
APPENDIX A

Ultraproducts

Similarly to colimits of directed systems, ultraproducts provide an important tool for cre-

ating new models from old. Roughly, the ultraproduct construction shows how to glue together

a collection of structures to form a new structure satisfying any formula which holds in ‘most’

of the original structures. Mathematically, the notion ‘most of’ is formulated in terms of an

ultrafilter over the collection’s index set.

1. Filters and Ultrafilters

Definition A.1. Afilter over a non-empty set I is a collection F of subsets of I such that

(1) I 2 F ,

(2) if X,Y 2 F then X \ Y 2 F ,

(3) If X 2 F and X ✓ Y ✓ I, then Y 2 F .

A filter is proper if it is distinct from the full power set of I. An ultrafilter over I is a proper

filter U such that for every subset X of I, either X or I \X belongs to U (but not both).

Example A.2. (1) The full powerset P(I) of I is a filter over I. Given a subset X ✓ I,

the collection

"X : = {Y ✓ I | X ✓ Y }
is a filter over I; this filter is called the principal filter generated by F . It is proper i↵ X 6= ;.

It is easy to see that an ultrafilter is principal i↵ it is of the form ⇡i : = {Y ✓ I | i 2 Y } for

some object i 2 I.

(2) An example of a non-principal filter over an infinite set I is the so-called Fréchet filter

consisting of the collection of co-finite subsets of I. (A subset of I is co-finite if its complement

is finite.)

(3) A large supply of filters is provided by the following definition. Given a collection E of

subsets of I, the set

FE : = {Y ✓ I | Y ◆ X1 \ . . . \Xn, with X1, . . . , Xn 2 E}
is a filter over I, the filter that is generated by E. It is easy to see that this is the smallest

filter over I such that E ✓ F . The filter FE is proper if and only if the set E has the finite

intersection property, that is, the intersection of any finite subcollection of E is nonempty.

An alternative definition of an ultrafilter states that ultrafilters are filters that have no

proper extension.

Proposition A.3. Let F be a filter over the set I. Then F is an ultrafilter i↵ F is a

maximal proper filter.
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A key result on ultrafilters is the following theorem, which will provide our standard tool

for proving the existence of a ultrafilter containing certain sets.

Theorem A.4. (Ultrafilter Theorem) Let I be a nonempty set. Then every proper filter

over I can be extended to an ultrafilter over I.

Proof. Fix a proper filter F over I and apply Zorn’s Lemma to the partial order of proper

filters extending F . The result then follows by Proposition A.3. ⇤

In applications the point is often to find ultrafilters satisfying additional properties such as

the following.

Definition A.5. An ultrafilter U over an infinite set I is called regular if there is a

collection E ✓ U , of the same cardinality as I, and such that each i 2 I belongs to only finitely

many sets X in E.

2. Ultraproducts and ultrapowers

In this section we define the ultraproduct construction. Fix a language L, let {Ai | i 2 I}
be a collection of L-structures, and let U be some ultrafilter over the index set I.

Starting with the definition of the carrier of the ultraproduct of this family, we first consider

the product

Q
i2I Ai of the carriers of the structures. Recall that

Q
i2I Ai is the collection of

maps f : I !
S

I2I Ai such that f(i) 2 Ai for every index i. Given two functions f, g 2
Q

i2I Ai

we say that f and g are U -equivalent, notation f ⇠U
g, if the set {i 2 I | f(i) = g(i)} belongs

to U . It is straightforward to check the following proposition.

Proposition A.6. The relation ⇠U
is an equivalence relation on the set

Q
i2I Ai.

The ultraproduct of the sets Ai modulo U is the set of all equivalence classes of ⇠U
,

Y
U
Ai : = {fU | f 2

Y
i2I

Ai},

where f

U
denotes the ⇠U

-equivalence class of f , that is: f

U
: = {g 2

Q
i2I Ai | f ⇠U

g}. We

now apply the same idea to models.

