
Lectures on the modal µ-calculus

Yde Venema∗

c©YV 2023

Abstract

These notes give an introduction to the theory of the modal µ-calculus and other
modal fixpoint logics.

∗Institute for Logic, Language and Computation, University of Amsterdam, Science Park 107, NL–1098XG
Amsterdam. E-mail: y.venema@uva.nl.

Contents

Introduction 0-1

1 Basic Modal Logic 1-1

1.1 Basics . 1-1

1.2 Game semantics . 1-5

1.3 Bisimulations and bisimilarity . 1-7

1.4 Finite models and computational aspects . 1-11

1.5 Modal logic and first-order logic . 1-11

1.6 Complete derivation systems for modal logic . 1-11

1.7 The cover modality . 1-11

2 The modal µ-calculus: basics 2-1

2.1 Basic syntax . 2-2

2.2 Game semantics . 2-8

2.3 Examples . 2-12

2.4 Bisimulation invariance and the bounded tree model property 2-14

2.5 Traces, the closure map and the closure game . 2-18

2.6 Basic syntax: continued . 2-23

2.7 Alternation depth . 2-27

2.8 The cover modality and disjunctive formulas . 2-31

3 Fixpoints 3-1

3.1 General fixpoint theory . 3-2

3.2 Boolean algebras . 3-3

3.3 Vectorial fixpoints . 3-6

3.4 Algebraic semantics for the modal µ-calculus . 3-8

3.5 Adequacy . 3-12

4 Stream automata and logics for linear time 4-1

4.1 Deterministic stream automata . 4-1

4.2 Acceptance conditions . 4-3

4.3 Nondeterministic automata . 4-9

4.4 Determinization of stream automata . 4-12

4.5 Logic and automata . 4-17

4.6 A coalgebraic perspective . 4-17

5 Parity games 5-1

5.1 Board games . 5-1

5.2 Winning conditions . 5-3

5.3 Reachability Games . 5-5

5.4 Positional Determinacy of Parity Games . 5-6

5.5 Size issues and algorithmic aspects . 5-9

5.6 Game equivalences . 5-9

6 Parity formulas & model checking 6-1
6.1 Parity formulas . 6-1
6.2 Basics . 6-4
6.3 From regular formulas to parity formulas . 6-6
6.4 From parity formulas to regular formulas . 6-13
6.5 Guarded transformation . 6-17

7 Tableau games and derivation systems 7-1
7.1 The Tableau Game . 7-1
7.2 Determinacy and adequacy . 7-8
7.3 Decidability of the satisfiability problem . 7-20
7.4 Disjunctive normal forms via streamlined tableaux . 7-20
7.5 A cut-free proof system . 7-20
7.6 Other derivation systems . 7-20

8 A complete axiomatization 8-1
8.1 Kozen’s axiom system and the refutation calculus . 8-3
8.2 The refutation calculus for the cover modality . 8-16
8.3 Tableaux for the coalgebraic modal µ-calculus . 8-29
8.4 Thin refutations . 8-37
8.5 Tableau consequence . 8-57
8.6 Completeness . 8-71

9 Modal automata 9-1
9.1 Introduction . 9-1
9.2 Modal automata . 9-2
9.3 Disjunctive modal automata . 9-6
9.4 One-step logics and their automata . 9-8
9.5 From formulas to automata and back . 9-14
9.6 Simulation Theorem . 9-18

10 Model theory of the modal µ-calculus 10-1
10.1 Small model property . 10-1
10.2 Normal forms and decidability . 10-6
10.3 Uniform interpolation and bisimulation quantifiers . 10-8

11 Expressive completeness 11-1
11.1 Monadic second-order logic . 11-1
11.2 Automata for monadic second-order logic . 11-3
11.3 Expressive completeness modulo bisimilarity . 11-8

A Mathematical preliminaries A-1

B Some remarks on proof theory B-1

C Some remarks on computational complexity C-1

References R-1

Introduction

The study of the modal µ-calculus can be motivated from various (not necessarily disjoint!)
directions.

Process Theory In this area of theoretical computer science, one studies formalisms for de-
scribing and reasoning about labelled transition systems — these being mathematical struc-
tures that model processes. Such formalisms then have important applications in the speci-
fication and verification of software. For such purposes, the modal µ-calculus strikes a very
good balance between computational efficiency and expressiveness. On the one hand, the
presence of fixpoint operators make it possible to express most, if not all, of the properties
that are of interest in the study of (ongoing) behavior. But on the other hand, the formalism
is still simple enough to allow an (almost) polynomial model checking complexity and an
exponential time satisfiability problem.

Modal Logic From the perspective of modal logic, the modal µ-calculus is a well-behaved
extension of the basic formalism, with a great number of attractive logical properties. For
instance, it is the bisimulation invariant fragment of second order logic, it enjoys uniform
interpolation, and the set of its validities admits a transparent, finitary axiomatization, and
has the finite model property. In short, the modal µ-calculus shares (or naturally generalizes)
all the nice properties of ordinary modal logic.

Mathematics and Theoretical Computer Science More generally, the modal µ-calculus has a
very interesting theory, with lots of connections with neighboring areas in mathematics and
theoretical computer science. We mention automata theory (more specifically, the theory
of finite automata operating on infinite objects), game theory, universal algebra and lattice
theory, and the theory of universal coalgebra.

Open Problems Finally, there are still a number of interesting open problems concerning the
modal µ-calculus. For instance, it is unknown whether the characterization of the modal
µ-calculus as the bisimulation invariant fragment of monadic second order logic still holds if
we restrict attention to finite structures, and in fact there are many open problems related
to the expressiveness of the formalism. Also, the exact complexity of the model checking
problem is not known. And to mention a third example: the completeness theory of modal
fixpoint logics is still a largely undeveloped field.

Summarizing, the modal µ-calculus is a formalism with important applications in the field
of process theory, with interesting metalogical properties, various nontrivial links with other
areas in mathematics and theoretical computer science, and a number of intriguing open
problems. Reason enough to study it in more detail.

1 Basic Modal Logic

As mentioned in the preface, we assume familiarity with the basic definitions concerning the
syntax and semantics of modal logic. The purpose of this first chapter is to briefly recall
notation and terminology. We focus on some aspects of modal logic that feature prominently
in its extensions with fixpoint operators.

Convention 1.1 Throughout this text we let Prop be a countably infinite set of propositional
variables, whose elements are usually denoted as p, q, r, x, y, z, . . ., and we let D be a finite set
of (atomic) actions, whose elements are usually denoted as d, e, c, We will usually focus
on a finite subset P of Prop, consisting of those propositional variables that occur freely in a
particular formula. In practice we will often suppress explicit reference to Prop, P and D.

1.1 Basics

Structures

I Introduce LTSs as process graphs

Definition 1.2 A (labelled) transition system, LTS, or (Kripke) model of type (P,D) is a
triple S = 〈S, V,R〉 such that S is a set of objects called states or points, V : P → ℘(S) is a
valuation, and R = {Rd ⊆ S × S | d ∈ D} is a family of binary accessibility relations. In case
D is a singleton, we will simply write R for the unique accessibility relation in a model.

Elements of the set Rd[s] := {t ∈ S | (s, t) ∈ Rd} are called d-successors of s. A transition
system is called image-finite or finitely branching if Rd[s] is finite, for every d ∈ D and s ∈ S.

A pointed transition system or Kripke model is a pair (S, s) consisting of a transition
system S and a designated state s in S. �

Remark 1.3 It will occasionally be convenient to work with an alternative, coalgebraic pre-
sentation of transition systems. Intuitively, it should be clear that instead of having a val-
uation V : P → ℘(S), telling us at which states each proposition letter is true, we could
just as well have a marking σV : S → ℘(P) informing us which proposition letters are
true at each state. Also, a binary relation R on a set S can be represented as a map
R[·] : S → ℘(S) mapping a state s to the collection R[s] of its successors. In this line, a family
R = {Rd ⊆ S × S | d ∈ D} of accessibility relations can be seen as a map σR : S → ℘(S)D,
where ℘(S)D denotes the set of maps from D to ℘(S).

Combining these two maps into one single function, we see that a transition system S =
〈S, V,R〉 of type (P,D) can be seen as a pair 〈S, σ〉, where σ : S → ℘(P)× ℘(S)D is the map
given by σ(s) := (σV (s), σR(s)). �

For future reference we define the notion of a Kripke functor.

Definition 1.4 Fix a set P of proposition letters and a set D of atomic actions. Given a set
S, let KD,PS denote the set

KD,PS := ℘(P)× ℘(S)D.

