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15
Model Comparison

Logical formulas express properties of semantic structures. Different languages have
different expressive strength over models, showing in powers of distinction. A poor
language with only “Yes” and “No” distinguishes few situations, while a rich lan-
guage can distinguish a whole spectrum. Model comparison can be cast as a game
between a “duplicator” D who claims that two given models M and IN are similar,
and a “spoiler” S who claims they are different. In this chapter, we define compar-
ison games for first-order logic, prove their adequacy for model equivalence, give
correspondences between players’ winning strategies and logical difference formulas
or potential isomorphisms, discuss general game-theoretic aspects of the games,
and show how to create variations and extensions. These games go back to Fraissé
(1954) and Ehrenfeucht (1961). Thomas (1997) uses them in computer science, and
for a mathematics-oriented slant, see Doets (1996) or Véddnénen (2011).

15.1 Isomorphism and first-order equivalence

Ezxpressive power and invariances The expressive power of a language shows
in its power of distinguishing situations, as we saw in Chapter 1. The notions of
transformations and invariants from 19th century geometry make precise sense of
this. In logic, this requires two things: a relation of structural invariance between
models, and a language expressing the properties of those models. The analysis
aims to show that the invariance matches those differences between models that the
language cannot detect. About the most important structural invariance relation
is the following widespread notion in mathematics.
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DEFINITION 15.1  Isomorphism

Two models M and N are isomorphic (written M = IN) if there exists a bijection
f between the objects in their domains that preserves all the relevant structure:
atomic properties, relations, distinguished objects, and operations. Thus, we have

RMde iff RN f(d)f(e) for all binary predicates R, and objects d, e in M
FGM(d)) = GN(f(d)) for all unary functions G, and objects d in M

These two clauses show the general pattern of structure preservation. ]

Coarser invariants may be just the right comparison level for some other purpose:
witness the notions of bisimulation between process models in Chapters 1 and 11.179

First-order expressiveness For convenience, in this chapter, we only use a first-
order logic whose vocabulary has finitely many predicate letters and individual
constants. The linguistic notion of model comparison is elementary equivalence
M = N: that is, M and IN satisfy the same sentences. How close is this to a
structural similarity? Let us look at the basic Isomorphism Lemma to find out.

Fact 15.1 For all models M and N, if M =2 N, then M = N.

Proof An easy induction on first-order formulas ¢ shows that, for all tuples of
objects a in M, and any isomorphism f sending the latter to the model N, we
have that M |= ¢a] iff N = ¢[f(a)]. ]

This implication holds for any well-behaved logical language. The converse is by
no means true for first-order logic. What does hold is full harmony in the special
case of finite models.

Fact 15.2 For all finite models, the following two assertions are equivalent:

(a) M is isomorphic with N.
(b) M and N satisfy the same first-order sentences.

Proof From (b) to (a). Write a first-order sentence §™ describing M. Let there be
k objects. Then quantify existentially over xi,...,x), enumerate all true atomic
statements about these in M, plus the true negations of atoms, and state that no
other objects exist. Since IV satisfies ™, it can be enumerated just like M. The
isomorphism is immediate. ]

179 For much more on invariance and logical definability, see van Benthem (1996, 2002b).
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This proof does not extend to infinite models, as first-order logic cannot define
finiteness. Nor, for instance, can it tell the rationals Q apart from the reals R in
their order <.

ExampLE 15.1  Natural versus supernatural numbers
Elementary equivalence cannot even distinguish the natural numbers N from the
model N + Z that continues with the integers as supernatural numbers:

N versus N+7Z
0,1,2,... 0,1,2, ... ...oo+1,00,00—1,...
We will see the reason for this indistinguishability in Section 15.5. ]

With a richer vocabulary, however, a language may see differences that used
to be invisible. But there is no need to always extend our systems. In fact, weak
expressive power can also be a good thing, as it yields transfer of properties across
different situations, say, between standard models and nonstandard models.

15.2 Ehrenfeucht-Fraissé games

The fine structure of the above invariance analysis is brought out by playing a
certain type of logic games. These will work for any models, finite or not.

Playing the game Consider two models M and IN. A player called “duplicator”
claims that M and IN are similar, while a player called “spoiler” maintains that
they are different. Players agree on some finite number £ of rounds for the game,
the severity of the probe.

