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Games as Processes: Definability and

Invariance

We start in a very simple fashion. A game tree with nodes and moves is a model
for a process with states and transitions, of a kind that has been studied in logic,
computer science, and philosophy under names such as Kripke models or labeled
transition systems. Such models invite the use of logical languages that define basic
process structure in a perspicuous way, while representing intuitive patterns of
reasoning about social scenarios. A further current use of logic in games viewed
in this manner is the analysis of computational complexity for model checking
desirable properties, but such computational concerns will be less prominent in this
book. In this chapter, we will see that, in particular, modal logics do many useful
jobs, making them a first candidate for a language of games. However, a further
fundamental perspective from logic makes sense. A choice of language is at the
same time a choice for a level of structural invariance between semantic structures.
Accordingly, our second main theme is structural invariance between games, looking
for natural levels of viewing interaction. In brief: “When are two games the same?”
There is no consensus on this important issue, but we put forward some proposals.
Finally, we state a brief conclusion, mention some key literature that went into the
making of this chapter, and list some further directions that continue themes raised
in the main text.

Note The games in this chapter and most of this book are normally taken to be
finite. When it is important to include infinite games, we will say so explicitly (cf.
Chapters 5, 14, 20, and others). Many notions and results in this book also apply
to infinite games, but we will not pursue this generalization systematically.

Caveat We repeat an earlier warning. This chapter is not an introduction to
modal logic, and the same is true for other logics in this book. The textbook van
Benthem (2010b) covers most of the basics that will be needed.
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36 Game Logics and Process Structure

1.1 Games as process graphs in modal logic

Extensive games as process graphs We start by defining our basic models,
using a slight variation on the presentation in Osborne & Rubinstein (1994).

Definition 1.1 Extensive games
An extensive game G is a tuple (I, A,H, t, {i}) consisting of (a) a set I of players,
(b) a set of actions or moves A, (c) a setH of finite or infinite sequences of successive
actions from A (the histories), closed under taking finite prefixes and infinite limits
of histories, (d) a turn function t mapping each non-terminal history having a
proper continuation in H to a unique player whose turn it is, and finally, (e) for
each player i, a connected preference relation h i h0 (player i weakly prefers h0

to h) on terminal histories. Dropping preference relations from an extensive game
yields an extensive game form being just the underlying pure action structure. ⌅

Several things can be generalized here, say, allowing partial preference orders with
incomparable outcomes, allowing simultaneous moves, or dropping limit closure to
model a wider class of temporal processes. However, the basic format is the most
widely used, and understanding it will facilitate logical generalizations later.

To readers from other fields, extensive game forms will exhibit a familiar struc-
ture: they are just multi-agent “process graphs” in logic and computer science with
a universe of states and transitions. In this chapter, we start at the level of game
forms, looking at action structure only. Preference will return in Chapter 2.

Definition 1.2 Extensive game models
An extensive game model is a tree M = (S,M, turn , end , V ) with a set of nodes
S and a family M of binary transition relations for the available moves, pointing
from parent to daughter nodes. There are two special properties of nodes: non-final
nodes have unary proposition letters turn i indicating the player whose turn it is,
while end marks end nodes. On top of this, the valuation V serves to interpret
other relevant properties of nodes, such as utility values for players, or more ad hoc
features of game states. ⌅

Extensive game models, also called labeled transition systems or Kripke models,
are natural models for a logical language. In this chapter, we will concentrate on
the use of modal logics for extensive games, although we will also look at extensive
games as models for temporal logics in Chapters 5 and 6.
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Games as Processes: Definability and Invariance 37

Basic modal logic Extensive game trees support a standard modal language.

Definition 1.3 Modal game language and semantics
Modal formulas are defined using the following inductive syntax rules for Boolean
operations and modalities, where the p come from a set Prop of atomic proposition
letters, and the a from a set Act of atomic action symbols:

p | ¬' | ' _  | hai'

Boolean conjunction ^ and implication !, as well as the universal modality [a]
are defined in terms of these as usual. Modal formulas are interpreted at nodes s
as local properties of game stages in the earlier models M , in the format

M , s |= ' formula ' is true at node s in model M

The inductive clauses of this truth definition are as usual for the Booleans, while
there is the following key truth condition for labeled modalities:

M , s |= hai' i↵ there exists some t with sRat and M , t |= '

This says that some particular instance of the move a is available at the current
node leading to a next node in the game tree satisfying '. The universal modality
[a]' says that ' is true at all successor nodes reachable by an a-transition. ⌅

Modal operator combinations now describe possible interactions in games. We
briefly repeat an example discussed at greater length in the Introduction.

Example 1.1 Modal operators and strategic powers
Consider a simple two-step game like the following, between two players A and E:

c d

a

c d

b

A

E E

1 2 3 4
p p

PlayerE clearly has a strategy for making sure that a state is reached where p holds,
that is, a rule for responding to the opponent’s moves producing some desired e↵ect.
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38 Game Logics and Process Structure

This feature of the game is directly expressed by a modal formula like this:

[a]hdip ^ [b]hcip

Other modal formulas express other interesting properties of nodes in this game.
More generally, we will see modal notations at work throughout this book. ⌅

As noted in the Introduction, notions like strategy and other items in game forms
match their definition from game theory, unless explicitly noted otherwise.

Dynamic programs We can also introduce explicit notation for basic and complex
moves in a game. For instance, letting the symbol move stand for the union of all
relations available to players, in the preceding game, the modal combination

[move-A]hmove-Ei'

says that, at the current node, player E has a strategy responding to A’s initial
move which ensures that the property defined by ' results after two steps of play.
Union is one of the program operations of an extension of the basic modal language
called propositional dynamic logic, PDL (Harel et al. 2000).

Definition 1.4 PDL programs
Starting from atomic action symbols in a set Act as before, the PDL programs are
defined by the following inductive syntax

a | ⇡1 [ ⇡2 | ⇡1;⇡2 | ⇡⇤ | ?'

of atomic actions, union, composition, finite iteration, and tests. In the above
models, programs ⇡ are interpreted as binary transition relations R⇡ between nodes,
according to the following inductive clauses:

R⇡1[⇡2 = R⇡1 [R⇡2 Choice as union of transition relations

R⇡1;⇡2 = R⇡1 �R⇡2 Sequential composition of relations

R⇡⇤ = (R⇡)⇤ Reflexive-transitive closure of relations

R?' = {(s, t) | s = t & M , s |= '} Successful test of a property ⌅

All of these program operations make sense in the action structure of games, e.g.,
in defining strategies, and we will encounter them in many chapters to follow.

Excluded middle and determinacy Extending our observations to extensive
games up to depth k, and using alternations 2323 · · · of modal operators up to
length k, we can express the existence of winning strategies in any given finite game.
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Games as Processes: Definability and Invariance 39

In this manner, standard logical laws acquire immediate game-theoretic import. In
particular, consider the valid law of excluded middle

2323 · · ·' _ ¬2323 · · ·'

or after some logical equivalences ¬2 = 3¬, ¬3 = 2¬ pushing negations inside:

2323 · · ·' _ 3232 · · · ¬'

where the dots indicate the depth of the tree.

Fact 1.1 Modal excluded middle expresses the determinacy of finite games.

Here, determinacy is the basic property of win-lose games that one of the two
players has a winning strategy. Since winning can be any condition ' of histories,
in the above formula, the left-hand disjunct says that the responding player E
has a winning strategy, and the right-hand disjunct that the starting player A has
a winning strategy. (This may fail in infinite games: players cannot both have a
winning strategy, but perhaps neither one has. Determined infinite games have been
studied extensively in Descriptive Set Theory; Moschovakis 1980, Kechris 1994.)

Zermelo’s theorem This brings us to an early game-theoretic result predating
Backward Induction, proved by Ernst Zermelo in 1913 for zero-sum games, where
what one player wins is lost by the other (win vs. lose is the typical example).

Theorem 1.1 Every finite zero-sum two-player game is determined.

Proof Recall the algorithm in the Introduction for determining the player having
the winning strategy at any given node of a game tree of this finite sort. The method
worked bottom-up through the game tree. First, color end nodes black that are wins
for player A, and color the other end nodes white, being wins for E. Then, if all
children of node s have been colored already, do one of the following:

(a) If player A is to move, and at least one child is black: color s black ; if all
children are white, color s white.

(b) If player E is to move, and at least one child is white: color s white; if all
children are black, color s black.

This algorithm eventually colors all nodes black where player A has a winning
strategy, while coloring those where E has a winning strategy white. Once the root
has been colored, we see the determinacy, and even who has the winning strategy.
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40 Game Logics and Process Structure

The reason for the correctness of this procedure is that a player i whose turn it
is has a winning strategy i↵ i can make a move to at least one daughter node where
i has a winning strategy. ⌅

Application: The teaching game Zermelo’s Theorem is widely applicable. A
variant of the sabotage game in our Introduction shows another flavor of multi-move
agent interaction.

Example 1.2 Teaching, the grim realities
A student located at S in the following diagram wants to reach the escape E,
whereas the teacher wants to prevent the student from getting there. Each line
segment is a path that can be traveled. In each round of the game, the teacher first
cuts one line, anywhere, and the student must then travel one link still open at the
current position:

S X

Y E

In this particular game, the teacher has a winning strategy, by first cutting a line to
the right between X and E, and then waiting for the student’s moves, cutting lines
appropriately. General games like this arise on any graph with single or multiple
lines. Gierasimczuk et al. (2009) provide links with real teaching scenarios. ⌅

Zermelo’s Theorem explains why the student or the teacher has a winning strat-
egy: cutting lines must end. Many games fall under this result, like most logic games
in Part IV. For applications to computer games, see van den Herik et al. (2011).

Modal µ-calculus for equilibrium notions A good test for expressive power of
logics is their capacity for representing basic arguments in the field under study.
Our basic modal language cannot yet express the proof of Zermelo’s Theorem.
Starting from atomic predicates win i at end nodes marking which player has won,
that proof inductively defined new predicates WIN i (i.e., player i has a winning
strategy at the current node, where we use i and j to indicate the opposing players)
through a recursion of the form

WIN i $ (end ^win i) _ (turn i ^ hmove-iiWIN i) _ (turnj ^ [move-j]WIN i)
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Here move-x is the union of all moves for player x. Note how the defined expression
WIN i occurs recursively in the body of its own definition.

Despite its modal shape, this inductive definition has no explicit version in our
modal base language. We need a logic that supports inductive definitions and com-
plex recursions in computation. The modal µ-calculus extends modal logic with
operators for “smallest fixed points”

µp •'(p)

where formulas '(p) must have a special syntax. The propositional variable p may
occur only positively in '(p), that is, in the scope of an even number of negations.1

This ensures that the following approximation function on sets of states:

FM
' (X) = {s 2 M | M , [p := X], s |= '}

is monotonic in the inclusion order:

whenever X ✓ Y , then FM
' (X) ✓ FM

' (Y )

On complete lattices (such as power sets of models), the Tarski-Knaster Theorem
says that monotonic maps F always have a “smallest fixed point,” a smallest set of
states X where F (X) = X. One can reach this smallest fixed point F⇤ through a
sequence of approximations indexed by ordinals until there is no more increase:

?, F (?), F 2(?), . . . , F↵(?), . . . F⇤

The formula µp •'(p) holds in a model M at just those states that belong to
the smallest fixed point for the map FM

' (X). Completely dually, there are also
“greatest fixed points” for monotonic maps, and these are denoted by formulas

⌫p •'(p), with p occurring only positively in '(p).

