“lig-09-25” — 2013/10/29 — 9:44 — page 317 — #335

14
Formula Evaluation

Logical languages usually have a model-theoretic semantics defining when a formula
 is true in a model M, perhaps with an auxiliary setting. The paradigm is first-
order logic, with its notion M, s = ¢ where s is an assignment of objects in M to
variables. Now, stepwise evaluation of first-order assertions can be cast dynamically
as a game of evaluation for two players. “Verifier” claims that ¢ is true in the setting
M, s, “falsifier” that it is false. This is our most basic logic game. In this chapter
we explain first-order evaluation games, establish their adequacy with respect to
truth and falsity, explore their more general game-theoretic character, demonstrate
how other logics can be gamified in the same style, and identify some general issues
of game logic behind first-order games, including the role of players’ strategies and

game operations. 6

14.1 Evaluation games for predicate logic

Two parties disagree about a proposition ¢ in some situation M, s: verifier V
claims that it is true, falsifier F that it is false. Here are the natural moves of defense
and attack in the first-order evaluation game, that we will indicate henceforth as
game(p, M, s).

DEFINITION 14.1 Moves in evaluation games
The moves of evaluation games follow the inductive construction of formulas. They

169 Games like this occur in Hintikka (1973). Since then, evaluation games have been
given for many logics. Hintikka & Sandu (1997) has a game-theoretical semantics for
natural language, and Chapter 21 will pursue the resulting independence-friendly logic.

“lig-09-25” — 2013/10/29 — 9:44 — page 318 — #336

318 Logic Games

involve typical notions in the dynamics of games, such as choice, switch, and
continuation, in dual pairs with both players allowed the initiative once:

atoms Pd, Rde, . .. V wins if the atom is true, F' if it is false
disjunction ¢ V V' chooses which disjunct to play
conjunction ¢ A F' chooses which conjunct to play
negation - role switch between the two players,

play continues with respect to ¢
Next, the quantifiers make players look inside M’s domain of objects:

existential Jxp(x) V picks an object d, play continues with ¢(d)
universal Yzp(x) the same move, but now for F'

Here the clause for atoms may look circular, but one might think of it as the
players consulting the model to see whether it supports such a bottom-level state-
ment. As for complex structure, the schedule of the game is determined by the form
of the statement ¢. [|

ExaAMPLE 14.1 Formulas and schedule of play
To see how this works, consider a model M with two objects s,t. Here is a game
for Vxdy z#y, pictured as a tree of moves, with the scheduling from top to bottom:

losey winy winy losey

We interpret this as a game of perfect information: players know throughout what
has happened. Falsifier starts, and verifier must respond. There are four possible
plays, with two wins for each player. But verifier has a winning strategy, in the
standard sense of our earlier chapters.]

Trees such as this are not a complete definition of the game yet, but for many
purposes, we are better off without further detail. Evaluation games for slightly
more complex formulas in richer models have proved attractive in teaching logic.

“lig-09-25” — 2013/10/29 — 9:44 — page 319 — #337

Formula FEvaluation 3819

ExaMPLE 14.2 Find noncommunicators
Consider the following communication network with arrows for directed links, and
with all self-loops present but suppressed in the drawing:

4

The formula VzVy(Rxy V 3z(Rzz A Rzy)) says that every two nodes in this network
can communicate in at most two steps. Here is a run of the evaluation game:

player move next formula

F picks 2 Vy(R2y vV 3z(R2z A Rzy))
F picks 1 R21V3z(R2zANRz1)

14 chooses 32(R2z AN Rz1)

|4 picks 4 R24 NR41

F chooses R4 1

test F loses

Falsifier started with a threat by picking object 2, but then picked 1. Verifier chose
the true right conjunct, and picked the witness 4. Now, falsifier loses with either
choice. Still, falsifier could have won, by choosing object 3 that 2 cannot reach in
<2 steps. Falsifier even has another winning strategy, namely, =5, y=4. [|

In this way, each formula ¢ is a game form of fixed depth but indefinite branching
width, with a schedule of turns and moves. It becomes a real game when a model
M is given that supplies possible quantifier moves and outcomes for atomic tests,
while an assignment s to the free variables in ¢ sets the initial position of the game.

