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Chapter 7     SOFT INFORMATION, CORRECTION, AND BELIEF CHANGE 

 
So far, we developed dynamic logics that deal with knowledge, inference, and questions, 

all based on information and truth. Now we want to look at another pervasive attitude that 

agents have toward information, namely, their beliefs. This chapter will show how belief 

change fits well with our dynamic framework, and develop some of its logical theory. 131 

This puts one more crucial aspect of rational agents in place: not their being right about 

everything, but their being wrong, and subsequent acts of self-correction. 
 
7.1 From knowledge to belief as a trigger for actions 
While knowledge is important to agency, our actions are often driven by fallible beliefs.     

I am riding my bicycle this evening because I believe it will get me home, even though my 

epistemic range includes worlds where the San Andreas Earthquake strikes. Decision 

theory is about choice and action on the basis of beliefs, as knowledge may not be 

available. Thus, our next step in the logical dynamics of rational agency is the study of 

beliefs, viewed as concretely as possible. Think of our scenarios so far. The cards have 

been dealt. I know that there are 52 of them, and I know their colors. But I have more 

fleeting beliefs about who holds which card, or about how the other agents will play. 132 
 
Hard versus soft information  With this distinction in attitude comes a richer dynamics. A 

public announcement !P of a fact P was an event of hard information that changes 

irrevocably what I know. When I see the Ace of Spades played, I come to know that no 

one has it any more. This is the trigger that drove our dynamic epistemic logics in Chapters 

3 and 4. Such events of hard information may also change our beliefs – and we will find a 

complete logical system for this. But there are also events of soft information, affecting my 

beliefs without affecting my knowledge about the cards. I see you smile. This makes it 

more likely that you hold a trump card, but it does not rule out that you do not. To describe 

this, we will use worlds with plausibility orderings supporting dynamic updates. 
 
The tandem of jumping ahead and self-correction  Here is what is most important to me 

in this chapter from the standpoint of rational agency. As acting agents, we are bound to 

form beliefs that go beyond the hard information we have. And this is not a concession to 

                                                
131 Later on, we discuss how this relates to the alternative AGM style (Gärdenfors & Rott 1995). 
132 Of course, I could even be wrong about the cards (perhaps the Devil added his visiting card) –  

but this worry seems morbid, and not useful in investigating normal information flow. 
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human frailty or to our mercurial nature. It is rather the essence of creativity, jumping 

ahead to conclusions we are not really entitled to, and basing our beliefs and actions on 

them. But there is another side to this coin, that I would dub our capacity for self-

correction, or if you wish, for learning. We have an amazing capacity for standing up after 

we have fallen informationally, and to me, rationality is displayed at its best in intelligent 

responses to new evidence that contradicts what we thought so far. What new beliefs do we 

form, and what amended actions result? Chapter 1 saw this as a necessary pair of skills: 

jumping to conclusions (i.e., beliefs) and correcting ourselves in times of trouble. And the 

hallmark of a rational agent is to be good at both: it is easy to prove one theorem after 

another, it is hard to revise your theory when it has come crashing down. So, in pursuing 

the dynamic logics of this chapter, I am trying to chart this second skill. 
 
7.2 Static logic of knowledge and belief 

Knowledge and belief have been studied together ever since Plato proposed his equation of 

knowledge with ‘justified true belief’, and much of epistemology is still about finding an 

ingredient that would turn true belief into knowledge. Without attempting this here (see 

Chapter 13 for our thoughts), how can we put knowledge and belief side by side?  
 
Reinterpreting PAL One easy route reinterprets dynamic-epistemic logic so far. We read 

the earlier K-operators as beliefs, again as universal quantifiers over the accessible range, 

placing no constraints on the accessibility relation: just pointed arrows. One test for such 

an approach is that it must be possible for beliefs to be wrong: 
 
Example A mistaken belief. 

Consider the following model with two worlds that are epistemically accessible to each 

other, but the pointed arrow is the only belief relation. Here, in the actual black world to 

the left, the proposition p is true, but the agent mistakenly believes that ¬p: 
 
   
   p          ¬p          ■ 
 
With this view of doxastic modalities (cf. Hintikka 1962), the machinery of DEL works 

exactly as before. But there is a problem:  
 
Example, continued 

Consider a public announcement !p of the true fact p. The PAL result is the one-world 

model where p holds, with the inherited empty doxastic accessibility relation. But on the 
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universal quantifier reading of belief, this means the following: the agent believes that p, 

but also that ¬p, in fact B⊥ is true at such an end-point.        ■ 
 
In this way, agents who have their beliefs contradicted are shattered and start believing 

anything. Such a collapse is unworthy of a rational agent in the sense of Chapter 1, and 

hence we will change the semantics to allow for more intelligent responses. 
 
World comparison by plausibility A richer view of belief follows the intuition that an 

agent believes the things that are true, not in all her epistemically accessible worlds, but 

only in those that are ‘best’ or most relevant to her. I believe that my bicycle will get me 

home on time, even though I do not know that it will not suddenly disappear in a seismic 

chasm. But the worlds where it stays on the road are more plausible than those where it 

drops down, and among the former, those where it arrives on time are more plausible than 

those where it does not. Static models for this setting are easily defined: 
 
Definition Epistemic-doxastic models. 

Epistemic-doxastic models are structures M = (W, {~i}i∈I, {≤i, s}i∈I,V) where the relations ~i 

stand for epistemic accessibility, and the ≤ i, s are ternary comparison relations for agents 

read as follows, x ≤ i, s y if, in world s, agent i considers y at least as plausible as x.    ■ 
 
Now epistemic accessibility can be an equivalence relation again. Models like this occur in 

conditional logic, Shoham 1988 on preference relations in AI, and the ‘graded models’ of 

Spohn 1988. One can impose several conditions on the plausibility relations, depending on 

their intuitive reading. Burgess 1981 has reflexivity and transitivity, Lewis 1973 also 

imposes connectedness: for all worlds s, t, either s ≤ t or t ≤ s. The latter yields the well-

known geometrical nested spheres for conditional logic. 133 As with epistemic models, our 

dynamic analysis works largely independently from such design decisions, important 

though they may be. In particular, connected orders yield nice pictures of a line of equi-

plausibility clusters, in which there are only three options for worlds s, t:  
 
 either strict precedence s < t or t < s, or equiplausibility s ≤ t ∧ t ≤ s.  
 
But there are also settings that need a fourth option of incomparability: ¬ s ≤ t ∧ ¬ t ≤ s. 

This happens when comparing worlds with conflicting criteria, as with some preference 

                                                
133 The natural strict variant of these orderings is defined as follows: s < t iff s ≤ t ∧ ¬ t ≤ s.  
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logics in Chapter 9. Sometimes also, partially ordered graphs are just the mathematically 

more elegant approach (Andréka, Ryan, Schobbens 2002; cf. Chapter 12). 
 
Languages and logics One can interpret many logical operators in this richer structure. In 

what follows, we choose intuitive maximality formulations for belief Biϕ. 134 First of all, 

there is plain belief, whose modality is interpreted as follows: 135 
 
Definition Belief as truth in the most plausible worlds. 

In epistemic-doxastic models, knowledge is interpreted as usual, while we put M, s |= Biϕ 

iff M, t |= ϕ for all worlds t that are maximal in the ordering λxy. x ≤ i, s y. 136       ■ 
 
But absolute belief does not suffice. Reasoning about information flow and action involves 

conditional belief. We write this as follows: Bψϕ, with the intuitive reading that, conditional 

on ψ, the agent believes that ϕ. This is close to conditional logic: 
 
Definition Conditional beliefs as plausibility conditionals. 

In epistemic-doxastic models, M, s |= Bψϕ iff M, t |= ϕ for all worlds t that are maximal for 

the ordering λxy. x ≤ i, s y in the set {u | M, u |= ψ}.         ■ 
 
Absolute belief Bϕ is the special case BTϕ. It can be shown that conditional belief is not 

definable in terms of absolute belief, so we have a genuine language extension. 137 138 
 
Digression on conditionals As with epistemic notions in Chapters 2, 3, conditional beliefs 

pre-encode beliefs that we would have if we were to learn certain things. 139 A formal 

                                                
134 These must be modified in non-wellfounded models allowing infinite descent in the ordering.  

This issue is orthogonal to the main thrust of this chapter, and we will largely ignore it. 
135 For convenience, henceforth we drop subscripts where they do not add insight. 
136 Here we used lambda notation to denote relations, but plain ‘x ≤ i, s y’ would serve, too. 
137 Likewise, the binary quantifier Most A are B is not definable in first-order logic extended with 

just a unary quantifier “Most objects in the universe are B” (cf. Peters & Westerståhl 2005). 
138 One can also interpret richer languages on epistemic-doxastic models. E.g., maximality suggests 

a binary relation best defined as “t is maximal in λxy. ≤s xy”. One can introduce a modality for this, 

defining conditional belief as [best ψ]ϕ. Dynamic extensions of our language will come below. 
139 Static pre-encoding versus dynamics. A conditional belief Bψϕ does not quite say that we would 

believe ϕ if we learnt that ψ. For an act of learning ψ changes the current model M, and hence the 

truth value of ϕ might change, as modalities in ϕ now range over fewer worlds in M|ψ. Similar 

things happened with epistemic statements after communication in Chapter 3 – and also in logic in 
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analogy is this. A conditional ψ ⇒ ϕ says that ϕ is true in the closest worlds where ψ is 

true, along some comparison order on worlds. This is exactly the above clause. Thus, 

results from conditional logic apply. For instance, on reflexive transitive plausibility 

models, we have this completeness theorem (Burgess 1981, Veltman 1985): 
 
Theorem The logic of Bψϕ is axiomatized by the laws of propositional logic  

 plus obvious transcriptions of the following principles of conditional logic:  

 (a) ϕ ⇒ ϕ, (b) ϕ ⇒ ψ implies ϕ ⇒ ψ ∨ χ, (c) ϕ ⇒ ψ, ϕ ⇒ χ imply ϕ ⇒ ψ ∧ χ,  

 (d) ϕ ⇒ ψ, χ ⇒ ψ imply (ϕ ∨ χ) ⇒ ψ, (e) ϕ ⇒ ψ, ϕ ⇒ χ imply (ϕ ∧ ψ) ⇒ χ.  
 
Epistemic-doxastic logics In line with the general approach in this book, we do not pursue 

completeness theorems for static logics of knowledge and belief. But for greater ease, this 

chapter makes one simplification that reflects in the logic. Epistemic accessibility will be 

an equivalence relation, and plausibility a pre-order over the equivalence classes, the same 

as viewed from any world inside the class. This makes the following axiom valid: 
 
 Bϕ →  KBϕ    Epistemic-Doxastic Introspection  
 
While this is a debatable assumption, it helps focus on the core ideas of the dynamics. 
 
