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Two cameras at positions O and O′. The base-line vector
h = O′ −O. Relative orientation is specified by rotation matrix R.
{h, R} are the motion parameters. Scale is based on focal length.
The positive Z -axis runs into the scene. Note the choice of Y -axis.
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Epipolar equation: |x,h,Rx′| = 0.
The volume spanned by x, h and Rx’ is 0.
The three vectors lie in an epipolar plane.
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The intersection of an epipolar plane with an imaging plane is
called an epipolar or epipolar line.
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The epipole xe = h
(k,h) . (where k = (0, 0, 1)T ).

It is the perspective projection of one camera’s viewpoint onto the
image plane of another.
Epipolar lines are concurrent: they all run through the epipole
(since the epipole is the projection of their collective ‘origin’).
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If we define the essential matrix

G = h× R, (6.7)

the epipolar equation can be written as

(x,Gx′). (6.8)

Side note: the fundamental matrix is similar to the essential matrix
but pre- and post-multiplied with the respective internal calibration
(projection) matrix of each camera.
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In a parallel stereo system the optical axes (Z -axes) are parallel
and the base line runs along the Y -axes of both cameras.

Any stereo system can be regarded as parallel by a change of
camera coordinate systems.
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Using parallel stereo systems simplifies the geometry:
Base line: h = (0, h, 0).
Relative orientation: R = I.

Essential matrix: G =

 0 0 h
0 0 0
−h 0 0

 .

Epipolar equation: x− x′ = 0.
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Detecting image points for 3-D Reconstruction:
I Edge based

+ Many image points can be used.
- Hard to match exactly if edge is parallel to epipolar line.
- Precise camera calibration must be known.

I Feature based

+ Can be used with approximate camera calibration.
+ Can be used to perform/optimize camera calibration.
- Not as many image points can be used as with edge based.

Question: how to compute variance from matching image features?
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Detecting image points for 3-D Reconstruction:
I Edge based

+ Many image points can be used.
- Hard to match exactly if edge is parallel to epipolar line.
- Precise camera calibration must be known.

I Feature based

+ Can be used with approximate camera calibration.
+ Can be used to perform/optimize camera calibration.
- Not as many image points can be used as with edge based.

Question: how to compute variance from matching image features?
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How to find ∆x and ∆x′ such that (x−∆x,G(x′ −∆x′)) = 0.
Minimize: J = (∆x,V[x]−∆x) + (∆x′,V[x′]−∆x′)
under the linearized constraint (∆x,Gx′) + (x,G∆x′) = (x,Gx′),
where ∆x and ∆x′ must be in the image plane.

First order solution (so iterate):

∆x =
(x,Gx′)V[x]Gx′

(x′,GT V[x]Gx′) + (x,GV[x′]GT x)
(6.20)

∆x′ =
(x,Gx′)V[x′]GT x

(x′,GT V[x]Gx′) + (x,GV[x′]GT x)
(6.20)

Kanatani Reading Club Chapter 6: 3-D Computation by Stereo Vision



Stereo Vision Geometry
Optimal Correction of Correspondence

3-D Reconstruction of Points and Lines
Optimal Back Projection onto a Space Plane

Scenes Infinitely Far Away
Camera Calibration Errors

Correspondence Detection and Optimal Correction
Optimal Correction of Corresponding Image Points
Variance Propagation
Correspondence Test

If x̂ = x−∆x and x̂′ = x′ −∆x′ are the corrected image points,
then variance ‘propagates’ as follows:

V[x̂] = V[x]− (V[x]Gx̂′)(V[x]Gx̂′)T

(x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂)
,

V[x̂′] = V[x′]− (V[x′]GT x̂)(V[x′]GT x̂′)T

(x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂)
,

V[x̂, x̂′] = − (V[x]Gx̂′)(V[x′]GT x̂)T

(x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂)
= V[x̂′, x̂]T .

(6.21)
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Residual of J is:

Ĵ =
(x,Gx′)2

(x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂)
. (6.22)

Chi square test:
(rejects correspondance hypothesis with signifinance level of a%)

Ĵ > χ2
1,a.

Question: how to combine this Chi square test with a measure
based on the actual images (like NCC)?
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Given the camera geometry {R,h} and the optimally corrected
image points x̂ and x̂′, depths Z and Z ′ can be computed such that

Z x̂ = h + Z ′Rx̂′. (6.35)

Algebraic manipulation results in

Z =
(h× Rx̂′, x̂× Rx̂′)

‖x̂× Rx̂′‖2
, (6.38)

Z ′ =
(h× x̂, x̂× Rx̂′)

‖x̂× Rx̂′‖2
. (6.38)

For parallel stereo systems this simplifies to

Z = Z ′ =
h

ŷ − ŷ ′
. (6.40)
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Define m̂ = N[h× x̂]× Rx̂′ (N[.] means normalize)

Then the variance of Z and reconstructed space points V[Z x̂] is:

V[Z ] =
Z 2(m̂,V[x̂]m̂)− 2ZZ ′(m̂,V[x̂, x̂′]RT m̂) + Z ′2(m̂,RV[x̂′]RT m̂)

