
“lig-09-25” — 2013/10/29 — 9:44 — page 403 — #421i
i

i
i

i
i

i
i

19

Dynamic Logic of Sequential Game

Operations

This chapter is about a system that describes powers of players in complex games
on the analogy of propositional dynamic logic for programs, by substituting the
forcing relations of Chapter 11 for the transition relations between states. This
‘dynamic game logic’ was proposed in Parikh (1985). There is much of interest to
how this approach to logic and games works, and we tell the story slowly, with
motivations and follow-up. Much of what follows is our own take, adding results on
game algebra, bisimulation, and other logical themes.

19.1 Internal and external views of games

Logical description of games can proceed at various levels. The game logics of Parts
I, II, and III were game-internal, providing statements that may hold at stages of
play. But the logic games of Part IV, and especially the evaluation games studied
in Chapter 14, took a game-external point of view, with formulas standing for
whole games, and logical operations becoming game-forming operations of choice,
composition, or role switch. The external viewpoint has its attractions, especially
in describing game equivalences in an algebraic manner.214 Internal and external
viewpoints can be combined, as we will see in this part of our book. To do so, we
step up the abstraction level for studying games. This chapter presents a dynamic
logic for external game combination, at the level of forcing and outcomes. It encodes

214 Similar options occur with computation. Modal logics provide process-internal views,
while process algebra (Bergstra et al. 2001) studies global process combination. The two
views are related by bisimulation techniques, but they proceed di↵erently.

“lig-09-25” — 2013/10/29 — 9:44 — page 404 — #422i
i

i
i

i
i

i
i

404 Operations on Games

an algebra of basic game-forming operations, while providing a new scope for modal
techniques such as bisimulation.

19.2 From logic games to game logics

Instead of designing logic games for specific tasks, one can also study the combina-
tory structure of arbitrary games. Ideas developed for logic games then acquire a
more general significance. In particular, we find natural operations that structure
games. For instance, choice and role switch occurred across logic games, but they
are much more general than that, as basic constructions that turn given games into
new ones. Next, given such operations, we want to learn their general algebraic
laws. For instance, it is important to see that the propositional distributive law

p ^ (q _ r) $ (p ^ q) _ (p ^ r)

is valid in complete generality. It does not hinge on playing special test games for
verifier and falsifier about atomic propositions at the end, or on claims made by
proponent or opponent in a dialogue. The expressions p, q, r in this equivalence
might stand for any games, of arbitrary complexity, plugged in at the final stages.

As we noted in Chapter 14, in the literature on logic games, logical formulas often
do double duty: as static propositions, and as games (i.e., dynamic activities). These
roles must now be pulled apart, following our distinction between games themselves
and assertions one can make about their behavior. The system in this chapter is
inspired by the dynamic logic of programs, a system that has occurred in this book
ever since Chapter 1, and the evaluation games of Chapter 14 are a good analogy
to keep in mind.215

19.3 Forcing models, games, and game boards

We start with a semiformal tour through the style of game analysis to be presented
in this chapter, touching on all the major themes that arise.

215 The alternative system to be presented in Chapter 20 extends linear logic, with a link
to the dialogue games of Chapter 17. Together, Chapters 19 and 20 span a space merging
ideas from logic games and game logics.

“lig-09-25” — 2013/10/29 — 9:44 — page 405 — #423i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 405

Dynamic game logic: A quick preview We now consider a language like that
of propositional dynamic logic, PDL, in Chapter 1, but this time with expressions
for two-player games (with players E and A) plus propositions.

Definition 19.1 Language of dynamic game logic
The language of dynamic game logic is defined by these inductive syntax rules:

Formulas F p | ¬F | F _ F | {G}F
Game expressions G g | G[G | Gd | G ; G |?F

A point of notation In this chapter, we will use variables G with primes when
thinking primarily of games, but also variables x, y, ... when thinking of the pure
algebraic form of laws about games. Players will be denoted by A and E, thought
of generically as an opposite pair. ⌅

The game operations in this language are choice for player E, dual d for role
switch, and sequential composition ;. It is useful to also define a game conjunction
G \ G0 of choice for player A as (Gd [G0d)d. Parikh’s system also has a game
iteration G⇤ like the Kleene star of PDL that we will discuss separately later. Note
the recursion in the syntax. Tests ?' turn formulas ' into game expressions, while
in the opposite direction, modalities { } take game expressions to formulas.

The intuitive idea of the modality is as in Chapter 11, based on forcing relations
(we will define the precise models a bit later on).

Definition 19.2 Dynamic forcing modality
The forcing modality {G}' says, at any state, that player E has a strategy for
playing game G guaranteeing, against any play by the opponent, a set of outcome
states all of which satisfy the formula '. ⌅

To make this work precisely, we need to define the following two notions:

⇢G s,X player E has a strategy for playing G starting in state s
that is guaranteed to end up inside the set of states X

s |= {G}' for some X : ⇢Gs,X and 8x 2 X : x |= '

The key relations ⇢ run not from states to states, as for programs, but from states
to sets of states, and we recognize the forcing relations of Chapter 11. In particular,
players need not be able to force unique outcomes of games, whence the set output.

DGL = neighborhood logic + game algebra Unlike modal operators 3 and
2, the modality { } satisfies no distribution for disjunction or conjunction. As is

“lig-09-25” — 2013/10/29 — 9:44 — page 406 — #424i
i

i
i

i
i

i
i

406 Operations on Games

easy to see in simple games, the following formulas are invalid:

{G}(' _) $ {G}' _ {G}', {G}(' ^) $ {G}' ^ {G}

What remains valid is upward monotonicity:

{G}' implies {G} for any weaker proposition implied by '.