DEFINITION 15.2  Comparison games

A model comparison game works as follows, packing two moves into one round.
Spoiler (also written S for brevity) chooses one of the models, and picks an object d
in its domain. Duplicator (also written D for brevity) then chooses an object e in the
other model, and the pair (d, €) is added to the current list of matched objects. After
k rounds, the object matching is inspected. If it is a partial isomorphism, duplicator
wins; otherwise, spoiler does. Here, a “partial isomorphism” is an injective partial
map f between models M and N that is an isomorphism between its own domain
and range. [ ]

This alternating schedule (DS)* occurs in many games. We now present some
sample plays of our comparison games. As in Chapter 14, players may lose, even
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when they have a winning strategy. We use a language with a binary relation symbol
R only, mostly disregarding identity atoms =.

ExAMPLE 15.2  Comparing integers and rationals
The linear orders of integers Z and rationals Q have different first-order properties:
the latter is dense, the former discrete. Here is how this will surface in the game:

-1 0 +1

o o o 7
0O e O ceeennn O cereenns oe e Q

-1 0 +1

By choosing objects well, duplicator has a winning strategy for the game over two
rounds. But spoiler can always win the game in three rounds. Here is a typical play:

Round 1 S chooses 0 in Z D chooses 0 in Q
Round 2 S chooses 1 in Z D chooses 1/3 in Q
Round 3 S chooses 1/5 in Q any response for D is losing
These moves will convey the typical strategic flavor of the game. ]

Difference formulas and spoiler’s strategies In playing the games, winning
strategies for spoiler are correlated with first-order formulas ¢ that bring out a
difference between the models. The correlation is tight. The quantifier syntax of ¢
triggers the moves for spoiler.

EXAMPLE 15.2, CONTINUED Exploiting definable differences

Spoiler can use the first-order definition of density for a binary order, written as
VaVy(z < y — Jz(x < 2 Az < y)), to distinguish Q from Z. We spell this out, to
show how there is an almost algorithmic derivation of a strategy from a first-order
difference formula. For convenience, we use existential quantifiers only. The idea is
for spoiler to maintain a difference between the two models, of stepwise decreasing
syntactic depth. Spoiler starts by observing that

Jrdy(z < y A —3z(z < 2z A z < y)) is true in Z, but false in Q #

Spoiler then chooses an integer d for 3z, making Jy(d <y A —=Fz(d < z A z < y))
true in Z. Now duplicator can take any rational number d’ in Q: the first-order
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formula Jy(d’ <y A —3z(d' < z A z < y)) will be false for it, by #:
ZEWd<yA-Fz(d<zAz<y)), not Q= Ty(d <yA-Fz(d <zAz<y))

In the second round, spoiler continues with a witness e for the new outermost
quantifier Vy in the true existential formula in Z: making d < eA—=3z(d < zAz < e)
true there. Again, whatever object ¢’ duplicator now picks as a response in Q, the
formula d’ < ¢/ A=3z(d’ < zAz < €’) will be false there. In the third round, spoiler
analyzes the mismatch in truth value. If duplicator kept d’ <’ e true in Q, then,
since =3z(d < z Az < e) holds in Z, 3z(d’ < z A z < €’) holds in Q. Spoiler then
switches to Q, chooses a witness for the existential formula, and wins. [ ]

Thus, even the right model switches for the strategy of spoiler are encoded in
the difference formulas. Such switches are mandatory whenever there is a syntactic
change from one type of outermost quantifier (existential, universal) to another.18°

15.3 Adequacy and strategies

As with evaluation games, the interesting information is in players’ strategies.
In the results to follow, we think of winning strategies for duplicator, although
spoiler’s strategic point of view will return later. For the sake of brevity, let us
write WIN(D, M, N, k) for: “duplicator has a winning strategy against spoiler in
the k-round comparison game between the models M and N.”

Comparison games can start from any initial match of objects in M and IN.
In particular, if models have distinguished objects named by individual constants,
these are matched automatically. In the proofs to come, we think of all initial
matches in the latter way. We now look at an analogue of the success lemma from
Chapter 14.

THEOREM 15.1 For all models M and IN, and k € N, the following two assertions
are equivalent:

(a) WIN(D, M, N, k): duplicator has a winning strategy in the k-round game.
(b) M and N agree on all first-order sentences up to quantifier depth k.