Greatest fixed points are definable from smallest ones (and vice versa), as shown
in the valid formula ⌫p •'(p) $ ¬µp •¬'(¬p), where ¬'(¬p) still has p positive.

1 Alternately, '(p) has to be a formula constructed from arbitrary p-free formulas of the
language plus occurrences of p, using only _, ^, 2, 3, and µ-operators.
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42 Game Logics and Process Structure

These are just some of the basic properties of this system, which embodies the
decidable modal core theory of induction and recursion. There is a fast-growing
literature on the µ-calculus (cf. Bradfield & Stirling 2006, Venema 2007). This
system will return in several parts of this book, including Chapters 14 and 18.

Fact 1.2 The Zermelo solution is definable as follows in the modal µ-calculus:

WIN i = µp • (end ^win i) _ (turn i ^ hmove-iip) _ (turnj ^ [move-j]p)

Proof The key points are the modal format of the inductive response clauses, plus
the positive occurrences of the atom p standing for the predicate defined. ⌅

Fixed point definitions fit well with the equilibrium notions of game theory that
often have some iterative intuition attached of successive approximation. Hence,
the µ-calculus has many uses in games, as discussed further in Chapters 7 and 13
where we will use extended fixed point logics to analyze other equilibrium notions.2

Control over outcomes and forcing Winning is just one aspect of control in
a game. Games are all about powers over outcomes that players can exercise via
their strategies. This suggests further logical notions with a modal flavor.

Definition 1.5 Forcing modalities {i}'
M , s |= {i}' i↵ player i has a strategy for the subgame starting at s that guarantees

only end nodes will be reached where ' holds, whatever the other player does. ⌅

Fact 1.3 The modal µ-calculus can define forcing modalities for games.

Proof The modal fixed point formula

{i}' = µp • (end ^ ') _ (turn i ^ hmove-iip) _ (turnj ^ [move-j]p)

defines the existence of a strategy for player i making proposition ' hold at the end
of the game, whatever the other player does.3 ⌅

2 In infinite games, it seems better to use greatest fixed points defining a largest predicate
satisfying the recursion. This does not build strategies inductively from below, but views
them as rules that can be called, and always remain at our service. This is the perspective
of co-induction in co-algebra (Venema 2006). Chapters 4, 5, and 18 discuss such strategies.

3 One can easily modify the definition of {i}' to enforce truth of ' at all intermediate
nodes, a variant that will be used in Chapter 5.
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Analogously, shifting modalities slightly, the formula

COOP' = µp • (end ^ ') _ (turn i ^ hmove-iip) _ (turnj ^ hmove-jip)

defines the existence of a cooperative outcome '. However, this notion is already
definable in PDL as well, using the program modality

h
�
(?turn i;move-i)[ (?turnj ;move-j)

�⇤i(end ^ ')

The program is an explicit strategy that makes the forcing statement true. We will
say more on the issue of explicit strategies versus forcing modalities in Chapter 4.

1.2 Process and game equivalences

We have seen how many properties of game forms can be defined in modal formulas,
making modal logic a good medium for reasoning about the basics of interaction.
But next to language design, there is another basic perspective on games. To see
this, recall the view of games as processes as explored in our Introduction.

Process equivalence Process graphs represent processes, and a natural question
arises of when two graphs stand for the same process. As elsewhere in mathematics,
we want an appealing invariance relation. When are two processes the same?

Example 1.3 The same process, or not?
We repeat two pictures of processes, or machines, from our Introduction:

b c

a

b

a

c

a

Both diagrams produce the same finite traces of observable actions {ab, ac}, so qua
input-output behavior the machines are the same under “finite trace equivalence.”
But in doing so, the first machine starts deterministically, and the other with an
internal choice. In order to explore such internal workings of a process, the measure
must have a finer structural comparison distinguishing these models. ⌅
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44 Game Logics and Process Structure

Bisimulation As will be clear from the example, there is no unique answer: di↵er-
ent structural invariances may set natural levels of process structure. Finite trace
equivalence is one extreme, another extreme is the standard notion of isomorphism,
preserving every detail of size and relational structure of a process that is defin-
able in first- or higher-order languages. For present purposes, however, we want to
be in between these two levels. The structural invariance matching the expressive
power of modal logic is a notion that has been proposed independently in many
settings, including computer science and set theory. It works on any graph model of
actions and states, providing an account of “simulating” (the key notion in relating
di↵erent processes) both observable actions and internal choices that led to these.

Definition 1.6 Bisimulation

A bisimulation is a binary relation E between states of two graphs M and N such
that, if xEy, then we have (1) atomic harmony, and (2) back-and-forth clauses,

(1) x, y verify the same proposition letters.

(2a) If xRz, then there exists u in N with yRu and zEu.

(2b) If yRu, then there exists z in M with xRz and zEu.

M N

x

z

y

u

E

⌅

Bisimulation respects local properties plus options available to the process at any
stage. Our earlier two finite-trace equivalent graphs are not bisimilar in their roots.
Before we continue with exploring its properties, let us point out some major uses.

Example 1.4 Uses of bisimulation
Bisimulation contracts process graphs to a simplest equivalent graph, as in:

M N
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A reverse use of bisimulation unravels any process graph M , s to a rooted tree.
The states are all finite paths through M starting with s and passing on to R-
successors at each step. One path has another path accessible if the second is one
step longer. The valuation on paths is copied from the value on their last nodes.

1 2

h1i

h1, 1i h1, 2i

h1, 1, 1i h1, 1, 2i

An unraveling is like a game tree, with the branches encoding all possible runs.
This format is very convenient for theoretical purposes in logic and computation.

Invariance of modal formulas Bisimulation preserves the truth of modal and
dynamic formulas across models, and there are converses, too. The following are
the basic model-theoretic facts in this area.

Theorem 1.2 For all graphs M and N with nodes s, t, condition (a) implies (b):

(a) There is a bisimulation E between M and N with sEt.

(b) M , s and N , t satisfy the same formulas of the µ-calculus.

This implies invariance of modal and dynamic formulas under bisimulation. The
following partial converse says that the basic modal language and the similarity
relation match on finite models.

Theorem 1.3 For any two finite models M and N with given nodes s and t, the
following statements are equivalent:

(a) M , s and N , t satisfy the same modal formulas.

(b) There is a bisimulation E between M and N with sEt.

Our third result says that, at this same level of description, the dynamic language
even provides complete descriptions for any finite graph.

Theorem 1.4 For each finite graph M and node s, there exists a dynamic logic
formula �(M , s) such that the following are equivalent for all graphs N , t:

(a) N , t |= �(M , s).

(b) N , t is bisimilar to M , s.
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46 Game Logics and Process Structure

Proofs of all this can be found in van Benthem (2010b). The last two facts even
hold for arbitrary graphs when we increase the expressive power of basic modal logic
with arbitrary infinite conjunctions and disjunctions in its construction rules.4

Hierarchy of languages and process equivalences There is a hierarchy of
natural process equivalences, from coarser ones like finite trace equivalence to finer
ones like bisimulation. No best level of sameness exists in process theory: it depends
on the purpose. This latitude is also known from studies of space, from fine-grained
in geometry to coarse-grained in topology: it all depends on what you mean by
“is.” Crucially, the same seems true for games. Extensive games match well with
bisimulation. However, our earlier strategic power perspective was closer to an
input-output process view such as trace equivalence.

Hierarchy of languages The ladder of structural simulations has a syntactic
counterpart. The finer the process equivalence, the more expressive a matching
language for the relevant process properties. In this setting, the previously discussed
modal results generalize. Similar invariance and definability results hold for many
kinds of process equivalence (van Benthem 1996). Further, we submit that the same
is true for games.

Game equivalence and invariances The same style of invariance thinking
applies to the question when two games are the same (van Benthem 2002a).

Example 1.5 Local versus global game equivalence
Recall an earlier example from the Introduction. Consider the following two games:

L

L R

R

A

p
E

q r

L R

L

L R

R

E

A A

p q p r

Are these two games the same? The answer depends on our level of interest. In
terms of turns and local moves, the games are not equivalent, and some kind of
bisimulation seems the right invariance, whose absence is matched by a di↵erence

4 Bisimulation also applies to infinite games with infinite histories as outcomes. In this
case, matching languages are the branching temporal logics of Chapters 5, 6, and 9.
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that is expressible in a modal language. For instance, the game on the right, but
not that on the left, satisfies the modal formula hLihRitrue at its root. ⌅

More generally, in line with our definability results for process graphs, game forms
can be described either via structural equivalences or in terms of game languages
with logical formulas (Bonanno 1993, van Benthem 2001b).

Power equivalence and forcing modalities Let us explore the variety. If our
focus is on achievable outcomes of the two games only, then the verdict changed.

Example 1.5, continued

Both players have the same powers of achieving outcomes in both games:

(a) A can force the outcome to fall in the sets {p}, {q, r}.
(b) E can force the outcome to fall in the sets {p, q}, {p, r}.

As in the Introduction, a player’s powers are those sets U of outcomes for which
the player has a strategy making sure the game will end inside U , no matter what
others do. In the game on the left, player A has strategies left and right, yielding
powers {p} and {q, r}, and player E has two strategies yielding powers {p, q} and
{p, r}. On the right, E has left and right, giving the same powers as on the left.
But A now has four strategies:

left : L, right : L, left : L, right : R, left : R, right : L, left : R, right : R

The first and fourth strategies give the same powers for A as on the left, while the
second and third strategies produce weaker powers subsumed by the former. ⌅

We will return to these simple but important examples at many places in this
book. Again, there is a matching notion of power bisimulation plus a modal lan-
guage for this level of description, involving the strategic forcing modalities {i}'
of Section 2.1 of Chapter 2. This forcing perspective will be explored at greater
length in Chapters 11 and 19. It is also the intuitive equivalence view behind the
logic games that we will study in Part IV.

Remark Levels and transformations in game theory
Issues of grain size have long been studied in game theory. In particular, extensive
games induce a notion of extracted information that can be captured by transfor-
mations between games having the same normal or reduced form (cf. Thompson
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48 Game Logics and Process Structure

1952, Kohlberg & Mertens 1986).5 On a di↵erent tack, Bonanno (1992a) identi-
fies extracted information with a set-theoretic form close to forcing, and gives a
matching transformation of interchange of contiguous simultaneous moves.