Going beyond Chapter 11, through its valid laws on top of the neighborhood
logic, the logic encodes information about the basic game operations.216 One simple
example is the validity of commutativity of choice:

{G[G0}'$ {G0 [G}'

Indeed, most of Boolean algebra holds for {[,d }. As for the further game oper-
ations, the forcing relations generalize standard relational algebra for relations of
type S ⇥ S, taking it to an algebra of relations of type S ⇥ P (S), with basic laws
such as associativity:

{G1 ; (G2 ; G3)}'$ {(G1 ; G2) ; G3)}'

We will see much more of the mechanics of this system in Section 19.4.
Now let us become more precise about the semantic setting.

Forcing models, games, and game boards Models for this language are tuples

M = (S, {⇢g | g atomic}, V)

with S a set of states, V a valuation assigning truth values to atomic propositions
in states, and with atomic relations ⇢gs,X assigned to basic game expressions g.
These forcing relations ⇢g do not indicate players explicitly. One can take player E
in mind, using determinacy of the game to find the powers of A, in a way to be
explained below, although we will also consider player-indexed forcing later. Forcing
relations are closed under supersets, given their intended forcing interpretation:

if ⇢gs,X and X ✓ Y , then ⇢gs, Y .

216 In what follows, in line with the original system, we start by thinking of determined
games, but this restriction will soon be lifted.

“lig-09-25” — 2013/10/29 — 9:44 — page 407 — #425i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 407

In terms of the earlier discussions in Chapters 1, 11, and 18, these models M
are game boards or playgrounds, with states that model the external content of
internal game states. One board can support many games with di↵erent turns and
winning positions. For instance, with evaluation games, board states are variable
assignments that change when a player makes a move x := d. But these states do
not encode the internal changes with choices between disjuncts or conjuncts.

In line with this, atomic forcing relations ⇢g do not reflect structured games g,
although the latter may arise in applications of the logic. This di↵ers from the view
in Chapter 11, where forcing relations for games used internal nodes and moves.

Computing complex forcing relations To get some generality that will be useful
later when dropping the assumption of determinacy, we change the above models
a bit, computing forcing relations for both players in one simultaneous recursion.

Definition 19.3 Forcing relations for composite games
The following recursive clauses govern forcing relations:

⇢EG[G0x, Y i↵ ⇢EGx, Y or ⇢EG0x, Y

⇢EG[G0x, Y i↵ ⇢AGx, Y and ⇢AG0x, Y

⇢EGdx, Y i↵ ⇢AGx, Y

⇢AGdx, Y i↵ ⇢EGx, Y

⇢EG ;G0x, Y i↵ 9Z : ⇢EGx, Z & 8z 2 Z : ⇢EG0z, Y

⇢AG ;G0x, Y i↵ 9Z : ⇢AGx, Z & 8z 2 Z : ⇢AG0z, Y

These clauses are probably self-evident, but they will return in the soundness for
the axioms of dynamic game logic in Section 19.4. ⌅

Henceforth, we assume that atomic forcing relations satisfy the earlier-mentioned
superset closure (monotonicity) as well as consistency (cf. Chapter 12):

if ⇢EGs, Y and ⇢AGs, Z, then the sets Y and Z overlap.

One can easily show the following lifting result by induction.

Fact 19.1 If the atomic relations on a game board satisfy monotonicity and
consistency, then so do all complex forcing relations as defined here.

Remark From determinacy to nondeterminacy
Parikh (1985) assumed that all games were determined, in the sense of Chapter 11:

for each set Y , either E can force Y , or A can force S � Y .

“lig-09-25” — 2013/10/29 — 9:44 — page 408 — #426i
i

i
i

i
i

i
i

408 Operations on Games

Then we just define forcing for player E, simplifying the case of dual to ⇢EGdx, Y i↵
not ⇢EGx, S � Y . The relations for A are induced by ⇢AGdx, Y i↵ not ⇢EGx, S � Y .217

Test games Finally, we must define forcing relations for atomic test games.
Parikh’s original stipulation was as follows (see Pauly (2001) for more explanation):

⇢E?Px, Y i↵ x 2 Y and P holds of y

This has some debatable e↵ects, such as the equivalence ⇢A?Px, Y i↵, if x 2 Y ,
then P holds of y. Hence some authors have sidestepped the issue, dropping tests
altogether, and having just a special “idle game” ◆ with:

⇢E◆ x, Y i↵ x 2 Y, ⇢A◆ x, Y i↵ x 2 Y

In such a game, both players have the same power, that is, the power of being there.
Information about propositions P holding at the current state x is then external,
and not part of the game. Another line is to have two forcing modalities. The one
so far relates only to players’ powers of making sure the game ends in some set of
positions. Since a test does not change the current state, its correct axiom is

{?P}'$ '

But another view of the forcing modality {G,E}' brings in a game-internal prop-
erty: player E has a strategy for playing G guaranteeing a set of outcome states that
satisfy ' and are winning for E. This will validate the following two equivalences:

{?P,E}' $ P ^ ' {?P,A}' $ ¬P ^ '

The second reading satisfies the same laws for game operations as the first.218 In
what follows, we merely assume that some satisfactory interpretation is in place.

Things become clearer by looking at some basic motivating examples. The above
system can be used in analyzing specific games, seeing what is general, and what
are peculiarities of special states and moves.

217 To be consistent here, one has to check that the forcing relations for compound games
remain determined, when starting from determined games at the bottom level.

218 In particular, note how the winning condition reverses when we move from E to A.

“lig-09-25” — 2013/10/29 — 9:44 — page 409 — #427i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 409

Example 19.1 First-order logic
We start with the first-order evaluation games of Chapter 14 for formulas ' on
models M . Their internal states were pairs

hcurrent subformula, current variable assignmenti.