7.3 Belief change under hard information 

Our first dynamic logic of belief revision puts together the logic PAL with our static 

models for conditional belief, following the same methodology as earlier chapters. We will 

move fast, as the general points of Chapters 2, 3 apply, and indeed thrive here.  
 
A complete axiomatic system For a start, we must locate the key recursion axiom for the 

new beliefs, something that can be done easily, using update pictures as before:  
 
Fact  The following formula is valid for beliefs after hard information: 

 [!P]Bϕ ↔ (P → BP([!P]ϕ). 
 
This is like the PAL recursion axiom for knowledge under announcement. But note the 

conditional belief in the consequent, that does not reduce to a conditional absolute belief 

B(P → ... Still, to keep the language in harmony, this is not enough. We need to know, not 

                                                                                                                                             
general. The relativized quantifier in “All mothers have daughters” does not say that, if we 

relativize to the subset of mothers, all of them have daughters who are mothers themselves. 
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just which beliefs are formed after new information, but which conditional beliefs. 140 What 

is the recursion principle for change in conditional beliefs under hard information? There 

might be a regress here toward conditional conditional beliefs, but in fact, we have: 
 
Theorem  The logic of conditional belief under public announcements is axiomatized  

 completely by (a) any complete static logic for the model class chosen,  

 (b) the PAL recursion axioms for atomic facts and Boolean operations,  

 (c) the following new recursion axiom for conditional beliefs:  

 [!P]Bψϕ  ↔  (P → B P∧ [!P]ψ  [!P]ϕ). 
 
Proof  First we check the soundness of the new axiom. On the left hand side, it says that in 

the new model (M|P, s), ϕ is true in the best ψ-worlds. With the usual precondition for true 

announcement, on the right-hand side, it says that in M, s, the best worlds that are P now 

and will become ψ after announcing that P, will also become ϕ after announcing P. This is 

indeed equivalent. The remainder of the proof is our earlier stepwise reduction analysis, 

noting that the above axiom is recursive, pushing announcement modalities inside.    ■ 
 
To get a joint version with knowledge, we just combine with the PAL axioms. 
 
Clarifying the Ramsey Test  Our dynamic logic sharpens up the Ramsey Test that says: “A 

conditional proposition A ⇒ B is true, if, after adding A to your current stock of beliefs, the 

minimal consistent revision implies B.” In our perspective, this is ambiguous, as B need no 

longer say the same thing after the revision. That is why our recursion axiom carefully 

distinguishes between formulas ϕ before update and what happens to them after: [!P]ϕ. 

Even so, there is an interesting special case of factual propositions ϕ without modal 

operators (cf. Chapter 3), that do not change their truth value under announcement. In that 

case, with Q, R factual propositions, the above recursion axioms read as follows:  
 
 [!P]BQ ↔ (P → BPQ), [!P]BRQ ↔  (P → BP∧R Q) 141       ■ 
 

                                                
140 This is overlooked in classical belief revision theory, which says only how new absolute beliefs 

are formed. One gets stuck in one round, as the new state does not pre-encode what happens in the 

next round. This so-called Iteration Problem cannot arise in a systematic logical set-up. 
141 For some paradoxes in combining the Ramsey test with belief revision, cf. Gärdenfors 1988. 

The nice thing of a logic approach is that every law we formulate is automatically sound. 
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Belief change under hard update is not yet revision in the usual sense, that can be triggered 

by weaker information (see below). Nevertheless, we pursue it a bit further, as it links to 

important themes in rational agency: variety of attitudes, and of consequence relations. The 

first will be considered right now, the second a bit later in this chapter. 
 
7.4 Exploring the framework: safe belief and richer attitudes 
The above setting may seem simple, but it contains some tricky scenarios: 
 
Example Misleading with the truth. 

Consider a model where an agent believes that p, which is indeed true in the actual world 

to the far left, but for the wrong reason: she finds the most plausible world the one to the 

far right. For convenience, assume each world verifies a unique proposition letter qi: 
 
  q1          q2        q3 

   
   p          ¬p        p   
 
Now giving the true information that we are not in the final world (‘¬q3’) updates to  
 
  q1          q2  

 
   p          ¬p          
 
in which the agent believes mistakenly that ¬p. 142            ■ 
 
Agents have a rich repertoire of attitudes In response, an alternative view of our task in 

this chapter makes sense. So far, we assumed that knowledge and belief are the only 

relevant attitudes. But in reality, agents have a rich repertoire of attitudes concerning 

information and action, witness the many terms in natural language with an epistemic or 

doxastic ring: being certain, being convinced, assuming, etcetera. 143  
 
Language extension: safe belief Among all possible options in this plethora of epistemic-

doxastic attitudes, the following new notion makes particular sense, intermediate between 

knowledge and belief. It has stability under new true information: 
 
 

 

                                                
142 Observations like this have been made in philosophy, computer science, and game theory. 
143 Cf. Lenzen 1980 for similar views. Krista Lawlor has pointed me also at the richer repertoire of 

epistemic attitudes found in pre-modern epistemology. 
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Definition Safe belief. 

The modality of safe belief B+ϕ is defined as follows: M, s |= B+ϕ  iff for all worlds t in the 

epistemic range of s with t ≥ s, M, t |= ϕ. In words, ϕ is true in all epistemically accessible 

worlds that are at least as plausible as the current one. 144            ■ 
 
The modality B+ϕ is stable under hard information, at least for factual assertions ϕ that do 

not change their truth value as the model changes. 145 And it makes a lot of technical sense, 

as it is the universal base modality [≤]ϕ for the plausibility ordering. This idea occurs in 

Boutilier 1994, Halpern 1997 (cf. Shoham & Leyton-Brown 2008), Baltag & Smets 2006, 

2007 (following Stalnaker), and independently in our Chapter 9 on preference logic. In 

what follows, we make safe belief part of the static doxastic language – as a pilot for a 

richer theory of attitudes in the background. Pictorially, one can think of this as follows: 
 
Example Three degrees of doxastic strength. 

Consider this picture, now with the actual world in the middle: 
 
   
 
Kϕ describes what we know: ϕ must be true in all worlds in the epistemic range, less or 

more plausible than the current one. B+ϕ describes our safe beliefs in further investigation: 

ϕ is true in all worlds from the middle toward the right. Finally, Bϕ describes the most 

fragile thing: our beliefs as true in all worlds in the current rightmost position.           ■ 
 
In addition, safe belief simplifies things, if only as a technical device: 
 
Fact The following assertions hold on finite epistemic connected plausibility models: 

 (a) Safe belief can define its own conditional variant, 

 (b) With a knowledge modality, safe belief can define conditional belief. 
 
Proof (a) is obvious, since we can conditionalize to B+(A → ϕ) like a standard modality. 

(b) uses a fact about finite connected plausibility models, involving the existential dual 

modality <B+> of safe belief (cf. van Benthem & Liu 2007, Baltag & Smets 2006): 
 
Claim Conditional belief Bψϕ is equivalent to the iterated modal statement  

 K((ψ ∧ ϕ) → < B+>(ψ ∧ ϕ ∧ B+ (ψ  → ϕ))). 

                                                
144 Safe belief in this style uses an intersection of epistemic accessibility and plausibility. We could 

also decouple the two, and introduce a modality for plausibility alone.  
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This claim is not for the faint-hearted, but it can be proved with a little puzzling. 146    ■ 
 
Safe belief also has some less obvious features. For instance, since its accessibility relation 

is transitive, it satisfies Positive Introspection, but since that relation is not Euclidean, it 

fails to satisfy Negative Introspection. The reason is that safe belief mixes purely epistemic 

information with procedural information (cf. Chapters 3, 11). Once we see that agents 

have a richer repertoire of doxastic-epistemic attitudes than K and B, old intuitions about 

epistemic axioms need not be very helpful in understanding the full picture. 
 
Finally, we turn to dynamics under hard information, i.e., our key recursion axiom: 
 
Theorem   The complete logic of belief change under hard information is the one whose  

 principles were stated before, plus the following recursion axiom for safe belief: 

 [!P] B+ϕ ↔ (P → B+(P → [!P]ϕ)). 
 
This axiom for safe belief under hard information implies the earlier one for conditional 

belief, by unpacking the above modal definition. 
 
7.5 Belief change under soft information: radical upgrade 

It is time to move to a much more general and flexible view of our subject. 
 
Soft information and plausibility change Our story so far is a hybrid: we saw how a soft 

attitude changes under hard information. The more general scenario has an agent aware of 

being subject to continuous belief changes, and taking incoming signals in a softer manner, 

without throwing away options forever. But then, public announcement is too strong: 
 
Example No way back. 

Consider the earlier model where the agent believed that ¬p, though p was in fact the case:  
 
   
   p          ¬p   
 
Publicly announcing p removes the ¬p-world, making later belief revision impossible.  ■ 
 

                                                                                                                                             
145 Note that new true information will never remove the actual world, our vantage point. 
146 The result generalizes to other models, and this modal translation is itself a good candidate for 

lifting the maximality account of conditional belief to infinite models, as well as non-connected 

ones. Alternative versions would use modalities for the strict ordering corresponding to reflexive 

plausibility ≤ to define maximal ψ-worlds directly in the format ψ ∧ ¬<<>ψ: cf. Girard 2008. 
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What we need is a mechanism that just makes incoming information P more plausible, 

without burning our ships behind us. An example are the default rules A ⇒ B in Veltman 

1996. Accepting a default conditional does not say that all A-worlds must now be B-

worlds. It makes the counter-examples (the A∧¬B-worlds) less plausible until further 

notice. This soft information does not eliminate worlds, it just changes their ordering. More 

precisely, a triggering event that makes us believe that P need only rearrange worlds 

making the most plausible ones P: by ‘promotion’ or ‘upgrade’ rather than elimination of 

worlds. Thus, in our models M = (W, ~i, ≤i, V), we change the relations  ≤i, rather than the 

world domain W or the epistemic accessibilities ~i. Rules for plausibility change exist in 

models of belief revision (Grove 1988, Rott 2006) as different policies that agents can 

adopt toward new information. We now show how our dynamic logics deal with them. 147 
 
Radical revision One very strong policy is like a radical social revolution where some 

underclass P now becomes the upper class. In a picture, we get this reversal: 
 
 
                P 
                from M, s                  to  M|P, s 
                   s         s       ¬P 

 
      P        ¬P          

 
Definition Radical, or lexicographic upgrade. 