This operation will be called the Kripke functor associated with D and P.

1-2 Basic Modal logic

A typical element of KD,PS will be denoted as (π,X), with π ⊆ P and X = {Xd | d ∈ D}
with Xd ⊆ S for each d ∈ D.

When we take this perspective we will sometimes refer to Kripke models as KD,PS-
coalgebras or Kripke coalgebras. �

Given this definition we may summarize Remark 1.3 by saying that any transition system
can be presented as a pair S = 〈S, σ : S → KS〉 where K is the Kripke functor associated with
S. In practice, we will usually write K rather than KD,P.

Syntax

Working with fixpoint operators, we may benefit from a set-up in which the use of the negation
symbol may only be applied to atomic formulas. The price that one has to pay for this is
an enlarged arsenal of primitive symbols. In the context of modal logic we then arrive at the
following definition.

Definition 1.5 The language MLD of polymodal logic in D is defined as follows:

ϕ ::= p | p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | 3dϕ | 2dϕ

where p ∈ Prop, and d ∈ D. Elements of MLD are called (poly-)modal formulas, or briefly,
formulas. In case the set D is a singleton, we speak of the language ML of basic modal logic or
monomodal logic; in this case we will denote the modal operators by 3 and 2, respectively.

Given a finite set P of propositional variables, we let MLD(P) denote the set of formulas in
which only variables from P occur. �

Often the sets P and D are implicitly understood, and suppressed in the notation. Gen-
erally it will suffice to treat examples, proofs, etc., from monomodal logic.

We will need some definitions and notations concerning atomic formulas.

Definition 1.6 Let P be a set of propositional variables. We define the sets Lit(P) and
At(P) of, respectively, literals and atomic formulas over P as follows:

Lit(P) := {p, p | p ∈ P}
At(P) := {⊥,>} ∪ Lit(P)

We will generally use the symbol ` to denote an arbitrary literal. �

Remark 1.7 The negation ∼ϕ of a formula ϕ can inductively be defined as follows:

∼⊥ := > ∼> := ⊥
∼p := p ∼p := p
∼(ϕ ∨ ψ) := ∼ϕ ∧ ∼ψ ∼(ϕ ∧ ψ) := ∼ϕ ∨ ∼ψ
∼2dϕ := 3d∼ϕ ∼3dϕ := 2d∼ϕ

On the basis of this, we can also define the other standard abbreviated connectives, such as
→ and ↔. �

Lectures on the modal µ-calculus 1-3

We assume that the reader is familiar with standard syntactic notions such as those of
a subformula or the construction tree of a formula, and with standard syntactic operations
such as substitution. Concerning the latter, we let ϕ[ψ/p] denote the formula that we obtain
by substituting all occurrences of p in ϕ by ψ.

Definition 1.8 We define the collection Sf (ξ) of subformulas of a modal formula ξ by the
following induction on the complexity of ξ:

Sf (⊥) := {⊥}
Sf (>) := {>}
Sf (p) := {p}
Sf (p) := {p}
Sf (ϕ ? ψ) := {ϕ ? ψ} ∪ Sf (ϕ) ∪ Sf (ψ) where ? ∈ {∨,∧}
Sf (♥ϕ) := {♥ϕ} ∪ Sf (ϕ) where ♥ ∈ {3d,2d | d ∈ D}

We write ϕ P ψ to denote that ϕ is a subformula of ψ. The size of a formula ξ is defined as
the number of its subformulas, |ξ| := |Sf (ξ)|. �

Semantics

The relational semantics of modal logic is well known. The basic idea is that the modal
operators 3d and 2d are both interpreted using the accessibility relation Rd.

The notion of truth (or satisfaction) is defined as follows.

Definition 1.9 Let S = 〈S, σ〉 be a transition system of type (P,D). Then the satisfaction
relation
 between states of S and formulas of MLD(P) is defined by the following formula
induction.

S, s
 p if s ∈ V (p),
S, s
 p if s 6∈ V (p),
S, s
 ⊥ never,
S, s
 > always,
S, s
 ϕ ∨ ψ if S, s
 ϕ or S, s
 ψ,
S, s
 ϕ ∧ ψ if S, s
 ϕ and S, s
 ψ,
S, s
 3dϕ if S, t
 ϕ for some t ∈ Rd[s],
S, s
 3dϕ if S, t
 ϕ for some t ∈ Rd[s],
S, s
 2dϕ if S, t
 ϕ for all t ∈ Rd[s].

We say that ϕ is true or holds at s if S, s
 ϕ, and we let the set

[[ϕ]]S := {s ∈ S | S, s
 ϕ}.

denote the meaning or extension of ϕ in S. �

Alternatively (but equivalently), one may define the semantics of modal formulas directly
in terms of this meaning function [[ϕ]]S. This approach has some advantages in the context of
fixpoint operators, since it brings out the role of the powerset algebra ℘(S) more clearly.

1-4 Basic Modal logic

Remark 1.10 Fix an LTS S, then define [[ϕ]]S by induction on the complexity of ϕ:

[[p]]S = V (p) [[p]]S = S \ V (p)
[[⊥]]S = ∅ [[>]]S = S
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S [[ϕ ∧ ψ]]S = [[ϕ]]S ∩ [[ψ]]S

[[3dϕ]]S = 〈Rd〉[[ϕ]]S [[2dϕ]]S = [Rd][[ϕ]]S

Here the operations 〈Rd〉 and [Rd] on ℘(S) are defined by putting

〈Rd〉(X) := {s ∈ S | Rd[s] ∩X 6= ∅}
[Rd](X) := {s ∈ S | Rd[s] ⊆ X}.

The satisfaction relation
 may be recovered from this by putting S, s
 ϕ iff s ∈ [[ϕ]]S. �

Definition 1.11 Let s and s′ be two states in the transition systems S and S′ of type (P,D),
respectively. Then we say that s and s′ are modally equivalent, notation: S, s ≡(P,D) S′, s′, if s
and s′ satisfy the same modal formulas, that is, S, s
 ϕ iff S′, s′
 ϕ, for all modal formulas
ϕ ∈ MLD(P). �

Flows, trees and streams

In some parts of these notes deterministic transition systems feature prominently.

Definition 1.12 A transition system S = 〈S, V,R〉 is called deterministic if each Rd[s] is a
singleton. �

Note that our definition of determinism does not allow Rd = ∅ for any point s. We first
consider the monomodal case.

Definition 1.13 Let P be a set of proposition letters. A deterministic monomodal Kripke
model for this language is called a flow model for P, or a ℘(P)-flow. In case such a structure is
of the form 〈ω, V,Succ〉, where Succ is the standard successor relation on the set ω of natural
numbers, we call the structure a stream model for P, or a ℘(P)-stream. �

In case the set D of actions is finite, we may just as well identify it with the set k =
{0, . . . , k− 1}, where k is the size of D. We usually restrict to the binary case, that is, k = 2.
Our main interest will be in Kripke models that are based on the binary tree, i.e., a tree in
which every node has exactly two successors, a left and a right one.

Definition 1.14 With 2 = {0, 1}, we let 2∗ denote the set of finite strings of 0s and 1s. We
let ε denote the empty string, while the left- and right successor of a node s are denoted by
s · 0 and s · 1, respectively. Written as a relation, we put

Succi = {(s, s · i) | s ∈ 2∗}.

A binary tree over P, or a binary ℘(P)-tree is a Kripke model of the form 〈2∗, V,Succ0,Succ1〉.
�

Lectures on the modal µ-calculus 1-5

Remark 1.15 In the general case, the k-ary tree is the structure (k∗,Succ0, . . . ,Succk−1),
where k∗ is the set of finite sequences of natural numbers smaller than k, and Succi is the
i-th successor relation given by

Succi = {(s, s · i) | s ∈ k∗}.

A k-flow model is a Kripke model S = 〈S, V,R〉 with k many deterministic accessibility
relations, and a k-ary tree model is a k-flow model which is based on the k-ary tree. �

In deterministic transition systems, the distinction between boxes and diamonds evapo-
rates. It is then convenient to use a single symbol ©i to denote either the box or the diamond.

Definition 1.16 The set MFLk(P) of formulas of k-ary Modal Flow Logic in P is given as
follows:

ϕ ::= p | p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | ©iϕ

where p ∈ P, and i < k. In case k = 1 we will also speak of modal stream logic, notation:
MSL(P). �

1.2 Game semantics

We will now describe the semantics defined above in game-theoretic terms. That is, we will
define the evaluation game E(ξ,S) associated with a (fixed) formula ξ and a (fixed) LTS S.
This game is an example of a board game. In a nutshell, board games are games in which the
players move a token along the edge relation of some graph, so that a match of play of the
game corresponds to a (finite or infinite) path through the graph. Furthermore, the winning
conditions of a match are determined by the nature of this path. We will meet many examples
of board games in these notes, and in Chapter 5 we will study them in more detail.