The external board states are the variable assignments. Next, we split general
formula games into atomic games plus general constructions:

role switch d, two choices [,\, plus composition ;

The atomic games were of two kinds:

(a) atomic tests ?P checking whether P holds under the current assignment.

(b) object picking for quantifiers 9x, changing the current assignment s
to a new assignment s[x := d] by setting x equal to some object d.

Atomic tests can be seen as games for {E,A} in various ways, making sure at
states where P holds that the win is for E, and elsewhere for A. They have special
properties, not shared with games in general. For example, it does not matter in
which order we perform atomic tests, and performing the same test twice does not
change the outcomes:

?P ; ?Q = ?Q ; ?P, ?P ; ?P = ?P

Atomic quantifier games are special, too, in that player E has complete control
over outcomes: E can make sure that any next state occurs. Formally, their forcing
relations are “distributive,” satisfying a splitting condition:

if ⇢EGds,
[

i2I

Yi, then for some i 2 I, ⇢EGds, Yi

By contrast, for atomic quantifier games 9x, the passive player A has just one
power, being the total set of all x-variants of the current assignment s.

Given these stipulations for atomic games, our earlier recursive clauses compute
forcing relations for any first-order evaluation game game(',M). It is also easy
to see that the result squares with the success lemma of Chapter 14. Starting the
game from assignment s, E has a winning strategy if and only if M , s |= '. ⌅

Logical laws deconstructed All this is not mere reanalysis of what is known.
As we have seen in Chapter 14, the game view decomposes the laws of first-order

“lig-09-25” — 2013/10/29 — 9:44 — page 410 — #428i
i

i
i

i
i

i
i

410 Operations on Games

logic into several layers. Some are general game validities, having nothing to do
with specific games of fact testing or object picking. This is true for our running
example of Boolean distribution, or idempotence of choice: ' _ '$ '. Other laws
are special e↵ects of the atomic repertoire, such as idempotence of composition for
tests or quantifier games. Its game form G ; G = G fails as a general law. Still other
laws may be called intermediate, such as distribution for existential quantifiers:

9x(' _) $ 9x' _ 9x

In terms of games, its general form is

G ; (G0 [G00) = (G ; G0)[(G ; G00)

This is not a valid law. We can see this quickly by substituting another game for
A: for example, a universal quantifier game. We then get the invalid 8x(' _) $
8x' _ 8x . The special reason for the validity is the above distributive character
of the game 9x. Since distributivity is a ubiquitous property, its game law may be
considered intermediate in force.

Thus, from a game perspective, the usual predicate-logical validities are a mixed
bag. General repercussions of this observation will be found in Chapter 24.

Example 19.2 Modal logic
Other samples of this style of analysis are modal and dynamic logic. This time,
modalities are atomic games. Existential modalities hai make player E choose some
Ra-successor of the current state, universal [a] are duals for player A.219 This time,
however, E can lose, when there is no such successor. Thus, we have games where
players may have to move, but cannot, and there is an issue of defining the proper
forcing relations again. If we disregard winning conditions, we get

⇢Ehaix, Y i↵ 9y(Raxy ^ y 2 Y)

⇢Ahaix, Y i↵ Ra[x] ✓ Y

Both the first-order and the modal perspective will return in our analysis of the
game algebra of sequential operations in Chapter 24.

219 This follows from the “standard translation” sending haiq to 9y(R
a

xy ^ Qy).

“lig-09-25” — 2013/10/29 — 9:44 — page 411 — #429i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 411

19.4 Dynamic game logic

Basic axiom system Here is the basic proof system for dynamic game logic,
DGL. It reasons about games by exploiting analogies with dynamic logic, PDL. We
consider only the operations of E’s choice ([), composition (;), and dual (d), with
G1 \G2 defined as above. For simplicity, we start with a version of the system for
determined games.

Definition 19.4 Dynamic logic for determined games
The minimal dynamic game logic (also called DGL) for determined games has the
following principles:

(a) All valid principles of propositional logic: both axioms and rules.
(a) Monotonicity: if '! is provable, then so is {G}'! {G} .
(a) Reduction laws for existence of strategies in compound games:

{G ; G0}' $ {G}{G0}'
{G[G0}' $ {G}' _ {G0}'
{?P} $ P ^
{Gd}' $ ¬{G}¬'

A nondetermined version of this system will be presented below. ⌅

How it works Dynamic game logic encodes a good deal of “game algebra.”

Definition 19.5 Validity of game-algebraic identities
Two game expressions G and G0 are equal in the sense of DGL if the following
formula is valid: {G}q $ {G0}q, for some new proposition letter q. ⌅

This says that player E has the same powers for forcing outcomes in both games.
In determined DGL, this implies that A also has the same powers.220

220 In nondetermined games, E-equivalence by itself does not imply equivalent powers
for both players: we will see a nice illustration in Chapter 21.

“lig-09-25” — 2013/10/29 — 9:44 — page 412 — #430i
i

i
i

i
i

i
i

412 Operations on Games

if {G}q $ {G0}q is provable, then so is

{G}¬q $ {G0}¬q by the substitution rule, whence

¬{G}¬q $ ¬{G0}¬q using propositional logic, and

{Gd}q $ {G0d}q by the axiom for dual.

To convey a sense of the mechanics of dynamic game logic, here are a few formal
derivations for principles of general game algebra.