1.3 Further notions of game equivalence

Having introduced our two main topics of definability in logical languages for games
and matching notions of structural simulation, we now explore a few variations,
some getting closer to the game-theoretic literature.

Alternating bisimulation Are there other natural game equivalences beyond the
present two? Finite trace equivalence seems too coarse, but bisimulation sometimes
seems too fine. The following two non-bisimilar single-player games seem equivalent:

E

E
C

A B

versus

E

A
E

B C

One does not normally distinguish players’ internal actions this finely, and the
switch is in fact one of the “Thompson transformations” of Thompson (1952). But
things matter with switches between di↵erent players, moving into another zone of
control. We might not call game shapes equivalent if the turn patterns were very
di↵erent, as with the earlier game, but now for formulas (A_B)^C and A_(B^C).
Formulating a matching notion calls for a mixture of our earlier ideas.

Definition 1.7 Alternating bisimulation
An alternating bisimulation only requires the zigzag conditions of bisimulation with
respect to “extended moves” that consist of a finite action sequence by one player
ending in a state that is a move for the other player, or an endpoint. Also, it
disregards the exact nature of these moves, viewing them solely as transitions. ⌅

5 Transformations are close to mathematical invariances in geometry and other fields. The
closest analogue in our setting are bisimulations, although these are not functions. One
associated transformation on models is the earlier bisimulation contraction.
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Example 1.6 Compacting games
Alternating bisimulation will identify the following two game trees:

E

1
E

2
A

3 4

versus

E

1 2
A

3 4

This allows for normalizing games so that each move leads to a turn change. ⌅

Alternating bisimulation can again be tied up with matching modal game lan-
guages, but no complete characterization seems to be known. It resembles the
intermediate forcing bisimulations of Chapter 11 that record players’ powers for
getting to any position of a game.6

Simulating strategies A di↵erent intuition about game equivalence that many
people share might be phrased as follows:

players should have matching strategies in both games.

Ordinary bisimulation implies this property of matching.

Fact 1.4 Games that admit a bisimulation between their roots allow all players
to copy strategies for forcing sets of end nodes.

The reason is that the zigzag conditions allow both players to copy moves across.
But bisimulation seems too strong, and weaker invariances su�ce, depending on
how the matching is spelled out. So far, there seems to be no best formulation of
game equivalence as having the same strategies modulo e↵ective simulation.

Digression Perhaps we must think di↵erently here, using two simulation rela-
tions, one for player E and one for A, comparing their separate powers across nodes
in two games. When turns are the same, ordinary zigzag clauses for available moves
seem acceptable. But the situation gets harder when the turns are not the same:

6 It is also related to stuttering bisimulations in computer science (Gheerbrant 2010).
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E A

With such a turn mismatch, single moves by player E must correspond to responses
to all of A’s moves on the other side. But E’s powers on the left need not match
her powers at each A-successor on the right: a counterexample is easily found in
our propositional distribution games. We may need inclusion of players’ powers via
“directed simulations” (Kurtonina & de Rijke 1997).

Links with logic games Game comparison also makes sense for the special realm
of logic games in Part IV. But logic games also add to the current style of analysis.
In Chapter 15, we will study Ehrenfeucht-Fräıssé games that test two given models
for similarity over some specified number of rounds. These games add fine structure
to notions of simulation, measuring di↵erences that can be detected by concrete
modal or first-order formulas. In this finer perspective, a bisimulation is a global
winning strategy for establishing similarity in a game with an infinite number of
rounds. Thus, logic games will provide a way of refining our earlier question of
structural equivalence to the question of:

How similar are two given games?

Di↵erent levels once more Di↵erent game equivalences need not stand for deep
competing modeling choices; instead, they may just reflect a frequent phenomenon
in practice. The same game G can often be described at di↵erent levels, as one
can individuate moves more or less finely. In the limit, we can even form a kind
of extreme coarsening coarse(G) by keeping the old nodes, but taking just two
relations for the players as follows:

RE is the union of all moves for player E, and RA is defined likewise.

Since coarse(G) has less information thanG itself, it does not support a reduction of
properties ofG: things go the other way around. To see this, take any modal formula
' in the language of coarse(G), and translate it into a formula fine(') replacing
the new relation symbols by their definitions. This results in the equivalence

coarse(G), s |= ' i↵ G, s |= fine(')
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A related view in Chapter 19 will distinguish between games themselves and
“game boards” that games are played on. One level is an external setting for
observable e↵ects of the game. The other is a richer game structure with inter-
nal predicates, such as turns, preferences, wins, and losses. A typical connection
between the two ways of viewing one and the same game is the “adequacy lemma”
for evaluation games in the Introduction that stated an equivalence between

(a) M , s |= ', (b) game(M ,'), hs,'i |= WIN V

This relates a statement about powers of players in a game with properties of
its game board. Two-level views are often illuminating. In particular, the above
links may be used to analyze the complexity of strategies in games. We postpone a
further analysis of multiple views on games until Parts III and V of this book.

1.4 Conclusion

The main points We have found our first serious connection between logic and
games. Extensive games are processes of a kind well-known in computer science, and
for a start, we have shown how modal languages fit well for the purpose of defining
game-theoretic notions and capturing basic game-theoretic reasoning. We gave a
systematic family of languages (modal logic, dynamic logic, µ-calculus) that link
game theory with computational logic, allowing for tra�c of ideas. In particular,
modal languages correlate with natural notions of structural invariance, reflected in
di↵erent notions of process equivalence. Our second main point was taking the same
invariance thinking to games, with levels ranging from finer to coarser, a common
mathematical perspective for defining a family of structures.

Benefits By paying systematic attention to links between structure and language,
logic brings to light key patterns in definitions and inferences, such as the modal
quantifier interchange underlying strategic behavior. Moreover, one can use this
framework for model-checking given games for specific properties, proving com-
pleteness for calculi of reasoning about interaction, determining computational
complexity of game-theoretic tasks, or investigating model-theoretic behavior such
as transfer of properties from one game to another. In this book, we will not pursue
such applications in any technical detail, but they are there, and we will continue
to develop many further relevant interfaces.



“lig-09-25” — 2013/10/29 — 9:44 — page 52 — #70i
i

i
i

i
i

i
i

52 Game Logics and Process Structure

Open problems One benefit of a logical stance is new problems. We conclude
with some open problems raised by the analysis in this chapter. What are the best
logical languages for formalizing basic game-theoretic proofs and defining major
structures in games? We have suggested that a modal language, perhaps with fixed
point operators, is a suitable vehicle, but is this borne out with further game-
theoretic phenomena? This question of fit to basic reasoning about interaction will
be addressed in the chapters to follow in Parts I and II. Related to this issue
of language design is another: What are the most natural notions of structural
equivalence between games? As we have seen, there are several natural levels here,
and none of the invariances that we have mentioned seems to exhaust the topic.

1.5 Literature

This chapter is based on the process view of games from van Benthem (2002a).
There is a broad literature on logics for basic game structure. Pioneering papers

on logical languages for games and their extracted information content are Bonanno
(1992a, 1993), and a good survey of many varieties of game logics is the chapter
van der Hoek & Pauly (2006) in the Handbook of Modal Logic. Structural equiva-
lences, view levels, and transformations in game theory were discussed in famous
papers such as Thompson (1952) and Kohlberg & Mertens (1986). Further inter-
faces between logic and game theory will occur throughout Parts I and II of this
book, but also in Chapters 12 and 13 on logics for strategic games.
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Preference, Game Solution, and

Best Action

Real games arise over bare game forms when we take into account how players
evaluate possible outcomes. Available actions give the kinematics of what can hap-
pen in a game, but it is only their interplay with evaluation that provides a more
explanatory dynamics of well-considered intelligent behavior. How players evaluate
outcomes is encoded in utility values, or in preference orderings.

Logic has long been applied to preference structure. In this chapter, we first
review some basic preference logic from philosophy and computer science, showing
how it applies to games. Then we analyze the paradigmatic solution procedure of
Backward Induction as a pilot case, focusing on two features: (1) the role of ratio-
nality as a bridge law between information, action, and preference, and (2) the role
of recursive approximation to the optimal outcome. There need not be a unique
best level of syntactic detail for such a conceptual analysis, and we will present
two levels of zoom. We first define the Backward Induction solution in a first-order
fixed point logic of action and preference, making a junction with the area of com-
putational logic. Next, we hide the recursive machinery, and use a modal logic to
study the basic properties of “best actions” as supplied by the Backward Induction
procedure. As usual, the chapter ends with a statement of further directions, con-
clusions, and open problems, as well as some selected literature behind the results
presented here.

2.1 Basic preference logic

Models To model preferences, we start with a simple setting that lies behind many
decision problems, games, and other scenarios (cf. Hanson 2001, Liu 2011).
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Definition 2.1 Preference models

Preference models M = (W,, V ) are standard modal structures with a set of
worlds W standing for any sort of objects that are subject to evaluation and com-
parison, a binary betterness relation s  t between worlds (i.e., t is at least as good
as s), and a valuation V for proposition letters encoding unary properties of worlds
or other relevant objects. ⌅

The comparison relation  will usually be di↵erent for di↵erent agents, but in
defining the basic logic, we will suppress agent subscripts i for greater readability.
We use the artificial term betterness to stress that this is an abstract comparison
relation, making no claim yet concerning the intuitive term preference. Note that we
are comparing individual worlds here, not properties of worlds. In actual parlance,
preference often runs between generic properties of worlds or events, as in preferring
tea over co↵ee. We will see in a moment how the latter view can be dealt with, too.

Very similar models with plausibility orderings are used for modeling belief
(Girard 2008, van Benthem 2007c), and there are also connections with conditional
logic and non-monotonic logics. These links will return in Part II of this book.

Constraints on betterness orders Which properties should a genuine betterness
relation have? Total orders satisfying reflexivity 8x : x  x, transitivity 8xyz :
((x  y ^ y  z) ! x  z), and connectedness 8xy : (x  y _ y  x), are common
in decision theory and game theory, as these properties are induced by agents’
numerical utilities for outcomes. But in the logical and philosophical literature on
preference, a more general medium has been proposed, too, of pre-orders, satisfying
just reflexivity and transitivity. Then there are four intuitively irreducible basic
relations between worlds:

w  v, ¬v  w (w < v) w strictly precedes v
v  w, ¬w  v (v < w) v strictly precedes w
w  v, v  w (w ⇠ v) w, v are indi↵erent
¬w  v, ¬v  w (w#v) w, v are incomparable

The latter two clauses, although often confused, describe di↵erent situations.
One can also put two relations in betterness models: a “weak order” w  v for at

least as good, and a “strict order” w < v for ‘better’, defined as w  v and ¬v  w,
respectively. This setup fits belief revision (Baltag & Smets 2008) and preference
merge (Andréka et al. 2002). The logic of this extended language is axiomatized in
van Benthem et al. (2009c), and related to the philosophical literature.



