Topics in Modal Logic (Fall 2025)

Tutorial Exercises 5

Exercise 1 (counting modalities for the bag functor) Convince yourself that, for each $k \in \mathbb{N}$, the family of maps given by putting, for each set S,

$$\lambda_S^{\geq k}: U \mapsto \{\mu: S \to \mathbb{N}^{\infty} \mid \sum_{u \in U} \mu(u) \geq k\}.$$

indeed defines a predicate lifting $\lambda^{\geq k}: \check{P} \to \check{P}B$ for the bag functor B.

Exercise 2 (counting in Set with modified arrows) For an arbitrary set S, we consider the map $\theta_S: PS \to PPS$ given by

$$\theta_S: U \mapsto \{A \in PS \mid |A \cap U| \ge 3\}.$$

Check whether θ makes the naturality diagram commute:

$$S' \qquad PS' \xrightarrow{\theta_{S'}} PPS'$$

$$f \downarrow \qquad \check{p}f \qquad \qquad \check{p}Pf \qquad \check{p}Pf \qquad \check{p}Pf \qquad \check{p}Pf \qquad \check{p}Pf \qquad \check{p}Pf \qquad \qquad \check{p}Pf \qquad$$

in case f is, respectively, an arbitrary, injective, surjective or bijective function.

Now assume that we consider variations Set_i , Set_s and Set_b of the standard category Set , by restricting the arrows to, respectively, injective, surjective and bijective functions. For which of the four categories is θ a predicate lifting?

Exercise 3 (operations on predicate liftings) Fix a set functor T. Show that the collection of unary predicate liftings for T forms a boolean algebra, for some naturally defined operations. Is this still the case for n-ary predicate liftings, where $n < \omega$ is arbitrary?

Exercise 4 (third modal distributive law) Let T be a smooth and standard set functor, and recall that ML_T denotes the set of formulas in the coalgebraic language associated with this functor. Let $\alpha \in T_{\omega}(\mathrm{ML}_T)$ and $\Psi \in T_{\omega}P_{\omega}(Base(\alpha))$ be such that $(\alpha, \Psi) \notin \overline{T}(\emptyset)$ (i.e., the pair (α, Ψ) does not belong to the lifting of the relation \emptyset).

- (a) Show that the formula $\nabla \alpha \wedge \nabla T(\bigwedge \circ P \neg) \Psi$ is not satisfiable.
- (b) Is smoothness really needed in your proof?

Note that this is part of the modal distributive law for the negation (cf. Definition 5.25); you may use the validity of the other coalgebraic distributive laws, but not of the one for the negation.