14.2 Truth and winning strategies of verifier

In our first example, participants were not evenly matched. Player V' can always
win: after all, a verifier is in line with the truth of the matter. More precisely, V'
has a winning strategy, a map from V’s turns to moves following which guarantees,

“lig-09-25” — 2013/10/29 — 9:44 — page 320 — #338

320 Logic Games

against any play by F', that the game ends in outcomes where V' wins. F' has no
winning strategy, as this would contradict V’s having one.!”™® Even more can be
said. F' does not have a losing strategy either: F' cannot force V' to win, but in our
example, player V' does have a losing strategy. Thus, players’ powers of controlling
outcomes in a game may be quite different.

Here is the key to the behavior of evaluation games, the “success lemma.”

Fact 14.1 The following are equivalent for all models M, s and formulas ¢:
(a) M,s = ¢, (b) V has a winning strategy in game(p, M, s).

Proof The proof is a direct induction on formulas. One shows simultaneously:

If a formula ¢ is true in (M, s), then verifier has a winning strategy.
If a formula ¢ is false in (M, s), then falsifier has a winning strategy.

The steps show the close analogy between logical operators and ways of combining
strategies.'™ The following typical cases will give the idea. (a) If ¢ V1 is true, then
at least one of ¢ or v is true, say, . By the inductive hypothesis, V' has a winning
strategy o for . But then V has a winning strategy for the game ¢ V 1: the first
move is left, after which the rest is the strategy o. (b) If ¢ V ¢ is false, both ¢ and
1 are false, and so by the inductive hypothesis, F' has winning strategies ¢ and 7
for ¢ and 1, respectively. But then the combination of an initial wait-and-see step
plus these two is a winning strategy for F' in the game ¢ V ¥. If V' goes left in the
first move, then F' should play o, while, if V' goes right, F' should play strategy 7.
(¢) If the formula ¢ is a negation —1) we use a role switch.

ExampPLE 14.3 Role Switch
Consider the game for a formula p V ¢ in a model where p is true and q is false, as
well as its dual game —(p V q), that switches all turns and win markings:

\ %4 F
pVq =(pVq)

winy wWIn g WINn g winy

170 Playing two winning strategies against each other yields a contradiction at the end.

171 This inductive proof is virtually the argument for Zermelo’s Theorem in Chapter 1.

“lig-09-25” — 2013/10/29 — 9:44 — page 321 — #339

Formula FEvaluation 321

The second game works out to that for the De Morgan equivalent —p A —g. []

Thus, strategies for V' in a game for =1 are strategies for F' in the game for 1,
and vice versa. Now we prove case (c). Suppose that =1 is true. Then ¢ is false,
and by the inductive hypothesis, F' has a winning strategy in the 1-game forcing
an outcome in the set of F’s winning positions. But this is a strategy for V in
the —y-game, and indeed one forcing a set of winning positions for V. The other
direction is similar. []

This is our first link between a key notion in logic (truth) and one in game
theory (strategy). We will broaden the interface as we continue. Some critics see
the success lemma as showing how games yield nothing new. To them, a game-
theoretic analysis is good only if it captures some pre-existing logical notion. Our
focus is the opposite: what new themes are intrinsic to games, and might enrich
the old agenda of logic?

14.3 Exploring the game view of predicate logic

Simple as it is, there is more to the success lemma than meets the eye. In particular,
this result suggests new perspectives on what makes standard predicate logic tick.
Many technical distinctions to be formulated in the following discussion will recur
in subsequent chapters.

Different winning strategies Truth occurs if and only if there is a winning
strategy for player V', and likewise for falsity and F. But there can be more than
one such strategy. For instance, F' had two winning strategies in our Example 14.2,
using two different counterexamples to the claim. Thus, winning strategies are more
refined semantic objects than standard truth values, that we might call reasons for
truth or falsity.

Games and game boards The success lemma compares two semantic settings.
One is the model M, or its associated space of assignments s of individual objects
s(z) to all relevant first-order variables 2. Here a notion from Chapter 11 returns.
This space serves as a “game board,” a setting where evaluation games can be
played, or even other games. Compare a Chess board with possible positions. Chess
expands this with conventions, defining turns for players, as well as their winning
positions. The latter are game-internal: there is nothing intrinsic to the distribution
of pieces on the board that makes it a win for White or Black.