“lig-09-25” — 2013/10/29 — 9:44 — page 55 — #73i
i

i
i

i
i

i
i

Preference, Game Solution, and Best Action 55

Modal logics Our base models interpret a standard modal language. In particular,
a modal formula hi' will make the following local assertion at a world w:

M , w |= hi' i↵ there exists a v � w with M , v |= '

that is, there is a world v at least as good as w that satisfies '. In combination
with other standard modal operators, in particular, a universal modality U' saying
that ' holds at all worlds, this formalism can express quite a few further notions.

Example 2.1 Defining conditionals from preference
Consider the bimodal formula

Uhi[]'

This says that everywhere, there is some better world upward from which ' holds.
In finite pre-orders, this says that all maximal elements in the ordering (having no
properly better worlds) satisfy '. But then we are close to other basic notions turn-
ing on maximality. Boutilier (1994) showed how a preference modality can define
conditionals  ) ' in the style of Lewis (1973) with the following combination:

U( ! hi( ^ []( ! ')))

This is simply the standard  -relativized form of Uhi[]', saying, at least in
finite models, that ' is true in all maximal worlds satisfying  . ⌅

Later on, we will use this modal language to define the Backward Induction
solution for extensive games. By doing things this way, we can use the standard
machinery of modal deduction to analyze the behavior of conditionals, or game-
theoretic strategies.

The modal base logic of preference pre-orders is the system S4, while connected-
ness validates S4.3. In general, assumptions on orderings induce modal axioms by
the standard technique of frame correspondences (cf. Blackburn et al. 2001).

Propositional preference The modal language describes local properties of bet-
terness at worlds. But a betterness relation need not yet determine what we mean
by agents’ preferences in a more colloquial sense. Many authors consider preference
to be a relation between propositions calling for comparison of sets of worlds. For
a given relation  among worlds, this may be achieved by “set lifting” of relations
given on points. One ubiquitous proposal in such lifting is the 89 stipulation that

89-rule a set Y is preferred to a set X if 8x 2 X 9y 2 Y : x  y
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However, alternatives are possible. Von Wright’s pioneering view of propositional
preference is analyzed in van Benthem et al. (2009c) as the 88 stipulation that

88-rule a set Y is preferred to a set X if 8x 2 X 8y 2 Y : x  y

Liu (2011) reviews proposals for set lifted relations in various fields, but concludes
that no consensus on one canonical notion of preference seems to have ever emerged.
Preference as a comparison between propositions may depend on the scenario. For
instance, in a game, when comparing sets of outcomes that can be reached by
available moves, players have options. They might prefer a set whose minimum
utility value exceeds the maximum of another: this is like the 88 reading, which
can produce incomparable nodes. But it would also be quite reasonable to require
that the maximum of one set exceeds the maximum of the other, producing a
connected order that would be rather like the 89 reading.

Example 2.2 Options in set lifting
Consider the choice between move L and move R in the following:

L R

2 3 1 4

The 89 reading prefers R over L, the 88 reading makes them incomparable, while
maximizing minimal outcomes would lead to a preference for L over R. ⌅

Modal logics again Many lifts are definable in a modal base logic, with a few
extra gadgets. For instance, using the universal modality U' (saying that ' is true
in all worlds), with formulas standing for sets of worlds, 89 preference is expressed
by U(' ! hi ). For 88 preference, things are more complex: see van Benthem
et al. (2009c) for a proposed solution.7

7 An alternative view in Jiang (2012) defines set preferences by a process of comparing
samples, and presents a dynamic logic of object picking.
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2.2 Relational strategies and options for preference

Strategies as subrelations of the move relation To make our models of pref-
erence fit with games, we make a few changes from the usual setup. A strategy is
usually taken to be a function on nodes in a game tree, yielding a unique recom-
mendation for play. But in many settings, it makes sense to think of strategies as
nondeterministic binary subrelations of the total relation move (the union of all
actions in the game) that merely constrain further moves by marking one or more
as admissible. This reflects a common sense view of strategies as plans for action,
and it facilitates defining strategies in dynamic logic (cf. Chapter 4). Our numeri-
cal version of Backward Induction already had this relational flavor. Its computed
relation bi linked nodes to all daughters with maximal values for the active player,
of which there may be more than one.8

Solution algorithms and notions of preference Here is another important
point about what look like obvious rules of computation: they embody assump-
tions about players. Recall that our Backward Induction clause for the non-active
player took a minimal value. This is a worst-case assumption that the active player
does not care at all about the other player’s interests. But we might also assume
some minimal cooperation, choosing maximal values for the other player among the
maximal nodes. This variety of versions highlights an important feature: solution
methods are not neutral, they tend to encode significant views of a game. Here is
another way of phrasing this: things depend on what we mean by rationality.

Rationality: Avoiding stupid moves An active player must compare di↵erent
moves, each of which, given the relational nature of the procedure, allows for many
leaves that can be reached via further bi -play. A minimal notion of rational choice
says that

I do not play a move when I have another move whose outcomes I prefer.

8 Di↵erent views of strategies have been discussed in game theory in terms of plans of
action, recommendations for action, or predictions of actions. Di↵erent choices may favor
relational or functional views (cf. Greenberg 1990, Bonanno 2001). In this chapter, we
will mainly follow the recommendation view, although Chapter 8 also casts strategies as
beliefs or expectations about future behavior.
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This seems plausible, but what notion of preference is meant here? In our first
Backward Induction algorithm, a player i preferred a set Y to X if the minimum
of its values for i is higher. This is the earlier 89 pattern for a set preference

8y 2 Y 9x 2 X : x i y

However, the same notion of rationality allows for alternatives. A common notion
of preference for Y over X that we saw already is the 88 view that

8y 2 Y 8x 2 X : x i y

Relational Backward Induction The latter view suggests a minimal version of
game solution where players merely avoid “strictly dominated” moves that are worse
no matter what (Osborne & Rubinstein 1994). This will be our running example.

Example 2.3 Relational Backward Induction
Call a move a dominated if it has a sibling move all of whose reachable endpoints
are preferred by the current player to all reachable endpoints via a itself.

Now, first, mark all moves as active. The algorithm works in stages. At each
stage, mark dominated moves in the 88 sense of set preference as passive, leaving
all others active. In this comparison, reachable endpoints by an active move are all
those that can be reached via moves that are still active at this stage. ⌅

This is a cautious notion of game solution making weaker assumptions about the
behavior of other players than our earlier version.9 We write bi for the subrelation
of the total move relation produced at the end.

Example 2.4 Some comparisons
Consider the following games, where the values indicated are utilities for player A.
For simplicity, we assume that player E has no preference between E’s moves:

A

E E

1 4 2 3

A

1
E

1 4

9 Many versions agree on so-called “distinguished games” that separate all histories.
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In the game on the left, our original Backward Induction algorithm makes A go
right, as the minimum 2 is greater than 1. But cautious BI accepts both moves for
A, as none strictly dominates the other. This may be viewed as set-lifted preference
for very risk-averse players.

Interestingly, both versions pass all moves in the game to the right. This seems
strange, as A might go right at the start, having nothing to lose, and a lot to gain.
But analyzing all variants for preference comparisons between moves is not our goal
here, and we move on to other topics. ⌅

Example 2.5 More comparisons
Di↵erent views of Backward Induction also emerge when we think of Nash equilibria
for functional strategies. Consider the following game:

A

(1, 0)
E

(0, 1) (2, 1)

Our cautious Backward Induction computation allows all moves in this game, since
no move is dominated. However, there are two Nash equilibria in functional strate-
gies: (L,L) and (R,R), corresponding to pessimistic or optimistic views on A’s part
as to what E would do at E’s turn. Instead of focusing on relations, it would also
be possible to analyze Backward Induction in terms of strategy profiles in equilib-
rium, using the models of games in Chapters 6 and 12. We will not explore this
alternative logical route in this book. ⌅

2.3 Defining Backward Induction in fixed point logics

Defining the Backward Induction solution is a benchmark for logics of games.10 We
start by citing a result from van Benthem et al. (2006b).

10 The game-theoretic literature distinguishes the Backward Induction path: the actual
history produced, and the Backward Induction strategy that includes o↵-path behavior
whose interpretation may be questioned. The characterizations of Aumann (1995, 1999)
are for the Backward Induction path only. Our approach covers the whole strategy.
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Theorem 2.1 On finite extensive games, the Backward Induction strategy is the
largest subrelation � of the total move relation that has at least one successor at
each node, while satisfying the following property for all players i:

Rationality (RAT) No alternative move for the current player i yields
outcomes via further play with � that are all strictly better for i than all
outcomes resulting from starting at the current move and then playing �
all the way down the tree.

The following picture illustrates more concretely what this says:

u

�

v

x

y z

� �

u v�

The shaded area in this diagram is the part that can be reached via further play
with our strategy �. The proof that the property RAT is necessary and su�cient
for capturing the Backward Induction solution is by a straightforward induction on
the depth of finite game trees.
Stated in more syntactic terms, RAT expresses a “confluence property” for action

and preference, where steps in di↵erent subtrees get linked by preference:

CF 8x8y
⇣�

Turni(x) ^ x�y
�
! 8z

�
xmove z !

9u9v(end(u) ^ end(v) ^ y�⇤v ^ z�⇤u ^ ui v)
�⌘

This is the basis for definability of the Backward Induction solution in a well-
known system from computational logic, first-order fixed point logic LFP(FO)
(Ebbinghaus & Flum 1999). The system LFP(FO) extends first-order logic with
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smallest and greatest fixed point operators producing inductively defined new pred-
icates of any arity, a highly expressive device going far beyond the µ-calculus of
Chapter 1 that only defined new unary predicates.11

Theorem 2.2 The Backward Induction relation is definable in LFP(FO).

Proof In the consequent of the above 8899 format for CF (confluence), all occur-
rences of the symbol � are syntactically positive. This positive syntax allows for a
greatest fixed point operator defining bi in LFP(FO) as the following relation S:

⌫S, xy •8x8y
⇣�

Turni(x) ^ Sxy
�
! 8z

�
xmove z !

9u9v(end(u) ^ end(v) ^ yS⇤v ^ zS⇤u ^ ui v)
�⌘

It is shown in detail in van Benthem & Gheerbrant (2010) how the successive steps
of the cautious Backward Induction algorithm match the approximation stages for
the greatest fixed point denoted by this formula, starting from the total move
relation, and refining it downward. ⌅

LFP(FO) is a fundamental system in its field, and hence our analysis has made
a significant junction between game solution methods and logics of computation.

Variants Variants can be defined, too, with, say, an 8889 format 8x8y((Turni(x)
^ x�y) ! 8z(xmove z ! 8u((end(u) ^ y�⇤u) ! 9v(end(v) ^ z�⇤v ^ vi u)))).
This syntax is no longer positive for �, and existence and uniqueness results now
require an appeal to the well-foundedness of game trees, as well as the use of special
logics for trees. These matters are studied extensively in Gheerbrant (2010).