The evaluation game E(ξ,S) is played by two players: Éloise (∃ or 0) and Abélard (∀ or
1). Given a player σ, we always denote the opponent of σ by σ. As mentioned, a match of
the game consists of the two players moving a token from one position to another. Positions
are of the form (ϕ, s), with ϕ a subformula of ξ, and s a state of S.

It is useful to assign goals to both players: in an arbitrary position (ϕ, s), think of ∃ trying
to show that ϕ is true at s in S, and of ∀ of trying to convince her that ϕ is false at s.

Depending on the type of the position (more precisely, on the formula part of the position),
one of the two players may move the token to a next position. For instance, in a position of
the form (3dϕ, s), it is ∃’s turn to move, and she must choose an arbitrary d-successor t of s,
thus making (ϕ, t) the next position. Intuitively, the idea is that in order to show that 3ϕ is
true at s, ∃ has to come up with a successor of s where ϕ holds. Formally, we say that the set
of (admissible) next positions that ∃ may choose from is given as the set {(ϕ, t) | t ∈ Rd[s]}.
In the case there is no successor of s to choose, she immediately loses the game. This is a
convenient way to formulate the rules for winning and losing this game: if a position (ϕ, s)
has no admissible next positions, the player whose turn it is to play at (ϕ, s) gets stuck and
immediately loses the game.

This convention gives us a nice handle on positions of the form (p, s) where p is a propo-
sition letter: we always assign to such a position an empty set of admissible moves, but we

1-6 Basic Modal logic

Position Player Admissible moves

(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}
(3dϕ, s) ∃ {(ϕ, t) | t ∈ Rd[s]}
(2dϕ, s) ∀ {(ϕ, t) | t ∈ Rd[s]}
(⊥, s) ∃ ∅
(>, s) ∀ ∅
(p, s), s ∈ V (p) ∀ ∅
(p, s), s 6∈ V (p) ∃ ∅
(p, s), s 6∈ V (p) ∀ ∅
(p, s), s ∈ V (p) ∃ ∅

Table 1: Evaluation game for modal logic

make ∃ responsible for (p, s) in case p is false at s, and ∀ in case p is true at s. In this way, ∃
immediately wins if p is true at s, and ∀ if it is otherwise. The rules for the negative literals
(p) and the constants, ⊥ and >, follow a similar pattern.

The full set of rules of the game is given in Table 1. Observe that all matches of this
game are finite, since at each move of the game the active formula is reduced in size. (From
the general perspective of board games, this means that we need not worry about winning
conditions for matches of infinite length.) We may now summarize the game as follows.

Definition 1.17 Given a modal formula ξ and a transition system S, the evaluation game
E(ξ,S) is defined as the board game given by Table 1, with the set Sf (ξ) × S providing the
positions of the game; that is, a position is a pair consisting of a subformula of ξ and a point
in S. The instantiation of this game with starting point (ξ, s) is denoted as E(ξ,S)@(ξ, s). �

An instance of an evaluation game is a pair consisting of an evaluation game and a starting
position of the game. Such an instance will also be called an initialized game, or sometimes,
if no confusion is likely, simply a game.

A strategy for a player σ in an initialized game is a method that σ uses to select his moves
during the play. Such a strategy is winning for σ if every match of the game (starting at the
given position) is won by σ, provided σ plays according to this strategy. A position (ϕ, s) is
winning for σ if σ has a winning strategy for the game initialized in that position. (Note that
this definition applies to all positions, not only to the ones owned by σ.) The set of winning
positions in E(ξ,S) for σ is denoted as Winσ(E(ξ,S)).

The main result concerning these games is that they provide an alternative, but equivalent,
semantics for modal logic.

I Example to be added

Theorem 1.18 (Adequacy) Let ξ be a modal formula, and let S be an LTS. Then for any
state s in S it holds that

(ξ, s) ∈Win∃(E(ξ,S)) ⇐⇒ S, s
 ξ.

Lectures on the modal µ-calculus 1-7

The proof of this Theorem is left to the reader.

1.3 Bisimulations and bisimilarity

One of the most fundamental notions in the model theory of modal logic is that of a bisimu-
lation between two transition systems.

I discuss bisimilarity as a notion of behavioral equivalence

Definition 1.19 Let S and S′ be two transition systems of the same type (P,D). Then a
relation Z ⊆ S × S′ is a bisimulation of type (P,D) if the following hold, for every pair
(s, s′) ∈ Z.
(prop) s ∈ V (p) iff s′ ∈ V ′(p), for all p ∈ P;
(forth) for all actions d, and for all t ∈ Rd[s] there is a t′ ∈ R′d[s′] with (t, t′) ∈ Z;
(back) for all actions d, and for all t′ ∈ R′d[s′] there is a t ∈ Rd[s] with (t, t′) ∈ Z.

Two states s and s′ are called bisimilar, notation: S, s ↔P,D S′, s′ if there is some bisim-
ulation Z of type (P,D) with (s, s′) ∈ Z. If no confusion is likely to arise, we generally drop
the subscripts, writing ‘↔’ rather than ‘↔P,D’. �

Bisimilarity and modal equivalence

In order to understand the importance of this notion for modal logic, the starting point should
be the observation that the truth of modal formulas is invariant under bisimilarity. Recall
that ≡ denotes the relation of modal equivalence.

Theorem 1.20 (Bisimulation Invariance) Let S and S′ be two transition systems of the
same type. Then

S, s ↔ S′, s′ ⇒ S, s ≡ S′, s′

for every pair of states s in S and s′ in S′.

Proof. By a straightforward induction on the complexity of modal formulas one proves that
bisimilar states satisfy the same formulas. qed

But there is much more to say about the relation between modal logic and bisimilarity
than Theorem 1.20. In particular, for some classes of models, one may prove a converse
statement, which amounts to saying that the notions of bisimilarity and modal equivalence
coincide. Such classes are said to have the Hennessy-Milner property. As an example we
mention the class of finitely branching transition systems.

Theorem 1.21 (Hennessy-Milner Property) Let S and S′ be two finitely branching tran-
sition systems of the same type. Then

S, s ↔ S′, s′ ⇐⇒ S, s ≡ S′, s′

for every pair of states s in S and s′ in S′.

1-8 Basic Modal logic

Proof. The direction from left to right follows from Theorem 1.20. In order to prove the
opposite direction, one may show that the relation ≡ of modal equivalence itself is a bisimu-
lation. Details are left to the reader. qed

This theorem can be read as indication of the expressiveness of modal logic: any differ-
ence in behaviour between two states in finitely branching transition systems can in fact be
witnessed by a concrete modal formula. As another witness to this expressivity, in section 1.5
we will see that modal logic is sufficiently rich to express all bisimulation-invariant first-order
properties. Obviously, this result also adds considerable strength to the link between modal
logic and bisimilarity.

As a corollary of the bisimulation invariance theorem, modal logic has the tree model
property, that is, every satisfiable modal formula is satisfiable on a structure that has the
shape of a tree.

Definition 1.22 A transition system S of type (P,D) is called tree-like if the structure
〈S,
⋃
d∈DRd〉 is a tree. �

The key step in the proof of the tree model property of modal logic is the observation
that every transition system can be ‘unravelled’ into a bisimilar tree-like model. The basic
idea of such an unravelling is the new states encode (part of) the history of the old states.
Technically, the new states are the paths through the old system.

Definition 1.23 Let S = 〈S, V,R〉 be a transition system of type (P,D). A (finite) path
through S is a nonempty sequence of the form (s0, d1, s1, d2, . . . , sn) such that Rdisi−1si for
all i with 0 < i ≤ n. The set of paths through S is denoted as Paths (S); we use the notation
Pathss(S) for the set of paths starting at s.

The unravelling of S around a state s is the transition system ~Ss which is coalgebraically
defined as the structure 〈Pathss(S), ~σ〉, where the coalgebra map ~σ = (~σV , (~σd | d ∈ D)) is
given by putting

~σV (s0, d1, s1, d2, . . . , sn) := σV (sn),

~σd(s0, d1, s1, d2, . . . , sn) := {(s0, d1, s1, . . . , sn, d, t) ∈ Pathss(S) | Rdsnt}.

