
10 Modal automata

10.1 Introduction

In this chapter we introduce and discuss the automata that we shall use to study the modal
µ-calculus. These automata come in various shapes and types, but they all operate on the
same type of structures, namely pointed Kripke structures, or transition systems.

The basic idea is that automata can be seen as alternatives to formulas. In particular, an
automaton A will either accept of reject a given pointed Kripke model, and thus it can be
compared to a formula ⇠, which will either be true or false at a point in a Kripke model. This
inspires the following definition.

Definition 10.1 Let A be an automaton, and assume that we have defined the notions of
acceptance and rejection of a pointed Kripke model by such an automaton. In case A accepts
the pointed Kripke structure (S, s) we write S, s � A, while rejection of (S, s) by A is denoted
as S, s 6� A. The class of pointed Kripke models that are accepted by a given automaton A is
denoted as Q(A), and we will sometimes refer to Q(A) as the class or query that is recognized
by A. Two automata A and A

0 are equivalent, notation: A ⌘ A
0, if Q(A) = Q(A0).

We say that a formula ⇠ is equivalent to A, notation: ⇠ ⌘ A, if S, s � ⇠ i↵ A accepts (S, s),
for every pointed Kripke model (S, s). �

All our automata will be of the form A = hA,⇥,Acc, aIi where A is a finite set of states,
Acc ✓ A! is the acceptance condition (usually given by a parity map ⌦), aI 2 A is the starting
state of the automaton, and the transition map ⇥ has as its domain the set A ⇥ C, where
C = }(P) is the set of colors over some set P of proposition letters. We will almost exclusively
work with automata that are themselves logic-based, in the sense that the co-domain of ⇥
is some logical language consisting of relatively simple one-step formulas over the carrier set
A of the automata. In other words, the states in A will play a double role as propositional
variables.

For each type of automaton that we will encounter, the question whether such a device
accepts or rejects a given pointed Kripke model (S, s) is determined by playing some kind
of infinite board game that we call the acceptance game associated with the automaton and
the Kripke structure. This game will always proceed in rounds, each of which starts and
ends at a so-called basic position (a, s) 2 A ⇥ S, and consists of the two players, 9 and
8, moving a token via some intermediate position(s) to a new basic position. For a rough,
intuitive understanding of the acceptance game, the reader may think of 9 claiming, at a basic
position (a, s), that the automaton A, taken from the perspective a, is a good ‘description’ of
the pointed structure (S, s).

The rules of the game are determined by the precise shape of the transition function ⇥,
and in each case will be given explicitly. The winning conditions of the acceptance game
are fixed. Finite matches, as always, are lost by the player who got stuck. The winner of
an infinite match ⌃ is always determined by applying the acceptance condition Acc to the
infinite A-stream aIa1a2 · · · which is induced by the sequence (aI , s)(a1, s1)(a2, s2) · · · of basic
positions occurring in ⌃. The definition of acceptance is also fixed: the automaton A accepts

10-2 Modal Automata

the pointed Kripke model (S, s) precisely if the pair (aI , s) is a winning position for 9 in the
acceptance game.

To understand the connections between the various kinds of automata, it is good to
understand how one round of the game takes a match from one basic position (ai, si) to
the next (ai+1, si+1). In principle, it is 9’s task to propose a set Zi ✓ A ⇥ S of witnesses
that substantiate her claim that the automaton A, taken from the perspective ai, is a good
description of the pointed model (S, si). Then it is 8 who picks the new basic position
(ai+1, si+1) as an element of the set Zi. In fact, all acceptance games featuring in this chapter
could be formulated in such a way that these are exactly the moves that players can make.
However, we will usually take a slightly di↵erent perspective on the witness relation. In
particular, since we are often thinking of A as a set of propositional variables, it will make
sense to represent a relation Z ✓ A ⇥ S as either a valuation VZ : A ! }S or as a marking
or coloring mZ : S ! }A, defined by putting, respectively,

VZ(a) := {s 2 S | (a, s) 2 Z}

mZ(s) := {a 2 A | (a, s) 2 Z}.

As already mentioned, the automata that we shall meet here come in various shapes, and
they can be classified in many ways. One crucial distinction to make is that between alter-
nating and non-deterministic automata. Where the generic modal automaton that we will
introduce here is of the alternating type, many results on the modal µ-calculus are proved
using the subclass of non-deterministic automata, where the transition map is of a concep-
tually simpler kind. What makes an automaton nondeterministic is the interaction pattern
between the two players in the acceptance game: when the automaton is non-deterministic,
a winning strategy for 9 should in principle (but depending on the branching structure of the
transition system) reduce the role of 8 to that of a path finder in the model.

I For the time being we restrict attention to the mono-modal case.

10.2 Modal automata

Modal automata are based on the modal one-step language. This language consists of very
simple modal formulas, built up from a collection A of propositional variables, corresponding
to the bound variables of a formula.

Definition 10.2 Given a set X, we define the set Latt(X) of lattice terms over X through
the following grammar:

⇡ ::= ? | > | x | ⇡ ^ ⇡ | ⇡ _ ⇡,

where x 2 X. Given a set A, we define the set 1ML(A) of modal one-step formulas over A by
the following grammar:

↵ ::= ? | > | 3⇡ | 2⇡ | ↵ ^ ↵ | ↵ _ ↵,

with ⇡ 2 Latt(A). �

Lectures on the modal µ-calculus 10-3

Examples of one-step formula are 3(a ^ b) or 2? _ (3a ^ 2b). Observe that the set of
modal one-step formulas over A corresponds to the set of lattice terms over the set {3⇡,2⇡ |

⇡ 2 Latt(A)}. Observe too that every occurrence of an element of A must be positive, and
in the scope of exactly one modality.

Definition 10.3 A modal P-automaton A is a quadruple (A,⇥,⌦, aI) where A is a non-
empty finite set of states, of which aI 2 A is the initial state, ⌦ : A ! ! is the priority map,
and the transition map

⇥ : A⇥ }P ! 1ML(A)

maps states to one-step formulas. The class of modal automata over the set P is denoted as
AutP(1ML). �

The operational semantics of modal automata is defined in terms of a so-called acceptance
game A(A, S) associated with a modal automaton A and a Kripke structure S. 9’s moves
in this game will consist of ‘local’ valuations for the propositional variables in A, or rather,
markings m : S ! }A. Such a marking turns a Kripke model over P into a Kripke model
over the set P [A.

Throughout this chapter we will represent a Kripke model (S,R, V) coalgebraically as
a triple (S,R,�V) where we think of the binary relation R as a map R : S ! }(S), and
represent the valuation V : P ! }(S) as its transpose colouring �V : S ! }(P).

Definition 10.4 Let P and A be disjoint sets of proposition letters and propositional vari-
ables, respectively. Given a Kripke model S = (S,R,�V) over the set P, and an A-marking
m : S ! }A, we let S � m denote the Kripke model (S,R,�V [m), where �V � m is the
marking given by �V �m(s) := �V (s) [m(s). �

Definition 10.5 The acceptance game A(A, S) associated with such an automaton A and
a pointed Kripke model (S, s) is the parity game that is determined by the rules given in
Table 19. Positions of the form (a, s) 2 A⇥ S are called basic. �

Position Player Admissible moves Priority
(a, s) 2 A⇥ S 9 {m : S ! }A | S�m, s � ⇥(a,�V (s))} ⌦(a)
m : S ! }A 8 {(b, t) | b 2 m(t)} 0

Table 19: Acceptance game for modal automata

As explained in the introduction to this chapter, matches of the acceptance game proceed
in rounds, moving from one basic position to the next. During a round of the game, the
players are inspecting a local ‘window’ into the Kripke model, by means of a one-step formula.
Concretely, at the start of a round, 9’s task at a basic position (a, s) is to satisfy the one-
step formula ⇥(a,�V (s)) at the state s in S. For this purpose, she has to come up with
a interpretation for the variables in A, since this is not provided by the valuation V of S.
More specifically, 9 has to select a marking m : S ! }A, in such a way that the formula

10-4 Modal Automata

⇥(a,�V (s)) becomes true at s in the model S�m (as given in Definition 10.4). Once 9 has
made her choice, it is 8’s turn; he needs to pick a new basic position from the witness set
{(b, t) | b 2 m(t)}.

Observe that both players could get stuck in such a match. For instance, it might be
impossible for 9 to satisfy the formula ⇥(a,�V (s)) at the state s, because the formula requires
s to have successors where it has none. Alternatively, if 9 could pick the empty marking m
at a position (a, s), then she would immediately win the match since 8 would get stuck.