“lig-09-25” — 2013/10/29 — 9:44 — page 322 — #340

322 Logic Games

Comparing two different languages The success lemma compares the game
and its board using expressions from different languages appropriate to them:

V has a winning strategy in game(p, M,s) iff M,sE ¢

The expression on the left can be rewritten in a game language referring to forcing
powers of players (cf. Chapter 11), while that on the right-hand side is best viewed
as a modal formula referring to actions on the board, as in Chapter 1:

game(p, M, s) = winy i M, sk

This dual perspective can be generalized. On the left, one can talk about both
players’ powers for forcing any set of positions in the game. This corresponds to
nested substitutions in modal assertions about the game board on the right.

The general topic of matching games and game boards will be pursued in greater
depth in Chapters 19 and 24.

Defining the games formally Defining complete trees for logic games is largely
routine. Still, formalization brings out interesting twists to understanding first-order
logic. Let us define the tree for game(p, M, s) as follows. Nodes are all pairs

(s,9) where s is an M-assignment, and ¥ is a subformula of ¢

Game moves reflect the earlier ones, changing one or both components of a state.
In particular, atomic tests do not change the state, while choices only change its
formula, moving from a current node (s, V ¢) to one of its daughters (s,) and
(s,). But formalizing the other rules leads to departures from received views in
predicate-logical semantics. Consider assignment change with quantifiers. Starting
at (s,3xp), verifier chooses an object d from the domain of M, and s is set to
s[z := d]. Play then continues with (d): that is, it starts afresh from the formal
game state (s[z := d],). But this analysis suggests that, unlike in standard logical
syntax, we can view the quantifier symbol 3z by itself as a separate interpretable
entity, and more specifically, that quantifiers are atomic games of object picking.
Standard thinking assimilates quantifiers to Boolean disjunctions or conjunctions.
By contrast, here, the real game operation involved in 3z is sequential composition,
gluing the game for v after the independent atomic game for 3z. On this view,

Predicate-logical semantics is really a system of games of object picking
and fact testing, related by suitable game operations.

“lig-09-25” — 2013/10/29 — 9:44 — page 323 — #341

Formula FEvaluation 323

Next, we need game-internal predicates of turn taking and winning. A formula
o tells us who is to move at which stage, although we need to take care with role
switches for negations.

DEFINITION 14.2 Formal game trees
We define game(p, M, s) inductively, for any assignment s, starting from an initial
state (s,). The first two clauses are for the two kinds of atomic game:

(a) game(p, M, s) for atomic ¢ is a one-node end game, which is a win for verifier
if M, s | ¢, and for falsifier otherwise.

(b) game(3z, M, s) is a one-move game starting at s where it is V’s turn, with
possible moves to any state s[z := d], always ending in a win for V.

Next we turn to game constructions:

(c) game(p Vp, M, s) is the disjoint union of the two games game(p, M, s) and
game (¢, M, s) put under a common root (s, V 1) that is V’s turn.

(d) game(p A, M, s) is defined likewise, but with an initial turn for F.

(e) game(—p, M, s) is game(p, M, s) with turn and win markings reversed.

The negation switch was illustrated with the success lemma. Finally, to deal with
quantifiers, we add a clause for an operation of composition for evaluation games:

(f) game(p; ¥, M,s) is the tree arising by first taking game(p, M,s) and
continuing at end states with assignment ¢ with a copy of game (v, M t).

These tree constructions for games will return in Chapters 20 and 25. [|

Emancipation of syntax The above semantics interprets more than just the
usual well-formed formulas. For instance, it makes perfect sense to play a game for
the string

Pz ; Jx

which translates to “First test that P holds for object s(z) under the current
assignment s, then change the value of x, and stop.” In contrast with this, the
game for Jx; Pz would first change the value of s(z) to obtain an object with
the property P. With composition as a new syntax construction, predicate logic

“lig-09-25” — 2013/10/29 — 9:44 — page 324 — #342

324 Logic Games

extends to a language of discourse chunks «; ;... that might be interesting to
axiomatize.'™ Even not-so-well-formed formulas now get their chance.