Finally, the unravelling of a pointed transition system (S, s) is the pointed structure (~Ss, s),
where (with some abuse of notation) we let s denote the path of length zero that starts and
finishes at s. �

Clearly, unravellings are tree-like structures, and any pointed transition system is bisimilar
to its unravelling. But then the following theorem is immediate by Theorem 1.20.

Theorem 1.24 (Tree Model Property) Let ϕ be a satisfiable modal formula. Then ϕ is
satisfiable at the root of a tree-like model.

Lectures on the modal µ-calculus 1-9

Bisimilarity game

We may also give a game-theoretic characterization of the notion of bisimilarity. We first give
an informal description of the game that we will employ. A match of the bisimilarity game
between two Kripke models S and S′ is played by two players, ∃ and ∀. As in the evaluation
game, these players move a token around from one position of the game to the next one. In
the game there are two kinds of positions: pairs of the form (s, s′) ∈ S × S′ are called basic
positions and belong to ∃. The other positions are of the form Z ⊆ S × S′ and belong to ∀.

The idea of the game is that at a position (s, s′), ∃ claims that s and s′ are bisimilar, and
to substantiate this claim she proposes a local bisimulation Z ⊆ S × S′ (see below) for s and
s′. This relation Z can be seen as providing a set of witnesses for ∃’s claim that s and s′ are
bisimilar. Implicitly, ∃’s claim at a position Z ⊆ S × S′ is that all pairs in Z are bisimilar,
so ∀ can pick an arbitrary pair (t, t′) ∈ Z and challenge ∃ to show that these t and t′ are
bisimilar.

Definition 1.25 Let S and S′ be two transition systems of the same type (P,D). Then a
relation Z ⊆ S × S′ is a local bisimulation for two points s ∈ S and s′ ∈ S′, if it satisfies the
properties (prop), (back) and (forth) of Definition 1.19 for this specific s and s′:
(prop) s ∈ V (p) iff s′ ∈ V ′(p), for all p ∈ P;
(forth) for all actions d, and for all t ∈ Rd[s] there is a t′ ∈ R′d[s′] with (t, t′) ∈ Z;
(back) for all actions d, and for all t′ ∈ R′d[s′] there is a t ∈ Rd[s] with (t, t′) ∈ Z. �

Note that a local bisimulation for s and s′ need only relate successors of s to successors of
s′. In particular, the pair (s, s′) itself will generally not belong to such a relation. It is easy to
see that a relation Z between two Kripke models is a bisimulation iff Z is a local bisimulation
for every pair (s, s′) ∈ Z.

If a player gets stuck in a match of the bisimilarity game, then the opponent wins the
match. For instance, if s and s′ disagree about some proposition letter, then there is no local
bisimulation for s and s′, and so the corresponding position (s, s′) is an immediate loss for ∃.
Or, if neither s nor s′ has successors, and agree on the truth of all proposition letters, then
∃ could choose the empty relation as a local bisimulation, so that ∀ would lose the match at
his next move.

A new option arises if neither player gets stuck: this game may also have matches that
last forever. Nevertheless, we can still declare a winner for such matches, and the agreement
is that ∃ is the winner of any infinite match. Formally, we put the following.

Definition 1.26 The bisimilarity game B(S,S′) between two Kripke models S and S′ is the
board game given by Table 2, with the winning condition that finite matches are lost by the
player who got stuck, while all infinite matches are won by ∃.

A position (s, s′) is winning for σ if σ has a winning strategy for the game initialized in
that position. The set of these positions is denoted as Winσ(B(S,S′)). �

Also observe that a bisimulation is a relation which is a local bisimulation for each of its
members. The following theorem states that the collection of basic winning positions for ∃
forms the largest bisimulation between S and S′.

1-10 Basic Modal logic

Position Player Admissible moves

(s, s′) ∈ S × S′ ∃ {Z ∈ ℘(S × S′) | Z is a local bisimulation for s and s′}
Z ∈ ℘(S × S′) ∀ Z = {(t, t′) | (t, t′) ∈ Z}

Table 2: Bisimilarity game for Kripke models

Theorem 1.27 Let (S, s) and (S′, s′) be two pointed Kripke models. Then S, s ↔ S′, s′ iff
(s, s′) ∈Win∃(B(S, S′)).

Proof. For the direction from left to right: suppose that Z is a bisimulation between S and
S′ linking s and s′. Suppose that ∃, starting from position (s, s′), always chooses the relation
Z itself as the local bisimulation. A straightforward verification, by induction on the length
of the match, shows that this strategy always provides her with a legitimate move, and that
it keeps her alive forever. This proves that it is a winning strategy.

For the converse direction, it suffices to show that the relation {(t, t′) ∈ S × S′ | (t, t′) ∈
Win∃(B(S, S′))} itself is in fact a bisimulation. We leave the details for the reader. qed

Remark 1.28 I The bisimilarity game should not be confused with the bisimulation

game.

�

Bisimulations via relation lifting

Together, the back- and forth clause of the definition of a bisimulation express that the pair
of respective successor sets of two bisimilar states must belong to the so-called Egli-Milner
lifting ℘Z of the bisimulation Z. In fact, the notion of a bisimulation can be completely
defined in terms of relation lifting.

Definition 1.29 Given a relation Z ⊆ A×A′, define the relation ℘Z ⊆ ℘A×℘A′ as follows:

℘Z := {(X,X ′) | for all x ∈ X there is an x′ ∈ X ′ with (x, x′) ∈ Z
& for all x′ ∈ X ′ there is an x ∈ X with (x, x′) ∈ Z}.

Similarly, define, for a Kripke functor K = KD,P, the relation KZ ⊆ KA× KA′ as follows:

KZ := {((π,X), (π′, X ′)) | π = π′ and (Xd, X
′
d) ∈ ℘Z for each d ∈ D}.

The relations ℘Z and KZ are called the liftings of Z with respect to ℘ and K, respectively.
We say that Z ⊆ A×A′ is full on B ∈ ℘A and B′ ∈ ℘A′ if (B,B′) ∈ ℘Z. �

It is completely straightforward to check that a nonempty relation Z linking two transition
systems S and S′ is a local bisimulation for two states s and s′ iff (σ(s), σ′(s′)) ∈ KZ. In
particular, ∃’s move in the bisimilarity game at a position (s, s′) consists of choosing a binary
relation Z such that (σ(s), σ′(s′)) ∈ KZ. The following characterization of bisimulations is
also an immediate consequence.

Lectures on the modal µ-calculus 1-11

Proposition 1.30 Let S and S′ be two Kripke coalgebras for some Kripke functor K, and let
Z ⊆ S × S′ be some relation. Then

Z is a bisimulation iff (σ(s), σ′(s′)) ∈ KZ for all (s, s′) ∈ Z. (1)

1.4 Finite models and computational aspects

I complexity of model checking

I filtration & polysize model property

I complexity of satisfiability

I complexity of global consequence

1.5 Modal logic and first-order logic

I modal logic is the bisimulation invariant fragment of first-order logic

1.6 Complete derivation systems for modal logic

1.7 The cover modality

As we will see now, there is an interesting alternative for the standard formulation of basic
modal logic in terms of boxes and diamonds. This alternative set-up is based on a connective
which turns a set of formulas into a formula. We first restrict attention to the monomodal
case.

Definition 1.31 Let Φ be a finite set of formulas. Then ∇Φ is a formula, which holds at a
state s in a Kripke model if every formula in Φ holds at some successor of s, while at the
same time, every successor of s makes some formula in Φ true. The operator ∇ is called the
cover modality. �

It is not so hard to see that the cover modality can be defined in the standard modal
language:

∇Φ ≡ 2
∨

Φ ∧
∧

3Φ, (2)

where 3Φ denotes the set {3ϕ | ϕ ∈ Φ}. Things start to get interesting once we realize that
both the ordinary diamond 3 and the ordinary box 2 can be expressed in terms of the cover
modality (and the disjunction):

3ϕ ≡ ∇{ϕ,>},
2ϕ ≡ ∇∅ ∨∇{ϕ}. (3)

Here, as always, we use the convention that
∨
∅ = ⊥ and

∧
∅ = >.