180 Our examples may also suggest a correlation: “winning strategy for spoiler over n
rounds ~ difference formula with n quantifiers altogether.” But as we shall soon see, the
right measure is different, being the maximum length of a quantifier nesting in a formula.
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This improves on the Isomorphism Lemma in two ways. Our adequacy result
matches up a language-dependent and a language-independent comparison relation.
And it provides fine structure not available before, which helps in applications.

Proof From (a) to (b) is an induction on k. We start with the base step. With 0
rounds, the initial match of objects must have been a partial isomorphism for D
to win. So M and IN agree on all atomic sentences, and hence on their Boolean
combinations, the formulas of quantifier depth 0. We proceed with the inductive
step. The inductive hypothesis says that, for any two models, if D can win their
comparison game over k rounds, the models agree on all first-order sentences up to
quantifier depth k. Now let D have a winning strategy for the k + 1 round game
on M and N. Consider any first-order sentence ¢ of quantifier depth k£ + 1. Such
a ¢ is equivalent to a Boolean combination of (i) atoms, (ii) sentences of the form
Jxep, with ¢ of quantifier depth at most k. Thus, it suffices to show that M and
N agree on the latter forms.

The essential case is this. Let M = 3. Then for some object d, we get M, d =
¥. Think of (M, d) as an expanded model with a distinguished object d to which
we assign a new name d. In this way (M, d) verifies the sentence ¢(d). Now, D’s
winning strategy has a response for whatever S can do in the k + 1-round game.
For instance, let S start with M and object d. Then D has a response e in IN to
this move such that D’s remaining strategy still gives a win in the k-round game
played from the given link d — e. This yields an expanded model (IN,e), with e
as its interpretation of the name d. The remainder is an ordinary k-round game
starting from the models (M, d) and (IN,e). By the inductive hypothesis, these
models agree on all sentences up to quantifier depth k: and hence also on ¢(d).
Therefore, N, e = ¢(d), and so N | Jzip.

The converse direction from (b) to (a) requires another induction on k. This
time we need a small auxiliary result about first-order logic in a finite relational
vocabulary, the so-called Finiteness Lemma.

LEMMA  Fix variables x1, ..., x,,. Up to logical equivalence, there are only finitely
many first-order formulas ¢(x1, ..., x,,) of quantifier depth < k.18

181 The proof is by induction on k, analyzing formulas of quantifier depth k + 1 in the
same way as above, and then using the fact that Boolean combinations of any finite set
of formulas are finite modulo logical equivalence.
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Now we do the inductive proof from (b) to (a). The base step is trivial: doing
nothing is a winning strategy for D. As for the inductive step, we give the first
move in D’s strategy. Let S choose one of the models, say M, plus some object
d in it. Now, D looks at the set of first-order formulas true of d in M, which
may refer to distinguished objects available through their names in the language.
By the Finiteness Lemma, this set is finite modulo logical equivalence, and so one
existential formula 3z1)? true in M summarizes all this information. Now, because
the models M and N agree on all first-order sentences of depth k + 1, and Jzp¢
is such a sentence, it also holds in IN. Therefore, D can choose a witness e for
it in N. Then the expanded models (M,d), (IN,e) agree on all sentences up to
quantifier depth k, and so, by the inductive hypothesis, D has a winning strategy
in the remaining k-round game between them. D’s initial response plus the latter
further strategy gives D an overall winning strategy over k + 1 rounds. [ ]

15.4 An explicit version: The logic content of strategies

Theorem 15.1 still leaves out the precise match we found earlier between spoiler’s
winning strategies and first-order formulas. Thus, it displays a phenomenon that
we discussed in Chapter 4, under the heading of 3-sickness. In logic (but also
elsewhere), one often rushes to formulating notions and results with an existential
quantifier when more constructive information would be available if we made the
witnesses for that existential quantifier explicit. The symptoms of this disease are
overuse of indefinite articles such as “a” or modal affixes such as “-ility.” Why have
a theory of lovability when we can have one of love?

Fortunately, 3-sickness can often be cured with a little further effort:'¥2 The
following result is the earlier adequacy theorem made explicit.

THEOREM 15.2 There exists an explicit correspondence between

(a) Winning strategies for S in the k-round comparison game for M and N.

(b) First-order sentences ¢ of quantifier depth k with M = ¢, not N = ¢.