A lexicographic upgrade ⇑P changes the current ordering ≤ between worlds in M, s to a 

new model M⇑P, s as follows: all P-worlds in the current model become better than all 

¬P-worlds, while, within those two zones, the old plausibility ordering remains. 148     ■ 
 
With this definition in place, our earlier methodology applies. As for public announcement, 

we introduce a corresponding upgrade modality in our dynamic doxastic language:   
 

M, s |= [⇑P]ϕ    iff   M⇑P, s |= ϕ  
 
Here is a complete account of how agents’ beliefs change under soft information, in terms 

of the key recursion axiom for changes in conditional belief under radical revision:  
 
Theorem  The dynamic logic of lexicographic upgrade is axiomatized completely by  

 (a) any complete axiom system for conditional belief on the static models, plus  

                                                
147 Alternatively, in formal learning theory (Kelly 1996), these are different learning strategies. 
148 This is known as the ‘lexicographic policy’ for relational belief revision. 
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 (b) the following recursion axioms: 

 [⇑P]q   ↔  q       for all atomic proposition letters q 

[⇑P]¬ϕ   ↔  ¬[⇑P]ϕ 

[⇑P](ϕ∧ψ)  ↔  [⇑P]ϕ ∧ [⇑P]ψ 

[⇑P]Kϕ ↔ K[⇑P]ϕ 

[⇑P]Bψϕ     ↔     (�(P ∧ [⇑P]ψ) ∧ B P ∧ [⇑P]ψ [⇑P]ϕ)   

      ∨ (¬�(P ∧ [⇑P]ψ) ∧ B [⇑P]ψ [⇑P]ϕ)   149 
 
Proof  The first four axioms are simpler than those for PAL, since there is no precondition 

for ⇑P as there was for !P. The first axiom says that upgrade does not change truth values 

of atomic facts. The second says that upgrade is a function on models, the third is a general 

law of modality, and the fourth that no change takes place in epistemic accessibility.  
 
The fifth axiom is the locus where we see the specific change in the plausibility ordering. 

The left-hand side says that, after the P-upgrade, all best ψ-worlds satisfy ϕ. On the right-

hand side, there is a case distinction. Case (1): there are accessible P-worlds in the original 

model M that become ψ after the upgrade. Lexicographic reordering ⇑P makes the best of 

these worlds the best ones over-all in M⇑P to satisfy ψ. In the original M – viz. its 

epistemic component visible from the current world s – the worlds of Case 1 are just those 

satisfying the formula P ∧ [⇑P]ψ. Therefore, the formula B P ∧ [⇑P]ψ [⇑P]ϕ says that the best 

among these in M will indeed satisfy ϕ after the upgrade. These best worlds are the same 

as those described earlier, as lexicographic reordering does not change order of worlds 

inside the P-area. Case (2): no P-worlds in the original M become ψ after upgrade. Then 

lexicographic reordering ⇑P makes the best worlds satisfying ψ after the upgrade just the 

same best worlds over-all as before that satisfied [⇑P]ψ. Here, the formula B [⇑P]ψ [⇑P]ϕ in 

the reduction axiom says that the best worlds become ϕ after upgrade.  
 
The rest of the proof is the reduction argument of Chapter 3. 150          ■ 

 
The final equivalence describes which conditional beliefs agents have after soft upgrade.  

This may look daunting, but try to read the principles of some default logics existing 

                                                
149 Here, as in Chapter 2, � is the dual existential epistemic modality ¬K¬. 
150 Details on this result and the next are in van Benthem 2007B, van Benthem & Liu 2007. 
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today! Also, recall the earlier point that we need to describe how conditional beliefs 

change, not just absolute ones, to avoid getting trapped in the Iteration Problem. 
 
Special cases Looking at special cases may help. First, consider absolute beliefs Bϕ. 

Conditioning on ‘True’, the key recursion axiom simplifies to: 
      
  ([⇑P]Bϕ   ↔   (�P ∧ BP[⇑P]ϕ) ∨ (¬�P ∧ B[⇑P]ϕ) 
      
And here is the simplified recursion axiom for factual propositions that did not change 

their truth values under update or upgrade: 
      

 [⇑P]Bψϕ  ↔   (�(P∧ψ) ∧ BP∧ψϕ)  ∨ (¬�(P∧ψ) ∧ Bψϕ) 151      ■ 
      
Safe belief once more As a final simplification, recall the earlier notion of safe belief, that 

defined conditional belief using K. We can also derive the above from the following: 
      
Fact The following recursion axiom is valid for safe belief under radical revision: 

 [⇑P] B+ϕ  ↔  (P ∧ B+(P → [⇑P]ϕ)) ∨ (¬P ∧ B+(¬P → [⇑P]ϕ) ∧ K(P → [⇑P]ϕ)). 
      
Proof   For any world s, the two disjuncts describe its more plausible worlds after upgrade. 

If M, s |= P in the initial model M, these are all former P-worlds that were more plausible 

than s. If not M, s |= P, these are the old more plausible ¬P-worlds plus all P-worlds.       ■ 
 
Static pre-encoding Our compositional analysis says that any statement about effects of 

hard or soft information is encoded in the initial model: the epistemic present contains the 

epistemic future. We have used this line to design the right static languages, with a crucial 

role for conditional belief. As in earlier Chapters, we may want to drop this reduction when 

considering global informational procedures: Chapter 11 shows how to do this. 152 
      
Radical upgrade will be used at various places in this book, especially in our study of game 

solution in Chapters 10, 15. This will throw further light on its semantic features. 
 
7.6 Conservative upgrade and general revision policies 
Radical revision was our pilot, but its specific plausibility change is just one way of taking 

soft information. A more conservative policy for believing a new proposition puts not all 

P-worlds on top qua plausibility, but just the most plausible P-worlds. After the revolution, 

                                                
151 To us, this is the paradox-free sense in which a Ramsey Test holds for our logic. 
152 Technically, this design involves a form of closure beyond syntactic relativization (Chapter 3). 

We now also need closure under syntactic substitutions of defined predicates for old ones. 
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this policy co-opts just the leaders of the underclass – the sage advice that Macchiavelli 

gave to rulers pondering what to do with the mob outside of their palace.   
 
Definition Conservative plausibility change. 

Conservative upgrade ↑P replaces the current ordering ≤ in a model M by the following: 

the best P-worlds come on top, but apart from that, the old ordering remains.      ■ 
 
Technically, ↑P is a special case of radical revision: ⇑(best(P)), if we have the latter in our 

static language. But it seems of interest per se. Our earlier methods produce its logic: 
 
Theorem  The dynamic logic of conservative upgrade is axiomatized completely by  

 (a) a complete axiom system for conditional belief on the static models, and  

 (b) the following reduction axioms:  

[↑P]q   ↔  q       for all atomic proposition letters q 

[↑P]¬ϕ   ↔  ¬[↑P]ϕ 

[↑P](ϕ∧ψ)  ↔  [↑P]ϕ ∧ [↑P]ψ 

[↑P]Kϕ ↔ K[↑P]ϕ 

[↑P]Bψϕ     ↔      (ΒP¬[↑P]ψ ∧ B [↑P]ψ [↑P]ϕ) ∨ 

    (¬ΒP¬[↑P]ψ ∧ BP ∧ [↑P]ψ [↑P]ϕ) 
 
We leave a proof to the reader. Of course, one can also combine this logic with the earlier 

one, to combine different sorts of revising behaviour, as in mixed formulas [⇑][↑]ϕ. 
 
Policies Many further changes in a plausibility order can be responses to an incoming 

signal. This reflects the host of belief revision policies in the literature: Rott 2006 has 27. 

General relation transformers were proposed in van Benthem, van Eijck & Frolova 1993, 

calling for a dynamification of preference logic. The same is true for defaults, commands 

(Yamada 2006), and other areas where plausibility or preference can change (cf. Chapter 

9). Our approach suggests that one can take any definition of change, write a matching 

recursion axiom, and then a complete dynamic logic. But how far does this go? 153 
 

                                                
153 Maybe ‘policy’ is the wrong term, as it suggests a persistent habit over time, like being 

stubborn. But our events describe local responses to particular inputs. Speech act theory has a nice 

distinction between information per se (what is said) and the uptake, how a recipient reacts. In that 

sense, the softness of our scenarios is in the response, rather than in the signal itself. 
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Relation transformers in dynamic logic One general method works by inspection of the 

format of definition in the above examples. For instance, it is easy to see the following: 
 
Fact Radical upgrade ⇑P is definable as a program in propositional dynamic logic. 
 
Proof The format is as follows, with ‘T’ the universal relation between all worlds:  
 
 ⇑P(R) := (?P; T ; ?¬P) ∪ (?P ; R; ?P) ∪ (?¬P ; R; ?¬P)      ■  
 
Van Benthem & Liu 2007 then introduce the following format: 
 
Definition PDL-format for relation transformers. 

A definition for a new relation R on models is in PDL-format if it can be stated in terms of 

the old relation, union, composition, and tests.          ■ 
 
A further example is an act of ‘suggestion’ #P (cf. the preference logics of Chapter 9) that 

merely takes out R-pairs with ‘¬P over P’:  
 
 #P(R) = (?P; R) ∪ (R; ?¬P) 
 
This format generalizes our earlier procedure with recursion axioms considerably: 
 
Theorem For each relation change defined in PDL-format, there is a complete set  

 of recursion axioms that can be derived via an effective procedure. 
 
Proof Here are two examples of computing modalities for the new relation after the model 

change, using the recursive program axioms of PDL. Note how the second calculation uses 

the existential epistemic modality <> for the occurrence of the universal relation: 
 
(a) <#P(R)><R>ϕ ↔ <(?P; R) ∪ (R; ?¬P)>ϕ ↔ <(?P; R)>ϕ ∨ <(R; ?¬P)>ϕ 

 ↔ <?P><R>ϕ ∨ <R><?¬P>ϕ ↔ (P ∧ <R>ϕ) ∨ <R>(¬P ∧ ϕ). 
 
 (b) <⇑P(R)>ϕ ↔ <(?P; T ; ?¬P) ∪ (?P ; R; ?P) ∪ (?¬P ; R; ?¬P)> ϕ  

 ↔ <(?P; T ; ?¬P)>ϕ ∨  <(?P ; R; ?P)>ϕ ∨  <(?¬P ; R; ?¬P)>ϕ  

 ↔ <?P><T><?¬P>ϕ ∨  <?P><R><?P>ϕ ∨  <?¬P><R><?¬P>ϕ  

 ↔ (P ∧ E(¬P ∧ ϕ)) ∨  (P ∧ <R>(P ∧ ϕ)) ∨  (¬P ∧ <R>(¬P ∧ ϕ)).  154 
 
This gives uniformity behind earlier cases. For instance, the latter easily transforms into an 

axiom for safe belief after radical upgrade ⇑P, equivalent to the one we gave before.    ■ 
 
 

                                                
154 Here, ‘E’ stands for the existential modality ‘in some world’. 
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7.7 Conclusion 
This chapter has realized the second stage of our logical analysis of agency, extending the 

dynamic approach for knowledge to belief. The result is one merged theory of information 

update and belief revision, using standard modal techniques instead of ad-hoc formalisms. 

We found many new topics, like using the dynamics to suggest new epistemic modalities.  
 
After this opt-out point for the chapter, we will pursue some more themes for the interested 

reader, including transfer of insights between DEL and frameworks such as AGM. 
 