Game conjunction Intuitively, if E is to have a strategy guaranteeing ', then one is
needed in both games: {x}'^ {y}'. Using the definition of A’s choice game x\ y,
we prove this:

{x\ y}q $ {(xd [yd)d}q $ ¬{xd [yd}¬q $ ¬({xd}¬q _ {yd}¬q)
$ ¬{xd}¬q ^ ¬{yd}¬q $ ¬¬{x}¬¬q ^ ¬¬{y}¬¬q $ {x}q ^ {x}q

Boolean distribution Next, consider distribution (x_ y)^ z = (x^ z)_ (y ^ z), that
was analyzed informally earlier in this book using the definition of forcing:

{(x[y)\ z}q $ {x[y}q ^ {z}q $ ({x}q _ {y}q) ^ {z}q
$ ({x}q ^ {z}q) _ ({y}q ^ {z}q) $ {x\ z}q _ {y \ z}q

$ {(x\ z)[(y \ z)}q

Disjunction over conjunction (i.e., my choice over your choice) is proved similarly.

Composition and choice With distribution of sequential composition over choice,
things are di↵erent. Here is a formal derivation for one version:

{(x[y) ; z}q $ {x[y}{z}q $ {x}{z}q _ {y}{z}q $ {x ; z}q _ {y ; z}q
$ {(x ; z)[(y ; z)}q

And here is a failed attempt for the other version (already discarded earlier on):

{x ; (y [z)}q $ {x}{y [z}q
$ {x}({y}q _ {z}q) $ (not in DGL: only in PDL) {x}{y}q _ {x}{z}q

$ {x ; y}q _ {x ; z}q $ {(x ; y)[(x ; z)}q221

221 Dropping the distribution law {G}('_) $ {G}'_ {G} while retaining the other
{G[G0}'$ {G}' _ {G0}', is reminiscent of process algebra (cf. Milner 1989).

“lig-09-25” — 2013/10/29 — 9:44 — page 413 — #431i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 413

Dual of composition Finally, here is a valid derivation for a key law of game dual:

{(x ; y)d}q $ ¬{x ; y}¬q $ ¬{x}{y}¬q $ ¬{x}¬¬{y}¬q $ ¬{x}¬{yd}q
$ {xd}{yd}q $ {xd ; yd}q

Meta-theorems The key results about DGL are in Parikh (1985) and Pauly (2001).

Theorem 19.1 Universal validity in dynamic game logic over forcing models with
iteration, but without dual, is e↵ectively axiomatized by the above DGL laws plus
the iteration axioms of dynamic logic.

The relevant iteration axioms for the DGL modality will be stated below.

Theorem 19.2 Dynamic game logic is decidable.

The proof of the first result uses a combination of standard neighborhood methods
for completeness plus ideas from the completeness proof for PDL (cf. Harel et al.
2000), and we will give an impression in the final section of this chapter, using a
nondetermined two-player version. Whether this also works for the full language
including game dual is a longstanding open problem.

The second result follows by an e↵ective reduction of DGL validity to PDL valid-
ity, in a way suggestive of the reasoning in Chapter 24 (cf. also Goranko 2003). The
precise complexity of the SAT problem for this game logic is still unknown.

The general version Dropping determinacy gives an elegant version of DGL with
separate modalities {G,E}' and {G,A}'. Here are the basic axioms:

{G[G0,E}' $ {G,E}' _ {G0,E}'
{G[G0,A}' $ {G,A}' ^ {G0,A}'
{Gd,E}' $ {G,A}'
{Gd,A}' $ {G,E}'
{G ; G0,E}' $ {G,E}{G0,E}'
{G ; G0,A}' $ {G,A}{G0,A}'

Of the domestic rules for forcing relations as such, we retain

{G,E}'! {G,E}(' _) upward monotonicity

{G,A}'! {G,A}(' _) upward monotonicity

{G,E}'! ¬{G,A}¬' consistency

“lig-09-25” — 2013/10/29 — 9:44 — page 414 — #432i
i

i
i

i
i

i
i

414 Operations on Games

Practical uses and meta-properties of this version are similar to those above.

Iterated games DGL has a further operation of finite iteration G⇤, satisfying the
two standard PDL axioms of Chapter 1. In our notation, these are

{G⇤}'$ ' ^ {G}{G⇤}' fixed point axiom

(' ^ {G⇤}('! {G}')) ! {G⇤}' induction axiom

The iteration game lets player E play some finite number of runs of game G where
E need not say in advance how many, while infinite runs are blamed on A.222

This concludes our presentation of the basics of dynamic game logic. Now we add
some topics, linking up with earlier themes in Parts I and IV of this book.

19.5 Basic game algebra

As we have seen, the forcing semantics validates a basic algebra of game construc-
tion. Take a language of game expressions with variables for games and operations
[,d , ;. In addition, we add a name ◆ for the idle game, staying at the same state.

Definition 19.6 Algebraic validity
An identity between two game expressions G = G0 is valid if interpreting these
expressions in any DGL model gives both players the same forcing relations. The
useful auxiliary relation G  G0 denotes the analogous valid inclusion.223 ⌅

We now explore some basic validities, following van Benthem (1999).

Fact 19.2 The following principles are valid in game algebra:

(a) “De Morgan algebra” for disjunction, conjunction, and negation, whose laws
are defined separately below.

222 Other notions of iteration occur in this book: in the evolutionary games of our Intro-
duction, infinite evaluation games for fixed point logics in Chapter 14, or games of model
comparison in Chapter 15, where it is E who wants to keep the game going forever. It is
an interesting problem how to incorporate these into DGL.

223 One natural variation that does not matter to the algebraic laws would define validity
by requiring forcing bisimulation, introduced below, between the games denoted by two
terms in di↵erent models.