Remark 1.32 Observe that this definition involves the ∀∃&∀∃ pattern that we know from
the definition of a bisimulation. The fundamental concept is the notion of relation lifting ℘
defined in the previous section. In other words, the semantics of the cover modality can be

1-12 Basic Modal logic

expressed in terms of relation lifting. To be more precise, observe that we may think of the
forcing or satisfaction relation
 simply as a binary relation between states and formulas.
Then we find that

S, s
 ∇Φ iff (σR(s),Φ) ∈ ℘(
).

for any pointed Kripke model (S, s) and any finite set Φ of formulas. �

Remark 1.33 In the special case where Φ = ∅ we find that S, s
 ∇∅ iff R[s] = ∅, that is,
s has no successors. Using this it is easy to see that > = ∇{>} ∨ ∇∅. �

Given that ∇ and {3,2} are mutually expressible, we obtain an expressively equivalent
language ML∇ if we replace 2 and 3 with the cover modality. As we will see further on
it will be convenient for us to use a format for this language in which not only the cover
modality, but also the disjunction and conjunction connectives take finite sets of formulas
as their argument. That is, rather then working with disjunction and conjunction as binary
connectives, we will work with their finitary versions. This perspective also allows us to omit
the constants ⊥ and > from the basic syntax, since we may consider them as abbreviations:
⊥ :=

∨
∅ and > :=

∧
∅.

Definition 1.34 The formulas of the language ML∇ are given by the following grammar:

ϕ ::= p | p |
∨

Φ |
∧

Φ | ∇Φ

where p is a propositional variable, and Φ ⊆ ML∇. �

Proposition 1.35 The languages ML and ML∇ are equally expressive.

Proof. Immediate by (2) and (3). qed

The real importance of the cover modality is that it allows us to almost completely elim-
inate the Boolean conjunction. This remarkable fact is based on the following modal dis-
tributive law. Recall from Definition 1.29 that a relation Z ⊆ A × A′ is full on A and A′ if
(A,A′) ∈ ℘Z, or in other words: A ⊆ Dom(Z) and A′ ⊆ Ran(Z).

Proposition 1.36 (Binary Modal Distributive Law) Let Φ and Φ′ be two sets of for-
mulas. Then the following two formulas are equivalent:

∇Φ ∧∇Φ′ ≡
∨
{∇ΓZ | Z is full on Φ and Φ′}, (4)

where, given a relation Z ⊆ Φ× Φ′, we define

ΓZ := {ϕ ∧ ϕ′ | (ϕ,ϕ′) ∈ Z}.

Proof. For the direction from left to right, suppose that S, s
 ∇Φ ∧ ∇Φ′. Let Z ⊆ Φ × Φ′

consist of those pairs (ϕ,ϕ′) such that the conjunction ϕ∧ϕ′ is true at some successor t of s.
It is then straightforward to verify that Z is full on Φ and Φ′, and that S, s
 ∇ΓZ .

The converse direction follows fairly directly from the definitions. qed

Lectures on the modal µ-calculus 1-13

As a corollary of Proposition 1.36 we can restrict the use of conjunction in modal logic to
that of a special conjunction connective • which may only be applied to a pair consisting of
a set of literals and a ∇-formula (or, a certain set of ∇-formulas in the polymodal case). The
intended reading of the bullet operator is as follows:

α • Φ ≡ (
∧
α) ∧∇Φ.

Definition 1.37 Fix a finite set P of proposition letters. Then the set DML(P) of disjunctive
monomodal formulas in P is given by the following grammar:

ϕ ::= > |
∨

Φ | α • ∇Φ,

where α is a finite set of literals over P and Φ is a finite set of formulas in DML(P). �

Note that the proposition letters in P and their negations themselves do not qualify as
disjunctive formulas. However, these formulas are easily seen to be equivalent to disjunctive
formulas: for instance, we have ` ≡ {`} • {>} ∨ {`} •∅, for any literal `.

Remark 1.38 In the above definition we do not need to list the formula ⊥ explicitly as a
disjunctive formula, since we can still see it as an abbreviation: ⊥ :=

∨
∅. This is different

for the formula >, however. Since we no longer have
∧

as a connective, we cannot use it to
define >. For this reason we have added > as a primitive constant. �

The following theorem states that every modal formula can be rewritten into an equivalent
disjunctive normal form.

Theorem 1.39 Let P be a set of proposition letters. Then there are effective ways to trans-
form an arbitrary formula in ML(P) into an equivalent formula in DML(P), and vice versa. As
a corollary, the languages ML(P) and DML(P) are expressively equivalent.

We leave the proof of this result as an exercise to the reader.

Remark 1.40 In the polymodal case we adapt the definition as follows. Let Φ = {Φd | d ∈
D} be a D-indexed family of formula sets. Then we write ∇DΦ :=

∧
d∈D∇dΦd, where ∇d

is the cover modality associated with the action d. The following grammar defines the set
DMLD(P) of disjunctive polymodal formulas in D and P

ϕ ::= > |
∨

Φ | α • ∇DΦ,

where α ⊆ω Lit(P) and Φ is an D-indexed family of finite sets of DMLD(P)-formulas. One may
then formulate and prove a polymodal version of Theorem 1.39, relating MLD and DMLD. �

1-14 Basic Modal logic

Notes

Modal logic has a long history in philosophy and mathematics, for an overview we refer to
Blackburn, de Rijke and Venema [4]. The use of modal formalisms as specification languages
in process theory goes back at least to the 1970s, with Pratt [25] and Pnueli [24] being two
influential early papers.

The notion of bisimulation, which plays an important role in modal logic and process
theory alike, was first introduced in a modal logic context by van Benthem [3], who proved
that modal logic is the bisimulation invariant fragment of first-order logic. The notion was
later, but independently, introduced in a process theory setting by Park [23]. At the time
of writing we do not know who first took a game-theoretical perspective on the semantics of
modal logic. The cover modality ∇ was introduced independently by Moss [19] and Janin &
Walukiewicz [12].

Readers who want to study modal logic in more detail are referred to Blackburn, de Rijke
and Venema [4] or Chagrov & Zakharyaschev [7].

Exercises

Exercise 1.1 Prove Theorem 1.18.

Exercise 1.2 Prove that the Hennessy-Milner theorem (Theorem 1.21) also holds if only one
of the two structures is finitely branching.

Exercise 1.3 (bisimilarity game) Consider the following version Bω(S, S′) of the bisimi-
larity game between two transition systems S and S′. Positions of this game are of the form
either (s, s′,∀, α), (s, s′,∃, α) or (Z,α), with s ∈ S, s′ ∈ S′, Z ⊆ S×S′ and α either a natural
number or ω. The admissible moves for ∃ and ∀ are displayed in the following table:

Position Player Admissible moves

(s, s′, ∀, α) ∀ {(s, s′, ∃, β) | β < α}
(s, s′, ∃, α) ∃ {(Z,α) | Z is a local bisimulation for s and s′ }
(Z,α) ∀ {(s, s′, ∀, α) | (s, s′) ∈ Z}

Note that all matches of this game have finite length.
We write S, s ↔α S′, s′ to denote that ∃ has a winning strategy in the game Bω(S, S′)

starting at position (s, s′, ∀, α). It is not hard to see that S, s↔ω S′, s′ iff S, s↔k S′, s′ for all
k < ω.

(a) Give concrete examples such that S, s↔ω S′, s′ but not S, s↔ S′, s′.
(Hint: think of two modally equivalent but not bisimilar states.)

(b) Let k ≥ 0 be a natural number. Prove that, for all S, s and S′, s′:

S, s↔k S′, s′ ⇒ S, s ≡k S′, s′.

Here ≡k denotes the modal equivalence relation with respect to formulas of modal depth
at most k. Here we use a slightly nonstandard notion of modal depth, defined as follows:
d(⊥), d(>) := 0, d(p), d(p) := 1 for p ∈ P, d(ϕ ∧ ψ), d(ϕ ∨ ψ) := max(d(ϕ), d(ψ)), and
d(3ϕ), d(2ϕ) := 1 + d(ϕ).

Lectures on the modal µ-calculus 1-15

(c) Let S and S′ be finitely branching transition systems. Prove directly (i.e., without using
part (b)) that (i) ⇒ (ii), for all s ∈ S and s′ ∈ S′:

(i) S, s↔ω S′, s′

(ii) S, s↔ S′, s′.

(d)∗ Does the implication in (c) hold in the case that only one of the two transition systems
is finitely branching?

Exercise 1.4 Let Φ and Θ be finite sets of formulas. Prove that

∇
(
Φ ∪ {

∨
Θ}
)
≡
∨{
∇
(
Φ ∪Θ′

)
| ∅ 6= Θ′ ⊆ Θ

}
.

Exercise 1.5 Prove Theorem 1.39.