7.8 Further themes: belief revision with DEL  
 
DEL formats, event models as triggers Another approach uses DEL (Chapter 4) rather 

than PAL as a role model. Event models for information can be much more subtle than 

announcements, or the few specific policies we have discussed. While its motivation came 

from partial observation, DEL also applies to receiving signals with different strengths. 

Here is a powerful idea from Baltag & Smets 2006 (with a precursor in Aucher 2004):  
 
Definition Plausibility event models. 

Plausibility event models are event models just as in Chapter 4, but now expanded with an 

additional plausibility relation over their epistemic equivalence classes.       ■ 

 
In this setting, radical upgrade ⇑P can be implemented in an event model as follows: we do 

not throw away worlds, so we need two ‘signals’ !P and !¬P with obvious preconditions   

P, ¬P that will copy the old model. But we now say that signal !P is more plausible than 

signal !¬P, relocating the revision policy in the nature of the input: 

 
 !P  ≥ !¬P 

 
Different event models will represent a great variety of update rules. But we still need to 

state the update mechanism more precisely, since it is not quite that of Chapter 4: 
 
‘One Rule To Rule Them All’ The product update rule radically places the emphasis on 

the last event observed, but it is conservative with respect to everything else: 
 
Definition Priority Update. 

Consider an epistemic plausibility model M, s and a plausibility event model E, e. The 

product model M x E, (s, e) is defined entirely as in Chapter 4 – with the addition of a new 
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update rule for the plausibility relation, where < is the strict version of the relation:  
 
 (s, e) ≤ (t, f)  iff  (s ≤ t ∧ e ≤ f) ∨ e < f.            ■ 
 
Thus, if the new P induces a preference between worlds, that takes precedence: otherwise, 

we go by the old plausibility order. This rule places great weight on the last observation or 

signal received. This is like belief revision theory, where receiving just one signal *P leads 

me to believe that P, even if all of my life, I had been receiving evidence against P. It is 

also in line with ‘Jeffrey Update’ in probability (Chapter 8) that imposes a new probability 

for some proposition, while adjusting all other probabilities proportionally. 155 156 
 
Theorem The dynamic logic of priority update is axiomatizable completely. 
 
Proof As before, it suffices to state the crucial recursion axioms reflecting the above rule. 

We display just one case, for the relation of safe belief, in existential format: 
 
 <E, e><≤>ϕ  ↔  (PREe ∧ (∨e ≤ f in E <≤><E, f>ϕ ∨  (∨e < f in E �<E, f> ϕ)) 
 
where � is again the existential epistemic modality.        ■ 
 
This shifts the locus of description. Instead of many policies for processing a signal, each 

with its own logic, we now put the policy in the input E. This has some artificial features: 

the new event models are much more abstract than those in Chapter 4. Also, even to 

describe simple policies like conservative upgrade, the language of event models must be 

extended to event preconditions of the form most-plausible(P). But the benefit is clear: 

infinitely many policies can be encoded in event models, while belief change now works 

with just one update rule, and the common objection that belief revision theory is non-

logical and messy for its proliferation of policies evaporates. 157  
 
Digression: abrupt revision and slow learning An update rule with so much emphasis on 

the last signal is special. Chapter 12 brings out how, using social choice between old and 

new signals. Learning theory also has gentler ways of merging new with old information, 

                                                
155 There may be a worry that this shifts from DEL’s precondition analysis to a forward style of 

thinking in terms of postconditions: cf. Chapter 3, but we will not pursue this possible objection. 
156 As in Chapter 4, product update with event models generalizes easily to real world change, 

taking on board the well-known Katsuno-Mendelzon sense of temporal ‘update’.  
157 A comparison between the earlier PDL-style and DEL-style formats remains to be made. 
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without overriding past experience. This theme will return with probabilistic update rules 

in Chapter 8, and with score-based rules for preference dynamics in Chapter 9.  
 
7.9 Further themes: belief revision versus generalized consequence  

Update of beliefs under hard or soft information is also an alternative to the current world 

of nonstandard notions of consequence. Here is a brief illustration (van Benthem 2008D): 

Chapter 13 has a more extensive discussion of the issues.  
 
Update versus inference: non-monotonic logic Classical consequence says that all models 

of premises P are models for the conclusion C. McCarthy 1980 pointed out how problem 

solving goes beyond this. A circumscriptive consequence from P to C says that  
 

C is true in all the minimal models for P  
 
Here, minimality refers to a relevant comparison order ≤ for models: inclusion of object 

domains, extensions of predicates, and so on. The general idea is minimization over any 

order (Shoham 1988), supporting non-monotonic consequence relations that are like the 

earlier conditional logics. This is reminiscent of our plausibility models for belief, and 

indeed, one can question the original view of problem solving. We are given initial 

information and need to find the goal situation, as new information comes in. The crucial 

process here are our responses: solving puzzles and playing games is all about information 

update and belief change. Non-monotonic logics have such processes in the background, 

but leave them implicit. But making them explicit is the point of our dynamic logics.  
 
Dynamic consequence on a classical base Our logic suggests two kinds of dynamic 

consequence. First, (common) knowledge may result, and we get classical consequence for 

factual assertions (cf. the dynamic inference of Chapter 3). 158 Or belief may result, 

referring to the minimal worlds. Thus, what is usually cast as a notion of consequence 
 
 P1, … , Pk ⇒ ϕ 
 
gets several dynamic variants definable in our language: 
 
 either [!P1] … [!Pk] Kϕ    or  [!P1] … [!Pk] Bϕ 
 
whose behaviour is captured by our earlier complete logics. This suggests a truly radical 

point of view. Once the relevant informational events have been made explicit, there is no 

                                                
158 Factual assertions seem to drive accounts of nonstandard consequence relations. But as we saw 

in Chapter 3, structural rules get dynamic twists when we consider the full language. 
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need for ‘non-standard logics’. The dynamic logic just works with a classical static notion 

of consequence. Non-monotonic logic is monotonic dynamic logic of belief change. 
 
New styles Our logics for soft information even suggest new consequence relations: 
 
 P1, … , Pk ⇒circ-soft ϕ    iff [⇑P1] … [⇑Pk] Bϕ  
 
Fact For factual assertions P, Q, (i) P, Q ⇒circ-hard P, (ii) not P, Q ⇒circ-soft P. 
 
Proof  (i) Successive hard updates yield subsets of the P-worlds. (ii) The last upgrade with 

Q may have demoted all P-worlds from their former top positions.        ■ 

 
Thus, we have an interesting two-way interplay between logical dynamics of belief change 

and the design of new non-monotonic consequence relations. 159 
 
7.10 Further themes: postulates and correspondence results 
 
A brief comparison with AGM The best-known account of belief revision is AGM theory 

(Gaerdenfors 1988, Gaerdenfors & Rott 1995) that deals with three abstract operations of 

+A (‘update’), *A (‘revision’), –A (‘contraction’) for factual information of a single agent. 

In contrast with the DEL mechanism for transforming plausibility models and generating 

complete logics, AGM analyzes belief change without proposing a specific construction, 

placing abstract algebraic postulates on the above operations instead. 160 This is the contrast 

between constructive and postulational approaches that we have seen in Chapter 3. 
 
The AGM postulates claim to constrain all reasonable revision rules. Do they apply to 

ours? Here is a simple test. The ‘Success Postulate’ says that all new information comes to 

be believed in the theory revised with this information: A ∈ T*A. But even PAL fails this 

test, and the difference is instructive. Success follows from our axioms for factual 

propositions, but it fails for complex epistemic or doxastic ones. For instance, true Moore-

sentences cannot be believed after announcement. The main intuitions of belief revision 

theory (or generalized consequence relations) apply to factual assertions only, whereas a 

logic approach like ours insists on dealing with all types of proposition at once.  161  

                                                
159 Technically, this suggests new open problems about complete sets of structural rules. 
160 We refer to the cited literature for a precise statement of the postulates. 
161 The same point about complex propositions and order dependence returns with other AGM 

postulates. For instance, the ‘Conjunction Postulate’ that compresses two updates into one mixes 

events that we distinguish: processing a conjunction of propositions, and processing two new 
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Here are two more differences between the frameworks. AGM deals with single agents 

only, while DEL is essentially multi-agent, including higher-order information about what 

others believe. And also tellingly, DEL analyzes not three, but an infinity of triggers for 

belief change, from public announcements to complex informational events.  
 
Revision postulates as frame correspondences Despite the difference in thrust, the 

postulational approach to belief revision makes sense. A matching modal framework at the 

right level of generality is Dynamic Doxastic Logic (DDL, Segerberg 1995, 1999, Leitgeb 

& Segerberg 2007). This merely assumes some relation change on the current model, 

functional or relational, without specifying it further. The main operator then becomes:  
 
Definition Abstract modal logic of model change. 

Let M be a model, [[P]] the set of worlds in M satisfying P, and M*[[P]] some new 

model. For the matching modal operator, we set M, s |= [*P]ϕ  iff  M*[[P]], s |= ϕ.    ■ 
 
DDL models resemble Lewis spheres for conditional logic, or their neighbourhood 

versions (Girard 2008). The minimal modal logic K is valid, and on top, further axioms 

constrain relation changes for bona fide revision policies. In the limit, a particular set of 

axioms might even determine one particular policy.  
 
We show how this ties up with our approach in terms of frame correspondence, just as we 

did for PAL update in Chapter 3 by postulating key recursion axioms, and then seeing 

which update operations qualified on an abstract universe of models and transitions. 
 
Usually, frame correspondences analyze semantic content of given axioms in one model 

for a static modal language. But one can just as well take the above setting of relation 

changing operations ♥P over a family of models (with worlds and a ternary comparison 

                                                                                                                                             
propositions successively. For factual propositions in PAL, this amounts to the same thing, but not 

for complex epistemic ones. And in our dynamic logic of belief, even the factual case is 

problematic. Here is why. In PAL, successive public announcements could still be compressed by 

the law [!P][!Q]ϕ ↔ [!(P ∧ [!P]Q)]ϕ. But two successive upgrades ⇑P; ⇑Q rearrange a model as 

follows. First, P-worlds come on top of ¬P-ones, then the same happens with Q. The result is the 

order pattern PQ  ≥ ¬PQ  ≥  P¬Q   ≥  ¬P¬Q. No single upgrade does this, and no iteration law 

compresses the effect of two revision steps to just one with the same effects on conditional belief.  
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relation x ≤s y). ♥P takes any model M and set of worlds P in it, 162 and yields a new model 

M♥P with the same worlds but a new relation ≤s. Axioms may then constrain this. 163 
 
Analyzing a few AGM postulates For a start, the Success Postulate says something weak, 

that holds for both earlier operations ⇑P and ↑P: 164 
 
Fact The formula [♥p]Bp says that the best worlds in M♥p are all in p.  
 
But we can also demand something stronger, that the best worlds in M♥p are precisely the 

best p-worlds in M (the upper class law ‘UC’). This, too, can be expressed. But we need a 

stronger dynamic formula, involving two different proposition letters p and q:  
 
Fact  The formula Bpq ↔ [♥p]Bq expresses UC.  
 