I examples of modal automata

Remark 10.6 Note that it is in 9’s interest to keep, at any basic position (s, a) of the
acceptance game, the set of witnesses as small as possible. More precisely, if at some position
(a, s) of the game, 9 has two admissible markings, say, m and m0, at her disposal, and these
are such that Zm := {(b, t) 2 S ⇥ A | b 2 m(t)} ✓ Zm0 := {(b, t) 2 S ⇥ A | b 2 m0(t)}, then
it will always be to her advantage to choose the marking m rather than m0. In particular,
since all occurrences of propositional variables from A in one-step formulas must be in the
scope of exactly one modality, to satisfy such a formula at a given point s of the model, the
only points that matter are the successors of s. For these reasons, we may without loss of
generality restrict the admissible moves of 9 at a position (a, s) of the acceptance game to
those markings m of which the domain is the collection of successors of current point s. In
section 10.4 we will work out this perspective. �

Convention 10.7 We will usually identify a match ⌃ = (a0, s0)m0(a1, s1)m1(a2, s2)m2 . . . of
the acceptance game A(A, S) with the sequence (a0, s0)(a1, s1)(a2, s2) . . . of its basic positions.

Some basic concepts concerning modal automata are introduced in the following definition.

Definition 10.8 Fix a modal P-automaton A = (A,⇥,⌦, aI).
Given a state a of A, we write ⌘a = µ if ⌦(a) is odd, and ⌘a = ⌫ if ⌦(a) is even; we call ⌘a

the (fixpoint) type of a and say that a is an ⌘a-state. The sets of µ- and ⌫-states are denoted
with Aµ and A⌫ , respectively.

The occurrence graph of A is the directed graph (G,EA), where EAab if b occurs in ⇥(a, c)
for some c 2 }(P). We let �A denote the transitive closure of the converse relation E�1

A
of

EA and say that b is active in a if b�A a. We write a ./A b if a�A b and b�A a. A cluster of
A is a cell of the equivalence relation generated by ./A (i.e., the smallest equivalence relation
on A containing ./A); a cluster C is degenerate if it is of the form C = {a} with a 6./A a.
The unique cluster to which a state a 2 A belongs is denoted as Ca. We write a <A b if
⌦(a) < ⌦(b), and a vA b if ⌦(a)  ⌦(b).

An alternating ⌦-chain of lenth k in A is a sequence a0a1 · · · ak of states that all belong
to the same cluster and satisfy, for all i < k, that ⌦(ai) < ⌦(ai+1) while ai and ai+1 have
di↵erent parity. �

The following proposition is immediate by the definitions.

Proposition 10.9 Let A = hA,⇥,⌦, aIi and A
0 = hA,⇥0,⌦, aIi be two modal automata such

that ⇥(a, c) ⌘ ⇥0(a, c) for each a 2 A and c 2 }(P). Then A ⌘ A
0.

Lectures on the modal µ-calculus 10-5

Remark 10.10 Another way of defining the semantics of modal automata is via the ‘slow’
acceptance game of Table 20, which is perhaps closer to the evaluation games of the modal µ-
calculus. In this set-up, at a basic position (a, s) 9 does not have to come up with a marking
m, but rather, the state a is ‘unfolded’ into the formula ⇥(a,�V (s)), and the two players
engage in a little sub-game in order to determine whether ⇥(a,�V (s)) is true at s or not. At
the end of this sub-game, unless one of the players got stuck, the match arrives at another
basic position. We leave it as an exercise for the reader to check that the two games are in
fact equivalent. �

Position Player Admissible moves Priority
(a, s) 2 A⇥ S � {(⇥(a,�V (s)), s)} ⌦(a)
(>, s) 8 ? 0
(?, s) 9 ? 0
(3⇡, s) 9 {(⇡, t) | t 2 R(s)} 0
(2⇡, s) 8 {(⇡, t) | t 2 R(s)} 0
('0 _ '1, s) 9 {('0, s), ('1, s)} 0
('0 ^ '1, s) 8 {('0, s), ('1, s)} 0

Table 20: Slow acceptance game for modal automata

Regarding complexity matters, we define the size of a modal automaton to get a nice fit
with the (slow) acceptance game defined in Remark 10.10. In particular, this means that we
cannot simply define the size of an automaton as its number of states, we have to take the
transition map of the device into account as well. Note that the size |↵| of a modal one-step
↵ is simply defined as its number of subformulas, or, equivalently, as the size of its closure.
The index of modal automata is defined in the same way as for parity formulas.

Definition 10.11 Let A = (A,⇥,⌦, aI) be a modal automaton. The size |A| of A is defined
as follows:

|A| :=
X

(a,c)2A⇥C

|⇥(a, c)|.

Its index ind(A) is given as the maximal length of an alternating ⌦-chain in A. �

Later on this chapter we will provide e↵ective translations transforming a µ-calculus for-
mula into an equivalent modal automaton, and vice versa. As a corollary of this result we
obtain that modal automata are bisimulation invariant — in Exercise 10.2 the reader is asked
to give a direct proof.

Theorem 10.12 Let A be a modal automaton.. Then for any bisimilar pair (S, s) and (S0, s0)
of pointed Kripke models it holds that

S, s � A () S
0, s0 � A.

10-6 Modal Automata

10.3 Disjunctive modal automata

A key tool in the study of the model µ-calculus is provided by the automata that we are
about to introduce now, viz., the nondeterministic variants of the modal automata that we
just met in section 10.2. The disjunctive automata, as we shall call them, are obtained by
restricting the co-domain of the transition map of a modal automaton to the set of so-called
disjunctive one-step formulas, which are based on the cover modality discussed in section 1.7.

Definition 10.13 Given a finite set A, we define the set 1DML(A) of disjunctive modal one-
step formulas in A as follows

↵ ::= ? | > | rB | ↵ _ ↵,

where B ✓ A.
A modal P-automaton A = (A,⇥,⌦, aI) is called disjunctive or non-deterministic if

⇥(a, c) 2 1DML(A), for every a 2 A and c 2 }(P). �

I example(s) to be supplied

Remark 10.14 As a variant of Definition 10.13, we will sometimes require that the range of
the transition map ⇥ of a disjunctive automaton is given by the formulas of the slightly more
restricted one-step language 1DMLr given by the following grammar:

↵ ::= ? | rB | ↵ _ ↵,

where B ✓ A. In other words, in this set-up every formula ⇥(a, c) is a finite disjunction of
nabla formulas; the di↵erence with the language of Definition 10.13 is that here, the formula
> is not allowed.

We leave it as an exercise to the reader to prove that the two versions of the definition
are equivalent, in the sense that there are transformations from one type of automaton into
the other. �

As already mentioned, the key property making an automaton non-deterministic is that,
on Kripke structure with a su�ciently nice branching structure, a winning strategy for 9 in
the acceptance game should always be able to find markings that are functional. We will now
make this statement more precise.

Definition 10.15 Let A and S be a modal automaton and a Kripke structure, respectively.
A strategy f for 9 in the acceptance game A(A, S) is called separating if for all partial matches
⌃ ending in a basic position (a, s), the marking m⌃ : S ! }A picked by f satisfies |m⌃(t)|  1
for all t 2 S, and |m⌃(t)| = 0 for all t 62 �R(s). �

In words, a strategy is separating if it picks markings that assign to each point in S at
most one state in A, and assign the empty set to any point that is not a successor of the
currently inspected point of S. For a (non-)example, consider the one-step formula 3a0^2a1;
it should be clear that to satisfy this formula at a point s, one needs at least one successor

Lectures on the modal µ-calculus 10-7

of s where both a0 and a1 hold. This means that no separating strategy will prescribe a
legitimate move for a position of the form (a, s) if the formula that 9 needs to satisfy is
⇥(a,�V (s)) = 3a0 ^2a1.

Separating winning strategies have the following property, which we will put to good use
in the sequel.

Definition 10.16 Let A and (S, r) be a modal automaton and a pointed Kripke structure,
respectively. A strategy f for 9 in the acceptance game A(A, S)@(aI , r) is called functional
if for every s 2 S there is at most one a 2 A such that the position (a, s) is reachable in an
f -guided match of A(A, S)@(aI , r).

In case 9 has a functional winning strategy in the acceptance game A(A, S)@(aI , r), we
say that A strongly accepts (S, r), and write S, r �s A. �

Proposition 10.17 Let A be a modal automaton, and let (S, s) be a pointed tree model. Then
every separating winning strategy in the acceptance game A(A, S)@(aI , s) is functional.

