Hence

lim
ε↓0

(
((µ+ iε− L)−1f, g)− ((µ− iε− L)−1f, g)

)
=
∑
n≤m

(
c(λ[µ]) Φλ[µ](n) + c(−λ[µ]) Φ−λ[µ](n)

)
φλ[µ](m)

c(λ[µ]) c(−λ[µ]) (q−
1
2 iλ[µ] − q 1

2 iλ[µ])
w(n)w(m)

f(n) g(m) + f(m) g(n)

2

=
∑
n≤m

φλ[µ](n)φλ[µ](m)

c(λ[µ]) c(−λ[µ]) (q−
1
2 iλ[µ] − q 1

2 iλ[µ])
w(n)w(m)

f(n) g(m) + f(m) g(n)

2

=

(∑
n∈Z f(n)φλ[µ](n)w(n)

)(∑
m∈Z g(m)φλ[µ](m)w(m)

)
c(λ[µ]) c(−λ[µ]) (q−

1
2 iλ[µ] − q 1

2 iλ[µ])
.

Since (3.1) implies
dµ

dλ
= 1

2 i log(q−1) (q−
1
2 iλ − q 1

2 iλ),

it follows that

lim
ε↓0

1

2πi

∫ µ2

µ1

[((µ− iε− L)−1f, g)− ((µ+ iε− L)−1f, g)] dµ

=
log q−1

4π

∫ λ[µ1]

λ[µ2]

(∑
n∈Z

f(n)φλ(n)w(n)
)(∑

m∈Z
g(m)φλ(m)w(m)

) dλ

c(λ) c(−λ)
.

Hence, by Theorem 1.5, we have for −2 ≤ µ1 < µ2 ≤ 2 that

Ef,g((µ1, µ2)) =
log q−1

4π

∫ λ[µ1]

λ[µ2]

(∑
n∈Z

f(n)φλ(n)w(n)
)(∑

m∈Z
g(m)φλ(m)w(m)

) dλ

c(λ) c(−λ)
.

Let now µ < −2 or µ > 2. Then

((µ± iε− L)−1f, g)

=
∑
n≤m

w(n) Φ−λ[µ±iε](n)w(m)φλ[µ±iε](m) f(n) g(m)

[wΦ−λ[µ±iε], wφλ[µ±iε]]

+
∑
n>m

w(n)φλ[µ±iε](n)w(m) Φ−λ[µ±iε](m) f(n) g(m)

[wΦ−λ[µ±iε], wφλ[µ±iε]]

=
∑
n≤m

Φ−λ[µ±iε](n)φλ[µ±iε](m)

[wΦ−λ[µ±iε], wφλ[µ±iε]]
w(n)w(m)

f(n) g(m) + f(m) g(n)

2
.

=
∑
n≤m

Φ−λ[µ±iε](n)φλ[µ±iε](m)

c(λ[µ± iε]) (q
1
2 iλ[µ±iε] − q− 1

2 iλ[µ±iε])
w(n)w(m)

f(n) g(m) + f(m) g(n)

2
.
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Hence
lim
ε↓0

(
((µ+ iε− L)−1f, g)− ((µ− iε− L)−1f, g)

)
= 0 if c(λ[µ]) 6= 0.

We have

c(it) =
(q

1
2 (α−β+1+t), q

1
2 (α+β+1+t); q)∞

(qα+1,−qγ ,−q1−γ ; q)∞

(−q 1
2 (α+β+1+2γ−t),−q1− 1

2 (α+β+1+2γ−t); q)∞
(qt; q)∞

.

For t > 0 this is regular and has no zeros if

α− β + 1 > 0, α+ β + 1 > 0.

Let us assume these inequalities for α, β. Then we conclude that

Ef,g((2,∞)) = 0.

Put
σ := α+ β + 1 + 2γ.

We have

c(a+ it) =
(−q 1

2 (α−β+1+t),−q 1
2 (α+β+1+t); q)∞

(qα+1,−qγ ,−q1−γ ; q)∞

(q
1
2 (σ−t), q1−

1
2 (σ−t); q)∞

(qt; q)∞
.

For t > 0 this is regular and it vanishes iff t ∈ {σ + 2k > 0 | k ∈ Z}. All zeros are simple. We may
add an integer to γ without essential changes. So choose γ such that

0 < α+ β + 1 + 2γ ≤ 2.

Then c(a+ it) vanishes for t > 0 iff
t ∈ σ + 2Z+.

Take µ1 < µ2 ≤ −2 such that c(λ[µ]) 6= 0 for µ ∈ [µ1, µ2] except for precisely one µ0 ∈ (µ1, µ2).
Put

a+ i(σ + 2k0) = λ0 := λ[µ0].

Then

lim
ε↓0

1

2πi

∫ µ2

µ1

[((µ− iε− L)−1f, g)− ((µ+ iε− L)−1f, g)] dµ

=
1

2πi

∮
(µ0)

((µ− L)−1f, g) dµ

=
∑
n,m∈Z

f(n)w(n) g(m)w(m)
1

2πi

∮
(µ0)

Φ−λ[µ](n)φλ[µ](m)

c(λ[µ]) (q
1
2 iλ[µ] − q− 1

2 iλ[µ])
dµ

=
∑
n,m∈Z

f(n)w(n) g(m)w(m)
− log q−1

4π

∮
(λ0)

Φ−λ(n)φλ(m)

c(λ)
dλ

=
∑
n,m∈Z

f(n)w(n) g(m)w(m)
− log q−1

4π

φλ0
(n)φλ0

(m)

c(−λ0)
2πiResλ=λ0

1

c(λ)
.
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Now

Resλ=λ0

1

c(λ)

= iRest=σ+2k0

1

c(a+ it)

=
i (qα+1,−qγ ,−q1−γ , qσ+2k0 ; q)∞

(−qα+γ+k0+1,−qα+β+γ+1+k0 , q1+k0 ; q)∞ (q−k0 ; q)k0 (q; q)∞
Ress=0

1

1− q− 1
2 s

=
−2i

log q−1
(−1)k0 q

1
2k0(k0+1) (qα+1,−qγ ,−q1−γ , qσ+2k0 ; q)∞

(−qα+γ+k0+1,−qα+β+γ+1+k0 , q, q; q)∞

and
1

c(−λ0)
=

(qα+1,−qγ ,−q1−γ , q−(σ+2k0); q)∞
(−q−β−γ−k0 ,−q−γ−k0 , qσ+k0 , q1−σ−k0 ; q)∞

.

Hence

Ef,g((µ1, µ2))

=
(∑
n∈Z

f(n)φλ0(n)w(n)
)(∑

m∈Z
g(m)φλ0(m)w(m)

) 1

c(−λ0)

× (−1)k0+1 q
1
2k0(k0+1) (qα+1,−qγ ,−q1−γ , qσ+2k0 ; q)∞

(−qα+γ+k0+1,−qα+β+γ+1+k0 , q, q; q)∞

=

(
(qα+1,−qγ ,−q1−γ ; q)∞

(q; q)∞

)2 (∑
n∈Z

f(n)φλ0
(n)w(n)

)(∑
m∈Z

f(m)φλ0
(m)w(m)

)
× q−(k0+1)(k0+σ) (1− qσ+2k0)

(−qα+γ+k0+1,−qα+β+γ+1+k0 ,−q−β−γ−k0 ,−q−γ−k0 ; q)∞
.
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