But this preoccupation with the upper classes still fails to constrain the total relation 

change. For that, we must look at the new social order in all classes after the Revolution, 

i.e., at conditional beliefs following relation upgrade. As an illustration, we consider the 

key reduction axiom for ⇑P, using proposition letters instead of schematic variables. 165 

The following shows how this determines lexicographic reordering of models completely 

(again we use the earlier auxiliary existential modality E):  
 
Theorem   The formula [♥p] B r q ↔ (Ε(p∧r) ∧ B p∧ r q) ∨ (¬Ε(p∧r) ∧ B r q) 

holds in a universe of frames iff the operation ♥p is lexicographic upgrade. 
 
Proof  That the principle holds for lexicographic upgrade was our earlier soundness result. 

Next, let the principle hold for all set values of q and r (but p is kept fixed). First, we show 

that, if x ≤s y in M♥p, then this pair was produced by lexicographic upgrade. Let r be the 

                                                
162 Here we have dropped the above double denotation brackets [[P]] for convenience. 
163 Even more abstract spaces of models can be used here as general background for analyzing the 

content of dynamic axioms, but our setting suffices to make our main points. 
164 Frame correspondence has a format like this (van Benthem to appearB). The modal axiom �p 

→ ��p is true at world s in frame F = (W, R) iff R is transitive at s: i.e., F, s |= ∀y(Rxy → ∀z(Ryz 

→ Rxz)). Frame truth is truth under all valuations on frame F for its proposition letters. Thus, it 

does not matter whether we use formula �p → ��p or schema �ϕ → ��ϕ. Not so for PAL 

and DEL, where plain and schematic validity differ. In the following proofs, we use proposition 

letters for sets of worlds, by-passing issues of changes in truth value across updates. 
165 Thus we suppress the earlier dynamic modalities [⇑P]ψ that were sensitive to transfer effects. 
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set {x, y} and q = {y}. Then the left-hand side of our axiom is true. Hence the right-hand 

side is true as well, and there are two cases. Case 1, Ε(p∧r): one of x, y is in p, and hence   

p ∧ r =  {x, y} (1.1) or {x} (1.2) or {y} (1.3). Moreover, B p∧ r q holds in M at s. If (1.1), we 

have x ≤s y in M, with both x, y in p. If (1.2), we must have y=x, and by reflexivity, again   

x ≤s y in M. Case (1.3) can only occur when y∈p and x∉p: the typical case for upgrade. 

Case 2, ¬Ε(p∧r): x, y are not in p. The true disjunct B r q says that x ≤s y in M. 
 
Conversely, we show that all pairs satisfying the description of lexicographic upgrade in M 

make it into the new order in M♥p. Here is one example: the other case is similar. Suppose 

that y∈p while x∉p. Set r = {x, y} and q = {y}, whence p∧r = {y}. This makes (Ε(p∧r) ∧    

B p∧ r q) true at world s in M, and hence also the whole disjunction to the right. The left-

hand formula [♥p] B r q is then also true at s in M. But this tells us that in the new model 

M♥p, B r q holds at s. Thus, the best worlds in {x, y} are in {y}: i.e., x ≤s y in M♥p.    ■ 
 
This can be generalized to abstract universes of transitions, quantifying over sets of worlds 

inside and across plausibility models. 166 167  But even our simple setting shows how frame 

correspondence for languages with model-changing modalities is a good way of doing 

abstract postulational analysis of update and revision. 168 
 
7.11 Still more issues, and open problems 
 
Variations on the static models We assumed agents with epistemic introspection of their 

plausibility order. Without this, we would need ternary world-dependent plausibility 

relations, as in conditional logic. What do our {K, B}-based systems look like then?  
 
Also, safe belief suggests having just one primitive plausibility pre-order ≤, defining 

knowledge as truth in all worlds, whether less or more plausible (cf. van Eijck & Sietsma 

2009 on PDL over such models). What happens to our themes in the latter setting? 
 

                                                
166 The above arguments then work uniformly by standard modal substitution techniques. 
167 Further AGM-postulates mix two operations that change models: update !P and upgrade ♥P, 

with laws like (a) [♥(p ∧ q)]Br →  [!q][♥p]Br, (b) ([♥p]Eq ∧ [!q][♥p]Br) → [♥(p ∧ q)]Br. 

These constrain simultaneous choice of two abstract model changing operations. 
168 Still, this is not the only abstract perspective on our logics. In Chapter 12, we do an alternative 

postulational analysis of the earlier Priority Update rule in terms of social choice theory. 
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Finally, many authors have proposed basing doxastic logic on neighbourhood models (cf. 

Girard 2008, Zvesper 2009). How should we lift our theory to that setting? 
 
Common belief and social merge We have not analyzed common belief, satisfying the 

fixed-point equation CBGϕ ↔ ∧i∈G Bi (ϕ ∧ CBGϕ). Technically, a complete dynamic logic 

seems to call for a combination of relation change with the E-PDL techniques of Chapter 4. 

More generally, belief revision policies describe what a single agent does when confronted 

with surprising facts. But beliefs often change because other agents contradict us, and we 

need interactive settings where agents create one new plausibility ordering. These include 

events of belief merge (Maynard-Reid & Shoham 1998) and judgment aggregation (List & 

Pettit 2004). Construed either way, we need look at groups: Chapter 12 has more. 
 
Model theory of plausibility models and upgrade Our static logics for belief raise standard 

modal issues of appropriate notions of bisimulation and frame correspondence techniques 

for non-standard modalities that maximize over orderings. Like for conditional logic, these 

model-theoretic issues seem largely unexplored. In the dynamic setting, relation-changing 

modalities also raise additional issues, such as respect for plausibility bisimulation. Many 

of the themes in Chapters 2, 3 remain to be investigated for our systems here. 
 
Syntactic belief revision There is also belief revision in a more fine-grained inferential 

sense, where agents may have fallible beliefs about what follows from their data, or about 

the consistency of their views. Such beliefs can be refuted by events like unexpected turns 

in argumentation or discussion. These scenarios are not captured by the semantic models of 

this chapter. How to do a syntactic dynamic logic in the spirit of Chapter 5? 
 
Proof theory of logics for revision Our logics had complete Hilbert-style axiomatizations.  

Still, we have not looked at more detailed proof formats dealing with dynamic modalities, 

say, in natural deduction or semantic tableau style. What would these look like? The same 

question makes sense, of course, for PAL and DEL in Chapters 3, 4. 
 
Backward versus forward once more Recall a basic contrast from earlier chapters. AGM is 

forward-looking, with postconditions of coming to believe. 169 But like DEL (backward-

looking in its version without factual change), our logics compute what agents will believe 

only via preconditions. More generally, we want to merge local dynamics of belief change 

                                                
169 This gets harder to maintain with complex instructions like ‘make agent i not believe that ϕ’. 
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with a temporal Grand Stage where an instruction *P wants a minimal move to some future 

state where one believes that P. We will do this in Chapter 11. 170 
 
7.12  Literature   

A key source for belief revision theory in the postulational style is Gärdenfors 1988. 

Segerberg 1995 connects this to a ‘dynamic doxastic logic’ on neighbourhood models. 

Aucher 2004 treats quantitative belief revision rules in a DEL format, mixing event models 

with Spohn-style graded models. Van Benthem 2007B is the main source for this chapter, 

axiomatizing dynamic logics for qualitative transformations of plausibility orders in a style 

similar to van Benthem & Liu 2007. Baltag & Smets 2006 gave the first general qualitative 

DEL version of belief change, with priority product update using plausibility event models. 

Baltag & Smets 2008 provide a mature version. Girard 2008 connects DDL to DEL, while 

Baltag, van Ditmarsch & Moss 2008 give broader framework comparisons and history. 

                                                
170 My first analysis of AGM in van Benthem 1989 was in this style, with modalities [+P], [–P], 

and [*P] for update, contraction, and revision on a temporal universe of information stages. 
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Chapter 8  AN ENCOUNTER WITH PROBABILITY 
 
Our dynamic logics deal with agents’ knowledge and beliefs under information update. But 

update has long been the engine of probability theory, a major life-style in science and 

philosophy. This chapter is an intermezzo linking the two perspectives, without any 

pretense at completeness, and assuming the basics of probability theory without further 

ado. We will show how probability theory fits well with dynamic-epistemic logics, leading 

to a new update mechanism that merges three aspects: prior world probability, occurrence 

probability of events, and observation probability. The resulting logic can be axiomatized 

in our standard style, leading to interesting comparisons with probabilistic methods. 
 
8.1 Probabilistic update 
 
The absolute basics A probability space M = (W, X, P) is a set of worlds W with a family 

X of propositions that can be true or false at worlds, plus a probability measure P on 

propositions. This is like single-agent epistemic models, but with refined information on 

agent’s views of propositions. In what follows, we use high-school basics: no σ–algebras, 

measurable sets, and all that. Intuitions come from finite probability spaces, putting each 

subset in X. Under this huge simplification, the function P assigns values to single worlds, 

while its values for larger sets are automatic by addition, subject to the usual laws: 
 

P(¬ϕ) = 1 – P(ϕ),       P(ϕ∨ψ) = P(ϕ) + P(ψ), if ϕ, ψ are disjoint 
 
Of crucial relevance to update are conditional probabilities P(ϕ |A) giving the probability 

for φ given that A is the case, using P rescaled to the set of worlds satisfying A: 171 
 
 P(ϕ | A)  =  P(ϕ ∧ Α) / P(A) 
 
Bayes’ Rule then computes conditional probabilities through the derivable equation  
 
 P (ϕ | A)   =  P (A | ϕ) • P(ϕ)  / P(A) 
 
and more elaborate versions. This describes probability change as new factual information 

A comes in. Other basic mechanisms update with non-factual information. E.g., the Jeffrey 

Rule updates with probabilistic information Pi(A) = x by setting the new probability for A 

to x, and apart from that, redistributing probabilities among worlds inside the A and ¬A 

zones proportionally to the old probabilities. And there are even further update rules. 

                                                
171 We now use ‘A’ for propositions, since the earlier ‘P’ is taken for probability. 
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Probabilistic and logical models Conditional probability resembles the conditional belief 

of Chapter 7, while the informal explanations surrounding it also have a whiff of PAL 

(Chapter 3). One zooms in on the worlds where the new A holds, and re-computes 

probabilities. This is like eliminating ¬A-worlds, and re-evaluating epistemic or doxastic 

modalities. And Jeffrey Update is like the radical revision policy ⇑A in Chapter 7 that fixes 

a belief to be achieved, but only minimally changes the plausibility order otherwise.  
 