We have now arrived at the key result about disjunctive automata.

Theorem 10.18 Let A and (S, r) be a disjunctive modal automaton and a pointed Kripke
model, respectively. Then S, r � A i↵ there is a rooted tree model (S0, r0) such that S, r $

(S0, r0) and S
0, r0 �s A.

Proof of Theorem 10.18. With A = (A,⇥,⌦, aI), let  := |A| be the state-size of A. We
leave it for the reader to construct a tree model S0 with root r0, and a bounded morphism
g : S0 ! S such that g(r0) = r and such that every s0 6= r0 in S

0 has at least  � 1 many
siblings t0 such that g(t0) = g(s0).

By positional determinacy we may assume that 9 has a positional strategy f in A(A, S)
which is winning when played from any winning position for 9. We will use this strategy to
define a separating positional winning strategy for 9 in A(A, S0).

The key claim is the following.

Claim 1 Let s 2 S and s0 2 S0 be such that g(s0) = s, let ↵ 2 1DML(A) be a one-step formula
and let m : R(s) ! }(A) be a marking such that S�m, g(s0) � ↵. Then there is a separating
marking m0 : R0(s0) ! }(A) such that S0�m0, s0 � ↵ and m0(t0) ✓ m(g(t0)), for all t0 2 R0(s0).

Proof of Claim In case ↵ contains > as one of its disjuncts, we simply take the empty
marking for m0, that is, we define m0(t0) := ? for every t0 2 S0.

In the sequel we focus on the case where ↵ does not contain > as one of its disjuncts (in
fact this is without loss of generality, cf. Remark 10.14). It follows from the legitimacy of m,
as a move for 9 in A(A, S), that S,m, s � ↵; this means that S�m, s � rB for some disjunct
rB of ↵, where B ✓ A. We now consider two subcases.

If B = ?, it follows from S�m, s � rB that �R = ?; but then we also have �R0(s0) = ?,
since g is a bounded morphism. In this case we also define m0 as the empty marking.

Finally, assume that B 6= ?; since S � m, s � rB we may without loss of generality
assume that ? 6= m(t) ✓ B, for all t 2 �R(s). Now consider an arbitrary successor t of s. By

10-8 Modal Automata

the assumption on g there are at least  many successors t0 of s0 such that g(t0) = t, and since
 = |A| this implies that there is a surjection h : g�1(t) ! m(t). Define m0 : �R0(s0) ! }A
by putting

m0(t0) := {h(t0)}.

We leave it as an exercise for the reader to check that S
0,m0, s0 � rB. This means that

S
0,m0, s0 � ↵, thus establishing that m0 is a legitimate move for 9 at position (a, s0) in

A(A, S0) indeed. Finally, it is immediate from the definition of m0 that m0(t0) ✓ m(g(t0)), for
all t0 2 �R0(s0). J

Based on Claim 1, we may provide 9 with the following positional strategy f 0 in A(A, S0).
Given a position (a, s0), in case (a, g(s0)) is a winning position for 9 in A(A, S), we let f 0 pick
a fixed marking m0 as given by the claim, while f 0 picks an random move in case (a, g(s0)) 62
Win9(A(A, S)).

It is not hard to prove that for any f 0-guided (partial) match ⌃ = (an, s0n)n<� of A(A, S0),
its g-projection ⌃g := (an, g(s0n))n<� is a f -guided (partial) match of A(A, S0). From this it
is immediate that f 0 is a winning strategy when played from a winning position, while it is
obvious from its definition that f is separating. qed

Further on in this chapter we will prove a Simulation Theorem, providing a construction
which e↵ectively transforms a given modal automaton into an equivalent disjunctive modal
automaton.

10.4 One-step logics and their automata

Modal one-step logic

As we saw in section 10.2, modal one-step formulas provide the co-domain of the transition
map of a modal automaton. The operational semantics of modal automata is given by a
two-player acceptance game, and a match of this game proceeds in rounds, during which the
players investigate a local window into the Kripke structure, by means of the semantics of
one of these one-step formulas. It will be rewarding to introduce some terminology for this
‘local window’ and study the semantics of one-step formulas in some more detail. This will
allow us to introduce the notion of a one-step logic and use it to generalise the notion of a
modal automaton.

The crucial observation is the following. Consider a modal automaton A = (A,⇥,⌦, aI)
and a Kripke model S. At a basic position (a, s) of the acceptance game A(A, S), 9 has
to come up with a marking m which makes the one-step formula ⇥(a,�V) true at s in the
expanded model S � m. The point is that, because of the special shape of modal one-step
formulas, we do not use all information on the model S�m: in fact all we need access to is
the set R[s] of successors of s, and the marking m. In the sequel it will convenient to present
this information in the format of a one-step model, which is nothing but a set, together with
a marking for the set of variables.

Definition 10.19 Fix a set A. A one-step A-model over a set Y is a pair (Y,m) such that
m : Y ! }(A) is an A-marking of the elements of Y with A-colors. �

Lectures on the modal µ-calculus 10-9

Remark 10.20 In order to deal with blind worlds (points in a Kripke model that have no
successors), we need to allow one-step models with an empty domain. Observe that there is in
fact exactly one such structure: the pair (?,?). Apart from this exception, a one-step model
is nothing but a structure in the sense of first-order model theory, for the signature consisting
of a monadic predicate for each element of A. That is, we may consider the A-model (Y,m)
as the structure (Y, Vm), simply by representing the marking m by its associated valuation
Vm interpreting the variables as subsets of the domain Y . �

Definition 10.21 The one-step satisfaction relation �1 between one-step models and modal
one-step formulas is defined as follows. Fix a one-step model (Y,m).

First, we define the value [[⇡]]0 of a formula ⇡ 2 Latt(A) by the following induction:

[[a]]0 := Vm(a) (= {t 2 Y | a 2 m(t)})
[[>]]0 := Y [[?]]0 := ?

[[⇡0 _ ⇡1]]0 := [[⇡0]]0 [[[⇡1]]0 [[⇡0 ^ ⇡1]]0 := [[⇡0]]0 \ [[⇡1]]0.

Sometimes we write (Y,m), t �0 ⇡ in case t 2 [[⇡]]0 .
Second, we inductively define the one-step satisfaction relation as follows:

(Y,m) �1
>

(Y,m) 6�1
?

(Y,m) �1 2⇡ if [[⇡]]0 = Y
(Y,m) �1 3⇡ if [[⇡]]0 \ Y 6= ?

(Y,m) �1 ↵0 ^ ↵1 if (Y,m) �1 ↵0 and (Y,m) �1 ↵1

(Y,m) �1 ↵0 _ ↵1 if (Y,m) �1 ↵0 or (Y,m) �1 ↵1

In case (Y,m) �1 ↵ we say that ↵ is true in the one-step model (Y,m). �

Example 10.22 In this format, the semantics of disjunctive formulas boils down to the
following, as can easily be verified, for a subset B ✓ A:

(Y,m) �1
rB i↵ B ✓

[
{m(y) | y 2 Y } and m(y) \B 6= ?, for all y 2 Y.

That is, rB holds in a one-step model (Y,m) i↵ every b 2 B is satisfied at some y 2 Y , and
every y 2 Y satisfies some b 2 B.

Furthermore, observe that the empty model will satisfy every formula of the form 2⇡,
and no formula of the form 3⇡. We have (Y,m) �1

r? i↵ Y = ?. �

The following proposition, which can be proved by a straightforward induction on the
complexity of one-step formulas, shows that the one-step semantics developed above is just
an alternative perspective on the standard semantics of one-step formulas.

Proposition 10.23 Let S = (S,R, V) be a Kripke model, let s be a point in S, let m : R[s] !
}(A) be an A-marking, and let ↵ 2 1ML(A) be a modal one-step formula. Then

S�m, s � ↵ i↵ (R[s],m) �1 ↵.

Given Proposition 10.23, the acceptance game of modal automata can now be naturally
defined in terms of this one-step semantics, as in Table 21.

10-10 Modal Automata

Position Player Admissible moves Priority
(a, s) 2 A⇥ S 9 {m : R(s) ! }A | (R(s),m) �1 ⇥(a,�V (s))} ⌦(a)
m 8 {(b, t) | b 2 m(t)} 0

Table 21: Acceptance game for one-step automata

General one-step logic

As we will see below, the notion of a one-step logic provides a way to generalise the concept
of a modal automaton to a much wider setting.