‖x̂× Rx̂′‖2

(6.48)

V[x̂,Z ] = −(ZV[x̂]− Z ′V[x̂, x̂′]RT )m̂

(m̂, x̂)
(6.49)

V[R] = V[Z x̂] = V[Z ′x̂′] = Z 2V[x̂] + 2ZS [V[x̂,Z ]x̂T ] + V[Z ]x̂x̂T

(6.50)
(S [.] is the symmetrization operator (Equation 2.205)).
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For parallel systems the depth/reconstruction variances simplify to:

V[Z ] =
2ε2Z 4

h2
(6.51)

V[x̂,Z ] = −ε
2Z 2

h2
(0, 1, 0)T (6.51)

V[R] = V[Z x̂] = V[Z ′x̂′] =
ε2Z 2

2

(
Pk +

(x̂ + x̂′)(x̂ + x̂′)T

y − y ′

)
(6.53)
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Not very realistic since measurement noise depends on the features
(local image properties) itself?
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2-D image lines: (n, x) = 0 (n′, x′) = 0 (6.56)

3-D space planes: (n, r) = 0 (Rn′, r−h) = 0 (6.57/58)

The intesection of both space planes is r× p = n, computed using:

p =
n× Rn′

(h,Rn′)
(6.59)

Normalize the the space line such that ‖p‖2 + ‖n‖2 = 1.
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V[p] =
1

(h,Rn′)2
((Rn′)× V[n]× (Rn′) + (h,RV[n′]RT h)ppT

−2S [n× RV[n′]RT hpT ] + n× RV[n′]RT × n),

V[p,n] = −(Rn′)× V[n]

(hmRn′)
(6.61)

Normalization:(
V[p̃] V[p̃, ñ]

V[ñ, p̃] V[ñ]

)
=

1

‖p‖2 + ‖n‖2
Pp̃⊕ñ

(
V[p] V[p,n]

V[n,p] V[n]

)
Pp̃⊕ñ

(6.62)
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Projecting an image point onto space plane {nΠ, d}:

r =
dx

(nΠ, x)
(6.64)

Using algebraic manipulation to find an expression for x′ in terms
of x and the plane:

x′ = − Z

Z ′
RT (hnT

Π − dI)x. (6.65)
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Thus for each specific plane {nΠ, d}, we can find a matrix A which
represents a projective transformation:

x = kAx, (6.66)

where
A = RT (hnT

Π − dI). (6.67)
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Using A we can correct the back-projected point as follows:

(x′ −∆x′)× A(x−∆x), (6.71)

Minimize

J = (∆x,V[x]−∆x) + (∆x′,V[x′]−∆x′) (6.72)

under the linearized constraint

x′ × A∆x− (Ax)×∆x′ = x′ × Ax, (6.73)

where ∆x and ∆x′ must be in the image plane.
First order solution:

∆x = (V[x]AT × x′)W(x′ × Ax), (6.74)

∆x′ = −(V[x′]AT × x)W(x′ × Ax),

where

W = (x′ × AV[x]AT × x′ + (Ax)× V[x′]× (Ax))−2 . (6.75)
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Variance propagation:

V[x̂] = V[x]− (V[x]AT × x̂′)Ŵ(V[x]AT × x̂′)T

V[x̂′] = V[x′]− (V[x′]× (Ax̂))Ŵ(V[x′]× (Ax̂))T

V[x̂, x̂′] = (V[x]AT × x̂′)Ŵ(V[x′]× (Ax̂))T = V[x̂′, x̂]T(6.76)

Residual:
Ĵ = (x′ × Ax, Ŵx′ × Ax)) (6.77)

Chi squared test: (rejects point-is-on-plane hypothesis with
signifinance level of a%)

Ĵ > χ2
2,a.

Noise level estimation:

ε̂2 =
1

2
(x′ × Ax, Ŵ0(x′ × Ax)), (6.80)

Ŵ0 = (x̂′ × AV0[x]AT × x̂′ + (Ax̂)× V0[x′]× (Ax̂))−2 (6.80)
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More of the same, so skip?
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Condition for being parallel:
x = kRx′ (6.100)

(x + ∆x)× R(x′ + ∆x′) = 0 (6.101)

So minimize

J = (∆x,V[x]−∆x) + (∆x′,V[x′]−∆x′), (6.102)

under the linearized constraint

x× R∆x′ − (Rx′)×∆x = x× Rx′, (6.102)

where ∆x and ∆x′ must be in the image plane.
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First order solution:

∆x = −(V[x]× (Rx′))W(x× (Rx′)),

∆x′ = (V[x]RT × x)W(x× (Rx′)), (6.104)

where

W = ((Rx′)× V[x]× (Rx′) + x× RV[x′]RT × x)−2 . (6.105)
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Variance propagation:

V[x̂] = V[x]− (V[x]× (Rx̂′))Ŵ(V[x]× (Rx̂′))T

V[x̂′] = V[x′]− (V[x′]RT × x̂)Ŵ(V[x′]RT × x̂)T (6.106)

V[x̂, x̂′] = (V[x′]× (Rx̂′))Ŵ(V[x′]RT × x̂)T = V[x̂′, x̂]T

Chi square test: (rejects point-is-infinitely-far-away hypothesis with
signifinance level of a%)

Ĵ = (x× Rx′, Ŵ(x× Rx′)) > χ2
2,a. (6.108)
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Camera Calibration Errors
Errors in the Base-Line
Errors in Camera Orientation
Errors in Focal Length

Camera calibration errors and image noise are considered to be
independent.