There are also differences. Crucially, dynamic logics make a difference between truth 

values of propositions ϕ before and after update, and hence a conditional belief Bψϕ was 

not quite the same as a belief after update: [!ψ]Bϕ. This made no difference for factual ϕ, 

ψ, but it did when formulas are more complex, as our logics want to have them. Also, our 

logics are about many agents, with syntactic iterations like “I know that your probability is 

high”, or “My probability for your knowing ϕ equals y”, that are scarce in probability 

theory. Finally, DEL update (cf. Chapter 4) did not just select subsets of a model: it 

transforms current models M into perhaps complex new ones. Thus, dynamic formulas   

[E, e]ϕ  conditionalize over drastic model-transforming actions.  
 
It is time to start with the systematic proposal of this chapter. Model constructions are not 

alien to a probabilistic perspective. Competent practitioners make such moves implicitly. 

Consider the following famous puzzle: 
 
Example Monty Hall dilemma. 

There is a car behind one of three doors: the quizmaster knows which one, you do not. You 

choose a door, say 1, and then the quizmaster opens another door that has no car behind it. 

Say, he opens Door 3. Now you are offered the chance to switch doors. Should you?  
 
If you conditionalize on the new information that the car is not behind Door 2, Bayes’ Rule 

tells you it does not matter: Doors 1 and 3 have equal probability now. But the real 

information is more complex: if the car is behind 1, the quizmaster can open either Door 2 

or Door 3 with probability ½. But if it is behind Door 3, then he must open Door 2.  
 
This drives a  construction of the probability space, as pictured in the following tree, where 

probabilities of branches arise by multiplying those of their successive transitions: 
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           Nature acts 

           1/3             1/3                     1/3 
  car behind 1    car behind 2    car behind 3 

       1         1         1 
   I choose 1       I choose 1       I choose 1 

          1/2   1/2        1          1  
 Q opens 2    Q opens 3     Q opens 3       Q opens 2 

      1/6         1/6        1/3           1/3 
 
I chose 1, Q opened 3. We want the conditional probability that the car is behind Door 1, 

given what we saw. The tree suggests A = Q opens 3, leaving two branches. Analyzing that 

subspace, we find that P(Car behind 1| A) = 1/3 – and hence we should switch.         ■ 
 
Now we look at the same model changes using dynamic epistemic product update.  
 
Example Monty Hall in DEL. 

Nature's actions are indistinguishable for me (I), but not for the quizmaster Q. The result is 

the epistemic model at the second level. Now I choose Door 1, which copies the same 

uncertainties to the third level. Then come public events of Q’s opening a door, each with 

preconditions (a) I did not choose that door, and (b) Q knows that the car is not behind it.  

In principle this could generate 3x3 = 9 worlds, but the preconditions leave only 4:  
 
          Nature acts 

            
 car behind 1      I   car behind 2      I   car behind 3 

                          
  I choose 1   I    I choose 1         I      I choose 1 

            
Q opens 2    Q opens 3       Q opens 3         Q opens 2 
       x                  y          I    z     u 
                     I  
The actual world is y on the bold-face branch. In the bottom-most epistemic model, I know 

the world is either y or z. Throughout the tree, Quizmaster knows exactly where he is.      ■ 
 
All this suggests finding a richer logic on top of this that can accommodate probabilistic 

fine-structure. This requires the usual steps from earlier chapters: a suitably expressive 

static language, a product update rule, and a complete dynamic logic. This is not totally 

routine, and we will be forced to think about which probabilities play a role in update. 
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8.2 Static epistemic probabilistic logic 
Epistemic probabilistic languages describing what agents know plus the probabilities they 

assign were introduced by Halpern and Tuttle 1993, Fagin and Halpern 1993: 
 
Definition Epistemic probability models. 

An epistemic probability model M = (W, ~, P, V) has a set of worlds W, a family ~ of 

equivalence relations ~i on W for each agent i, a set P of probability functions Pi that assign 

probability distributions for each agent i at each world w∈W, and finally, a valuation V 

assigning sets of worlds to proposition letters. 172                       ■ 
 
These models represent both non-probabilistic and probabilistic information of agents.  
 
Definition Static epistemic probabilistic language. 

The static epistemic-probabilistic language has the following inductive syntax: 
 

ϕ ::= p | ¬ϕ | (ϕ∧ψ) |  Kiϕ | Pi(ϕ) = q, where q is a rational number, 173 plus linear 

inequalities α1•Pi(ϕ1) + … + αn•Pi(ϕn) ≥ β with α1, …, αn, β rational numbers.       ■ 
 
This allows formulas like KiPj(ϕ) = k, or Pi(Kjϕ) = k talking about agents’ knowledge of 

the others’ probabilities, or probabilities they give to someone knowing some fact. 174 

Formulas Pi(ϕ) = q are evaluated by summing over the worlds where ϕ holds: 
 
Definition Semantics for epistemic-probabilistic logic. 

The clauses for proposition letters, Boolean operations and epistemic modalities are as in 

Chapter 2. Here is the key clause for the probabilistic modality: 
 

M, s  |= Pi(ϕ) = q  iff  ∑ t with M, t |= ϕ Pi(s)(t) = q  
 
The semantic explanation for the linear inequalities then follows immediately.     ■ 
 
Epistemic probability models suggest constraints linking probability with knowledge (cf. 

Halpern 2003). Say, one can let Pi(s) assign positive probabilities only to worlds ~i-linked 

to s. Such constraints define models with special logics. In particular, epistemically 

indistinguishable worlds often get the same probability distribution. Thus, agents will 

know the probabilities they assign to propositions, and hence we have a valid principle 

                                                
172 An important and intuitive special case is when the Pi(w) are probability distributions defined 

only on the equivalence class of epistemically accessible worlds {v | v ~i w}. 
173 Another widely used notation has superscripts for agents: Pi(ϕ) = q.  
174 For convenience, we will drop agent indices whenever they do not help the presentation. 



148 

 
Pi(ϕ) = q → Ki Pi(ϕ) = q    Probabilistic Introspection 

 
This may be compared with our introspective treatment of beliefs in Chapter 7. The reader 

should feel free to assume this special setting in what follows, if it helps for concreteness – 

but as always, our analysis of probabilistic update mostly does not hinge on such options. 
175 What matters is expressive harmony between static and dynamic languages. This pre-

encoding uses probabilistic linear inequalities, whose purpose will become clear later.  
 
8.3 Three roles of probability in update scenarios 
 
Earlier update rules Merges of PAL with probabilistic update occur in Kooi 2003. In line 

with Chapter 3, there are prior world probabilities in an initial model M, and one then 

conditionalizes to get the new probabilities in the model M|A after a public announcement 

!A. 176 This validates the following key recursion axiom: 
 

 [!A] Pi (ϕ) = q  ↔  Pi ([!A]ϕ | A) = q 
 
reducing a probability after update to a conditional probability before. 177  
 
This cannot deal with Monty Hall, as the Quizmaster’s actions had different probabilities, 

depending on the world where they occur. To deal with this new feature, van Benthem 

2003 introduced ‘occurrence probabilities’ for publicly observable events in event models, 

and assigning the following probabilities to new worlds (s, e): 
 
 PMxE(s, e) = PM(s) • PE

s(e),    followed by a normalization step. 
 
More precisely, when all events are public, and their occurrence probabilities are common 

knowledge, the product rule reads as follows: 
 
 Pi,  (s, e)  (t, e)  = Pi, s (t) • P t (e) 

    Σ  u ~i s in M Pi, s (u) • Pu (e)       178 

                                                
175 There are more general probabilistic models in the literature, such as Dempster-Shaefer theory, 

but we feel confident that our dynamic style of analysis will work there, too. 
176 This update rule, as well as the others in this chapter, works as long as the new proposition does 

not have probability zero. For more on the latter scenario, see the final section of this chapter. 
177 Kooi’s paper also has a notion of probabilistic bisimulation that fits the language. 
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This subsumes Kooi’s rule for the special event of public announcement: 
  
 Pi,  (s, !A) (ϕ) = Σ {Pi, s (u) |  s ~i u & M, u |= A ∧ [!A]ϕ}  

    –––––––––––––––––––––––––––––– 
    Σ {Pi, s (u) | s ~i u & M, u |= A} 
 
Example Monty Hall via product update. 

Here is how one computes the earlier tree probabilities for Monty Hall: 
 
          Nature acts 

     1/3      1/3     1/3        
 car behind 1      I   car behind 2      I   car behind 3 

                          
  I choose 1   I    I choose 1         I      I choose 1 

     1/2       1/2   1     1       

Q opens 2    Q opens 3       Q opens 3         Q opens 2 
 x        y          I            z    u 
                    I   
It is easy to check that the probabilities in the final set {x, y} work out to  
 
 for y:  (1/3 • 1/2) /  (1/3 • 1/2 + 1/3 • 1)  =  1/3 

 for z:  (1/3 • 1)  /  (1/3 • 1/2 + 1/3 • 1) = 2/3      ■ 
 
Repercussions: Bayes’ Rule This dynamic perspective has some features that may be 

controversial. One difference with probability theory is that we conditionalize on events. 

We observe events, and hence we have probabilities with heterogeneous arguments 
 
 P(ϕ | e)    where ϕ is a proposition, and e is an event. 179  
 
Now consider Bayes’ Law. Is this principle plausible in a dynamic reading? Obviously, its 

static form P(ϕ |A)  =  P (A | ϕ) • P(ϕ)  / P(A) holds for probabilities in a fixed model. It is 

also valid if we restrict attention to update with purely factual assertions. But the Rule 

turns out problematic as an update principle relating a new probability model to an old one, 

since formulas can change truth values as new information comes in: 
 
                                                                                                                                             
178 In general encoding information about occurrence probabilities was done via ‘generalized 

preconditions’, that map worlds in arbitrary models to probabilities. This is a huge leap away from 

DEL, but later on, we will see that we can often make do with finite definable versions. 
179 Events of public announcement !A reduced to a propositional precondition A, and Q’s opening 

Door 3 to the postcondition ‘Q opened Door 3’. But there need not be a general reduction. 
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Proposition Bayes’ Rule fails as a law of epistemic public announcement. 
 
Proof Consider the following epistemic model M with two agents: 
 
  p, q            you         ¬p, ¬q 
        
      me 
   
  ¬p, q 
 
The actual world on the top left has p, q both true. Now consider the assertion 
 
 A You do not know whether p is the case 
 
This is true in the two uppermost worlds, but not at the bottom. Next, take 
 
 ϕ   I know whether p is the case 
 
that only holds in the world to the right. Let each world have probability 1/3. 180 In the 

initial model, PM(A) = 2/3, while PM(ϕ) = 1/3. A public announcement of the true fact A 

updates this model to the new model M|A: 
 
  p, q        you         ¬p, ¬q 
           
where ϕ  has become true everywhere. In that new model, then, PM|A(ϕ) = 1. By contrast, 

an update that first announces ϕ  would take M to the one-world model M|ϕ: 
 
  ¬p, ¬q 
 
Here A is false everywhere, and we get a probability PM|ϕ (A) = 0. Substituting all these 

values, we see that Bayes’ Rule fails in its dynamic reading: 
 
 P(ϕ |A)  = 1 ≠ (0 • 1/3) / 2/3                   ■ 
 
In a dynamic perspective, order inversions are invalid, though they may work for special 

formulas. Still, Bayes’ Rule has lived a useful life for centuries without logical blessing. 