Definition 10.24 A one-step language is a map L which assigns to any finite set A a collec-
tion L(A) of one-step formulas over A. This map is subject to the constraint that every map
⌧ : A ! A0 induces a substitution or renaming [⌧] : L(A) ! L(A0) such that
1) [idA] = idL(A);
2) [⌧ 0 � ⌧] = [⌧ 0] � [⌧], for any pair ⌧ : A ! A0 and ⌧ 0 : A0

! A00;
3) ↵[⌧] = ↵ for any ↵ 2 L(A), if ⌧ : A ! A0 is such that ⌧(a) = a for all a 2 A. �

We will use postfix notation for this renaming, writing ↵[⌧] for the formula we obtain
from ↵ by renaming every variable a 2 A by ⌧(a) 2 A0. For instance, where ↵ 2 1ML(A) is
the formula 3a ^ 2(b _ c) and ⌧ : A ! A0 satisfies ⌧(a) = ⌧(c) = a0 and ⌧(b) = b0, we find
↵[⌧] = 3a0 ^ 2(b0 _ a0). Note that it follows from the above definition that A ✓ A0 implies
L(A) ✓ L(A0), for any one-step language L.

Definition 10.25 A one-step logic is a pair (L,�1) consisting of a one-step language L and
an interpretation �1 which indicates, for every one-step A-model (Y,m) and every one-step
formula ↵ 2 L(A), whether ↵ is true or false in (Y,m), denoted as, respectively, (Y,m) �1 ↵
and (Y,m) 6�1 ↵.

The interpretation �1 is subject to the condition of monotonicity : if m(t) ✓ m0(t), for
all t 2 Y , then (Y,m) �1 ↵ implies (Y,m0) �1 ↵, for all ↵ 2 L(A). Furthermore, the
interpretation is supposed to be well-behaved with respect to renamings, in the following
sense. Observe that a map ⌧ : A0

! A transforms any A-valuation V : A ! }(Y) to an
A0-valuation V � ⌧ : A0

! }(Y); we will require that (Y,mV) �1 ↵[⌧] i↵ (Y,mV �⌧) �1 ↵, for
any formula ↵ 2 L(A). �

We will generally be sloppy and blur the distinction between a one-step language and a
one-step logic, in the understanding that the interpretation of one-step languages is generally
fixed (and always clear from context).

In Definition 10.21 we introduced the one-step perspective on modal logic. As a di↵erent,
particularly interesting example of a one-step logic, we may consider two versions of monadic
first-order logic, where we see the variables in A as monadic predicate symbols.

Definition 10.26 The set MFOE(A) of monadic first-order formulas over A is given by the
following grammar:

↵ ::= > | ? | a(x) | ¬a(x) | x
.
= y | x 6

.
= y | ↵ _ ↵ | ↵ ^ ↵ | 9x.↵ | 8x.↵

Lectures on the modal µ-calculus 10-11

where a 2 A and x, y are first-order (individual) variables. The language MFO(A) of monadic
first-order logic is the equality-free fragment of MFOE(A); that is, atomic formulas of the form
x

.
= y and x 6

.
= y are not permitted:

↵ ::= > | ? | a(x) | ¬a(x) | ↵ _ ↵ | ↵ ^ ↵ | 9x.↵ | 8x.↵

In both languages we use the standard definition of free and bound variables, and we call
a formula a sentence if it has no free variables. For each of the languages L 2 {1FO, 1FOE}, we
define the positive fragment L

+ of L as the language obtained by almost the same grammar
as for L, but with the di↵erence that we do not allow negative formulas of the form ¬a(x)
(but do allow formulas x 6

.
= y). �

To define the semantics of these formulas, we make a distinction between the empty one-
step model and non-empty models, cf. Remark 10.20. In the latter case we view a one-step
model (Y,m) as the first-order structure (Y, Vm). If we add to such a model an assignment g,
interpreting individual variables of the language as elements of the domain, we may inductively
define, in a completely straightforward way, the notion of a monadic formulas being true in
a model-with-assignment:

(Y,m), g |= ↵.

Note the truth of a sentence of the language does not depend on the assignment, so that may
simply write

(Y,m) |= ↵

in case (Y,m), g |= ↵ for some/each assignment.

The empty model must be dealt with di↵erently. Since we cannot define assignments on
the empty model in a meaningful way, we cannot interpret arbitrary formulas in the empty
model. Fortunately, however, we can give an interpretation for every sentence of the language,
simply by making every formula of the form 8x.↵ true, and every formula of the form 9x.↵
false in the empty model. Using this as a basis for an inductive definition, we easily define a
truth relation

(?,?) |= ↵

for any monadic first-order sentence ↵.

In the light of the above discussion, we will take the (positive) sentences of the languages
MFOE(A) and MFOE(A) as two respective one-step languages.

Definition 10.27 We define the one-step languages 1FOE(A) and 1FO(A) as the collection of
positive sentences in MFOE(A) and MFOE(A), respectively. The semantics �1 of these languages
is defined by putting

(Y,m) �1 ↵ i↵ (Y,m) |= ↵,

for any one-step model (Y,m). �

10-12 Modal Automata

One-step logic

Continuing our general discussion, we introduce some natural notions pertaining to one-step
logics.

Definition 10.28 Two one-step formulas ↵ and ↵0 are (one-step) equivalent, denoted ↵ ⌘1

↵0, if they are satisfied by exactly the same one-step models. �

Example 10.29 Examples of one-step equivalent pairs of formulas include instance of the
standard propositional distributive laws, such as the modal distributive law:

(3a1 _3a2) ^2b ⌘1 (3a1 ^2b) _ (3a2 ^2b),

the familiar axioms of modal logic, such as

2(a ^ b) ⌘1 2a ^2b,

but also formulas involving the nabla modality, such as

rB ^rB0
⌘1

_n
r{b ^ b0 | bRb0} | R ✓ B ⇥B0 and (B,B0) 2 }R

o

(cf. Proposition 1.36(1)).
Examples such as

3(a1 ^ a2) ^2b ⌘1 9x (a1(x) ^ a2(x)) ^ 8y b(y).

show that Definition 10.28 also covers the notion of one-step equivalence across languages. �

We may lift the notion of equivalence to the level of one-step logics.

Definition 10.30 We say that two one-step (L,�1) and (L0,�10) languages are (e↵ectively)
equivalent if for every formula in L there is an (e↵ectively obtainable) equivalent formula in
L
0, and vice versa. �

A particular interesting example of such an equivalence is the following.

Proposition 10.31 The one-step languages 1ML and 1FO are e↵ectively equivalent.

Proof. It is easy to rewrite a modal one-step formula into an equivalent first-order formula.
For the opposite direction, the key observation is that in equality-free monadic first-order
logic, every formula can be rewritten into a normal form where every monadic predicate is in
the scope of exactly one quantifier. qed

Among the results about the modal one-step language that we shall need later is the
following one-step version of the usual bisimulation invariance result for modal logic, i.e. all
one-step formulas are invariant for bisimulations between one-step models in a precise sense.

Lectures on the modal µ-calculus 10-13

Definition 10.32 We say that two one-step A-models (Y,m) and (Y 0,m0) are one-step bisim-
ilar, notation: (Y,m) $1 (Y 0,m0), if they satisfy the following conditions:

(forth) for all s 2 S, there is s0 2 S0 with m(s) = m0(s0);
(back) for all s0 2 S0, there is s 2 S with m(s) = m0(s0). �

Proposition 10.33 (One-step Bisimulation Invariance) Let (Y,m) and (Y 0,m0) be two
one-step A-models. If (Y,m) $1 (Y 0,m0), then both one-step models satisfy the same formulas
in 1ML(A).

Automata for one-step logics

We now see how the concept of one-step logic naturally give rise to the following generalisation
of modal automata.

Definition 10.34 Let (L,�1) be a one-step logic. An L-automaton over a set P of proposition
letters is a quadruple A = hA,⇥,⌦, aIi, where A is a finite state set with initial state aI ,
⇥ : A⇥ }(P) ! L(A) is a transition function, and ⌦ : A ! ! is a priority map.

The semantics of L-automata is given by a two-player acceptance game, of which the rules
are given in exactly the same way as those for modal automata, cf. Table 21. �

As we will see later on, the automata for 1FO and 1FOE are of particular interest since they
correspond to, respectively, the modal µ-calculus and (on tree models) monadic second-order
logic. The first observation is immediate by our earlier observations on the equivalence of
µML and modal automata, and Proposition 10.31.