182 Another strain of the disease occurs in standard completeness theorems, that link
provability to validity, instead of seeking a more direct match between proofs and semantic
verifications. Remedies include the full completeness theorems discussed in Chapter 20.
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Proof We first look at the direction from (b) to (a). Every ¢ of quantifier depth &
induces a winning strategy for S in a k-round game between any two models. Each
round k —m starts with a match between objects linked so far that differ on some
subformula 1 of ¢ with quantifier depth k& — m. By Boolean analysis, .S then finds
some existential subformula 3z« of ¢ with a matrix formula « of quantifier depth
k —m — 1 on which the models disagree. S’s next choice is a witness in that model
of the two where Jdz«a holds.

Our next direction is from (a) to (b). Any winning strategy o for S induces
a distinguishing formula of proper quantifier depth. To obtain this, let S make
the first choice d in model M according to o, and now write down an existential
quantifier for that object. Our formula will be true in M and false in N. We know
that each choice of D for an object e in IN gives a winning position for S in all
remaining (k—1)-round games starting from an initial match d—e. By the inductive
hypothesis, these induce distinguishing formulas of depth k& — 1. By the Finiteness
Lemma, only finitely many such formulas exist. Some of these will be true in M
(say Ai,...,A,), and others in N (say Bi,...,Bs). The total difference formula
for strategy o is then the M-true assertion

Fre(A1 A ANA. AN-By A+ A—By)

whose appropriateness is easy to check. ]

Thus, spoiler’s winning strategies in a comparison game correspond to formulas,
that is, logical objects of independent interest.'® A similar match exists for the
other player. One might call duplicator’s strategies analogies of some finite quality
measured by the number k. Technically they are cut-off versions of the “potential
isomorphisms” that will be defined in Section 15.6.

REMARK  Explicitness versus computability

We gave an explicit definable match of strategies with other objects, but it need
not be computable. Also, strategies in evaluation or comparison games need not
be effective. They range from history-free (with all next moves read off from the
current state) to dependent on a complete record of the game so far. The strategic
invariants in the next section illustrate the kind of memory to be maintained.!%*

183 We have a caveat. The formulation of Theorem 15.2 is still 3-sick. Can you cure it?

184 On the more computational side, Chapter 18 will present an important theorem on
the adequacy of history-free strategies in parity games.
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15.5 The games in practice: Invariants and special model classes

In practice, comparison games involve not just logic, but also combinatorial analysis
of the models involved. Facts 15.1 through 15.3 provide some examples.

FacT 15.3 The rationals (Q, <) are elementarily equivalent to the reals (R, <).

It suffices to show that duplicator can win the comparison game for every k. A good
method is to identify an invariant for duplicator to maintain at intermediate game
states. In this particular case, the invariant is simply that all matches so far form
a finite partial isomorphism. All further choices of spoiler can then be countered
using the unboundedness and density of the orders. More complicated invariants
may depend on the number of rounds still to go.

Fact 15.4 (N, <) is elementarily equivalent with (N + Z, <).

This time, if the length of the game is known in advance, duplicator can counter
choices of spoiler from the supernatural numbers in Z by matching them with large
natural numbers in N.18°

Invariants are concrete descriptions of positions where players have a winning
strategy. Some descriptions of solutions in the game logics of Part I had this
character, witness our brief discussion in Chapter 4.

Finally, comparison games also work on model classes where standard methods
of first-order logic fail. Fact 15.3 gives an example of such a negative use of games.

FacT 15.5 Even or odd are not first-order definable on the finite models.

The usual proof for this nondefinability on all models is a compactness argument
that fails on finite models. But now, using games, suppose that even size had a
first-order definition on finite models, of quantifier depth k. Then any two finite
models for which duplicator can win the k-round comparison game are both of even
size, or both of odd size. But this is refuted by any two finite models with k versus
k + 1 objects in their domains.

185 The invariant maintains suitable distances between objects. Duplicator makes sure
that with k£ rounds to go, the two sequences di,...,dy in N and e1,...,em in N4+ Z
chosen so far have the following properties: (a) d; < d; iff e; < ej, (b) if d;,d; have
distance < 2% — 1, then distance(ei, e;) = distance(d;, d;); else, di, d; and e;, e; both have
distance > 2 — 1 (finite or infinite).
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15.6 Game theory: Determinacy, finite and infinite games

Comparison games are two-player zero-sum games of some finite depth k. Therefore,
Zermelo’s Theorem applies, and either duplicator or spoiler has a winning strategy.