2.4 Zooming out to modal logics of best action

Fixed point logics make solution procedures for games fully explicit in their nota-
tion. But logical description of behavior can take place at various levels, either
zooming in on formal details that lie below a natural reasoning practice, or doing
precisely the opposite, zooming out to useful abstractions that lie above the surface
level. In the latter vein, often, we want to hide the details of a computation, and

11 The price for this expressive power is that validity in LFP(FO) is non-axiomatizable,
and indeed of very high complexity. Still, this system has many uses, for instance, in finite
model theory (Ebbinghaus & Flum 1999, Libkin 2004).



“lig-09-25” — 2013/10/29 — 9:44 — page 62 — #80i
i

i
i

i
i

i
i

62 Game Logics and Process Structure

merely record properties of the notion of best action. An agent may just want to
know what to do, without being bothered with all the details behind the relevant
recommendation.

For this purpose, it would be good to extract a simple surface logic for reasoning
with the ideas in this chapter, while hiding most of the earlier machinery. At this
level of grain, modal preference logics become a good alternative again, on top of a
standard logic of action as in Chapter 1. In particular, a new modality hbesti now
talks about the best actions that agents have available, encoding some particular
style of recommendation. For concreteness, we will interpret it as follows:

hbesti' says that is ' true in some successor of the current node that can
be reached in one step via the bi relation.

Theorem 2.3 The Backward Induction strategy is the unique relation � satisfying
the following modal axiom for all players i, and for all propositions p, viewed as
sets of nodes:

(turni ^ hbesti[best⇤](end ! p)) ! [move-i]hbest⇤i(end ^ hpref iip).

Proof The proof is a modal frame correspondence, applied to the earlier confluence
property CF, which can be computed by standard modal methods.12 ⌅

It is easy to find further valid principles in this language, expressing, for instance,
that best actions are actions. The following natural issue in this setting goes back
to van Otterloo (2005):

Open Problem Axiomatize the modal logic of finite game trees with amove rela-
tion and its transitive closure, turn predicates and preference relations for players,
plus a new relation best as computed by Backward Induction.13

This is just one instance of a global logic for practical reasoning that can be
extracted from more detailed game structure. Section 2.7 will mention others.

12 The overall form here is a Geach-style convergence axiom (see van Benthem et al. 2012
for the latest results in frame correspondence for modal fixed point logics).

13 We get at least the basic modal logics for moves and for preference as discussed earlier,
while the above bridge axiom fixes relevant connections between them. However, looking
at details of this calculus, in Chapter 9, we also find a need for relativized predicates bestP

referring to moves that are best with a Backward Induction computation restricted to the
submodel of all worlds satisfying P .
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Pitfalls of complexity Global logics of best action may also be interesting from
an unexpected computational perspective. You may think that surface logics should
be easy, but there is a snag. The rationality in the above confluence picture entan-
gles two binary relations in tree models for games: one for actions, and another
for preference. The resulting grid structure for two relations on game trees can
encode complex geometric “tiling problems,” making the bimodal logics undecid-
able and nonaxiomatizable (cf. Harel 1985, van Benthem 2010b). We will elaborate
on this phenomenon in Chapter 3 when discussing information processing agents
with perfect memory (cf. Halpern & Vardi 1989), and once more in Chapter 12 on
logics for strategic games with grid-like matrix structures. There is an interesting
tension here between two views of simplicity. On the one hand, rationality is an
appealing property guaranteeing uniform predictable behavior of agents, but on the
other hand, rationality may have a high computational cost in the complexity of
its induced logic of agency.14

2.5 Conclusion

The main points In this chapter, we have seen how games support a natural com-
bination of existing logics for action and preference. We showed how the resulting
game logics with action and preference can deal with the preference structure that is
characteristic for real games, up to the point of defining the standard benchmark of
the Backward Induction solution procedure. These logics came in two natural vari-
eties of detail. Zooming out on basic global patterns, we found a modal logic of best
action that seems of general interest in practical reasoning. Zooming in on details
of solution procedures, we showed how the Backward Induction strategy can be
defined in richer fixed point languages for games, in particular, the logic LFP(FO)
for inductive definitions. This reinforces the general point made in Chapter 1 that
game-theoretic equilibrium notions match up well with fixed point logics. In this
way, our analysis creates a junction between game theory, computational logic, and
philosophical logic. This combination of strands will continue as this book proceeds.

Open problems The themes of this chapter also suggest a number of open prob-
lems. These include axiomatizing modal logics of best action, and exploring the

14 On the computational complexity of game solution procedures as analyzed in this
chapter, cf. Szymanik (2013).
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computational complexity of logics of action and preference, especially the e↵ects
of varying bridge principles between the two components, of which rationality was
just one. Of fundamental importance also would be finding the right structural
equivalence for games with preferences, continuing a major theme from Chapter 1.
For instance, should we now identify processes when only their best actions can be
simulated? Further issues include defining strategies explicitly: in Chapter 1, pro-
grams from dynamic logic served this purpose; how can these be extended to deal
with preference? Finally, there is the challenge of an extension to infinite games,
where Backward Induction has a problematic status (Löwe 2003). Fixed point logics
fit well with infinite models, and greatest fixed points like the one we found denote
co-inductive objects such as never-ending strategies (cf. Chapter 18). However, the
precise relation is still unclear in our setting.

Some of the issues mentioned here will be discussed in our final Section 2.7 on
further directions, which can be skipped without loss of continuity. Also, a number
of relevant considerations will return later on in this book, in Chapter 4 on strategies
and in Chapter 8 on dynamic logics for game solution procedures.

2.6 Literature

This chapter is based on van Benthem (2002a), van Benthem et al. (2006b), and
especially, van Benthem & Gheerbrant (2010).

Further texts with many additional insights on preference, games, and logic are
Dégremont (2010), Gheerbrant (2010), Liu (2011), and Zvesper (2010).

2.7 Further directions

For the reader who wants more food for thought, we list a few further directions.

Entangling preference and belief Our first topic is an important reinterpre-
tation of what we have done in this chapter. Looking more closely at the earlier
confluence property, we see that it makes comparisons between current moves based
on an assumption about future play, viz. that Backward Induction will be played
henceforth. This reveals another aspect of game solution: it entangles preference
with belief. Backward Induction, and indeed also other game solution methods, are
really procedures for creating expectations of players about optimal behavior.
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In line with this, our earlier version of rationality can be amended to a perhaps
more sophisticated notion of “rationality-in-beliefs”: Players play no move whose
results they believe to be worse than those of some other available move. Beliefs will
be the topic of later chapters, especially in Part II where we analyze the dynamics
of game solution procedures as a process of successive belief changes. As will be
shown in Chapter 8, strategies are very much like beliefs, in a precise formal sense.

Other social scenarios Backward Induction is just one scenario, and many other
scenarios in games, or social settings generally, can be studied in the above spirit.

Variety of logics for games It is not written in stone that a language of games
has to be a basic modal one. Stronger formalisms are also illuminating, such as
the use of temporal Until operators in van Benthem (2002a) to define preferences
between nodes in game trees. Further extensions occur in defining Nash equilibria
(cf. Chapter 12): these require intersections of relations, a program operation that
goes beyond PDL. Going back to Chapter 1, such alternative logics may also suggest
new notions of process equivalence for games.

One more rough level: Deontic logic Our line of zooming out to best action
has counterparts in recent top-level logics of complex social scenarios in terms of
common sense notions such as “may” and “ought” that pervade ordinary discourse.
Tamminga & Kooi (2008), Roy (2011), and Roy et al. (2012) provide further illus-
trations of this more global zoom level, relating games to deontic logics for reasoning
about permissions and obligations.

Priority models for preference Our models for preference were sets of abstract
worlds with a primitive betterness relation. This does not record why agents would
have this preference, based on what considerations. Reasons for preference are
explicitly present in the “priority graphs” of Liu (2011) that list the relevant prop-
erties of worlds with their relative importance. Betterness order on worlds is then
derived from priority graphs in a natural lexicographical manner.

This richer style of analysis makes sense for games, too, since we often judge
outcomes in terms of ordered goals that we want to see satisfied, rather than an
immediate preference ordering. See Chapter 22 on some uses of players’ goals in
knowledge games over epistemic models, and Grossi & Turrini (2012) and Liu
(2012) for an application of priority graphs to short-horizon games. Osherson &
Weinstein (2012) present another take on reason-based preference, with various
modal connectives reflecting reasons to desire that a sentence be true.
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Game equivalence with preferences As in Chapter 1, a greater variety of lan-
guages also suggests variety in structural notions of game equivalence. Our earlier
notions of game invariance become more delicate in the presence of preferences.

As a simple illustration, we can intuitively identify the following two non-bisimilar
one-player games as the same:

E

1 2

E

2

Three approaches to equivalence have been explored in van Benthem (2002a):
(i) direct simulation on preference links, (ii) pruning games to their best actions,
and then using the standard action invariances of Chapter 1, and (iii) preference-
equivalence of games as supporting the same Nash equilibria.

What complicates intuition here is an issue of equivalence for whom? The above
games only seem equivalent for rational playersE, not for erratic or stupid ones. But
then, a more general point arises. Should our recurrent question of game equivalence
perhaps be relativized to “agent types” for players? Such an agent orientation
would be a significant shift in perspective compared to standard process theories
in computational logic, of a kind discussed further in Part II of this book.
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Making Strategies Explicit

4.1 Strategies as first-class citizens

As we saw in our Introduction, much of game theory is about the existence of
strategic equilibria. In the same spirit, many game logics have existential quantifiers
saying that players have a strategy for achieving some purpose (cf. Parikh 1985,
Alur et al. 2002, and Chapter 19), much like the power modalities discussed in
earlier chapters. But the strategies themselves are not part of the formal language,
and this leaves out a protagonist in the story of interaction. Strategies are what
drives rational agency over time, unfolding via successive interactive moves. The
widespread tendency in logic toward hiding information under existential quantifiers
has been called 9-sickness in van Benthem (1999).23 To cure this, it makes sense
to move strategies explicitly into our logics, and reason about their behavior, as
one would do with plans. There are several ways of doing this. One is to use
logics of programs to deal with strategies, and we will show how this works with
propositional dynamic logic PDL. Another approach is by inspecting the elementary
reasoning about strategies underlying basic game-theoretic results, and designing
an abstract calculus of strategies that can represent these naturally. In particular,
this emancipation makes sense for the logic games of Part IV of this book, where
hiding strategies under existential power quantifiers is common (cf. Chapter 25).

23 Other instances of 9-sickness are doing logic of provability rather than of proofs, or of
knowability rather than of knowing. In general, su�xes such as -ility should be red flags!
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The logic of strategies is a recent area, and we will not present any definitive version,
but the theme will return in Chapters 5 and 18 and in Part V.

4.2 Defining strategies in dynamic logic

Our first approach to strategies treats them as programs in a well-known logic.