2 The modal µ-calculus: basics

This chapter is a first introduction to the modal µ-calculus. We define the language, discuss
some syntactic issues, and then proceed to its game-theoretic semantics. As a first result, we
prove that the modal µ-calculus is bisimulation invariant, and has a strong, ‘bounded’ version
of the tree model property. We then provide some basic information concerning the main
complexity measures of µ-calculus formulas: size and alternation depth.

To introduce the formalism, we start with a simple example.

Example 2.1 Consider the formula 〈d∗〉p from propositional dynamic logic. By definition,
this formula holds at those points in an LTS S from which there is a finite Rd-path, of
unspecified length, leading to a state where p is true.

We leave it for the reader to prove that

S, s
 〈d∗〉p↔ (p ∨ 〈d〉〈d∗〉p)

for any pointed transition system (S, s) (here we write 〈d〉 rather than 3d). Informally, one
might say that 〈d∗〉p is a fixed point of the formula p ∨ 〈d〉x, or a solution of the ‘equation’

x ≡ p ∨ 〈d〉x. (5)

One may show, however, that 〈d∗〉p is not the only fixpoint of (5). If we let ∞d denote
a formula that is true at those states of a transition system from which an infinite d-path
emanates, then the formula 〈d∗〉p ∨∞d is another fixed point of (5).

In fact, one may prove that the two mentioned fixpoints are the smallest and largest
possible solutions of (5), respectively. �

As we will see in this chapter, the modal µ-calculus allows one to explicitly refer to such
smallest and largest solutions. For instance, as we will see further on, the smallest and largest
solution of the ‘equation’ (5) will be written as µx.p ∨ 〈d〉x and νx.p ∨ 〈d〉x, respectively.
Generally, the basic idea underlying the modal µ-calculus is to enrich the language of basic
modal logic with two explicit fixpoint operators, µ and ν, respectively. Syntacticlly, these
operators behave like quantifiers in first-order logic, in the sense that the application of a
fixpoint operator µx to a formula ϕ binds all (free) occurrences of the proposition letter x
in ϕ. The word ‘fixpoint’ indicates that semantically, the formulas µxϕ and νxϕ are both
‘solutions’ to the ‘equation’ x ≡ ϕ(x), in the sense that, writing ≡ for semantic equivalence,
we have both

µxϕ ≡ ϕ[µxϕ/x]
and νxϕ ≡ ϕ[νxϕ/x],

(6)

where [µx.ϕ/x] denotes the operation of substituting µxϕ for every free occurrence of x. In
other words, both µxϕ and νxϕ are equivalent to their respective unfoldings, ϕ[µxϕ/x] and
ϕ[νxϕ/x].

To arrive at this semantics of modal fixpoint formulas one can take two roads. In Chapter 3
we will introduce the algebraic semantics of µxϕ and νxϕ in an LTS S, in terms of the least
and greatest fixpoint, respectively, of some algebraically defined meaning function. For this

2-2 The modal µ-calculus

purpose, we will consider the formula ϕ as an operation on the power set of (the state space of)
S, and we have to prove that this operation indeed has a least and a greatest fixpoint. As we
will see, this formal definition of the semantics of the modal µ-calculus may be mathematically
transparent, but it is of little help when it comes to unravelling and understanding the actual
meaning of individual formulas. In practice, it is much easier to work with the evaluation
games that we will introduce in this chapter.

This framework builds on the game-theoretical semantics for ordinary modal logic as
described in Subsection 1.2, extending it with features for the fixpoint operators and for the
bound variables of fixpoint formulas (such as x in the formula µx.p∨3x). The key difference
lies in the fact that when a match of an evaluation game reaches a position of the form (x, s),
with x a bound variable, then an equation such as (5) is used to unfold the variable x into its
associated formula (in the example, the formula p ∨3x).

As a consequence, the flavour of these games is remarkably different from the evaluation
games we met before. Recall that in evaluation matches for basic modal formulas, the formula
is broken down, step by step, until we can declare a winner of the match. From this it follows
that the length of such a match is bounded by the length of the formula. Evaluation matches
for fixpoint formulas, on the other hand, can last forever, if some fixpoint variables are
unfolded infinitely often. Hence, the game-theoretic semantics for fixpoint logics takes us to
the area of infinite games. In this Chapter we keep our treatment of infinite games informal,
in Chapter 5 the reader can find precise definitions of all notions that we introduce here.

2.1 Basic syntax

Formulas

As announced already in the previous chapter, in the case of fixpoint formulas we will usually
work with formulas in positive normal form in which the only admissible occurrences of the
negation symbol is in front of atomic formulas.

Definition 2.2 Given a set D of atomic actions, we define llection µMLD of (poly-)modal
fixpoint formulas as follows:

ϕ ::= > | ⊥ | p | p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | 3dϕ | 2dϕ | µxϕ | νxϕ

where p and x are propositional variables, and d ∈ D. There is a restriction on the formation
of the formulas µxϕ and νxϕ, namely, that the formula ϕ is positive in x. That is, all
occurrences of x in ϕ are positive, or, phrasing it yet differently, no occurrence of x in ϕ may
be in the form of the negative literal x.

In case the set D of atomic actions is a singleton, we will simply speak of the modal
µ-calculus, notation: µML.

The syntactic combinations µx and νx are called the least and greatest fixpoint operators,
respectively. We use the symbols η and λ to denote either µ or ν, and we define µ := ν and
ν := µ. �

A formula of the form ηxϕ is called a fixpoint formula, and, more specifically, a µ-formula
if η = µ and a ν-formula if η = ν. Furthermore, conjunctions and disjunctions will sometimes

Lectures on the modal µ-calculus 2-3

be called boolean µML-formulas, and formulas of the form 3dϕ or 2d will sometimes be called
modal.

Convention 2.3 In order to increase readability by reducing the number of brackets, we
adopt some standard scope conventions. We let the unary modal connectives, 3 and 2, bind
stronger than the binary propositional connectives ∧, ∨ and →, and use associativity to the
left for the connectives ∧ and ∨. As an example, we will abbreviate the formula (3p ∧ q) as
3p ∧ q.

Furthermore, we use ‘dot notation’ to indicate that the fixpoint operators preceding the
dot have maximal scope. For instance, µp.3p ∧ q denotes the formula µp (3p ∧ q), and not
the formula ((µp3p) ∧ q). As a final example, µx.p ∨ 2x ∨ y ∨ νy.q ∧ 2(x ∨ y) stands for

µx
((

(p ∨2x) ∨ y
)
∨ νy (q ∧2(x ∨ y))

)
.

Remark 2.4 An alternative definition of the language of the modal µ-calculus makes a dis-
tinction between propositional variables and proposition letters. Formulas are now defined as
follows:

ϕ ::= > | ⊥ | p | p | x | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | 3dϕ | 2dϕ | µxϕ | νxϕ

where p is a proposition letter, x a propositional variable, and d is an atomic action. In this
framework, only propositional variables can be bound. �

Length and syntax tree of a formula

There are various ways to measure a µ-calculus formula. The most basic measure of a formula
is its length, which basically corresponds to its number of symbols.

Definition 2.5 Given a µ-calculus formula ξ, we define its length |ξ|` inductively as follows:

|ϕ|` := 1 if ϕ is atomic
|ϕ0 ~ ϕ1|` := 1 + |ϕ0|` + |ϕ1|` where ~ ∈ {∧,∨}
|♥ϕ|` := 1 + |ϕ|` where ♥ ∈ {3,2}
|ηx.ϕ|` := 1 + |ϕ|` where η ∈ {µ, ν}

�

We assume that the reader is familiar with the concept of the syntax tree or construction
tree Tξ of a formula ξ. We will not give a formal definition of this structure, but confine
ourselves to an example: in Figure 2.1 we display the syntax tree of the µ-calculus formula
µx.(p∨3x)∨ νy.(q ∧2(x∨ y)). Note that the length of a formula corresponds to the number
of nodes of its syntax tree, and that an occurrence of a certain symbol in a formula may be
associated with some node in the formula’s syntax tree that is labelled with that symbol;
occurrences of literals correspond to leaves of the tree.

2-4 The modal µ-calculus

µx

∨

νy

∧

2

∨

yx

q

∨

3

x

p

Figure 1: A syntax tree

Subformulas and free/bound variables

The concepts of subformula and proper subformula are extended from basic modal logic to
the modal µ-calculus in the obvious way.