Propositions versus activities Finally, the reader should beware of a common
confusion. Reading formulas ¢ in their ordinary notation as evaluation games makes
them serve a double role: as a static proposition in truth-conditional semantics, or
as a game in our new semantics. A game is not a statement, but a dynamic activity.
To be sure, one can state propositions about games, say, that verifier has a winning
strategy in the ¢-game. But this statement is not that game itself, and it does
not exhaust the latter’s content. Much of the original literature on game semantics
conflates these two readings of first-order syntax, resulting in the prejudice that
existence statements about verifier’s winning strategies are all there is to know to

the game-theoretic meaning of ¢.173

14.4 Game-theoretic aspects of predicate logic
Now we explore connections with game theory, a theme raised in the Introduction.
First, via the success lemma, logical laws acquire game-theoretic import.

Determinacy Our first encounter between logic and game theory was the following
simple but telling observation.

Fact 14.2 Excluded middle A V —A expresses determinacy of evaluation games;
that is, one of the two players must always have a winning strategy.

Evaluation games turned out to be determined because of Zermelo’s Theorem
that all zero-sum two-player games of finite depth are determined (cf. Chapter 1).

172 We also get new distinctions. Consider a “bounded quantifier” Jy(Rzy A ¢), inducing
a game where verifier chooses an object d for y, then falsifier chooses a conjunct, and one
either tests the atom R™ s(x)d, or play continues at (s[y := d],). It seems more natural
to package this as one atomic game: verifier picks an R-successor of s(z). This is won
by verifier if she can produce such an object, and lost otherwise. In extended first-order
syntax, this would be the game for Jy; Rry. This is the view that underlies our later
evaluation games for modal logic, and it will return in the theoretical analysis of logic
games as a format for game algebra in Chapter 24.

173 Significantly, two similar levels, of actions and propositions, were carefully kept sepa-

rate in the syntax of propositional dynamic logic PDL (Chapters 1 and 4), with programs
and formulas.

“lig-09-25” — 2013/10/29 — 9:44 — page 325 — #343

Formula FEvaluation 325

Infinite evaluation games will also be relevant later in this chapter, and there, we
need to appeal to further results such as the Gale-Stewart Theorem of Chapter 5.

Game equivalence In the Introduction, we also saw an issue of game equivalence.

FacTt 14.3 The propositional distribution law states that the evaluation games
for its formulas are equivalent in terms of players’ forcing powers.

ExampLE 14.4 Switching games with invariant powers
Switching between games A A (BV C) and (AA B)V (AA C) transforms turns for
players without affecting their strategic powers concerning outcomes:

A E
E A A
p
q r p q p T
The relevant computations were given in the Introduction and Chapter 1. []

Chapter 11 contained an abstract perspective on powers that fits this equivalence
precisely. In particular, Boolean operations turn into general operations on games.
A matching algebra of power equivalence will be studied in Chapters 19 and 21.

Syntactic normal forms Propositional normal forms now serve as normal forms
for games. The same is true for first-order quantificational prenex forms such as

VaxIyVz Q(x,y, 2)

with all quantifiers moved in front, dividing object picking moves into alternating
blocks for each player, fixing scheduling without affecting players’ powers. Also
relevant are Skolem forms, taking first-order formulas to second-order equivalents

3fr---3fk V- Vo,

followed by a quantifier-free propositional part, which will be used in Chapter 22.

Here, an earlier caveat applies. Skolem forms are better read as statements about
games, viz. the existence of strategies, rather than as games in themselves. Still, one
can view second-order formulas such as Jx3gVaVy Q(z, f(x),y, g(z,y)) as defining

“lig-09-25” — 2013/10/29 — 9:44 — page 326 — #344

326 Logic Games

a new evaluation game, where verifier picks a strategy at the start, after which
falsifier has a go, and finally a regular propositional game is played.!”

14.5 Gamification: Variations and extensions

Evaluation games exist for many logical languages. The above explanations provide
almost automatic gamifications, provided that the truth conditions employ quan-
tifiers and connectives. For instance, the Skolem game mentioned at the end of the
preceding section was an evaluation game for a second-order language, that goes as
before, letting players now also choose functions for second-order quantifiers 3f (or,
in other second-order games, sets), in addition to objects for first-order quantifiers
Jx. In this section, we discuss a few further illustrations with additional points.

Basic modal logic Consider the basic modal language over models M = (W, R, V)
used in Parts I and II of this book. We start with a simple variation on first-order
evaluation games, showing how they transfer to modal languages. Accessibility
encodes moves that can be made to get from one world or state to another.