Dynamic logic of programs Let us recall the basics of propositional dynamic
logic, PDL, introduced in Chapter 1. PDL was designed originally to study imper-
ative computer programs, or complex actions, that use the standard operations of
sequential composition (;), guarded choice (IF. . . THEN. . . ELSE. . . ), and guarded
iteration (WHILE. . . DO. . . ).

Definition 4.1 Propositional dynamic logic
The language of PDL defines formulas and programs in a mutual recursion, with
formulas denoting sets of states (i.e., they are local conditions on states of a pro-
cess), while programs denote binary transition relations between states, consisting
of ordered pairs (input state, output state) for the successful executions. Programs
are built from atomic actions (moves) a, b, . . ., and tests ?' for all formulas ',
using the three “regular operations” of ; (sequential composition), [ (nondeter-
ministic choice) and ⇤ (nondeterministic finite iteration). Formulas are constructed
from atoms and Booleans as in a basic modal language, but now with dynamic
modalities [⇡]' interpreted as follows in the process models M of Chapter 1

M , s |= [⇡]' i↵ ' is true after every successful execution of ⇡ starting at s.

This is the standard way of describing e↵ects of programs or actions. ⌅

This system applies directly to games. In Chapter 1, the total move relation
was a union of atomic relations, and the modal pattern for the existence of a
winning strategy was [a[b]hc[ dip. PDL focuses on finitely terminating programs,
a restriction that one can question in general (see Chapter 5 on strategies in infinite
games). However, it makes good sense in finite games, or with infinite strategies
whose local steps are finite terminating programs. For safety’s sake, we will work
with finite games in this chapter, unless explicitly stated otherwise.

As for a calculus of reasoning about complex actions, the valid laws of PDL
are decidable, and it has a complete set of axioms analyzing the regular program
constructions in a perspicuous way (Harel et al. 2000, van Benthem 2010b).
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Strategies defined by programs Strategies in game theory are partial functions
on players’ turns, given by instructions of the form “if my opponent plays this, then
I play that.” But as we have seen in Chapters 1 and 2, more general strategies are
transition relations with more than one best move. They are like plans that can be
useful by just constraining moves, without fixing a unique course of action. Thus,
on top of the hard-wired move relation in a game, we now get new defined relations,
corresponding to players’ strategies, and these can often be defined explicitly in a
PDL program format.24

As an example, the earlier “forcing modality” can be made explicit as follows.

Fact 4.1 For any game program expression �, PDL can define an explicit forcing
modality {�, i}' stating that � is a strategy for player i forcing the game, against
any play of the others, to pass only through states satisfying '.

Proof The formula [((?turnE ; �) [ (?turnA ; move-A))⇤]' defines the forcing.
This says that following the program � at E’s turns and any move at A’s turns
always yields '-states. ⌅

A related observation is that, given definable relational strategies for players A
and E, we get to an outcome for the game that can be defined as well.

Fact 4.2 Outcomes of running joint strategies �, ⌧ can be described in PDL.

Proof The formula [((?turnE ; �) [ (?turnA ; ⌧))⇤](end ! ') does the job. ⌅

Flat strategy programs Our program format has some overkill. A strategy pre-
scribes one move at a time, subject to local conditions. Then, local iterations
⇤ make little sense, and one can restrict attention to PDL programs using only
atomic actions, tests, ; , and [. These can easily be brought into a normal form
consisting of a union of “guarded actions” of the form

?'1 ; a1 ; · · · ; ?'n ; an ; ? 

This makes a strategy a set of conditional rules that are applicable only under local
conditions and with specified postconditions.25

24 It seems reasonable to require that relations for strategies must be non-empty on turns
of the relevant player. All that we have to say is compatible with this.

25 This format for strategies of belief revision and model change was proposed in van
Benthem & Liu (2007), and more general versions occur elsewhere (van Eijck 2008, Girard
et al. 2012, Ramanujam & Simon 2008).
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Even this may still be too much, since prescribing sequences of actions a1 ; · · · ; an
only makes sense when a player has several consecutive turns, while most games
have alternating scheduling. “Flat programs” often su�ce, being unions of guarded
actions of the form ?' ; a ; ? .

Expressive completeness On a model-by-model basis, the expressive power of
PDL is high (Rodenhäuser 2001). Consider any finite game M with strategy �
for player i. As a relation, � is a finite set of ordered pairs (s, t). In case we have
an “expressive model” M whose states s are definable in our modal language by
formulas def s,

26 we can define pairs (s, t) by formulas def s ; a ; def t, where a is the
relevant move, and take the relevant union (note that this is indeed a flat program
in the earlier syntactic sense).

Fact 4.3 In expressive finite extensive games, all strategies are PDL-definable.

PDL and strategy combination PDL also describes combinations of strategies
in terms of operations on relations (van Benthem 2002a). A basic operation is union,
allowing all possible moves according to both strategies. Union merges two plans,
constraining players’ moves into a common weakening. The laws of PDL describe
how this operation behaves in single steps:

h� [ ⌧, ii' $ h�, ii' _ h⌧, ii'

It may be of more interest to look at strategy modalities {�,E}' defined as before
with repeated steps. In that case, it is easy to see that distribution fails (see
Chapters 11 and 19 for more on this). There are obvious counterexamples to:

{� [ ⌧, i}' $ {�, i}' _ {⌧, i}'

and we only have monotonicity laws such as:

{�, i}' ! {� [ ⌧, i}'

Perhaps a more important operation on relational strategies is the intersection
�\ ⌧ , which combines two separate recommendations. In some cases, this may not
leave any moves at all. But in general, intersection mimics an intuitive composition
of strategies. Think of di↵erent players, with a strategy for one player allowing any

26 This can be achieved using temporal past modalities to describe the history up to s.
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move for the other. Intersection then produces joint outcomes when both players
play their given strategy. But we can also think of intersection as composing dif-
ferent partial strategies for the same player. Suppose that a strategy � works up
to a certain level in the tree, imposing no restrictions afterward, while strategy ⌧
imposes no restrictions first, but kicks in after the domain of � has come to an end:

�

⌧

In this case, the intersection has the e↵ect of the intuitive composition � ; ⌧ .

PDL has no reduction axiom for �\⌧ , not even for single steps, since intersection
is not a regular program operation. But we do keep some general laws of strategy
calculus, such as the validity of

({�, i}' ^ {⌧, i} ) ! {� \ ⌧, i}(' ^  )

Finding a complete axiomatization for forcing statements with union and inter-
section of strategies seems an open problem, but given the earlier PDL definition of
forcing, an implicit calculus lies embedded inside PDL with intersection (cf. Harel
et al. 2000). A recent, more in-depth study following up on our theme of strategy
combination is van Eijck (2012).

Zooming out: Powers and explicit strategies The forcing modalities {�, i}'
used in this chapter so far have explicit strategies inside them. They may be viewed
as explicit counterparts to the more implicit forcing modalities {i}' of Chapter 1
that quantified existentially over strategies for player i, zooming out on mere powers
without the methods for achieving them. As we noted earlier, di↵erent zoom levels
may have their own uses, and in particular, it makes sense to have both here.

Mere power modalities for players have an important use that is not subsumed by
our explicit approach. If we want to say that a player lacks a strategy for achieving
a certain goal, the following formula will do:

¬{i}'
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No explicit version can express the same, since, in general, we cannot list all possible
strategies � in order to deny that they force '. Thus, it makes sense to have logics
that combine both implicit and explicit forcing statements.

A further and perhaps surprising use of programs plus existential forcing modal-
ities occurs when defining strategies that make powers explicit. Given any player i
and formula ', define the PDL program

�',i =?turn i ; move ; ?{i}'

For instance, this is one way to define the success strategy in the Zermelo coloring
algorithm of Chapter 1: “make sure that you keep going to winning positions.” Now
we can state a simple equivalence that follows easily from our earlier definitions.

Fact 4.4 {i}'$ {�',i, i}' is valid.

Proof From right to left, if we have the specific strategy, then, a fortiori, the exis-
tential forcing modality holds. From left to right, we check that current truth of
the forcing statement will persist along the stated strategy. This follows a recursion
as in Chapter 1. (a) If it is i’s turn, then there exists at least one successor where
{i}' is true, (b) If it is j’s turn, then all successors have this property, (c) If we are
in an endpoint, then ' holds, and we are done. On finite games, this says that we
can force total histories whose endpoints satisfy '.27 ⌅

On infinite games, the preceding equivalence still holds with the following under-
standing of forcing modalities: “the player can force a set of total histories at all
of whose stages ' is true.” The logic of this temporal forcing modality has some
delicate aspects that we postpone until Chapter 5.

Details of definability What borderline separates the above trivializing rule “be
successful” from strategies with real content? One crucial factor is definability of
strategies in suitably restricted formalisms. For instance, while the above forcing
modality of success looks at the whole future of the game, in practice, strategies
often lack such forward-looking tests. Rather, they check for what happened in the
past of the game tree, or test even just local assertions at the current node that
require neither futurology nor history. Examples of strategies that are definable in
such restricted ways, including memory-free ones that can be surprisingly powerful,

27 Variant conditions arise here by structuring '. For instance, using suitable dynamic
modalities, one can express that ' is true everywhere on the branches forced.
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will be found throughout this book (cf. Chapters 18 and 20). Still, the picture is
diverse. Some natural strategies seem to be intrinsically forward-looking, such as the
Backward Induction strategy of Chapter 2. Programs in dynamic logic can define
and calibrate some of these kinds of strategies, although the more general format
for inspecting past and future would be the temporal languages to be discussed in
the next chapter.

In summary, dynamic logic does a good job at defining strategies in simple exten-
sive games. While we have also seen a need for richer computational logics serving
similar purposes,28 our point of existence for useful logical calculi of strategies has
been made. Beyond analyzing strategic reasoning, such formalisms could also be
used for calibrating strategies in hierarchies of definability, from simpler to more
complex rules of behavior.

4.3 General calculus of strategies

While PDL programs can define strategies in specific games, this is done on a local
game-by-game basis. And also when viewed as a generic proof calculus, we proposed
this system mainly because of its track record for process graphs, not as a result
of analyzing specific pieces of strategic reasoning. In other words, we started from
systems at hand, not from an initial reasoning practice.

Another approach to designing strategy logics proceeds by inspecting standard
game-theoretic arguments. We now present two examples of this approach to ana-
lyzing strategic reasoning, although we will not propose a final new calculus. Further
examples of the same “quasi-empirical” approach will be found in Chapter 5 and
in Part V of this book on logics of strategic powers in complex games.

Looking ahead, consider the logic of players’ powers presented in Chapter 11.