“lig-09-25” — 2013/10/29 — 9:44 — page 415 — #433i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 415

(b) G ; (G0 ; G00) = (G ; G0) ; G00 associativity

(G[G0) ; G00 = (G ; G00)[(G0 ; G00) left-distribution

(G ; G0)d = Gd ; G0d dualization

(c) if G  G0, then H ; G  H ; G0 right-monotonicity

(d) G ; ◆ = G = ◆ ; G unit game

Definition 19.7 De Morgan algebra
The system of De Morgan algebra has the standard axioms for a distributive lattice,
plus an idempotent negation:

x[x = x x\ x = x
x[y = y [x x\ y = y \ x
x[(y [z) = (x[y)[z x\ (y \ z) = (x\ y)\ z
x[(y \ z) = (x[y)\ (x[z) x\ (y [z) = (x\ y)[(x\ z)
(xd)d = x
(x[y)d = xd \ yd (x\ y)d = xd [yd

Non-valid in De Morgan algebra are excluded middle and non-contradiction. This
makes sense. For instance, as we saw in the Introduction, for games in general, x_¬x
is no longer valid, since the game x need not be determined. ⌅

In this axiomatization, the crucial second set of laws is reminiscent of relational
algebra (with ; behaving like composition of binary relations),224 but the behavior
of the game dual is sui generis. Further valid identities are derivable from these
principles by algebraic manipulation.225 Soundness follows by direct inspection, or
via a more technical route sketched in the next remark.

Remark Soundness via translation
A link with classical logic clarifies the above results. Starting from relation symbols
⇢Ea xY, ⇢Aa xY for basic game expressions, write the power relations for both players
in complex games using the earlier recursive clauses. These expressions are logically
equivalent for both game terms in the given algebraic laws. For example, proposi-
tional distribution follows by Boolean propositional distribution applied to power
relation formulas. Similarly, left distribution follows by mere predicate logic.

224 Game algebra lacks the right distribution: G ; (G0 [G00) = (G ; G0) [(G ; G00) of
relation algebra. The reason for this failure has already been explained.

225 The reader may want to try the case of (G\G0) ; G00 = (G ; G00)\ (G0 ; G00).

“lig-09-25” — 2013/10/29 — 9:44 — page 416 — #434i
i

i
i

i
i

i
i

416 Operations on Games

Example 19.3 Non-valid principles
The translation is illustrated by two earlier-mentioned non-valid principles.

(a) G\ (G0 [¬G0) = G. On the left, one has ⇢EGxY ^ (⇢EG0xY _ ⇢AG0xY) for E’s
powers. This is not equivalent to the formula ⇢EGxY on the right: ⇢EG0xY _ ⇢AG0xY
is not a game tautology.

(b) G ; (G0 [G00) = (G ; G0)[(G ; G00). On the left, player E gets 9Z : ⇢EGxZ ^
8z 2 Z : (⇢EG0zY _ ⇢EG00zY). This is not equivalent to E ‘s powers on the right-hand
side, given by 9Z(⇢EGxZ ^ 8z 2 Z⇢EG0zY) _ 9Z(⇢EGxZ ^ 8z 2 Z : ⇢EG0zY). ⌅

The following result shows that our analysis is on the mark.

Theorem 19.3 Basic game algebra is complete for algebraic validity.

Proof One uses a reduction of game algebra to modal logic, reducing forcing modal-
ities { } to modal combinations 32. See Goranko (2003) for this technique, going
back to Parikh (1985), that will also be used in Chapter 24.226 ⌅

Open problems remain. For instance, how does the algebra change when we
assume determinacy for all games? In Chapters 20 and 21, we will study laws for a
richer repertoire, including parallel operations on games.

19.6 Bisimulation, invariance, and safety

In Chapters 1 and 11, we raised the issue of when two games are the same in a
natural sense, finding answers in versions of bisimulation. The language of dynamic
game logic does not describe games directly, but we can ask when two game boards
are the same for DGL.

Definition 19.8 Forcing bisimulation
A forcing bisimulation between two models M and N is any binary relation E
between their states that satisfies the following conditions:

(a) Atomic harmony If xEy, then x and y verify the same proposition letters.

(b) Back-and-forth For each player i and each atomic forcing relation:

(i) If xEy and ⇢M ,i
g x, U , then there is a V with ⇢N ,i

g y, V & 8v 2 V 9u 2 U : uEv.

226 Venema (2003) presents a more purely algebraic proof.

“lig-09-25” — 2013/10/29 — 9:44 — page 417 — #435i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 417

(ii) If xEy and ⇢N ,i
g y, V , then there is a U with ⇢M ,i

g x, U & 8u 2 U9v 2 V : uEv

This is essentially the notion of power bisimulation from Chapter 11. ⌅

Forcing bisimulation fits well in the context of this chapter.

Fact 19.3 (a) The DGL language is invariant for forcing bisimulations. (b) If
two finite models M , s and N , t satisfy the same DGL formulas, then there exists
a forcing bisimulation E between them with sEt.

Proof The inductive proof of (a) follows the invariance facts in Chapter 1. The proof
of (b) follows the analogous fact about power bisimulation in Chapter 11. ⌅

As with PDL programs in Chapter 1, the proof of (a) involves a notion of safety
with forcing relations for complex game terms, that we will now explain.

Safety for bisimulation In proving the invariance proposition, we need a special
step. A forcing bisimulation E only guarantees the correct back-and-forth behavior
for atomic relations ⇢g. But in proving that arbitrary formulas {G}' are invari-
ant, we need back-and-forth behavior of E for all relations ⇢MG for complex game
expressions G in our models. The latter were constructed out of the former by our
recursive rules. At this point, we introduce a notion that is known from dynamic
logic (van Benthem 1996).

Definition 19.9 Safety for forcing bisimulation
A game operation G#G0 is safe for forcing bisimulation if for any forcing bisimu-
lation E between models that satisfies the above back-and-forth conditions for the
power relations ⇢G, ⇢G0 , E also satisfies these conditions for ⇢MG#G0 . ⌅

We state the following results for forcing in determined games, but our arguments
also work for the nondetermined two-player format.