ExaMmPLE 14.5 A modal model
Consider the following graph with four worlds and accessibilities as indicated:

p p
1 2
3 4
The formula ¢O<Cp is true in states 1 and 4, but false in states 2 and 3. |

Modal evaluation games search through such a model, with two key moves:

O verifier chooses a successor of the current world
O falsifier chooses a successor of the current world

174 Redescriptions are frequent with logic games. Switching between games raises general
issues of game equivalence (cf. Chapter 1). We will discuss this theme in Chapter 18.

“lig-09-25” — 2013/10/29 — 9:44 — page 327 — #345

Formula FEvaluation 327

Game states are pairs (state, formula). Players lose when defending an atom that
fails at the current state, or when they must choose a successor but cannot. This
is like the bounded first-order quantifier Jy(Rxy A Py) discussed earlier.

Again we have a modal success lemma:

M,sE ¢ iff V has a winning strategy for the p-game in M from s.

ExXAMPLE 14.6 A modal evaluation game
The graph of Example 14.5 induces the following game tree for GCOOp at state 1:

Here, V has two winning strategies: left, and right ; (right, down). These are the
two ways of verifying ¢O<Cp in the given model at world 1. The game also illustrates
the well-known feature of losing when a player must move but cannot. []

The same games work for polymodal languages with indexed operators (a).

Modal pi-calculus A more drastic change in evaluation games is needed for the
fixed point logics in Parts I and IT of this book. To define their games, we need to
explain their central idea of recursion in a bit more detail than before, starting with
an important special case. Recall the modal fixed point logic providing the recursive
definition used to analyze Zermelo’s algorithm in Chapter 1, which returned in many
places, including Chapter 13 on solving games in strategic form. We present the
basics here; interested readers may look to van Benthem (2010b) and, especially,
Venema (2007) for more didactic detail.

DEeFINITION 14.3 Modal p-calculus
The modal p-calculus extends basic modal logic with a syntactic operator upe@(p)

“lig-09-25” — 2013/10/29 — 9:44 — page 328 — #346

328 Logic Games

in which all occurrences of p in ¢ are positive.!”® In any model M, the new oper-
ator upep(p) defines the smallest fized point with respect to set inclusion for the
following set operator ™ on the model associated with the formula ¢(p):

pM(X)={s e M| M[p:=X],s |= ¢}
Here a fixed point of a function F is an argument X such that F(X) = X.]

By the positive syntactic occurrence of p in ¢(p), we can easily show the following
important property.

FAaCT 14.4 The map ¢™ is monotonic for inclusion: X C Y = oM (X) C oM (Y).
The definition relies on the following fact, called the Tarski-Knaster Theorem.

FacTt 14.5 Every monotonic operator F' on a power set has a smallest and a

greatest fixed point in the inclusion order.!7®

A greatest fixed point operator vpep(p) is defined analogously. This powerful
new formalism allows us to define properties of states in a model by recursion.

ExXAMPLE 14.7 Fixed point evaluation
Consider the formula gpe (g V {(a)p) in the following model:

175 Positive occurrence means that, counting from the outside of ¢, p lies in the scope
of an even number of negations. Some formulas positive in p are —q V {(a)p, —{a)—p, and
—pge(={a)=g A —p).

176 The proof of the Tarski-Knaster Theorem shows how the smallest fixed point Fi =
N{X C A| F(X) C X}, while the greatest fixed point F* = |J{X C A| X C F(X)}. One
can also think of these as reached by approximation through the ordinals. Fi is the first set
where F' reaches a fixed point in the sequence @, F (@), FF(9),...,F* (), FF*(2),...,
taking the union of all previous stages at limit ordinals.

“lig-09-25” — 2013/10/29 — 9:44 — page 329 — #347

Formula FEvaluation 329

Here is the approximation sequence for the associated set function of ¢ V (a)p:

stage set defining formula
0 1% 1

1 {5,6} q

2 {5,6,2} qV{a)p

3 {5,6,2} the fixed point

What ppe(qV (a)p) describes in general is the set of all points in the given model
that can reach a g-world by a finite sequence of a-steps. In this way, the u-calculus
defines the typical modality (a*)¢ of propositional dynamic logic (PDL) used at
many places in this book. []

By a similar analysis, the formula ppe[a]p holds in points with only finite a-
sequences coming out, the so-called “well-founded part” of the relation R,. But
there is an interesting difference. The approximation process for upe (g V {(a)p)
always stops in w steps, while that for upe[a]p can go on to any ordinal, depending
on the size of the model. This has to do with the syntax of these fixed point formulas
(cf. Fontaine 2010).