Example 4.1 Strategizing dynamic power logic
Consider a Boolean choice game G[H where player E starts by choosing to play
either game G or game H. In terms of the forcing notation of Chapter 1, now with
games explicitly marked, the following principle is obviously valid:

{G[H,E}' $ {G,E}' _ {H,E}'

28 A simpler view of strategies makes them finite sequences of basic actions by automata
(cf. Ramanujam & Simon 2008). Such strategies have also been added to temporal logics
of games (cf. Broersen 2009, Herzig & Lorini 2010).
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The intuitive reasoning is as follows. From left to right, if E has a strategy forcing
outcomes satisfying ' in G [H, then the first step in that strategy describes E’s
choice, left or right, and the rest of the strategy gives outcomes with ' in the chosen
game. And vice versa, say, if E has a strategy forcing ' in game G, then prefixing
that strategy with a move of going left gives a strategy forcing ' in G[H. ⌅

Right under the surface of this example lies a calculus of arbitrary strategies �.
Our first argument introduced two operations: head(�) takes the first move of the
strategy, and tail(�) gives the remainder. Clearly, there are natural laws governing
these operations, in particular:

� =
�
head(�), tail(�)

�

Next, the converse argument talks about prefixing an action a to a strategy �,
yielding a concatenated strategy a ; � equally satisfying natural laws such as:

head(a ; �) = a tail(a ; �) = �

This suggests that there is a basic strategy calculus underneath our common
reasoning about games.29 The following example takes its exploration a bit further.

Example 4.2 Exploring basic strategy calculus
Consider the following simple sequent derivation for a propositional validity:

A ) A B ) B

A,B ) A A,B ) B C ) C

A,B ) A ^B A,C ) C

A,B ) (A ^B) _ C A,C ) (A ^B) _ C

A,B _ C ) (A ^B) _ C

A ^ (B _ C) ) (A ^B) _ C

Here is a corresponding richer form indicating strategies:

29 Interestingly, the head and tail operations suggest a co-inductive view (cf. Venema
2006) where strategies are observed and then return to serving mode, rather than the
inductive construction view of PDL programs. Chapters 5 and 18 have more on this.
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x : A ) x : A y : B ) y : B

x : A, y : B ) x : A x : A, y : B ) y : B z : C ) z : C

x : A, y : B ) (x, y) : A ^B x : A, z : C ) z : C

x : A, y : B ) hl, (x, y)i : (A ^B) _ C x : A, z : C ) hr, zi : (A ^B) _ C

x : A, u : (B _ C) ) IF head(u) = l THEN hx, tail(u)iELSE tail(u) : (A ^B) _ C

v : A ^ (B _ C) ) IF head((v)2) = l THEN h(v)1, tail((v)2)iELSE tail((v)2) : (A ^B) _ C

The latter format can be read as proof construction, but we can also read what we
have produced as a construction of strategies.30 Its key operations are

storing strategies for a player who is not to move h , i
using a strategy from a list ( )i
executing the first action of a strategy head( )
executing the remaining strategy tail( )
making a choice dependent on some information IF THEN ELSE

Clearly, this repertoire is di↵erent from PDL, and it may also have a quite di↵er-
ent logical rationale, with a calculus more like those found in type theories.31 A
matching general strategy calculus might manipulate statements of the form “� is
a strategy forcing outcomes satisfying ' for player i in game G.” ⌅

We will return to the logical structure of concrete instances of strategic reasoning
at various places in this book, starting in Chapter 5 on infinite games.

4.4 Strategies in the presence of knowledge

Strategies also work in more complex settings, such as the imperfect information
games of Chapter 3. Interesting new issues arise in this setting. For a start, in this
case, the important strategies were the uniform ones, prescribing the same move
at positions that a player cannot distinguish, or equivalently, making the action

30 For instance, in addition to being about proofs, taking a leaf from Chapter 14 of this
book, the given proof is also a recipe for turning any winning strategy of the verifier in
an evaluation game for A ^ (B _ C) into a winning strategy for the game (A ^B) _ C.

31 One analogy are type-theoretic statements t : P saying that t is a proof of proposition
P , or an object with property P . Type theories have rules encoding constructions of
complex types (Barendregt 2001). See Abramsky & Jagadeesan (1994) for systematic
links with games and strategies.
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chosen dependent only on what a player knows. As in Section 4.2, we can add
PDL-style programs to this setting. But there is a twist.

Knowledge programs It makes sense to impose a restriction now to the “knowl-
edge programs” of Fagin et al. (1995), whose only test conditions for actions are
knowledge formulas of the form K'. More precisely, in our setting, we want
knowledge programs that can serve as executable plans for an agent i, whose test
conditions ' must have the property that i always knows whether ' is the case.
Without loss of generality, this means that we can restrict to test conditions of the
form Ki', since the following equivalence is valid:

U(Ki' _Ki¬') ! U('$ Ki')

As a special case, we take flat knowledge programs, with the special format defined
earlier for flat PDL programs, with only one-step moves. These seem close to uni-
form strategies, but how close, precisely? First, we need a generalization. Uniform
strategies as defined in Chapter 4 were functional, but our PDL programs are rela-
tional. Let us say that a relational strategy � for player i is uniform if, whenever
turn ix, turn iy, and x ⇠i y, then � allows the same actions at x and y.

This is related to a general epistemic requirement on game models that occurs in
the literature (cf. Osborne & Rubinstein 1994), namely, that players should know
all actions available to them.32 In modal terms, this imposes the condition:

(turn i ^ hai>) ! Kihai>, or even (turn i ^ hai>) ! C{i,j}hai>

Making this assumption, the following implication becomes valid.

Fact 4.5 Flat knowledge programs define uniform strategies.

Proof Knowledge conditions have the same truth value at epistemically indistin-
guishable nodes for a player, and by the assumption, the available moves are the
same. Hence the transitions defined by the program are the same as well. ⌅

The following result states a converse, given some conditions on the power of
models for defining nodes such as those in Section 4.2 (van Benthem 2001b).33

32 In other words, players get no new knowledge from inspecting available moves.

33 Here we assume that models are bisimulation-contracted for action and uncertainty
links. This ensures that each epistemic equivalence class will have a unique modal definition
in our language, by the results of Chapter 1.
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Fact 4.6 On expressive finite games of imperfect information, the uniform
strategies are definable by knowledge programs in epistemic PDL.

Proof One enumerates the action of the given uniform strategy as we did for PDL
programs in the non-epistemic case. We only need to say what the strategy allows
on each epistemic equivalence class for the relevant player. This can be stated using
the modal definitions of the equivalence classes, while noting that these definitions
are known, making them suitable as test conditions for a knowledge program. ⌅

Further entanglements of knowledge and action The merge of epistemic
logic with logics of strategies operates at two levels (see van Benthem 2012e for
more on what follows). One level is propositional: preconditions and postconditions
of actions can now be epistemic. We saw epistemic preconditions in knowledge
programs, and Chapter 22 will give examples of epistemic postconditions in knowl-
edge games, such as being the first to know a certain secret. The second level
is dynamic, since actions can now be “epistemized” in di↵erent ways. Knowledge
programs showed how test conditions can be epistemic. Further, actions can be
epistemic by themselves, such as making an observation or asking a question. This
special sort of epistemic action will be a main focus in Chapter 7 and beyond.

The two levels, propositional and dynamic, interact. For instance, one natural
issue that arises is to which extent agents know the e↵ects of their actions. For
instance, should there be introspection given the epistemic nature of knowledge
programs? Suppose that a knowledge program ⇡ for player i guarantees e↵ect ' in
a model, that is, the forcing statement {⇡, i}' holds everywhere, does the player
know this? Actually, it is easy to see that this can fail.

Example 4.3 Not knowing what you are doing
Let a single player have two indistinguishable worlds s and t, and only one action
a at each, leading to worlds u and v where u has the property p, while v does not.

s t

u v

p ¬p

i

a a

In this model, introspection fails: ?> ; a is a knowledge program for which [?> ; a]p
is true at s, but not at t, whence K[?> ; a]p is false at s. ⌅
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However, there is another issue of entanglement here. Suppose that we do know
the e↵ects of our basic actions, then what about complex actions defined by knowl-
edge programs? Here the axioms of PDL have interesting things to say. For instance,
suppose that we know all the e↵ects of some program ⇡1. Since those e↵ects may
include statements [⇡2]' for other programs ⇡2, it follows that we know [⇡1][⇡2]',
and hence all the e↵ects of longer programs ⇡1 ; ⇡2.

A final issue of entanglement has to do with our notion of perfect recall from
Chapter 3. It might be called “epistemic grip”: even if players do know the e↵ect
of a program, what will they know at intermediate stages of following a strategy?
Consider the problem of following a guide in a bog, but having forgotten why we
trusted the guide in the first place. In imperfect information games, if a player
knows at the start that {⇡, i}' is the case, does it follow that, at each later stage,
the player knows that the remaining strategy played yields outcomes with '? Here
recall the commutation of knowledge and action for players with perfect memory:

Ki[a]'! [a]Ki'

Fact 4.7 If players have perfect recall for atomic actions, then they have it for
all complex knowledge programs.

Proof To see this, it su�ces to look at the following strings of implications, with
the relevant inductive hypothesis presupposed at various steps:

(a) K[⇡1 ; ⇡2]'! K[⇡1][⇡2]'! [⇡1]K[⇡2]'! [⇡1][⇡2]K'! [⇡1 ; ⇡2]K'

(b) K[⇡1 [ ⇡2]'! K([⇡1]' ^ [⇡2]') ! (K[⇡1]' ^K[⇡2]') !

([⇡1]K' ^ [⇡2]K') ! [⇡1 [ ⇡2]K'

These show how intermediate knowledge proceeds. The crucial step now is that of
tests. For arbitrary tests, K[?↵]' implies K(↵ ! '), but there is no guarantee at
all that this implies ↵! K'. However, this is di↵erent for knowledge tests:

K[?K↵]'! K(K↵! ') ! (K↵! K') is valid in epistemic S4. ⌅

These are just a few of the issues connecting knowledge and action in games.34

34 In imperfect information games for players with perfect recall, all uniform strategies
lead to epistemic grip (van Benthem 2001b). The converse question seems open.
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Know-how and understanding strategies Programs are also interesting as epis-
temic objects in their own right, since they represent the intuitive notion of knowing
how as opposed to merely knowing that. There is an extensive literature on what
know-how is, but the game setting makes the issue quite concrete.

Again, the entanglement of the two notions is of particular interest. In addi-
tion to knowing how involving knowing that, there is also the fundamental notion
of “knowing a plan” that seems crucial to rational agency. There is no generally
accepted explication of what this means. One line is to ask, as we did in the above,
for propositional knowledge about the e↵ects that a plan will achieve.35 However,
intuitively, more is involved in knowing a plan. Consider what we want genuine
learning to achieve: not just correct propositional knowledge, but also the ability to
engage in a practice based on the plan. In education, we teach know-how at least
as much as know-that, but what is it, really?