Fact 15.6 Model comparison games are determined.

But these games also have a natural version that goes on forever, say over w
rounds. A natural winning convention in that case is the safety property that dupli-
cator wins the infinite game by not losing at any finite stage, maintaining a partial
isomorphism all the time. This is stronger than being able to win all finite-round
games. With this understanding, N and N+ 7Z can be distinguished by spoiler in an
infinite game: it suffices to start with a supernatural number and keep descending.
But when comparing Q with R, duplicator can hold out indefinitely.

These games still fall under earlier results from Chapter 5. In particular, the
winning set for spoiler is open (failure of partial isomorphism always occurs by
some finite stage), and hence the Gale-Stewart Theorem applies.

Fact 15.7 The infinite comparison game is determined.

For infinite games, duplicator’s winning strategies do correspond to a notion of
independent interest.

DEFINITION 15.3  Potential isomorphism

A potential isomorphism between two models M and N is a non-empty family I of
finite partial isomorphisms between M and IN satisfying the following back-and-
forth property:

(a) If f € I and a € M, then there exists a b € N with f U {(a,b)} € I.
(b) If f € I and b € N, then there exists an a« € M with f U {(a,b)} € I.
This is like a bisimulation, but now for much richer non-modal languages. |

Fact 15.8 The potential isomorphisms between two models correspond to
duplicator’s winning strategies in the infinite comparison game.

By contrast, in infinite games, spoiler’s winning strategies are methods blocking
each attempt at establishing potential isomorphism by some finite stage, guided by
a difference formula.
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Potential isomorphism implies elementary equivalence. If duplicator can win the
infinite game, then duplicator can win every finite cut-off, and the success lemma
applies. But the models N and N + Z refuted the converse. It is easy to see directly
that the partial isomorphisms in a potential isomorphism I satisfy the same first-
order formulas, even with infinite conjunctions and disjunctions added. In fact,
Karp’s Theorem says that two models are potentially isomorphic iff they satisfy

the same sentences in infinitary first-order logic.86

15.7 Modifications and extensions

Model comparison games capture a wide variety of logics. In this section we explore
some illustrations.

Modal games Restricting players’ choices of objects to local successors of currently
matched objects leads to basic modal languages, and a link with the notion of bisim-
ulation in Chapter 1.'87 The back-and-forth clauses in a bisimulation between two
models strongly suggest a game where one player mentions a challenge, letting one
process make an available move, while the other player must then respond with an
appropriate simulating move. This might go on forever, but there is also a natural
finite variant restricting the number of rounds. More precisely, the fine struc-
ture of bisimulation suggests the following games between duplicator and spoiler,

comparing successive pairs (m,n) in two models M and N.

DEFINITION 15.4  Bisimulation game

Fix a finite number of rounds. In each round of the bisimulation game, spoiler
chooses a state x in one model that is a successor of the current m or n, and
duplicator responds with a matching successor ¢ in the other model. Spoiler wins
if, at any stage, x and y differ in atomic properties, or if duplicator cannot choose
a matching successor. Infinite bisimulation games have no finite bound, while all
other conventions remain the same. [ |

186 More on infinitary first-order logic games is found in Barwise & van Benthem (1999),
where they are used to prove new kinds of interpolation theorems, as well as a Lindstréom-
type characterization for infinitary modal logic in terms of bisimulation.

187 A more general case of the approach is the Guarded Fragment (Andréka et al. 1998).
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ExampLE 15.3  Modal comparison games
Spoiler can win the game between the models depicted below (cf. Example 1.3)
starting from their roots:

Spoiler needs two rounds, and different strategies do the job. One stays on the left,
exploiting the modal difference of depth 2, with three existential modalities:

(@)((B)T A{e)T)
Another strategy switches models, using the smaller formula
[a](b) T
where the type of modality switches between universal and existential. ]

A success lemma can be proved for the finite bisimulation game like for first-
order logic (cf. van Benthem 2010b). Analyzing the games further, the following
two relevant observations emerge.

Fact 15.9

(a) Spoiler’s winning strategies in a k-round game between (M, s) and (N, t) match
the modal formulas of operator depth k on which s and t disagree.