Related to the latter smallest fixed point formula is the greatest fixed point
formula vpe(a)p defining the s at which an infinite sequence sRqs1Rq82R, -
starts. Actually, vpep(p) is equivalent to —up e —p(—p).

ExampLE 14.8 Evaluating greatest fixed point formulas
Consider the formula vpe(a)p in the following model:

a
1 2
a a a
4 3
a
The computation stabilizes at the set of worlds {2, 3}. |

Our syntax even allows inhomogeneous nested fixed point formulas of shapes such
as vpeiqep(p, q), whose intuitive meaning can be harder to decode.

Infinite evaluation games Niwinski & Walukiewicz (1996) and Stirling (1999)
define evaluation games for the u-calculus (Venema 2007 has a lucid presentation).
These involve a significant change reflecting the ordinal approximation process,
taking us into the realm of Chapter 5: runs may become infinite. Accordingly, the

“lig-09-25” — 2013/10/29 — 9:44 — page 330 — #348

330 Logic Games

winning convention changes in a delicate manner that goes back to fundamental
results connecting logic and automata theory (Rabin 1968, Thomas 1992).

DEFINITION 14.4 Evaluation games for the u-calculus

In p-calculus evaluation games, verifier and falsifier play by the earlier rules when
the main operator is modal. When a fixed point formula ppep(p) or vpep(p) is
reached in the game, the next formula is ¢(p), with the following understanding.
Whenever later play hits an atom p, no test takes place (p is a bound variable), but
upe(p) (or vpe(p), as the case may be) is substituted back in.!™"

Next, we note that in infinite runs, some fixed point subformula of the finite
initial formula ¢ must have been called infinitely often. Indeed, it is easy to see
that there is a unique recurrent fixed point subformula occurring in the highest
syntactic position in ¢. We say that an infinite run is a win for V' in the p-game if
the syntactically highest recurrent fixed point subformula is a greatest fixed point.
If it is a smallest fixed point, then F' wins. []

The winning convention displays a general pattern from graph games with a
“parity condition” (see Section 18.6 in Chapter 18, and Venema 2007).

As in our earlier analyses, a success lemma connects our language and these
infinite games.

FacT 14.6 A formula in the modal p-calculus is true if and only if verifier has a
winning strategy in the game just described.

We refer to the cited literature for a proof, and its further background in automata
theory. The p-calculus is a good framework for studying general interactive
processes, and its game aspects will return in Chapter 18.

We now move to a more general formalism showing the same ideas at work, which
has also been used earlier on in this book, for instance, in Chapters 2, 8, and 13.

First-order fized point logic First-order logic with fixed point operators
LFP(FO)(Moschovakis 1974, Ebbinghaus & Flum 1999) was used for analyzing
game-theoretic solution methods in Part II. Again the language has smallest fixed
point operators

uPep(P) with P occurring only positively in ¢

177 Here we assume, without loss of generality, that occurrences of fixed point variables
have been made unique.

“lig-09-25” — 2013/10/29 — 9:44 — page 331 — #349

Formula FEvaluation 331

More precisely, with @ (or d) standing for finite tuples of variables (or objects),

[uP, e p(P)](d) says that d is in the smallest set X with ™ (X) =X
[P, zep(P)|(d) says that d is in the largest set X with o™ (X) = X

EXAMPLE 14.9 Transitive closure
For instance, pP, xy « (RzyV3z(Rzz A Rzy)) is a definition for the transitive closure
of a relation R, showing the typical recursive behavior of this notion:

trans(R)(z,y) + R(z,y) V Jz(R(z, z) A trans(R)(z,y))

As with the p-calculus, this recursive unwinding shows how games for LFP(FO)
differ from first-order ones: they can cycle. For, if V' chooses the right-hand disjunct,
taking an R-successor, the original formula returns, and play loops. For certain
types of formula, infinite games then become indispensable. []

The games that we need are as before, with some notational adaptations.