The contrast may be highlighted in terms of understanding a strategy or a plan
versus merely knowing it. In addition to propositional knowledge of e↵ects of a
plan, or parts of it, there are other key features such as “robustness”: that is,
counterfactually knowing the e↵ects of a plan under changed circumstances, or the
ability to modify it as needed. And there are further tests, such as a talent for
zoom: that is, being able to describe a plan at di↵erent levels of detail, moving up
or down between grain levels as needed.36

4.5 Conclusion

The main points Strategies are so important to games and to social agency in
general that they deserve explicit attention as objects of study. We have shown how
to do this, by adding explicit strategies to existing logics of games. First we showed
how the programs of propositional dynamic logic can be used for defining strategies
and reasoning about them. Next, changing tacks, we showed how a more general

35 This issue also plays in the area of epistemic planning (Bolander & Andersen 2011,
Andersen et al. 2012), where di↵erent kinds of knowledge or beliefs are important: about
where we are in following some current plan, but also about how we expect the process to
develop over time.

36 Similar issues arise in analyzing what it means for someone to understand a formal
proof, and useful intuitions might be drawn from mathematical practice.
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core calculus of strategic reasoning can be extracted from basic game-theoretic argu-
ments. Finally, we showed how strategy logics mix well with epistemic structure,
proving a number of results about imperfect information games, and raising some
issues of better understanding know-how as opposed to know-that.

Open problems No established strategy logic exists comparable to game logic.
Thus, finding general core languages for defining strategies and matching calculi for
strategic reasoning seems a natural goal. As we have suggested, this may require
fieldwork in analyzing good benchmarks. As we will see with various examples in
Chapters 5 and 25, there are at least two sources for this in the present book. One is
the logic games of Part IV that provide many instances of basic strategic reasoning.
Another source are key strategies in game theory, including simple widespread
rules such as Tit for Tat, discussed in our Introduction. We will continue with this
exploration in Chapter 5.

Additional open problems arise with understanding the interplay of strategies
with knowledge and information change, as discussed above, including a better
understanding of knowing how. Beyond that, we need to understand the entangle-
ment with other epistemic attitudes that are crucial to action, such as belief, and
with acts of belief revision.

The next obvious desideratum in the context of this book is extending our anal-
ysis, local or generic, to games with preference structure. Defining the Backward
Induction strategy of Chapter 2 in a basic logic of strategies would be an obvious
benchmark. Finally, making strategies, which are complex actions, into first-class
citizens, fits well with the logical dynamics program of Part II of this book, but an
optimal integration has not happened yet.

4.6 Literature

This chapter is based on van Benthem (2012a). Some parts have also been taken
from van Benthem (2012e) and van Benthem (2013). This program for putting
strategies in the limelight was presented originally at a half-year project at the
Netherlands Institute for Advanced Studies (NIAS) in 2007.

A useful anthology on logics of strategies from the 1990s is Bicchieri et al.
(1999). In the meantime, many relevant publications have appeared, including
work by the Chennai Group working with automata theory (cf. Ramanujam &
Simon 2009, Ghosh & Ramanujam 2011), by the CWI group on strategies in PDL
and related formalisms (cf. Dechesne et al. 2009, Wang 2010), the STRATMAS
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Project (http://www.ai.rug.nl/~sujata/documents.html) on many di↵erent
approaches to strategic reasoning, and on the borderline with the dynamic-epistemic
logic of Part II of this book (Pacuit & Simon 2011).

4.7 Further directions

We have mentioned a number of open problems already in the main text of this
chapter. Some further detail now follows.

Systems thinking versus a quasi-empirical approach As we have suggested
at several places, there are at least two approaches to designing logics of strategies.
One starts from general system considerations and analogies with notions such as
programs or automata, and it is the dominant approach in this book. But one
could also start by independently compiling a repertoire of basic strategies of wide
sweep (as has been done for algorithms), plus the kind of basic reasoning that
establishes their properties. Striking phenomena here are the ubiquity and power
of simple identity strategies such as Tit for Tat in game theory, or copy-cat in
computation, or indeed variable identification in logic itself. In particular, this
suggests looking at definability of strategies in simple logical languages, although
we are not aware of any established calibration hierarchy. Hand in hand with this
would be logical analysis of proofs establishing key results about strategies in the
literature, a working style that will return at a number of places in this book.

Extending the dynamic logic approach We have only shown PDL at work for
strategies in games with sequential turns. But parallel action is a common feature
in games. This requires endowing atomic actions with more structure, giving them
components for each player, and perhaps also the environment, as in Fagin et al.
(1995). The logics of Chapters 12 and 20 provide examples of how this may be done,
adding fine structure to basic events in terms of control by the players. Another
type of extension concerns e↵ects of strategies. So far, we looked at either endpoints,
or at all future stages. But there are other intuitive success notions, in terms of
intermediate e↵ects. Let {�}⇤' say that strategy � guarantees reaching a “barrier”
of '-positions in the game (a set that intersects each maximal chain). This may
be the optimal setting for composition of strategies. What happens to game logic
when we add barrier modalities?

Modal fixed point logics Richer formalisms than PDL also make sense for strate-
gies. In Chapter 1, we saw a move from PDL to the modal µ-calculus that defines
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a much richer set of recursive notions, including talk about infinite computations.
But there is a problem: the µ-calculus has no explicit programs. Still, many formu-
las suggest a match. For instance, “keep playing a” (the non-terminating program
WHILE > DO a) is a witness to the infinite a-branches claimed to exist by a great-
est fixed point formulas ⌫p • haip. An explicit program version of the µ-calculus
might be a useful calculus of strategies. Attempts so far have only focused on
terminating programs (Hollenberg 1998), and perhaps a better paradigm are the
µ-automata of Bradfield & Stirling (2006). In Chapter 18, we will return to this
theme, including strategic reasoning in graph games (cf. Venema 2006). In Chapter
2, we even used the much stronger fixed point logic LFP(FO), where similar points
apply. Even so, one might say that fixed point logics do give explicit dynamic infor-
mation about strategies, since the fixed point operators themselves refer to a fixed
computational approximation procedure close to strategy construction.

Strategies and invariants Our discussion of strategies in PDL, and in particular,
that of the trivializing power strategy “nothing succeeds like success,” also suggests
a further perspective. Many good strategies consist in maintaining a suitable invari-
ant throughout the course of a game. This is true for parlor games such as Nim, but
also for many of the logic games to be discussed in Part IV of this book. Indeed, our
modal forcing statements about future success can themselves be viewed as abstract
invariants, and the same is true for logical formulas in many game languages. But
invariants can also be other structures: in some sense, the epistemic-doxastic mod-
els to be discussed in later chapters serve as invariants recording some (but not all)
memory of past behavior. This book has no systematic theory of invariants to o↵er,
but several topics have some bearing on this, such as the discussion in Chapters 18
and 25 of games viewed simultaneously at di↵erent levels.

Temporal logics Another broad paradigm that supports strategy calculus is that
of temporal logics. Recent proposals include “strategizing” alternating temporal
logic ATL (Alur et al. 2002, Ågotnes et al. 2007) or epistemic ATEL (van der
Hoek & Wooldridge 2003, van Otterloo 2005), and analyses of games in interpreted
systems (Halpern 2003a) or situation calculus (Reiter 2001). Temporal logic might
be a better focus for the study of strategies in infinite games than the systems in
our chapter, and we will give a few illustrations in Chapter 5.

From concrete to generic strategies The strategies in the systems of this
chapter were concrete objects defined inside specific games. But there is also another
level of generic strategies that achieve their e↵ects across all games of some appro-
priate type. Examples are simple but powerful copying strategies such as Tit for
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Tat or copy-cat, that work across a wide range of games. Generic strategies lie
behind the logics of the game-constructing operations in Part V of this book, based
on dynamic logic and linear logic, and they will appear in Chapters 19, 20, and 21.

Yet other approaches There are yet other approaches for making strategies
explicit, such as automata theory (Ramanujam 2008) or type theory (Jacobs 1999).
It remains to be seen how these fit with the logics in this chapter, although the
Appendix to Chapter 18 has some relevant discussion. The study of strategies may
also profit from concrete instances in other fields, such as the area of planning
mentioned already in Chapter 3 (cf. Moore 1985, Bolander & Andersen 2011).
Another mathematical paradigm for concrete strategies linked to logical tasks is
formal learning theory (Kelly 1996).

Adding knowledge and belief There is more to adding informational attitudes
to PDL than we have shown so far. First, one can perform a more drastic epis-
temization than we did, not just on propositions, but also on programs, making
transitions themselves objects that can have epistemic structure, in the line of
event models in dynamic-epistemic logic (cf. Chapter 7).37 It is possible to go fur-
ther in other ways. Our view of understanding a strategy as knowing its e↵ects
under changed circumstances mirrors counterfactual views in philosophy that make
knowledge of ' a true belief that tracks truth in the following sense: if the world
had been slightly di↵erent, we would still have a correct belief or disbelief about
' (Nozick 1981). This suggests incorporating belief into the structure of strategies,
and indeed, Chapter 8 will view strategies as encoding beliefs. This twist implies
a radical perspective, since beliefs come with belief revision, an ability to correct
ourselves when contradicted by the facts. We will return to strategy revision in one
of the points below (see also Chapter 9).

Adding preferences An intuitive sense of strategic behavior is based on motives
and goals. Indeed, action and preference were deeply entangled in our logic for Back-
ward Induction in Chapter 2. What about explicit strategies in this richer realm?
We need extensions of our earlier modal preference logics that can define bench-
marks like the Backward Induction strategy, perhaps in the style of the deontic
dynamic logics of van der Meyden (1996).

37 An epistemic variant of “arrow logic” is used for this purpose in van Benthem (2011d).
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Strategies across changing situations So far, we have studied strategies in
fixed situations, which can lead to local solutions. What happens when a strategy
has a proven e↵ect, but we change the game to a new one? We will address in
detail the topic of strategies in changing games in Chapter 9, but briefly explore
some points presently. Recall our earlier point about understanding a strategy. A
good plan should still work when circumstances change; it will be robust under at
least small changes. But many strategies fall apart under change. For instance, the
Backward Induction strategy can shift wildly with addition or deletion of moves.38

Two options arise here, “recomputation” and “repair.” Should we compute a new
plan in a changed game, or repair the old plan? We often start with repair, and only
recompute when forced. Could there be a serious theory of plan revision? Can we
say more precisely when gradual changes are su�cient, and when they fail?39 The
issues of strategy structure, definability and preservation behavior arising here are
still to be addressed systematically. Even for PDL, we know of no model-theoretic
preservation theorems that relate program behavior across di↵erent models.

Conceptual clarification A final di�culty is the proliferation of undefined terms
in the field, such as plan, strategy, agent type, or protocol. All point to similar
things, and discussions become confusing. It would be good to fix terminology (cf.
van Benthem et al. 2013). Protocols might be general constraints on a process;
strategies might be ways of using one’s freedom within these constraints; and agent
types could be reserved for repeatable styles of action that agents have available.

38 One might say that the flexibility we seek is already given in the standard notion of a
game, where a strategy has to work under any eventuality. One could collect all relevant
cases of change into one “supergame,” asking for one strategy working there. But such a
pre-encoding seems far removed from our ordinary understanding of plans. In Chapter 6
and also in Part II, we will opt for working with small models instead.

39 For a nice example of repairing programs, see Huth & Ryan (2004).