(b) Duplicator’s winning strategies in an infinite game between (M, s) and (N, )
match the bisimulations between M and IN that link s to ¢.

Clause (b) reveals the close connection between our games and bisimulations.

Pebble games One can also add structure to the games, for instance, in the way
that players operate. For instance, to make memory a concern, one can let objects
be chosen only by using a finite resource that has been supplied to the players,
marking them with one of a finite set of pebbles (Immerman & Kozen 1989). In this
setting, duplicator has a winning strategy for the n-round k-pebble game between
two models M and N iff M and IN agree on all first-order sentences of quantifier
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depth < k that use at most the variables x1,..., 2z, (free or bound), a so-called
“finite-variable fragment.” 188

Other languages Other comparison games capture first-order logic with gen-
eralized quantifiers (Keenan & Westerstahl 1997), or the first-order fixed point
logic LEP(FO) of Chapter 14. This may raise new perspectives. For LFP(FO), for
instance, it is not known whether there exists a model comparison game that would
be more analogous to the elegant fixed point evaluation game of Chapter 14.

15.8 Connections between logic games

Now that we have seen two major logic games, one for evaluation and one for
comparison, questions arise of general architecture, and connections between games.
We end with three suggestive observations.

Parallel game operations Comparison games suggest new operations on games
in addition to the earlier choices and switch: most obviously, parallel composition.
As we will see in Chapter 18, model comparison games are interleaved evaluation
games. A general study of parallel game operations will be found in Chapter 20.

Model comparison as evaluation Comparison games sometimes reduce to eval-
uation games. Through their definition in Chapter 1, bisimulations E may be viewed
as non-empty greatest fixed points for a first-order operator between models M and
NN defined by the equation:

Ezy « Ap ((Pz < Py) AVz(Razz — Ju(Rayu A Ezu)) AVu(Rayu — 3z(Razz A Ezu)))

with the right-hand side taken over all atomic predicates P and actions R,.

Thus, existence of a bisimulation between states s and ¢ amounts to the truth of
some LFP(FO) formula in a suitable disjoint sum model M + N. Such a formula
can be checked by the fixed point evaluation game of Chapter 14. The latter can
be infinite; but so can model comparison games. We will highlight the broader
significance of facts such as this in Chapter 18.

188 This result is proved in Immerman & Kozen (1989). As an important genre of further
results, these authors also show that three pebbles suffice as a working memory for winning
all comparison games over linear orders. Finite-variable fragments in general play an
important role in finite model theory (cf. Ebbinghaus & Flum 1999, Libkin 2004).
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Game equivalence The literature often switches between supposedly equivalent
formulations without explanation. For instance, Barwise & van Benthem (1999)
define the following comparison game starting with a finite partial isomorphism
between two models:

In each round, duplicator selects a set F'* of partial isomorphisms satis-
fying the back-and-forth property that, for every object a in one model,
there is an object b in the other with f U {(a,b)} € F*; and vice versa.

In the same round, spoiler then chooses a match in F'™ again, and so on.

In each round, duplicator offers spoiler a complete panorama of all choices that
spoiler could make in the former game, plus duplicator’s own responses to them.
Spoiler then makes a choice of both spoiler’s own move as well as duplicator’s
prepackaged response, setting the new stage. The two games are obviously power-
equivalent in the sense of Chapters 11 and 19, but their internal structure also
matches closely. Indeed, the above transformation exemplifies a general turn switch
such as we saw in the Thompson transformations that we discussed in Chapter 11.
Chapter 18 has further discussion of equivalence levels for logic games.

15.9 Conclusion

Comparison games are a concrete and powerful way of thinking about the interplay
of logic and structure. By now they are widely used for many purposes, and the
reader will have understood their appeal, while we have also proved their basic
properties. Besides being successful special logical activities, comparison games
also demonstrate interesting general features, as we have seen. Just to mention one
of these, they perform a striking new sort of parallel combination of evaluation
games in different structures.

Further, the games of this chapter have a direct impact on the game logics in
Parts I and II of this book. As we already noted in Chapter 1 when discussing
invariance, playing comparison games offers a systematic way of adding fine struc-
ture to existing notions of simulation between processes or games, revealing further
information about invariants. Thus, comparison games can be a useful tool in the
general study of the right levels at which to analyze general games, and the design
of their languages. In line with the integrative spirit of this book, they can be used
as games about games.
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