Romeijn 2009 gives a modified Bayesian counter-analysis of the above reasoning. 
 
Now we turn to our general analysis, based on van Benthem, Gerbrandy & Kooi 2009. 
 
Three sources of probability The preceding approaches have performed a two-fold 

‘probabilization’ of DEL product update, distinguishing two factors: 

 

                                                
180 One can think of probabilities P for a third person 3 who holds all worlds equi-possible. 
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(a) prior probabilities of worlds in the current epistemic-probabilistic  

     model M, representing agents’ current informational attitudes,  
 

(b) occurrence probabilities for events from the event model E encoding    

      agents’ views on what sort of process produces the new information.  
 
But there is also a third type of uncertainty that plays in many realistic scenarios: 
 
  (c) observation probability of events, reflecting agents’ uncertainty  

     as to which event is actually being observed. 
 
Recall the motivation for DEL in terms of observational access. I see you read a letter, and 

I know it is a rejection or an acceptance. You know the actual event (reading “Yes”, or 

reading “No”), I do not. Here product update gives a new epistemic model without 

probabilities. To compute the latter, I may know about frequency of acceptance versus 

rejection letters, a type (b) occurrence probability. But there may also be more information 

in the observation itself! Perhaps I saw a glimpse of your letter – or you looked smug, and 

I think you were probably reading an acceptance. This would be an observation probability 

in sense (c). The latter notion is also known from scenario’s motivating the Jeffrey Rule, 

where one is uncertain about evidence received under partial observation. 181  
 
A simple scenario where all three kinds of probability come together is as follows: 
 
Example The hypochondriac. 

You read about a disease, and start wondering. The chances of having the disease are 

slight, 1 in 100.000. You read that one symptom is a certain gland being swollen. With the 

disease, the chance of this is 97%, without the disease, it is 0. You take a look. It is the first 

time you examine the gland and you do not know its proper size. You think chances are 

50% that the gland is swollen. What chance should you assign to having the disease?     ■ 
 
We will now define a general mechanism for computing the answer. 
 
8.4 Probabilistic product update  

In what follows, our static epistemic-probabilistic models M are as before, and so is our 

language. We will use the DEL-notation [E, e]ϕ from Chapter 4 to describe the effect of 

executing event model E, e in a current model M, s. But our event models are a bit special, 

                                                
181 Occurrence probability is often an objective frequency, and observation probability a subjective 

chance. Our distinction lets both major views of probability co-exist within the same scenario. 
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to make them look like processes with uniformly specified occurrence probabilities: 
 
Definition Probabilistic event models.  

Probabilistic event models are structures E = (E, ~, Φ, Pre, P) with (a) E a non-empty 

finite set of events, (b) ~ a set of equivalence relations ~i on E for each agent i, (c) Φ a set 

of pairwise inconsistent sentences (‘preconditions’), (d) Pre assigns to each precondition 

ϕ∈Φ a probability distribution over E (we write Pre(ϕ, e), the chance that e occurs given 

ϕ), and (e) for each i, Pi assigns each event e a probability distribution over E.      ■ 

 
The language for preconditions is given below: as in Chapter 4, there is a simultaneous 

recursion. Models work as follows. The Pre specifies occurrence probabilities of a process 

that makes events occur with probabilities depending on conditions Φ. Diseases and 

quizmasters are examples, with rules of the form “if P holds, then do a with probability q”, 

and so are Markov processes. Models also have observation probabilities, represented by 

the functions Pi. The probability Pi(e)(e’) is the probability assigned by an agent i to event 

e’ taking place, given that e actually takes place. This adds probabilistic structure to the 

uncertainty relations ~i in much the same way as happened in our static models. 182 
 
Our next goal is a dynamic update rule for these models. Merging input from all three 

sources of probability, its mechanism is a direct generalization of earlier rules: 
 
Definition Probabilistic Product Update Rule. 

Let M be an epistemic-probabilistic model and let E be an event model. If s is a state in M, 

write Pre(s, e) for the value of pre(ϕ, e) with ϕ the unique element of Φ true at M, s. If no 

such ϕ exists, set pre(s, e) = 0. The product model M x E = (S’, ~’, P’, V’) is defined by:  
 

(a)  S’ = { (s, e) | s∈S, e∈E and pre(s, e) > 0} 

(b)  (s, e) ~i (s’, e’)  iff  s ~i s’ and e ~i e’ 

(c)  P’i ((s, e), (s’, e’)) := 
 

Pi(s)(s’) • Pre(s’; e’) • Pi(e)(e’) 
if the denominator > 0 

∑ s’’∈S, e’’∈E Pi(s)(s’’) • Pre(s’’, e’’) • Pi(e)(e’’)          and 0 otherwise. 

 (d) V’((s, e)) = V(s)            ■ 

 
 

                                                
182 Each epistemic event model E in Chapter 4 can be expanded to a probabilistic event model. 
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The new state space after the update consists of all pairs (s, e) where event e occurs with 

positive probability in s (as specified by Pre). The crucial part are the new probabilities   

P’i (s, e) for (s’, e’). These are a product of the prior probability for s’, the probability that 

e’ actually occurs in s’, and the probability that i assigns to observing e’. To get a proper 

probability measure, we normalize this value. 183 Here is how this rule works in practice: 
 
Example The Hypochondriac again. 

The initial hypothesis about having disease p is captured by a prior probability distribution 
 
  1/100.000    99.999/100.000 

      p            ¬p 
 
Then the hypochondriac examines the gland, with an occurrence probability (if he has the 

disease, the gland is swollen with probability 0.97) and an observation probability (he 

thinks he is seeing a swollen gland with probability 0.5) as in the given scenario. This is 

encoded in the following epistemic probabilistic event model: 
 

p  0.97     swollen  (0.5) 

     0 

            0.03 

¬p    1     normal  (0.5) 
 
The product of our initial state with this model is as follows: 
 
   0.97/100.000 • 0.5 

  p, swollen 

 
 
  p, normal    ¬p, normal 

   0.3/100.000 • 0.5  99.999/100.000 • 0.5 
 
This diagram is our new information state after the episode. Renormalizing values, the new 

probability that the Hypochondriac should assign to having the disease is still 1 in 100.000. 

His inconclusive observation has not produced any information about having the disease. 

Had he found it more probable that the gland was swollen, the probability of the disease 

                                                
183 If the denominator in our rule sums to 0, we stipulated a total value 0. Thus M x E need not be a 

probabilistic epistemic model: Pi(s, e) may assign probability 0 to all worlds. Bacchus 1990 has a 

probabilistic defense, but there also are ways of circumventing this feature. 
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would have come out higher than before by our product rule, and had he found it more 

probable that it was not swollen, that probability would have been lower.         ■ 

 
We also see a typical DEL feature. Initially, we only had 2 options: having the disease or 

not. The update created 3 worlds, now with information if the gland is swollen or not. 
 
8.5 Discussion and further developments 
 
Systematic model construction Our epistemic probabilistic update rule starts from a simple 

probability space and, step by step, builds more complex product spaces with informational 

events encoded by event models. This control over probability spaces may be useful in 

practice, where management of relevant spaces, rather than applying the probability 

calculus, is the main difficulty in reasoning with uncertainty. Repeated over time, the new 

possibilities form all runs of a total informational process, linking up with more global 

epistemic probabilistic temporal logics (Chapter 11).  
 
Model theory and probabilistic bisimulation The model theory of epistemic-probabilistic 

logic can be developed like its earlier counterparts, using the earlier-mentioned  epistemic-

probabilistic bisimulation for our static language. It is easy to see that our product update 

rule respects such bisimulations between input models, and we are on our way.  
 
Shifting loci of probabilistic information A natural question is if our three components: 

prior world probabilities, occurrence, and observation probabilities are really independent. 

In modeling real scenarios one can choose where to locate things. Van Benthem, 

Gerbrandy & Kooi 2009 give constructions on update models showing how under 

redefinition of events, occurrence probabilities can absorb observation probabilities, and 

vice versa. Such tricks do not endanger the intuitive appeal of our three-source scheme. 
 
Processes and protocols Our mechanism is more powerful than may appear at first sight. 

Consider temporal processes over time (cf. Chapters 3, 4, 11). Many of their protocols are 

probabilistic: say, an agent whose assertions have a certain probabilistic reliability. 
 
Example Coins and Liars. 

We know that some coin is either fair, or yields only heads. We represent observation of a 

throw of the coin with an initial model M with two options Fair, Heads-only, plus an event 

model E with two events Heads and Tails, related with the obvious probabilities:  
 

Pre (Fair, Heads) = Pre (Fair, Tails) = 1/2 ,  

Pre (Heads-only, Heads) = 1, Pre (Heads-only, Tails) = 0. 
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By our product update rule, one observation of Tails rules out the unfair coin, each 

observation of Heads makes it more likely. In the same mood, we meet a stranger in a 

logic puzzle, who might be a Truth Teller or a Liar. We have to find out what is what. We 

encode the options as abstract pair events inside the event model (cf. Chapter 4): 
 

 (Truth Teller, !A), (Liar, !A) 
 
encoding both the assertion made, and the type of agent making it. After that, update is 

exactly as in our earlier examples, and we read off the new values for the agent types.      ■ 

 
A general construction in terms of pairs (Process type, Observed event) is easily stated. 
 
8.6 A complete dynamic probabilistic logic 
 
Language and semantics To reason explicitly about probabilistic information change, we 

extend static epistemic-probabilistic logics with the dynamics of Chapters 3, 4. 
 
Definition Dynamic-epistemic-probabilistic language. 

The dynamic-epistemic-probabilistic language extends our static language with a dynamic 

modality [E, e]ϕ, with E a probabilistic event model, and e an event from its domain.    ■ 

 
Note again the recursion: the formulas that define preconditions come from this language, 

but through the new dynamic modalities, such models themselves enter the language. 
 
Definition  Semantics of probabilistic event models. 

In an epistemic probability model M = (W, ~, P, V) with s∈W, M, s |= [E, e]ϕ iff for the 

unique ψ∈Φ with M, s |= ψ, we have M x E, (s, e) |= ϕ in the product M x E as above.      ■ 

 
A complete axiomatic system With all this in place, here is our main result: 
 
Theorem The dynamic-epistemic probabilistic logic of update by probabilistic  

event models is completely axiomatizable over the chosen static logic. 
 