Fact 19.4 All operations of DGL are safe for forcing bisimulation.

Proof Suppose that a relation E bisimulates between modelsM andN with respect
to the two forcing relations ⇢G and ⇢G0 ($). We show that it also bisimulates for
the defined relations ⇢G[G0 , ⇢G ;G0 , and ⇢Gd , and that for both players.

Case (a1) Let xEz, and ⇢M ,E
G[G0x, Y . Then either ⇢M ,E

G x, Y or ⇢M ,E
G0 x, Y : say, the

former. By ($) there is a set V such that ⇢N ,E
G x, V and every point v 2 V has an

E-related point y 2 Y . But then a fortiori also ⇢N ,E
G[G0x, V , while every v 2 V still

has an E-related point y 2 Y . The other direction goes analogously. Case (a2) We
need to show the same invariance for player A. In this case, the given set Y has

“lig-09-25” — 2013/10/29 — 9:44 — page 418 — #436i
i

i
i

i
i

i
i

418 Operations on Games

both ⇢M ,A
G x, Y and ⇢M ,A

G0 x, Y . By ($), we can find suitably matching sets V and
W in N , and the union of these is the required total match for Y , being a power
for player A in both games.

Case (b) Let xEz, while ⇢M ,E
G ;G0x, Y . By the definition of forcing relations, there

is a set U with ⇢M ,E
G x, U and 8u 2 U : ⇢M ,E

G0 u, Y . Using ($) once more, there is
a set V with ⇢N ,E

G z, V where every v 2 V has an E-related u 2 U . Again by ($),
this time applied to the links uEv, there exist sets Wv with ⇢N ,E

G0 v,Wv while every
w 2 WV has an E-related y 2 Y . Now, the union of all of these sets Wv is a set
W that serves as a counterpart for the initial Y in M , as is easy to check. The
opposite direction, and also the cases for player A, are similar.
Case (c) Finally, let xEz, while also ⇢M ,E

Gd x, Y . By the definition of determined

forcing relations, ¬⇢M ,E
G x, (M�Y), where M is the universe of M . To find a match

to Y , consider the set V = E[Y], where E[Y] consists of all points z in N that are
E-related to some y 2 Y :

Claim ⇢N ,E
Gd z, V and 8v 2 V 9y 2 Y : yEv.

The second conjunct is clear from the definition. To prove the first, recall its
meaning: ¬⇢N ,E

G z, (N�V) with N the universe ofN . Suppose that ⇢N ,E
G z, (N�V).

By assumption (#), there must be a set U in M such that ⇢M ,E
G x, U while every

u 2 U has an E-related point v 2 (N � V). In particular, this means that the set
U is disjoint from the initial Y . This is so because any point in U is E-related to
some point v in (N �E[Y]), where by definition, the latter has no E-relations with
Y -points. By monotonicity then, we would have that ⇢M ,E

G z, (M � Y). But this
contradicts the initial assumption. ⌅

Not all operations are safe for forcing bisimulation, and we give an illustration.

Example 19.4 Unsafe game operations
A counterexample is thirteen(G), letting players force just those sets of states that
contain at least thirteen elements. It is easy to find a concrete counterexample,
using the fact that forcing bisimulations cannot count numbers of states.

Natural operations and bisimulation Our analysis illustrates a general desider-
atum for a process theory: the choice of an operational repertoire must fit the
relevant notion of structural equivalence. For instance, van Benthem (1996) stud-
ied safety for complex programs viewed as binary state-to-state relations, finding
the following theorem on expressive completeness of the PDL repertoire.

“lig-09-25” — 2013/10/29 — 9:44 — page 419 — #437i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 419

Theorem 19.4 The first-order definable operations on programs that are safe for
bisimulation are precisely those that can be defined by arbitrary applications of
union, composition, test negation, and atomic tests.

Pauly (2001) analyzes syntactic formats for safety in dynamic game logics,
showing how forcing bisimulation lives in harmony with the operations of DGL.

Coda: Two levels again Bisimulation and invariance arose by thinking about
internal structure of single games. But here we have seen how they also make sense
for game combination. Perhaps the internal and external perspectives distinguished
at the beginning of this chapter are not so di↵erent after all.

19.7 Conclusion

The main points We have explored a dynamic logic of sequential game operations
merging ideas from logic games and game logics at a well-chosen abstraction level.
It encodes some of the basic reasoning about strategies behind many of the systems
of Part IV. The theory still looks like a propositional dynamic logic of programs, but
now for complex games over neighborhood models with forcing bisimulation, and
we have developed its basic model-theoretic and axiomatic properties. In addition,
we found interesting new features, such as a decidable algebra of game operations.

Open problems Many questions arise now, connecting to earlier topics in this
book. First, it makes sense to add imperfect information, preferences, and other
features of real games, to see whether the elegant compositional design of our
logic survives such an extension. Next, there is the issue of a natural operational
repertoire for games, and in particular, dealing with operations for which PDL
has not been so suitable historically as a process theory, including parallel game
combinations. Also, much remains to be understood concerning the connection of
DGL to infinite games and temporal or modal fixed point logics, a topic that will
return in Chapters 20 and 25. Finally, as to game equivalences, DGL is clearly
power-oriented in the sense of Chapter 11. Could there be similar logics for games
at finer action levels of detail, such as the bisimulations in Chapter 1?

“lig-09-25” — 2013/10/29 — 9:44 — page 420 — #438i
i

i
i

i
i

i
i

420 Operations on Games

19.8 Literature

The presentation in this chapter is from the lecture notes of van Benthem (1999). An
extension of the framework to parallel products of games is given in van Benthem
et al. (2008).