An important theme in the study of these automata is how their properties are already de-
termined at the one-step level. Here are some first examples, regarding the closure properties
of L-automata. Recall that a query is simply a class of pointed Kripke models.

Definition 10.35 Given be a one-step logic (L,�1), we call a query K L-recognisable if there
is some L-automaton A that recognises K, i.e., such that S, s � A i↵ S, s belongs to K. �

We will generally be interested in closure properties of the class of recognisable queries. It
is rather easy to see that if a one-step language is closed under taking conjunctions/disjunctions,
then the associated class of recognisable languages is closed under taking intersections/unions.
The question of closure under complementation is more interesting; note that since our one-
step languages consist of monotone formulas only, closure under negation at the one-step level
is not possible.

Definition 10.36 Let (L,�1) be a one-step logic. We say that L is closed under taking
conjunctions, if, given a pair of one-step formulas ↵ and �, there is a one-step formula � such
that any one-step model satisfies � i↵ it satisfies both ↵ and �. The notion of closure under
disjunctions is defined analogously.

Given two one-step formulas ↵ and � in L(A), we call � a boolean dual of ↵ if for every
one-step model (Y,m) we have that

(Y,m) �1 � i↵ (Y,m) 6�1 ↵,

10-14 Modal Automata

where m is the complement marking of m, given by m(t) := A \m(t), for all t 2 Y . We say
that L is closed under taking boolean duals if every formula in L has a boolean dual in L. �

Example 10.37 The one-step modal language is closed under taking conjunctions, disjunc-
tions and boolean duals. We let ↵@ be the formula we obtain from a formula ↵ 2 1ML by
simultaneously replacing all occurrences of ? by >, all conjunctions by disjunctions, all dia-

monds by boxes, and vice versa. For example:
�
3>^2(a _ b)

�@
= 2?_3(a ^ b). It is easy

to verify that for every ↵ 2 1ML, the formulas ↵ and ↵@ are boolean duals of one another.
The one-step language of disjunctive modal logic is closed under taking disjunctions, but

not conjunctions or boolean duals. �

Proposition 10.38 Let (L,�1) be a one-step logic.
1) If L is closed under taking conjunctions, then the L-recognisable queries are closed under

taking intersections.
2) If L is closed under taking disjunctions, then the L-recognisable queries are closed under

taking unions.
3) If L is closed under taking boolean duals, then the L-recognisable queries are closed under

complementation.

Proof. We leave the proof of the first two statements as an exercise to the reader. For the
proof of the third part we need to show that with any L-automaton A we can associate an
L-automaton A which accepts exactly those pointed Kripke models that are rejected by A.

Let A = (A,⇥,⌦, aI) be an L-automaton, and define A to be the structure A := (A,⇥@ ,⌦0, aI)
given by putting ⇥@(a, c) := ⇥(a, c)@ and ⌦0(a) := 1 + ⌦(a).

Now take an arbitrary pointed Kripke model (S, s). Comparing the acceptance games
A(A, S) and A(A, S) we observe that the role of 9 in the latter game is basically the same as
that of 8 in the first. From this it follows that any position (a, s) is winning for 9 in A(A, S)
i↵ it is winning for 8 in A(A, S). Using determinacy we derive that S, s � A i↵ S, s 6� A, as
required. qed

10.5 From formulas to automata and back

In this section we will substantiate our earlier claim that modal automata are indeed an
alternative way to look at the modal µ-calculus. That is, we will provide e↵ective constructions
that transform a (parity) formula into an equivalent modal automaton, and vice versa. In both
directions we will let these transformations pass via the intermediate structures of transparent
modal automata; these are variations of modal automata in which the proposition letters,
instead of featuring as part of the domain of the transition map, may occur on the co-domain
side. That is, we have to extend the definition of one-step formulas, allowing (unguarded)
occurrences of proposition letters.

Definition 10.39 Given a set P of proposition letters and a set A of propositional variables,
we define the set 1EML(P, A) of extended one-step modal formulas over P and A using the
following grammar:

↵ ::= ? | > | p | p | 3⇡ | 2⇡ | ↵ ^ ↵ | ↵ _ ↵,

Lectures on the modal µ-calculus 10-15

with P 2 P and ⇡ 2 Latt(A). �

Observe that in an extended modal one-step formula, the proposition letters from P may
only occur ‘at the surface’, that is, not in the scope of a modality; as in 1ML(A)-formulas,
every occurrence of a variable from A must be in the scope of exactly one modality.

Definition 10.40 A transparent modal automaton over a set P of proposition letters is a
quadruple of the form A = (A,⇥,⌦, aI), where A is a finite set of states, of which aI is the
initial state, ⌦ : A ! ! is a priority map, and

⇥ : A ! 1EML(P, A)

is the transition map.
Given a Kripke model S = (S,R, V), we define the acceptance game A(A, S) as the parity

game of which the admissible moves and the priority map are given in Table 22. �

Position Player Admissible moves Priority
(a, s) 2 A⇥ S � {(⇥(a), s)} ⌦(a)
(p, s), with p 2 P and s 2 V (p) 8 ? 0
(p, s), with p 2 P and s 62 V (p) 9 ? 0
(p, s), with p 2 P and s 2 V (p) 9 ? 0
(p, s), with p 2 P and s 62 V (p) 8 ? 0
(>, s) 8 ? 0
(?, s) 9 ? 0
('0 _ '1, s) 9 {('0, s), ('1, s)} 0
('0 ^ '1, s) 8 {('0, s), ('1, s)} 0
(3⇡, s) 9 {(⇡, t) | t 2 R(s)} 0
(2⇡, s) 8 {(⇡, t) | t 2 R(s)} 0

Table 22: Acceptance game for transparent modal automata

The key feature of this acceptance game is that at a basic position of the form (a, s) 2

A⇥ S, the one-step formula ⇥(a) that 9 needs to satisfy at s does not depend on the colour
of s. On the other hand, this formula may now contain literals over P, and in this way the
colour of s does play a role when the players evaluate the truth of ⇥(a).

In the sequel we will refer to standard modal automata (i.e., as given in Definition 10.3)
as chromatic to distinguish them from the transparent ones introduced here.

The main part of this section consists of constructions that transform chromatic modal
automata into transparent ones and vice versa, and transform parity formulas into transparent
modal automata and vice versa. In all cases we will compare the size and index of the input
and the output structure (these notions are defined for transparent automata as for chromatic
ones). Throughout the remainder we fix a set P of proposition letters, and we think of the
sizes of P and }(P) as being constant.

10-16 Modal Automata

Proposition 10.41 There is an e↵ective construction that transforms a transparent modal
P-automaton A into a chromatic modal P-automaton A

c, such that
1) A

c
⌘ A;

2) |A
c
| = O(|A|);

3) ind(Ac) = ind(A).

Proof. The intuition behind the transformation is that in the acceptance game for a trans-
parent automaton we may encounter literals over P, which are to be evaluated at the current
state. Depending on the colour of the current state, every such literal will be evaluated to be
either true or false. This means, that if we fix this colour, as we do in the acceptance game of
a chromatic automaton, we can simply replace every literal with the appropriate boolean con-
stant (> or ?), thus obtaining at a one-step formula in the ‘not-extended’ language 1ML(A).
Performing this substitution systematically, we arrive at the following definitions.

Given a colour c 2 }(P), we define the substitution ⌧c : 1EML(P, A) ! 1ML(A) given by

⌧c(p) :=

⇢
> if p 2 c
? if p 62 c.

Based on this we go from a transparent modal automaton A = (A,⇥,⌦, aI) to its chromatic
counterpart Ac := (A,⇥0,⌦, aI) by putting

⇥0(a, c) := ⇥(a)[⌧c].

The key observation about these substitutions is that for any Kripke model S = (S,R, V)
over P, any s in S, any A-marking m on s, and any extended one-step formula ↵ we have

S�m, s � ↵ i↵ S�m, s � ↵[⌧cs],

where cs is the colour of s under V .
It is this equivalence that enables us to move smoothly between the acceptance games

A(A, S) and A(Ac, S): it shows that at any basic position (a, s), any marking m : S ! }(A) is
legitimate in A(A, S) i↵ it is legitimate in A(Ac, S). From this we easily infer that the winning
positions for 9 in the two games coincide, which clearly su�ces to prove the equivalence of A
and A

c (1). The statements (2) and (3) are trivial consequences of the definitions. qed

In the opposite direction there is an equally simple transformation.