Proof The core is the key recursion axiom for formulas [E, e]ϕ. The following calculation 

is the heart of our reduction, with agent indices dropped for greater readability. Consider 

the value P(ψ) of a formula ψ in a (pointed) product model (M, s) x (E, e). We abbreviate 

P(-) in the initial model by PM, writing PMxE for values P(-, -) in the product model, and PE 

for P(-) in the event model. For convenience, we will use the existential dynamic modality  

<E, e>. For a start, if we have ∑ s’’∈S, e’’∈E PM(s’’) • Pre(s’’, e’’) • PE(e’’) > 0, then we get: 
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PMxE(ψ) 

= ∑ (s’, e’) in MxE: MxE, (s’, e’) |= ψ PMxE(s’, e’) 

= ∑ s’∈S, e’∈E: M, s’ |= <E, e’>ψ PMxE(s’, e’) 

  ∑ s’∈S, e’∈E: M, s’ |= <E, e’>ψ PM(s’) • Pre(s’, e’) • PE(e’) 
= 

  ∑ s’’∈S, e’’∈E  PM(s’’) • Pre(s’’, e’’) • PE(e’’) 
 
The numerator of this last equation can be written as 
 

∑ ϕ∈Φ, s’∈S, e’∈E, M, s’ |= ϕ , M, s’ |= <E, e’>ψ PM(s’) • Pre(ϕ, e’) • PE(e’) 
 
which is equivalent to 
 

∑ ϕ∈Φ,  e’∈E  PM (ϕ ∧ <E, e’>ψ)  • Pre(ϕ, e’) • PE(e’) 
 
We can analyze the denominator of the equation in a similar way, and rewrite it as 
 

∑ ϕ∈Φ,  e’’∈E  PM  (ϕ)  • Pre(ϕ, e’’) • PE(e’) 
 
So we can write the probability PMxE(ψ) in the new model as a term of the following form: 
 

   ∑ ϕ∈Φ,  e’∈E  PM (ϕ ∧ <E, e’>ψ)  • k ϕ, e’ 

 PMxE(ψ)  = 
  ∑ ϕ∈Φ,  e’’∈E  PM (ϕ)  • k ϕ, e’’ 

 
where, for each ϕ and f, k ϕ, f is a constant, namely the value Pre(ϕ, f) • PE(f). 
 
We enumerate the finite set of preconditions Φ and the domain of E as ϕ0, …, ϕn e0, …, em. 

Then we rewrite any dynamic formula <E, e> P(ψ) = r with P the probability after update 

to an equivalent equation in which P refers to probabilities in the prior model: 
 

∑ 1≤i≤n, 1≤j≤m k ϕi, ej  • P (ϕi ∧ <E, ej>ψ)  

         = r 
∑ 1≤i≤n, 1≤j≤m k ϕi, ej  • P (ϕi)  

 
And the latter can be rewritten as a sum of terms: 
 

∑ 1≤i≤n, 1≤j≤m k ϕi, ej • P (ϕi ∧ <E, ej>ψ)  +  ∑ 1≤i≤n, 1≤j≤m –r • k ϕi, ej  • P (ϕi) = 0 
 
Now, to express these observations as one recursion axiom in our formal language, we 

need sums of terms. Our language with linear inequalities is up to just this job. But then,   
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to restore the harmony of the total system, we must find a reduction for inequalities: 
 

 [E, e] α1•Pi(ψ1) + … + αn•Pi(ψn) ≥ β 
 
In this formula, we can replace separate terms P(ψk) after the dynamic modal operator by 

their equivalents as just computed. 184 We then obtain an equivalent expression of the form 
 

∑ 1≤h≤k, 1≤i≤n, 1≤j≤m αh • kϕi, ej  • P (ϕi ∧ [E, ej]ψ h) + ∑ 1≤i≤n, 1≤j≤m –β • kϕi, ej  • P (ϕi) ≥ 0 
 
This is still an inequality χ inside our language. The full axiom then becomes 
 

 ([E, e] α1•Pi(ψ1) + … + αn•Pi(ψn) ≥ β)  ↔ 

((∑ 1≤i≤n, 1≤j≤m kϕi, ej  • P (ϕi) > 0) → χ) ∧ (((∑ 1≤i≤n, 1≤j≤m kϕi, ej  • P (ϕi) = 0) → 0 ≤ β) 
 
This looks technical, but it can easily be computed in specific cases. 
 
The other recursion axioms are as in Chapter 4, with preconditions Pre E, e of events e in 

our setting being the sentences ∨ ϕ∈Φ, Pre(ϕ, e) ≥ 0 ϕ. Our proof concludes with the usual inside-

out removal of dynamic modalities, effecting a reduction to the base logic.       ■ 
 
Our relative style of axiomatization adding dynamics superstructure to a static base logic 

makes special sense in probabilistic settings, as it factors out the possibly high complexity 

of the underlying quantitative mathematical reasoning. 
 
8.7 A challenge: weighted learning  
 
Policies and weights Update may be more than our rule so far. Inductive logic (Carnap 

1952), learning theory (Kelly 1996), and belief revision theory (Gärdenfors & Rott 1995) 

also stress policies on the part of agents. We have a probability distribution, we observe a 

new event. The new distribution depends on the weights agents assign to past experience 

versus the latest news. Different weights yield more radical or conservative policies.  
 
Example (adapted from Halpern 2003) The Dark Room.  

An object can be light or dark. We start with the equiprobability distribution. Now we see 

that, with probability 3/4, the object is dark. What are the new probabilities?      ■ 
 
Our earlier update rule weighs things here equally. We use signals ‘Light’, ‘Dark’, with 

occurrence probabilities 1 and 0 with the obvious Φ, and observation probabilities 1/4, 3/4. 

The new probability that the object is dark mixes these to a value between 1/2 and 3/4.        

                                                
184 Caveat. The denominator of the equation for the posterior probabilities must be greater than 0. 
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The αβγ  formula Suppose agents give different weights to the three factors in our rule, 

say real values α, β, γ in [0, 1]. Here is a generalization: 
 
Definition Weighted Product Update Rule. 185 
 
Pnew((s, e); (s’, e’)) :=  

P(s)(s’ | ϕs’) • P(s) (s’)α •   Pre(s’, e’)β   • P(e)(e’)γ 
 

∑ s’’∈S, e’’∈E P(s)(s’’ | ϕs’’) • P(s) (s’’)α •   Pre(s’’, e’’)β   • P(e)(e’’)γ 

 if the denominator > 0 – and 0, otherwise.         ■ 

 
Setting all three factors to 1 gives our original update. Setting α, β, γ = (0, 0, 1) is close to 

the earlier Jeffrey Update, mixing radicalism and conservatism. 186 
 
8.7 Conclusion 

This chapter has linked dynamic epistemic logic with the probabilistic tradition. We found 

a product update mechanism based on a principled distinction between prior world 

probability, occurrence probability, and observation probability. This provides a ‘smooth’ 

extension of the discrete update rules of earlier chapters, letting probabilities gently 

incorporate new information. Moreover, our mechanism has a complete dynamic epistemic 

probabilistic logic that can handle update with formulas of arbitrary syntactic complexity. 

Thus dynamic logic and probability are compatible, and there may be interesting flow of 

ideas across. Of course, the real task is now to extend the bridge-head. 
 
8.8 Further directions and open problems  
 
Plausibility versus probability One obvious issue is how the plausibility models of Chapter 

7 relate to a probabilistic approach. The style of thinking is different, in that most plausible 

worlds may ignore the cumulative probabilistic weight of the less plausible ones. A logical 

difference is that plausibility logics validate conjunction of beliefs: (Bϕ ∧ Bψ) → B(ϕ∧ψ), 

                                                
185 Cf. also Grunwald & Halpern 2003 on related forms of update, including Jeffrey Update. 
186 Technically, we have a pair (Φ, P) of a set of sentences partitioning the space and a probability 

distribution P over Φ. The Jeffrey Update of a prior Pold with the new information is then Pnew(s) = 

Pold(s | ϕ) • P(ϕ). The new signal overrules prior information about the sentences in Φ, just as we 

had with belief revision policies like ⇑P, ↑P in Chapter 7. For our Dark Room, Jeffrey Update 

makes the new probability of the object being dark 3/4, and of its being light 1/4. Thus we set new 

values for partition cells, but within these, relative probabilities of worlds remain the same.  
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while probabilistic approaches do not, since the intersection ϕ∧ψ may have lost probability 

mass below some threshold. This issue has been studied for belief revision with graded 

modalities (Spohn 1988, Aucher 2004). Can we find systematic transformations? 
 
Surprises Our update rule treats zero denominators as a nuisance. But zero probability 

events represent a real phenomenon of true surprises. These have been studied in Aucher 

2005 using infinitesimal numbers. An alternative is the use of conditional probability 

spaces in Baltag & Smets 2007 to represent surprise events and their epistemic effects. 
 
Dynamifying probabilistic reasoning Our dynamic logic exemplifies our general program 

of dynamifying existing systems. In probabilistic practice, however, our system may be too 

baroque, and well-chosen fragments are needed. 187 Probability theory also has challenges 

beyond our approach. One is the fundamental notion of expected value, a weighted utility 

over possible outcomes. This makes general sense for agency in the ‘entanglement’ of 

preference and belief in Chapter 9. To properly incorporate expected value, we need an 

extension of our dynamic logic with recursion axioms for new expected values after 

information has come in. 188 Dealing with these steps may eventually also involve temporal 

extensions of dynamic epistemic logics that can refer to the past (Chapter 11).  
 
Philosophy of science In the philosophy of science, there is a flourishing literature on 

separate probabilistic update rules for popular scenarios, such as Sleeping Beauty and its  

ilk. It would be of interest to see if our logics can help systematize the area. 
 
Postulates and Dutch Book arguments Laws of reasoning with probability are often 

justified by general postulates (cf. our discussion of postulational approaches in Chapters 

3, 7). The most famous format are Dutch Book Arguments showing how the specific 

axioms of the probability calculus are the only ones that are fail-safe in multi-agent betting 

scenarios.  Can we do similar analyses for the principles of our dynamic update logics? 
 
8.9  Literature 

There is a large literature linking probability, conditionals, and belief revision, for which 

the reader can consult standard sources. Kooi 2003 first merged probability with public 

                                                
187 Irma Cornelisse (p.c.) has proposed an interesting subsystem closer to PAL with upgrade actions 

⇑P, r that reset a proposition P toward some new probability r. 
188 The linguistic analysis of questions in van Rooij 2003 and the game-theoretic one of Feinberg 

2007 compare expected values in an old model and a new one after new information is received. 
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announcement logic PAL. Van Benthem 2003 extended this to public event models with 

occurrence probabilities. Van Benthem, Gerbrandy & Kooi 2009 has the system of this 

chapter. Aucher 2004 gives another analysis of epistemic probabilistic update including 

surprise events, and Baltag & Smets 2007 one more, using conditional probability spaces 

(Popper measures). Sack 2009 extends probabilistic DEL from finite models to infinite 

ones, using mathematical notions from probability theory. Grunwald & Halpern 2003 

make proposals related to ours, though in another logical framework. Halpern 2003 is 

probably the major current source on logical approaches to reasoning with uncertainty. 