Definition A.7. Given a collection {Ai | i 2 I} of L-structures, and an ultrafilter U over

the index set I, the ultraproduct

Q
U Ai is the L-structure A described as follows:

(1) the domain of A is the set

Q
U Ai just defined,

(2) for a constant c in L, we define c

A
: =

�
�i.c

Ai
�U

,

(3) for an n-ary function symbol h in L and an n-tuple (f

U
1 , . . . , f

U
n ) in

Q
U Ai, we define

h

A
(f

U
1 , . . . , f

U
n ) : =

�
�i.h

Ai
(f1(i), . . . , fn(i))

�U
,

(4) for an n-ary relation symbol R in L and an n-tuple (f

U
1 , . . . , f

U
n ) in

Q
U Ai, we define

R

A
(f

U
1 , . . . , f

U
n ) :,

�
i 2 I | RAi

(f1(i), . . . , fn(i))
 
2 U.

In the case where the structures Ai are all the same, say, Ai = B for all i, we speak of the

ultrapower of B, notation:

Q
U B or B

I
/U .
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Clearly, one should check that the clauses (3) and (4) of the above construction are well-

defined, i.e., that the definitions do not depend on the particular representants of the equivalence

classes.

The key result on ultraproducts, fundamental to any use of the construction in model

theory, is the folllowing.

Theorem A.8. ( Los’ Theorem) Let U be an ultrafilter over the index set I, and let Ai

be an L-structure for each i 2 I. Then for any first-order formula '(x1, . . . , xn) and for any

n-tuple (f1, . . . , fn) of elements in

Q
i2I Ai we have

Y
U
Ai |= '(f

U
1 , . . . , f

U
n ) i↵

�
i 2 I | Ai |= '(f1(i), . . . , fn(i))

 
2 U.

Proof. Exercise. ⇤

As some immediate corollaries of  Los’ Theorem we mention the following.

Corollary A.9. For any theory T the class of models for T is closed under taking ultra-

products.

Corollary A.10. Let U be some ultrafilter over an index set I. For any structure A, the

diagonal map d given by d(a) : =

�
�i.d

�U
is an elementary embedding of A into A

I
/U .

3. Applications

In this section we show some application of ultraproducts, starting with compactness.

Theorem A.11. Any finitely satisfiable theory T is satisfiable.

Proof. Assume that every finite subset of T has a model; we will construct a model for

T as some ultraproduct of these models.

For this purpose let I be the collection of finite subsets of T , and for each i 2 I let Ai be

a model of i. Given a formula ' 2 T , let I' ✓ I be given by i 2 I' , ' 2 i. It is not hard to

prove that the set

F : = {I' | ' 2 T}
has the finite intersection property, so that F can be extended to an ultrafilter U . (Note that

this ultrafilter is regular, see Definition A.5

We claim that the ultraproduct A : =

Q
U Ai is the required model of T . To see this, take

an arbitrary formula ' 2 T . It follows from our assumption on the structures Ai that ' 2 i

implies Ai |= '. But then by definition of I' we find I' ✓ {i 2 I | Ai |= '}, and since I' 2 U

by our choice of U we find {i 2 I | Ai |= '} 2 U by upward closure of (ultra)filters. From this,

an application of  Los’ Theorem reveals that A |= ' as required. ⇤

A very strong result on ultrapowers is the Keisler-Shelah theorem.

Theorem A.12. (Keisler-Shelah) Let A and B be structures for some language L. Then

A ⌘ B i↵ there is an index set I and an ultrafilter U over I such that A

I
/U

⇠
=

B

I
/U .

The proof of this theorem lies beyond the scope of this note, but we can show how the

following characterisation result follows from it.
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Corollary A.13. Let, for some language L, K be a class of L-structures which is closed

under isomorphic copies. Then K is axiomatisable by an L-theory i↵ it is closed under ultra-

products, while its complement is closed under taking ultrapowers.

Proof. Leaving the direction from left to right as an exercise for the reader, we focus on

the opposite direction. Let K be a class of L-structures which is closed under isomorphic copies

and ultraproducts, while its complement K is closed under taking ultrapowers. We claim that

K = Mod(Th(K)), i.e., K is axiomatised by Th(K).

Clearly it su�ces to show that Mod(Th(K)) ✓ K, so assume that A |= Th(K). From

this it easily follows that the theory of A is finitely satisfiable in K, so that by the (proof of)

Theorem A.11 Th(A) is satisfied in some ultraproductB of structures inK. ThisB then belongs

to K by assumption, while B |= Th(A) simply means that A ⌘ B. By the Keisler-Shelah

Theorem we may infer from the latter observation that A and B have isomorphic ultrapowers.

But, given the closure conditions on K and K, this implies that A actually belongs to K, as

required. ⇤