Proposition 10.42 There is an e↵ective construction that transforms a chromatic modal
P-automaton A into a transparent modal P-automaton A

t, such that
1) A

t
⌘ A;

2) |A
t
| = O(|A|);

3) ind(At) = ind(A).

Proof. Let A = (A,⇥,⌦, aI) be a chromatic automaton over some set P of proposition
letters. We will define A

t := (A,⇥t,⌦, aI), where ⇥t : A ! 1EML(P, A) is given by

⇥t(a) :=
_

c2}(P)

⇣
�c ^⇥(a, c)

⌘
.

Lectures on the modal µ-calculus 10-17

Here �c is the formula ‘exactly c’:

�c :=
^

p2c

p ^
^

p2P\c

p,

which holds in a state s in a Kripke model over P if c is exactly the colour of s. It is easily
verified that At satisfies the conditions listed in the statement of the theorem. qed

We now turn to the equivalence of parity formulas and transparent modal automata. The
transformation of the first into the latter type of structure is the most complex construction
in this section — but the hardest part of the work has already been done in section 6.6 where
we discussed guarded transformations of parity formulas.

Proposition 10.43 There is an e↵ective construction that transforms a parity P-formula G

into a transparent modal P-automaton AG, such that
1) AG ⌘ G;
2) |AG|  2O(|G|)

3) ind(AG) = ind(G).

Proof. Recall that by Theorem 6.63 there is an algorithm that transforms G into an equiv-
alent strongly guarded parity formula H of size (roughly) exponential in |G|, and index
ind(H) = ind(G). Without loss of generality we may assume that every state of H is the
successor of some modal node, cf. Remark 6.66.

The transparent modal automaton A will be directly based on H. First of all, we let the
carrier A of A be the set of successors of modal nodes, together with the initital vertex vI ,
that is:

A := {vI} [E[Vm].

Clearly then all states of H belong to A, and with every modal node u we may associate an
element au 2 A: its unique successor. We define aI := vI , and as the priority map of A we
take the map ⌦0 : A ! ! given by

⌦0(a) :=

⇢
⌦(a) if a 2 Dom(⌦)
0. otherwise

It is left to define the transition map ⇥ : A ! 1EML(P, A). Basically, for any a 2 A we
will read o↵ ⇥(a) from a directed acyclic graph Da := (Da, Ea) that we will cut out from
the underlying graph (V,E) of H. We define Da as the smallest subset D of V that contains
a and is closed under taking E-successors of non-modal nodes (that is, if v 2 D \ Vn, then
E[v] ✓ D). Clearly, any node u 2 Da must be either modal or atomic if E[u] is empty, and
either boolean or silent if it is not. The relation Ea can now be defined as follows:

Ea := {(u, v) 2 E \ (Da ⇥Da) | v 6= a}.

It follows from the strong guardedness of H that D is acyclic, so that we may use the relation
Ea for recursive definitions. (It is for this reason that we did not define Ea as the restriction

10-18 Modal Automata

of E to the set Da; this would create cycles in case Da would contain a modal node u such
that Eua.) In particular, we will define a formula ✓a(u) 2 1EML for every u 2 Da:

✓a(u) :=

8
>><

>>:

L(u) if u is atomic
~au if u is modal and L(u) = ~J

{L(v) | Euv} if u is boolean and L(u) = �

✓a(v) if L(u) = " and Euv.

Finally, then, we define
⇥(a) := ✓a(a).

It is easy to verify that every formula of the form ✓a(u) is an extended modal one-step formula
over P and A. This implies that ⇥ : A ! 1EML(P, A) is of the required type.

It is an immediate consequence of the definitions that |A|  H and ind(A)  ind(H);
from this we obtain the items (2) and (3) of the theorem. It thus remains to prove the
equivalence of A and H. But a moment of reflection will show that, for any Kripke model S,
the evaluation game E := E(H, S) and the acceptance game A := (A, S) are isomorphic, apart
from the automatic moves of type (a, s) ! (⇥(a), s) in A, which have no counterpart in E .
qed

Proposition 10.44 There is an e↵ective construction that transforms a transparent modal
P-automaton A into a parity P-formula GA, such that

1) GA ⌘ A;
2) |GA| = |A|;
3) ind(GA) = ind(A).

Proof. Given A = (A,⇥,⌦, aI), define GA = (V,E, L,⌦, vI) by putting

V := A [
S

a2A Sf (⇥(a))

E :=
�
(a,⇥(a)) | a 2 A

[
�
.0 \(V ⇥ V)

�

⌦(v) :=

⇢
⌦(v) if v 2 A
" otherwise

vI := aI ,

where we recall that .0 is the converse of the direct subformula relation /0. We leave it for
the reader to verify that GA satisfies the conditions (1), (2) and (3). qed

10.6 Simulation Theorem

In this section we will prove the most important result of this chapter, viz., the Simulation
Theorem stating that every modal automaton can be replaced with an equivalent disjunctive
modal automaton.

Theorem 10.45 There is a construction sim transforming a modal automaton A into an
equivalent disjunctive modal automaton sim(A).

Lectures on the modal µ-calculus 10-19

The definition of the simulating automaton proceeds in two stages. We first come up with
an automaton A

] of which the transition map already has the right shape, but the acceptance
condition is not a parity condition but a so-called !-regular set over the carrier A] of A] (i.e.,
a subset of (A])! that itself can be recognized by some finite stream automaton with a parity
acceptance condition). As we shall see, the move from A to A

] involves a ‘change of basis’:
the states of A] will be taken from the set A] := }(A ⇥ A) of binary relations over A, and
the definition of the transition map ⇥] of A] is based on various links between the one-step
languages we obtain by taking A and A] as sets of (formal) variables. In the second step
of the construction we then show how A

], like any automaton with an !-regular acceptance
condition, can be transformed into a standard modal automaton with a parity condition.

In fact, we shall prove a slightly more general version of Theorem 10.45, by abstracting
from the precise shape of the one-step languages 1ML and 1DML that form the codomain of the
transition function of modal and disjunctive modal automata, respectively. Our proof will
only use a certain distributive law that holds between 1ML(A) and 1DML(A), and for future
reference it will make sense to formulate our definitions and results for two arbitrary one-step
languages satisfying such a distributive law.

Convention 10.46 Throughout this section we we shall be dealing with two one-step lan-
guages L1 and L2, providing sets Li(A) of formulas for each set A of propositional variables.

Recall that, in line with the context of fixpoint logics that we are working in, we will
assume that, for any one-step logic L, the formulas in L(A) are all monotone. Recall as well
that in Definition 10.34 we introduced the notion of an L-automaton, and that in Table 21
we summarize the rules of the acceptance game of such automata.

Our purpose will be to prove that, under some natural constraints on the relation between
two one-step languages L1 and L2, every L1-automaton can be simulated by an L2-automaton,
that is, transformed into an equivalent L2-automaton. In the case where L1 = 1ML and
L2 = 1DML, the simulating language 1DML corresponds to some fragment of 1ML, in which the
use of conjunctions is severely restricted. Here the construction of the simulating automaton
corresponds to finding a disjunctive normal form for the modal automata.

In order to formulate the condition on L1 and L2 under which we can prove a simulation
theorem, we need some preparatory work. Informally, let L

^(A) denote the version of the
language L that allows conjunctions of proposition letters from A to occur at positions where
L only allows the proposition letters from A themselves. As an example, recall that the
language 1DML(A) is built up from basic formulas rB, where B ✓ A. Examples of formulas
in 1DML

^(A) are r{a ^ b, b} and ? _ r{a1 ^ a2 ^ a3,>}. Observe that these two formulas
do not belong to 1DML(A), and thus bear witness to the fact that the latter language forms a
proper subset of 1DML^(A). On the other hand, it is easy to see that 1ML(A) = 1ML

^(A).
A convenient way of thinking about the formulas in L

^(A) is that they are substitution
instances of formulas in L(}A) under a special substitution ✓A. Formally we define the
languare as follows.

Definition 10.47 For any set A and any language L, we define the language

L
^(A) := {'[✓A] | ' 2 L(}A)},

10-20 Modal Automata

where we let ✓A denote the substitution that replaces, for any subset B ✓ A, the (formal)
variable B with the conjunction

V
B. �

As an example, we obtain the formula 2a ^ 2(a ^ b) 2 1ML(A) from the formula 2{a} ^
2{a, b} 2 1ML(P,}A) by substituting a =

V
{a} for {a}, and a ^ b =

V
{a, b} for {a, b}.

Now we can define the key condition on two languages L1 and L2, making that L2-automata
can simulate L1-automata, as follows.