Definition 2.6 We define the set Sf 0(ξ) of direct subformulas of a formula ξ ∈ µML via the
following case distinction:

Sf 0(ξ) := ∅ if ξ ∈ At(P)
Sf 0(ξ0 ~ ξ1) := {ξ0, ξ1} where ~ ∈ {∧,∨}
Sf 0(♥ξ0) := {ξ0} where ♥ ∈ {3,2}
Sf 0(ηx.ξ0) := {ξ0} where η ∈ {µ, ν},

and we write ϕ /0 ξ if ϕ ∈ Sf 0(ξ).

For any formula ξ ∈ µML, Sf (ξ) is the least set of formulas which contains ξ and is closed
under taking direct subformulas. Elements of the set Sf (ξ) are called subformulas of ξ, and
we write ϕ P ξ (ϕ / ψ) if ϕ is a subformula (proper subformula, respectively) of ξ.

The (subformula) dag of a formula ξ is defined as the directed acyclic graph (Sf (ξ),�0),
where �0 is the converse of the direct subformula relation /0. �

I Give an example comparing the syntax tree of a formula to its subformula dag.

Syntactically, the fixpoint operators are very similar to the quantifiers of first-order logic
in the way they bind variables.

Lectures on the modal µ-calculus 2-5

Definition 2.7 Fix a formula ϕ. The sets FV (ϕ) and BV (ϕ) of free and bound variables of
ϕ are defined by the following induction on ϕ:

FV (⊥) := ∅ BV (⊥) := ∅
FV (>) := ∅ BV (>) := ∅
FV (p) := {p} BV (p) := ∅
FV (p) := {p} BV (p) := ∅
FV (ϕ ∨ ψ) := FV (ϕ) ∪ FV (ψ) BV (ϕ ∨ ψ) := BV (ϕ) ∪ BV (ψ)
FV (ϕ ∧ ψ) := FV (ϕ) ∪ FV (ψ) BV (ϕ ∧ ψ) := BV (ϕ) ∪ BV (ψ)
FV (3dϕ) := FV (ϕ) BV (3dϕ) := BV (ϕ)
FV (2dϕ) := FV (ϕ) BV (2dϕ) := BV (ϕ)
FV (ηx.ϕ) := FV (ϕ) \ {x} BV (ηx.ϕ) := BV (ϕ) ∪ {x}

For a finite set of propositional variables P, we let µMLD(P) denote the set of µMLD-formulas
ϕ of which all free variables belong to P. �

Formulas like x∨µx.((p∨x)∧2νx.3x) may be well formed, but in practice they are very
hard to read and to work with. In the sequel we will often work with formulas in which every
bound variable uniquely determines a subformula where it is bound, and almost exclusively
with formulas in which no variable has both free and bound occurrences in ϕ.

Definition 2.8 A formula ϕ ∈ µMLD is tidy if FV (ϕ)∩BV (ϕ) = ∅, and clean if in addition
with every bound variable x of ϕ we may associate a unique subformula of the form ηx.δ. In
the latter case we let ϕx = ηxx.δx denote this unique subformula. �

Convention 2.9 As a notational convention, we will use the letters p, q, r, . . . and x, y, z, . . .
to denote, respectively, the free and the bound propositional variables of a µMLD-formula.
This convention can be no more than a guideline, since the division between bound and free
variables may not be the same for a formula and its subformulas. For instance, the variable
x is bound in µx.p ∨3x, but free in its subformula p ∨3x.

Remark 2.10 In the alternative definition of the language of the modal µ-calculus as dis-
cussed in Remark 2.4, just like in first-order logic one makes a difference between open for-
mulas (which may contain free variables) and sentences (which may not). Observe that the
sentences correspond to the tidy formulas in our framework. For instance, µx (p ∨ 3x) is
a sentence, µx (y ∨ 3x) is an open formula, and µp (x ∨ 3p) is not a well-formed formula
(assuming that p is a proposition letter, and x is a variable). �

Substitution & unfolding

The syntactic operation of substitution is ubiquitous in any account of the modal µ-calculus,
first of all because it features in the basic operation of unfolding a fixpoint formula. As
usual in the context of a formal language featuring operators that bind variables, the precise
definition of a substitution operation needs some care. In particular, we need to protect the
substitution operation from variable capture.

2-6 The modal µ-calculus

Example 2.11 To give a concrete example, suppose that we would naively define a sub-
stitution operation ψ/x by defining ϕ[ψ/x] to be the formula we obtain from the formula
ϕ by replacing every free occurrences of x with the formula ψ. Now consider the formula
ϕ(q) = µp.q ∨3p expressing the reachability of a q-state in finitely many steps. If we substi-
tute p for q in ϕ, we would expect the resulting formula to express the reachability of a p-state
in finitely many steps, but the formula we obtain is ϕ[p/q] = µp.p∨3p, which says something
rather different (in fact, it happens to be equivalent to ⊥). Even worse, the substitution [p/q]
would produce a syntactic string ϕ[p/q] = µp.p∨3p which is not even a well-formed formula.
�

To avoid such anomalies, for the time being we shall only consider substitutions ξ/x
applied to formulas where ξ is free for x.

Definition 2.12 Let ξ and x be respectively a modal µ-calculus formula and a propositional
variable. We define what it means for ξ to be free for x in a formula ϕ by the following
induction on the complexity of ϕ:

• if ϕ is an atomic formula then ξ is free for x in ϕ, unless ϕ = x1;

• ξ is free for x in ϕ0 ~ ϕ1 if it is free for x in both ϕ0 and ϕ1;

• ξ is free for x in ♥ψ if it is free for x in ψ;

• ξ is free for x in ηy ψ if x 6∈ FV (ηy ψ) or if y 6∈ FV (ξ) and ξ is free for x in ψ.

�

Informally, ξ is free for x in ϕ if ϕ is positive in x and no free variable in ξ gets bound,
after substitution, by a fixpoint operator in ϕ. A special case of this, that we shall encounter
frequently, is the following.

Proposition 2.13 Let ϕ, ξ and x be respectively two modal µ-calculus formulas and a propo-
sitional variable, such that FV (ξ) ∩ BV (ϕ) ⊆ {x}. Then ξ is free for x in ϕ.

Definition 2.14 Let {ξz | z ∈ Z} be a set of modal µ-calculus formulas, indexed by a set of
variables Z, let ϕ ∈ µML be positive in each z ∈ Z, and assume that each ξz is free for z in ϕ.
We inductively define the simultaneous substitution [ξz/z | z ∈ Z] as the following operation
on µML:

ϕ[ξz/z | z ∈ Z] :=

{
ξz if ϕ = z ∈ Z
ϕ if ϕ is atomic but ϕ 6∈ Z

(♥ψ)[ξz/z | z ∈ Z] := ♥ψ[ξz/z | z ∈ Z]

(ϕ0 ~ ϕ1)[ξz/z | z ∈ Z] := ϕ0[ξz/z | z ∈ Z]~ ϕ1[ξz/z | z ∈ Z]

(ηx.ψ)[ξz/z | z ∈ Z] := ηx.ψ[ξz/z | z ∈ Z \ {x}]
1Strictly speaking, this condition is not needed. In particular, as a separate atomic case of our inductive

definition, we could define the outcome of the substitution p[ψ/p] to be the negation of the formula ψ (suitably
defined). However, we will only need to look at substitutions ϕ[ψ/z] where we happen to know that ϕ is
positive in z. As a result, our simplified definition does not impose a real restriction.

Lectures on the modal µ-calculus 2-7

In case Z is a singleton, say Z = {z}, we will simply write ϕ[ξz/z], or ϕ(ξ) if z is understood.
�

I Add some examples

Remark 2.15 In case ψ is not free for some z ∈ Z in ξ, we take a standard approach
using alphabetical variants. Roughly, two formulas are alphabetical variants if we can obtain
one from the other by renaming bound variables. We then define a correct version of the
substitution ξ[ψz/z | z ∈ Z] as follows: first we take some canonically chosen alphabetical
variant ξ′ of ξ such that each ψz is free for z in ξ′, and then we set

ξ[ψz/z | z ∈ Z] := ξ′[ψz/z | z ∈ Z].

However, in almost all situations that we will encounter we will only need perform sub-
stitutions that are ‘safe’ in the sense that the substituted formula is free for the variable it
replaces. This means that generally we may avoid taking alphabetical variants. Situations
where this is not the case will be explicitly marked. The reason for taking such care is that
the operation of taking alphabetical variants is not completely harmless when it comes to size
issues. We will come back to this matter in more detail later. �

The following proposition is a well known observation in areas where syntax is used that
features variable binding. Note however that our version below is a bit subtler than usual
since we do not allow the renaming of bound variables.