DEFINITION 14.5 First-order fixed point games
In games for LFP(FO), verifier and falsifier play by earlier rules when the main
operator is first-order. When a fixed point formula [uP, x « p(P)](d) is reached, the
next formula is ¢(P)](d), with the following understanding. Whenever subsequent
play reaches an atom Pe, no test takes place in the model (P is a bound vari-
able), but [uP, xe«p(P)](e) is substituted back in. Greatest fixed point formulas
[VP, x«p(P)](d) are treated analogously.

Again, in infinite runs, some fixed point subformula of the finite initial formula
o must have been called infinitely often, and there is a unique subformula of this
kind occurring in the highest syntactic position in p. As was stipulated for the
p-calculus, an infinite run is a win for V' in the p-game if the syntactically highest
recurrent fixed point subformula is a greatest fixed point. If it is a smallest fixed
point, then F wins.!7® []

Again, the following success lemma shows how games and models connect.

178 Consider the smallest fixed point for transitive closure. To show that Pde, verifier
may first choose the second disjunct, take some object f for z, and claim that Pfe. But
verifier may only do that finitely often; otherwise, a loss results. Greatest fixed points are
dual: falsifier must put up in some finite number of cycles, while it is fine for verifier to
keep the cycle going.

“lig-09-25” — 2013/10/29 — 9:44 — page 332 — #350

332 Logic Games

Fact 14.7 A formula in first-order fixed point logic is true if and only if verifier
has a winning strategy in the game just described.

See Ebbinghaus & Flum (1999) and Doets (1999) for proofs. There is a general
result in the background here. While these games do not have an open winning
condition for players in the sense of the Gale-Stewart Theorem of Chapter 5, their
winning condition is still Borel, making the games determined by Martin’s Theorem.

EXCURSION Second-order reformulation

An alternative finite version of this game translates formulas [P,] « ¢(d) inside out
by equivalent second-order statements. The Tarski-Knaster definition of a smallest
fixed point says that d satisfies every predicate that is a smallest pre-fixed point of
the monotonic set operation for the positive formula ¢, or in second-order terms,
Y@ (Vm(¢(@,w) — Qx) — Qd) A standard evaluation game for these second-
order formulas is of finite depth, although at the cost of letting players choose sets
of (tuples of) objects. As before, there is an issue in which sense this is the same
as our earlier fixed point game, and this time, a non-trivial proof is needed to show
that players’ powers do not change.

There is a deep literature on evaluation games for fragments of second-order logic,
of which Rabin (1968) is a classic. Walukiewicz (2002) is an influential format for
automata-based games for monadic second-order logic (first-order logic with added
quantifiers over sets), which plays an important role in games and computation,
witness our discussion of forcing logics in Chapter 5. These and other automata-
based games are explained (with many relevant results) in an accessible manner in
Zanasi (2012). A short overview will be found in Chapter 18.

Games with changing models Even for first-order logic, other variations are
possible on standard evaluation games, making players perform different tasks.
In contrast to object-picking moves, one may consider removing objects from a
domain without replacement, or moves that change a domain or interpretation
function, changing the playground by adding or subtracting objects and facts. Such
variations mix the process of logical evaluation with model construction that will
be considered in Chapter 16.

14.6 Conclusion

This concludes our tour of two-player evaluation games as a dynamic view on
logical semantics. Most of these games had finite depth, but some are naturally

“lig-09-25” — 2013/10/29 — 9:44 — page 333 — #351

Formula FEvaluation 333

infinite when the language contains fixed points, a natural correlate to the notion of
game-theoretic equilibrium in this book. In addition, we found a number of general
game-theoretic themes illustrating general topics in this book: namely, determi-
nacy, game equivalence, game algebra of choice, switch, or composition, and the
systematic importance of calculus of strategies. Many of these themes will return
in the integrative Parts V and VI of this book.

14.7 Literature

The presentation in this chapter is largely from van Benthem (1999).

Hintikka (1973) is a source of the ideas, and an introduction supported by soft-
ware is found in Barwise & Etchemendy (1999). A recent non-trivial extension to
many-valued logics is Fermiiller & Majer (2013). Mann et al. (2011) has a more
formal development, continuing on to the more complex games with imperfect
information found in Chapter 21. We have also pointed at the flourishing litera-
ture on related games for fixed point logics in computer science, that link up with
automata theory, with references on the p-calculus such as Venema (2006), and
Janin & Walukiewicz (1995). Chapter 18 will provide more details.