Definition 10.48 L2 is
V
-distributive over L1 if, for each set A, and for every finite set � of

L1(A)-formulas we have ^
� ⌘ [✓A],

for some formula 2 L2(}A). �

Informally, L2 is
V
-distributive over L1 if every finite conjunction of L1(A)-formulas is

equivalent to some L
^
2 (A)-formula. The terminology can be motivated as follows: L2 is

V
-

distributive over L1 if every conjunction of L1-formulas is equivalent to an L2-formula of
conjunctions; that is, if conjunctions in L1 ‘distribute over L2-formulas’. As a key example
of
V
-distributivity we have the following result, which can be proved along the same lines as

Proposition 1.36.

Proposition 10.49 1DML(A) is
V
-distributive over 1ML(A).

The importance of the notion of
V
-distributivity lies in the following Theorem, which

obviously generalises the simulation theorem for modal automata.

Theorem 10.50 (Simulation Theorem) Let L1 and L2 be two one-step languages such
that L2 is

V
-distributive over L1. Then there is an e↵ective construction sim transforming an

L1-automaton A into an equivalent L2-automaton sim(A).

We now turn to the definition of the L2-automaton A
] that simulates an arbitrary but

fixed L1-automaton A. Note that our prime example concerns a simulation theorem where
the transition structure of the simulating automaton is of a significantly simpler nature than
that of the simulated one. The intuition underlying the definition of A] is that one A

]-match
will correspond to a bundle of several A-matches in parallel, and that to win an A

]-match, 9
has to win each of these parallel A-matches. It is thus to be expected that we will obtain A

]

via some kind of power construction on A.
For some more detail, suppose that 9 is faced with a set {(a, s) | a 2 Bs} of positions in

some A-acceptance game, for some subset Bs ✓ A (and one single state s). She could try
to respond to all challenges posed by these positions in one go by coming up with a single
marking m : R[s] ! }A such that (R[s],m) �1 V

{⇥(a, cs) | a 2 B}. Then for each such
successor t of s, we can see Bt = m(t) as the set of new challenges that she should take care
of at t in parallel. In this way, we may think of a match of the simulating automaton moving
in rounds, from one ‘macro-position’ (Bi, si) (corresponding to the set {(b, si) | b 2 Bi}) to
another ‘macro-position’ (Bi+1, si+1) (corresponding to the set {(b, si+1) | b 2 Bi+1}).

Lectures on the modal µ-calculus 10-21

This approach would suggest to take }A as the carrier set of A]. However, if we would
simply take the states of A] to be macro-states of A, i.e., subsets of A, we would get into
trouble when defining the acceptance condition of A, similar to the problems one encounters
when determinizing stream automata. The problem is that from a sequence B1B2B3 . . . of
subsets of A, representing an A

]-match, we cannot recognize the set of parallel A-matches
that this sequence corresponds to. We can take an elegant way out of this problem by defining
the carrier set A] of A] to be the set of binary relations over A, and to link A]-sequences and
A-sequences via the notion of a trace through a sequence of binary relations.

Definition 10.51 Fix a set A. We let A] denote the set of binary relations over A, that is,

A] := }(A⇥A).

Given an infinite word ⇢ = R1R2R3 . . . over the set A], a trace through ⇢ is either a finite
A-word ↵ = a0a1a2 . . . ak, or an A-stream ↵ = a0a1a2 . . . , such that aiRi+1ai+1 for all i < k
(respectively, for all i < !). Finite traces through finite A]-sequences are defined similarly. �

The key idea behind the definition of A] and the proof of its equivalence to A, is that with
each A(A], S)-match with basic positions

(R1, s1)(R2, s2)(R3, s3) . . .

and each trace a0a1a2 through R1R2R3 . . . we may associate an A(A, S)-match with basic
positions

(a1, s1)(a2, s2)(a3, s3) . . .

This explains the winning condition of the automaton A
]: an A]-stream should be winning

for 9 if all traces through it are winning according to the acceptance condition of A.

Definition 10.52 Relative to a parity condition ⌦ on A, call an infinite trace ↵ 2 A! bad if
the maximum priority occurring infinitely often on ↵ is an odd number. Let NBT⌦ denote
the set of infinite A]-words that contain no bad traces relative to ⌦. �

Note that the automaton A
] will be equipped with this set NBT⌦ as its acceptance

condition, and while we will be able to establish that A] is equivalent to A, NBT⌦ clearly is
not a parity condition. This we will take care of in the second part of the construction.

Before giving the formal details, let us first provide some further intuitions behind the
definition of A]. Our starting point is that a state R of A] encodes the macro-state Ran(R) :=
{b 2 A | (a, b) 2 R for some a 2 A}, that is, the range of R. This already su�ces to motivate
the definition of the initial state of A]:

RI := {(aI , aI)}.

In order to introduce the definition of ⇥] : (A]
⇥}P) ! L2(A]), consider a model S and a

position of the form (R, s) in the acceptance game G
] = A(A], S). Take a state a 2 Ran(R),

then at the position (a, s) in the game G = A(A, S), 9 has to come up with a marking
ma,s : R[s] ! }(A) such that (R[s],ma,s) �1 ⇥(a, cs). Since the position (R, s) encodes

10-22 Modal Automata

the ‘macro-position’ {(a, s) | a 2 Ran(R)}, we need to consider all of the formulas ⇥(a, cs)
(with a 2 Ran(R)) in parallel; this would suggest to consider the conjunction

V
{⇥(a, cs) |

a 2 Ran(R)}. However, in this conjunction we are no longer able to retrieve the ‘origin’ of
a propositional variable b 2 A. For this reason we use the following trick. We consider any
pair (a, b) 2 A ⇥ A as a new propositional variable, representing the variable b tagged with
the ‘origin’ a.

Definition 10.53 Given a language L and a variable a, let ⌧a be the substitution replacing
any variable b 2 A with the variable (a, b) 2 A ⇥ A. In words, we say that ⌧a tags each
variable b with a. Given a state a of A and a color c 2 }P, let ⇥?(a, c) 2 L1(A ⇥ A) be the
formula

⇥?(a, c) := ⇥(a, c)[⌧a],

that is, each b 2 A occurring in ⇥(a) is replaced with (a, b). �

As an example, if ⇥(a, c) = 3a ^2b, then ⇥?(a, c) = 3(a, a) ^2(a, b).

Using this trick we can think of a state R 2 A] unfolding into the formula
V
{⇥?(a, cs) |

a 2 Ran(R)} 2 L1(A ⇥ A). Observe that any variable in this formula that is in the scope of
a modality, must be of the form (a, b) 2 A ⇥ A, thus encoding a ‘direct meaning’ b together
with its ‘origin’ a. Also note that any binary relation Q 2 A] now represents a set of (formal)
variables, and so it makes sense to consider for instance the conjunction

V
Q.

The following proposition is immediate by the definitions.

Proposition 10.54 Let L1 and L2 be two languages such that L2 is
V
-distributive over L1,

and let A be some set. Then for every finite set � of formulas in L1(A⇥A) there is a formula
 2 L2(A]) such that ^

� ⌘ [✓A⇥A], (118)

where ✓A⇥A is the substitution replacing every relation Q ✓ A⇥A with the conjunction
V
Q.

We are now ready for the formal definition of the automaton A
].

Definition 10.55 Let L1 and L2 be two languages such that L2 is
V
-distributive over L1, and

let A = hA,⇥,⌦, aIi be an L1-automaton. A] is given as the L2-automaton

A
] := hA],⇥],NBT⌦, RIi.

Here A] = }(A ⇥ A) is the set of binary relations on A, the initial state RI is the relation
RI := {(aI , aI)}. The transition function ⇥] is given by fixing, for ⇥](R, c), a formula
 2 L2(A]) satisfying ^

{⇥?(a, c) | a 2 Ran(R)} ⌘ [✓A⇥A], (119)

Finally, the acceptance condition NBT⌦ ✓ (A])! is as given in Definition 10.52. �

The main technical result of this section concerns the following equivalence.

Lectures on the modal µ-calculus 10-23

Proposition 10.56 Let L1 and L2 be two languages such that L2 is
V
-distributive over L1,

and let A be an L1-automaton. Then A is equivalent to A
].

A key proposition, relating the various formulas, languages and substitutions that feature
in the simulation construction, is the following.