The following errors are considered:

I Base line h

I Rotation R

I Focal length f

General method used:
-Find out how image points are affected by the error.
-Adjust existing equations to incorporate this change.

Error which are not considered: optical center, distortion
coefficients.
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∆ê = (x̂,G′x̂′) = (x̂,∆h× Rx̂′) = −(x̂× Rx̂′,∆h) = −(â,∆h)
(6.127)

where â = x̂× Rx̂′. (missing primes in 6.127?)

∆x̂ = − ∆êV[x]Gx′

(x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂)

∆x̂′ = − ∆êV[x′]GT x̂

(x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂)
(6.129)
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Variance propagation:

V[x̂] =
V[ê](V[x]Gx̂′)(V[x]Gx̂′)T

((x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂))2
,

V[x̂′] =
V[ê](V[x′]GT x̂)(V[x′]GT x̂′)T

((x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂))2
,

V[x̂, x̂′] =
V[ê](V[x]Gx̂′)(V[x′]GT x̂)T

((x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂))2
= V[x̂′, x̂]T .

(6.130)

where V[ê] = E [∆ê2] = (â,V[h]â).
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Variance in depth:
V[h, ê] = −V[h]â. (6.133)

V[h, x̂] = − V[h, ê](V[x]Gx̂′)T

(x̂′,GT V[x]Gx̂′) + (x̂,GV[x′]GT x̂)2
(6.132)

V[Z ] =
1

‖x̂× Rx̂′‖2
( Z 2(m̂,V[x̂]m̂)− 2ZZ ′(m̂,V[x̂, x̂′]RT m̂)

+ Z ′
2
(m̂,RV[x̂′]RT m̂)− 2Z (m̂,V[x̂,h]m̂)

+ 2Z ′(m̂,RV[x̂,h]m̂) + (m̂,V[hm̂)),

(6.136)

where m̂ = N[h× x̂]× Rx̂′.

Kanatani Reading Club Chapter 6: 3-D Computation by Stereo Vision



Stereo Vision Geometry
Optimal Correction of Correspondence

3-D Reconstruction of Points and Lines
Optimal Back Projection onto a Space Plane

Scenes Infinitely Far Away
Camera Calibration Errors

Camera Calibration Errors
Errors in the Base-Line
Errors in Camera Orientation
Errors in Focal Length

Kanatani Reading Club Chapter 6: 3-D Computation by Stereo Vision



Stereo Vision Geometry
Optimal Correction of Correspondence

3-D Reconstruction of Points and Lines
Optimal Back Projection onto a Space Plane

Scenes Infinitely Far Away
Camera Calibration Errors

Camera Calibration Errors
Errors in the Base-Line
Errors in Camera Orientation
Errors in Focal Length

Kanatani Reading Club Chapter 6: 3-D Computation by Stereo Vision



Stereo Vision Geometry
Optimal Correction of Correspondence

3-D Reconstruction of Points and Lines
Optimal Back Projection onto a Space Plane

Scenes Infinitely Far Away
Camera Calibration Errors

Camera Calibration Errors
Errors in the Base-Line
Errors in Camera Orientation
Errors in Focal Length

Kanatani Reading Club Chapter 6: 3-D Computation by Stereo Vision



Stereo Vision Geometry
Optimal Correction of Correspondence

3-D Reconstruction of Points and Lines
Optimal Back Projection onto a Space Plane

Scenes Infinitely Far Away
Camera Calibration Errors

Camera Calibration Errors
Errors in the Base-Line
Errors in Camera Orientation
Errors in Focal Length

Kanatani Reading Club Chapter 6: 3-D Computation by Stereo Vision


	Stereo Vision Geometry
	Camera Imaging Geometry
	Epipolar Equation, Plane
	Epipolar Line
	Epipole
	Essential matrix
	Parallel Stereo System

	Optimal Correction of Correspondence
	Correspondence Detection and Optimal Correction
	Optimal Correction of Corresponding Image Points
	Variance Propagation
	Correspondence Test

	3-D Reconstruction of Points and Lines
	Depth Reconstruction of 3-D Points
	Error Behaviour of Reconstructed Space Points
	Mahalanobis Distance in the Scene
	3-D Reconstruction of Lines

	Optimal Back Projection onto a Space Plane
	Image Transformation Between Two Images
	Optimal Correction of Back-Projected Point
	Example 6.9
	Optimal Correction of Back-Projected Line

	Scenes Infinitely Far Away
	Space Points Infinitely Far Away

	Camera Calibration Errors
	Camera Calibration Errors
	Errors in the Base-Line
	Errors in Camera Orientation
	Errors in Focal Length