Key sources on DGL are Parikh (1985) and Pauly (2001). Also relevant is the
survey article of van der Hoek & Pauly (2006). Sources for general neighborhood
semantics were given in Chapter 11.

19.9 Further directions

Here are two further threads following up on basic dynamic game logic. We have
put them in this separate final section to avoid making the chapter top-heavy.

DGL with parallel operations Dealing with parallel composition of programs
and distributed computation has not been PDL’s strongest suit, and systems of
process algebra took over around 1980 (cf. Milner 1999, Bergstra et al. 2001). Even
so, a system of “concurrent PDL” exists using sets of local states as the output
of computations (cf. Goldblatt 1992, van Benthem et al. 1994). For games, too,
parallel products make sense, as we will see in Chapters 20 and 21. Indeed, standard
strategic games already allowed for simultaneous moves (cf. Chapter 12).

Concurrent PDL can be merged with DGL into a natural system that performs
one more set lifting (van Benthem et al. 2008). Here is a sketch. Models for concur-
rent PDL have accessibility relations Rs,X of type S⇥}(S) with the output read
conjunctively: from state s, the program can produce all of the set X together.

Definition 19.10 Game boards for concurrent DGL
Models for concurrent DGL are like models for DGL, but now with forcing rela-
tions of type S ⇥ }(}(S)) running from states to families of sets of states. The
interpretation of the inner set layer is as in concurrent PDL, but the outer set layer
is disjunctive: the game can end in one of the sets of states collected there.227 ⌅

227 This allows for two notions of monotonicity: increasing outer level sets is a form of
weakening like in DGL, but increasing inner level sets means stronger output.

“lig-09-25” — 2013/10/29 — 9:44 — page 421 — #439i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 421

Our earlier forcing definitions for sequential game operations lift to this setting in
a straightforward manner. But more interesting is the emergence of new operations.

Definition 19.11 Forcing for parallel game product
Here is a natural parallel product G⇥G0 of games, collecting outputs for subgames:

⇢iG⇥G0sX i↵ 9Y, Z : ⇢iGs, Y & ⇢iG0s, Z & X = {y [z | y 2 Y & z 2 Z}

This operation fits natural games that allow for simultaneous moves, such as those
of Chapters 12 and 13. The modality of the system is now interpreted as follows

M , s |= {G, i}' i↵ 9X : ⇢M ,i
G s,X & for all x 2

[
X : M,x |= '

Further details are as in our earlier modal logics of forcing. ⌅

The following theorem can be shown by a standard completeness argument.

Theorem 19.5 The logic of the sequential game operations plus the above parallel
product is axiomatizable and decidable.

The crucial DGL style decomposition axiom for the product is

{G⇥G0, i}' $ {G, i}' ^ {G0, i}'

This encodes a game algebra, which has not yet been axiomatized equationally.

Remark Collective action
The language and interpretation chosen here looks only at local properties of states.
But simultaneous action is often at the same time collective action. It is also shown
in van Benthem et al. (2008) how to lift the indices of evaluation to “collective set
states” X instead of single points s, in a format

M , X |= {G, i}',

where we can now also have a richer language with modalities referring to the
natural inclusion structure of these new collective states. This modified logic of
collective action for games has not yet been explored in a game setting.

Concurrent DGL seems a good fit with the IF logic of Chapter 21, although the
only current study is Galliani (2012b) on connections with the dependence logics
of Väänänen (2007). But quite di↵erent approaches make sense as well. Our next
chapter will pursue a line on parallel games based on proof theory and linear logic.

“lig-09-25” — 2013/10/29 — 9:44 — page 422 — #440i
i

i
i

i
i

i
i

422 Operations on Games

Our second theme is logics for neighborhood models that may give the reader a
better feeling for the mechanics of what has been proposed in this chapter.

PDL in neighborhood semantics The system DGL without dual is much like a
propositional dynamic logic on neighborhood models with monotonic accessibility
relations as in Chapter 11. It is of interest to see how its completeness works, since
it ties together many notions introduced in this chapter.

Theorem 19.6 PDL on forcing relations in neighborhood models is completely
axiomatized by the modal base logic of forcing plus the standard recursive axioms
of PDL for complex programs.

What follows is a compact summary of the main steps leading up to this result.

Semantics Accessibility relations for complex programs with choice and composition
are defined as before, but with simplified notation, since we can now ignore player
markings. The crucial further clause is for the iteration operator. It can be stated
in a relational fixed point format such as that of Chapters 1, 2, and 8, now for
point-to-set relations:

R⇡⇤ = µS, x,X • (x 2 X _ 9Y (xR⇡Y ^ 8y 2 Y : ySX)).228

Next, for formulas, we define the usual forcing modality:

M , s |= h⇡i' i↵ 9X : sR⇡X ^ 8x 2 X : M , x |= '.229

Deduction in this system involves familiar principles from earlier in this book.

Axiomatics The logic validates all axioms of PDL minus modal distribution, now
replaced by monotonicity. We still have left-distribution by the recursion axiom for
program union. For iteration, we adopt the following inference principles:

' _ h⇡ih⇡⇤i'! h⇡i'
if ` (' _ h⇡i↵) ! ↵, then ` h⇡⇤i'! ↵

Now we come to the proof of our main result.

228 While this looks like the usual notion of transitive closure, there is no guarantee that
the approximation sequence stops at stage !: finite approximations need not su�ce.

229 Given the monotonicity of the relations, this is equivalent to sR
⇡

J'KM , where the
double brackets stand for the usual denotation in the model of all worlds satisfying '.