Proposition 10.57 Let A be an L1-automaton and let D be some set. Suppose that for each
a 2 A a marking ma : D ! }A is given. For R 2 A], let mR : D ! }(A ⇥ A) and

m]
R : D ! }(A]) be the markings given by

mR(d) := {(a, b) | a 2 Ran(R) & b 2 ma(d)}

m]
R(d) := {mR(d)}.

Then the following are equivalent, for any c 2 }P:

1. (D,ma) �1 ⇥(a, c) for each a 2 Ran(R);

2. (D,mR) �1 V
{⇥?(a, c) | a 2 Ran(R)};

3. (D,m]
R) �1 ⇥](R, c).

We leave the (straightforward) proof of this Proposition as an exercise to the reader.

Proof of Proposition 10.56. Fix an arbitrary pointed model (S, s0), then it su�ces to
prove that

A accepts (S, s0) i↵ A
] accepts (S, s0). (120)

For the direction from left to right, define a position (R, s) to be safe if for all a 2 Ran(R),
(a, s) is winning for 9 in the acceptance game G = A(A, S)@(aI , s0). Now define the following
strategy for 9 in G

] = A(A], S)@(RI , s0):

• If (R, s) is safe, then 9 uses Proposition 10.57 to transform the set of moves {ma,s | a 2

Ran(R)}, given by her winning strategy in G, into a marking m]
R,s : R[s] ! }A].

• If (R, s) is not safe, then 9 plays in a random way.

It is not very hard to prove the following three claims on this strategy.

Claim 1 If (R, s) is safe then the moves suggested by the above strategy are legitimate.

Claim 2 If (R, s) is safe then all pairs (Q, t) such that Q 2 m]
R,s(t) are safe.

Claim 3 Consider an infinite G
]-match, guided by the above strategy for 9, with basic po-

sitions (RI , s0)(R1, s1)(R2, s2) . . ., and let aIaIa1a2 . . . be a trace through RIR1R2 . . . Then
there is an infinite G-match, guided by 9’s winning strategy, of which the basic positions are
(aI , s0)(a1, s1)(a2, s2) . . .

On the basis of these three claims, it easily follows that the given strategy is winning for 9
from any safe position. In particular, it follows from the assumption that (aI , s0) 2 Win9(G)
that (RI , s0) is safe, and hence winning for 9 in G

]. This shows that A
] accepts (S, s0), as

required.

The proof of the opposite direction (‘(’) of (120) is somewhat similar, and left as an
exercise. qed

10-24 Modal Automata

Regular automata

In the previous subsection we defined a nondeterministic automaton A
] and proved it to be

equivalent to the given automaton A = hA,⇥,⌦, aIi. The only shortcoming of the automaton
A
] is that its acceptance condition NBT⌦ ✓ (A])! is not given by a parity function. We will

now see that this problem can easily be overcome since NBT⌦ has the form of an !-regular
language over the alphabet A], that is, it is recognized by some stream automaton.

Definition 10.58 An automaton A = hA,⇥,Acc, aIi is called !-regular if Acc ✓ A! is an !-
regular language, i.e., if Acc is the stream language recognized by some deterministic stream
automaton with a parity (or Muller) acceptance condition. �

Here we shall prove that, given an regular automaton A of which the acceptance condition
is given by some deterministic parity stream automaton Z, we can e↵ectively construct a parity
automaton A�Z that is equivalent to A. First, however, we show that, indeed, A] is a regular
automaton, by constructing a stream automaton recognizing the !-language NBT⌦.

Proposition 10.59 Let A be some finite set, and let ⌦ : A ! ! be a parity function on A.
Then the set NBT⌦ is an !-regular language over the alphabet A].

Proof. First we define a nondeterministic A]-stream parity automaton B which accepts
exactly those infinite A]-streams that do contain a bad trace. Given the properties of parity
stream automata it is fairly straightforward to continue from here. First, take a deterministic
equivalent B

0 of B; such an automaton exists by Theorem 4.27. And second, since B
0 is

deterministic, it is easy to perform complementation on it, that is, define an automaton C that
accepts exactly those A]-streams that are rejected by B

0. In short: L!(C) = (A])! \L!(B0) =
(A])! \ L!(B). Clearly then L!(C) = NBT⌦.

For the definition of B, take an object bI 62 A, and define B := A[{bI}. Let � : B⇥A]
!

}(B) be given by putting

�(b, R) :=

⇢
Ran(R) if b = bI ,
R[b] if b 2 A,

and define ⌦+1 by putting ⌦+1(a) := ⌦(a) + 1 for a 2 A, and ⌦+1(bI) := 0. Then B is the
automaton hB,�,⌦+1, bIi.

It is immediate from the definitions that bI
R

�! a i↵ a 2 Ran(R), that is, if there is some
a0 2 A such that a0Ra. From this and the definition of � it follows that

bI
R1
�! a1

R2
�! a2

R3
�! . . .

is a run of B i↵ there is some a0 2 A such that a0a1a2 . . . is a trace through R1R2 . . . Then
the definition of ⌦+1 ensures that B indeed accepts those A]-streams that contain a bad trace.
qed

It follows from Proposition 10.59 that the automaton A
] defined in the previous section is

a regular automaton. Hence we have proved the main result of this section if we can show that

Lectures on the modal µ-calculus 10-25

every disjunctive regular automaton can be replaced by a disjunctive modal automaton with
a parity acceptance condition. This is what we will focus on now. In fact, we will e↵ectively
transform a nondeterministic, regular automaton A (of which the acceptance condition is
given as the stream language recognized by some stream automaton Z) into an equivalent
parity automaton A� Z.

Definition 10.60 Let Z = hZ, ⇣,⌦, aIi be a deterministic parity A-stream automaton, and
let A = hA,⇥,Acc, aIi be a disjunctive modal automaton. Then A � Z is the disjunctive
modal automaton given as

A� Z = hA⇥ Z,⇥⇣ , , (aI , zI)i,

where ⇥⇣ :
�
(A⇥ Z)⇥ }P

�
! 1DML(A⇥ Z) is given by

⇥⇣
�
(a, z), c

�
:= ⇥(a, c)[(b, ⇣(z, a))/b | b 2 A],

and

�
a, z) := ⌦(z).

defines : A⇥ Z ! !. �

Intuitively, the automaton A� Z behaves like A, with the stream automaton Z following
and directly processing the path through A taken during a match of the acceptance game.
More precisely, when the automaton A moves from state a to b, the corresponding moves of
A � Z are from any position (a, z) to (b, ⇣(z, a)), where ⇣(z, a) is the state obtained from z
by processing the ‘letter’ a. Formally, this is established by the transition structure ⇥⇣ of
the automaton A� Z as follows: ⇥⇣

�
(a, z), c

�
is obtained from ⇥(a, c) by substituting every

occurrence of a b 2 A by the (‘formal’) variable (b, ⇣(z, a)) 2 A⇥ Z.

Theorem 10.61 Let Z = hZ, ⇣,⌦, zIi be a deterministic parity stream automaton, and let
A = hA,⇥,Acc, aIi be a disjunctive modal automaton such that Acc = L!(Z). Then A and
A� Z are equivalent.

I Proof of Theorem 10.61 to be supplied

Finally, for the proof of the Simulation Theorem we need to combine various results
obtained in this Chapter.

Proof of Theorem 10.50. It follows from the Propositions 10.49, 10.56 and 10.59 that
every modal automaton can be simulated by a disjunctive, regular automaton. Then the
Simulation Theorem follows by combining this observation with Theorem 10.61. qed

Notes

I TBS

10-26 Modal Automata

Exercises

Exercise 10.1 Show that the ‘slow’ acceptance discussed in Remark 10.10 is equivalent to
the standard acceptance game of Definition 10.5.

Exercise 10.2 Give a direct, game-theoretic argument proving Theorem 10.12. That is,
show that modal automata are bisimulation invariant.

Exercise 10.3 Show the equivalence of the two notions of disjunctive modal automata as dis-
cussed in Remark 10.14. That is, give a construction that transforms an arbitrary disjunctive
modal automaton into a 1DMLr-automaton.

Exercise 10.4 Let A be a disjunctive modal automaton, and let (S, r) be a finite pointed
Kripke model. Show that S, r � A i↵ there is a finite pointed model (S0, r0) such that
S, r $ (S0, r0) and S

0, r0 �s A.

Exercise 10.5 Show that the one-step languages 1FO and 1FOE are closed under taking
boolean duals.

Exercise 10.6 Prove Proposition 10.38

Exercise 10.7 Prove Proposition 10.57.

Exercise 10.8 Prove equivalence (120) in the proof of Proposition 10.56.