“lig-09-25” — 2013/10/29 — 9:44 — page 423 — #441i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 423

Completeness Fix any valid formula ', and stick to the finite sublanguage induced
by it in the Fisher-Ladner closure FL(') of ' (see Blackburn et al. 2001 for this
standard device). Each atom s has a canonical finite description #s by enumeration,
and each (finite) set of atoms X has a finite description #X by disjunction of
descriptions for its members. We define the following relation for each program ⇡:

sS⇡X i↵ #s ^ h⇡i#X is consistent.

Taking this explanation for atomic programs only, and then proceeding inductively
by the truth definition gives us the standard semantic relations R⇡. The following
connection between these two relations is crucial.

Inclusion Lemma S⇡ ✓ R⇡

Proof Case (a). Atomic programs a satisfy the inclusion by definition. Case (b).
For program union, first use the PDL inference from h⇡1 [⇡2i' to h⇡1i' _ h⇡2i'
to show that, if #s ^ h⇡1 [⇡2i#X is consistent, then so is #s ^ h⇡1i#X or
#s^ h⇡2i#X. The rest follows by the inductive hypothesis. Case (c). Program com-
position requires a slightly more complex argument. Using one direction of the PDL
composition axiom, if #s ^h⇡1 ; ⇡2i#X is consistent, then so is #s ^h⇡1ih⇡2i#X.
All atoms t whose #t are consistent with h⇡2i#X form a set Y . The following
implication states how these notions behave.

Claim h⇡2i#X provably implies #Y .230

The claim implies that we also have #s ^ h⇡1i#Y consistent, while, by the
definition of Y , #t ^h⇡2i#X is consistent for all t 2 Y . But then, by the inductive
hypothesis for ⇡ = ⇡1and⇡2, the desired inclusion S⇡ ✓ R⇡ follows. Case (d). The
inclusion for test programs is straightforward by the inductive hypothesis. Case
(e). Finally, dealing with program iteration crucially uses the smallest fixed point
induction rule. Let #s ^ h⇡⇤i#X be consistent for some set of atoms X. We show
that s belongs to the smallest fixed point of the following procedure. Start with X
and keep applying the map

F (Y) = X [{s | sS⇡Y }

230 To see this, suppose that the implication is not derivable. Then there is a maximally
consistent set ⌃ containing h⇡2i#X and ¬#Y . Restricting ⌃ to the FL(') sublanguage
gives an atom t in the set Y : but all of these atoms are ruled out by the presence of ¬#Y .
This is a contradiction, and so the claim is proved.

“lig-09-25” — 2013/10/29 — 9:44 — page 424 — #442i
i

i
i

i
i

i
i

424 Operations on Games

If we can show this fact about s, the rest of the proof follows in a standard manner,
relying on the inductive hypothesis. Now, in our finite model, the given procedure
stops at some finite stage in a finite set A where

A = X [{s | sS⇡A} ($)

The following claim relates this observation to a fact about provability in PDL.

Claim The implication (#X _ h⇡i#A) ! #A is provable.231

Given the implication of the claim, by the smallest fixed point rule, h⇡⇤i#X !
#A is provable. But then, since #s^h⇡⇤i#X was consistent, #s^#A is consistent,
too, and this must mean that s 2 A. ⌅

The final piece of the completeness argument is the usual Truth Lemma.

Truth Lemma The equivalence ' 2 s i↵ s |= ' holds for all states and formulas.

Proof The proof is by induction on formulas, with a subinduction on programs for
h⇡i'. The latter’s direction from left to right uses the inclusion lemma. From right
to left, the inductive steps use half of the PDL program axioms, appealing only to
the monotonicity of the logic. We examine three cases. Case (a). Consider an atomic
program a with s |= hai'. By the truth definition, we have a set X with sRaX,
i.e., #s ^ h⇡i#X is consistent in our logic, and for all x 2 X : x |= '. Then by the
inductive hypothesis, ' 2 x. Now we observe that all this implies ` #X ! ', by a
standard argument about maximally consistent sets and their FL(') restrictions.
But then by monotonicity, #s ^ hai' is also consistent, and hence hai' 2 s. Case
(b). Consider a program composition with s |= h⇡1 ; ⇡2i'. By the truth definition,
we have a set X with sR⇡1 ;⇡2X and for all x 2 X : x |= '. Thus, there is a set
Y with sR⇡1Y and for all y 2 Y : yR⇡2X while for all x 2 X : x |= '. In other
words, for all y 2 Y : y |= h⇡2i'. Then by the inductive hypothesis, h⇡1ih⇡2i' 2 s,
and using one half of the PDL axiom for composition, also h⇡1 ; ⇡2i' 2 s. Case (c).
Consider a program iteration with s |= h⇡⇤i'. Again, using the truth definition, we
either ' have true at s, and hence by the inductive hypothesis in s, where it implies
the presence of h⇡⇤i' by half of our fixed point axiom. Or, we have sets X,Y with

231 To see this, note first that #X ! #A is provable, as X ✓ A. If h⇡i#A ! #A is
not provable, then there is a maximally consistent ⌃ including h⇡i#A,¬#A. Restricting
⌃ to the FL(') sublanguage, we get an atom t with tS

⇡

A that is not in A because of the
presence of ¬#A in ⌃. This contradicts ($).

“lig-09-25” — 2013/10/29 — 9:44 — page 425 — #443i
i

i
i

i
i

i
i

Dynamic Logic of Sequential Game Operations 425

sR⇡Y ^8y 2 Y : yR⇡⇤X and all x 2 X satisfy '. But then all y 2 Y satisfy h⇡⇤i',
and so s satisfies h⇡ih⇡⇤i'. Thus, by the inductive hypothesis, h⇡ih⇡⇤i' is in s. By
the remaining part of the fixed point axiom, we also get h⇡⇤i' in s. ⌅

The earlier open problem concerning completeness for DGL with game dual added
emerges in this setting when we try to modify the above proof to deal with player-
dependent accessibility relations.