Proposition 2.16 Let ϕ, χ and ρ be µ-calculus formulas, and let x and y be distinct variables
such that x is free in ϕ but not in ρ. Furthermore, assume that χ is free for x in ϕ and that
ρ is free for y in ϕ[χ/x]. Then ρ is free for y in both ϕ and χ, χ[ρ/y] is free for x in ϕ[ρ/y],
and we have

ϕ[χ/x][ρ/y] = ϕ[ρ/y][(χ[ρ/y])/x]. (7)

Proof. The proposition can be proved by a straightforward but rather tedious induction on
the complexity of ϕ. We omit details. qed

Unfolding

The reason that the modal µ-calculus, and related formalisms, are called fixpoint logics is
that, for η = µ/ν, the meaning of the formula ηx.χ in a model S is given as the least/greatest
fixpoint of the semantic map expressing the dependence of the meaning of χ on (the meaning
of) the variable x. As a consequence, the following equivalence lies at the heart of semantics
of µML:

ηx.χ ≡ χ[ηx.χ/x] (8)

In words: every formula is equivalent to its unfolding.

Definition 2.17 Given a formula ηx.χ ∈ µML, we call the formula unf(ξ) := χ[ηx.χ/x] its
unfolding. �

2-8 The modal µ-calculus

Remark 2.18 Unfolding is the central operation in taking the closure of a formula that we are
about to define. Unfortunately, the collection of clean formulas is not closed under unfolding
(unless we take alphabetical variants). Consider for instance the formula ϕ(p) = νq.3q ∧ p,
then we see that the formula µp.ϕ is clean, but its unfolding ϕ[µp.ϕ/p] = νq.3q∧µp νq.3q∧p
is not. Furthermore, our earlier observation that the naive version of substitution may produce
‘formulas’ that are not well-formed applies here as well. For instance, with χ denoting the
formula p ∧ νp.2(x ∨ p), naively unfolding the (untidy) formula µx.χ would produce the
ungrammatical p ∧ νp.2

(
(µx.p ∧ νp.2(x ∨ p)) ∨ p

)
. �

Fortunately, the condition of tidyness guarantees that we may calculate unfoldings without
moving to alphabetical variants, since we can prove that the formula ηx.χ is free for x in χ,
whenever ηx.χ is tidy. In addition, tidyness is preserved under taking unfoldings.

Proposition 2.19 Let ηx.χ ∈ µML be a tidy formula. Then

1) ηx.χ is free for x in χ;
2) χ[ηx.χ/x] is tidy as well.

Proof. For part 1), take a variable y ∈ FV (ηx.χ). Then obviously y is distinct from x,
while y 6∈ BV (ηx.χ) by tidyness. Clearly then we find y 6∈ BV (χ); in other words, χ has no
subformula of the form λy.ψ. Hence it trivially follows that ηx.χ is free for x in χ.

Part 2) is immediate by the following identities:

FV (χ[ηx.χ/x]) = (FV (χ) \ {x}) ∪ FV (ηx.χ) = FV (ηx.χ)
BV (χ[ηx.χ/x]) = BV (χ) ∪ BV (ηx.χ) = BV (ηx.χ)

which can easily be proved. qed

Dependency order

An important role in the theory of the modal µ-calculus is played by a certain order ≤ξ on
the bound variables of a formula ξ, with x ≤ y indicating that y is ‘more significant’ than x,
in the sense that the meaning of x/δx is (in principle) dependent on the meaning of y/δy. The
key situation where this happens is when y occurs freely in δx. Observe that this can only be
the case if δx P δy, so that the relation ‘y occurs freely in δx’ does not have any cycles, and
thus naturally induces a partial order.

Definition 2.20 Given a clean formula ξ, we define a dependency or subordination order ≤ξ
on the set BV (ξ), saying that y ranks higher than x if x ≤ξ y. The relation ≤ξ is defined as
the least partial order containing all pairs (x, y) such that y P δx P δy. �

2.2 Game semantics

For a definition of the evaluation game of the modal µ-calculus, fix a clean formula ξ and an
LTS S. Basically, the game E(ξ,S) for ξ a fixpoint formula is defined in the same way as for
plain modal logic formulas.

Lectures on the modal µ-calculus 2-9

Definition 2.21 Given a clean modal µ-calculus formula ξ and a transition system S, we
define the evaluation game or model checking game E(ξ,S) as a board game with players ∃
and ∀ moving a token around positions of the form (ϕ, s) ∈ Sf (ξ)×S. The rules, determining
the admissible moves from a given position, together with the player who is supposed to make
this move, are given in Table 3.

As before, E(ξ,S)@(ξ, s) denotes the instantiation of this game where the starting position
is fixed as (ξ, s). �

One might expect that the main difference with the evaluation game for basic modal for-
mulas would involve the new formula constructors of the µ-calculus: the fixpoint operators.
Perhaps surprisingly, we can deal with the fixpoint operators themselves in the most straight-
forward way possible, viz., by simply stripping them. That is, the successor of a position of
the form (ηx.δ, s) is simply obtained as the pair (δ, s). (In section 2.5 we present an alternative
version in which the formula ηx δ is replaced with its unfolding). Since this next position is
thus uniquely determined, the position (ηx.δ, s) will not be assigned to either of the players.

The crucial difference lies in the treatment of the bound variables of a fixpoint formula ξ.
Previously, all positions of the form (p, s) would be final positions of the game, immediately
determining the winner of the match, and this is still the case here if p is a free variable.
However, at a position (x, s) with x bound, the fixpoint variable x gets unfolded ; this means
that the new position is given as (δx, s), where ηxx.δx is the unique subformula of ξ where
x is bound. Note that for this to be well defined, we need ξ to be clean. The disjointness
of FV (ξ) and BV (ξ) ensures that it is always clear whether a variable is to be unfolded or
not, and the fact that bound variables are bound by unique occurrences of fixpoint operators
guarantees that δx is uniquely determined. Finally, since in this case the next position is
also completely determined by the current one, positions of the form (x, s) with x bound are
assigned to neither of the players.

Position Player Admissible moves

(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}
(3dϕ, s) ∃ {(ϕ, t) | t ∈ σd(s)}
(2dϕ, s) ∀ {(ϕ, t) | t ∈ σd(s)}
(⊥, s) ∃ ∅
(>, s) ∀ ∅
(p, s), with p ∈ FV (ξ) and s ∈ V (p) ∀ ∅
(p, s), with p ∈ FV (ξ) and s 6∈ V (p) ∃ ∅
(p, s), with p ∈ FV (ξ) and s ∈ V (p) ∃ ∅
(p, s), with p ∈ FV (ξ) and s 6∈ V (p) ∀ ∅
(ηxx.δx, s) − {(δx, s)}
(x, s), with x ∈ BV (ξ) − {(δx, s)}

Table 3: Evaluation game for modal fixpoint logic

2-10 The modal µ-calculus

Example 2.22 Let S = 〈S,R, V 〉 be the Kripke model based on the set S = {0, 1, 2}, with
R = {(0, 1), (1, 1), (1, 2), (2, 2)}, and V given by V (p) = {2}. Now let ξ be the formula
ηx.p ∨2x, and consider the game E(ξ,S) initialized at (ξ, 0).

The second position of any match of this game will be (p∨2x, 0) belonging to ∃. Assuming
that she wants to win, she chooses the disjunct 2x since otherwise p being false at 0 would
mean an immediate loss for her. Now the position (2x, 0) belongs to ∀ and he will make the
only move allowed to him, choosing (x, 1) as the next position. Here an automatic move is
made, unfolding the variable x, and thus changing the position to (p∨2x, 1). And as before,
∃ will choose the right disjunct: (2x, 1).

At (2x, 1), ∀ does have a choice. Choosing (x, 2), however, would mean that ∃ wins the
match since p being true at 2 enables her to finally choose the first disjunct of the formula
p ∨2x. So ∀ chooses (x, 1), a position already visited by the match before.

This means that these strategies force the match to be infinite, with the variable x un-
folding infinitely often at positions of the form (x, 1), and the match taking the following
form:

(ξ, 0)(p ∨2x, 0)(2x, 0)(x, 1)(p ∨2x, 1)(2x, 1)(x, 1)(p ∨2x, 1) . . .

So who is declared to be the winner of this match? This is where the difference between
the two fixpoint operators shows up. In case η = µ, the above infinite match is lost by ∃
since the fixpoint variable that is unfolded infinitely often is a µ-variable, and µ-variables are
to be unfolded only finitely often. In case η = ν, the variable unfolded infinitely often is a
ν-variable, and this is unproblematic: ∃ wins the match. �

The above example shows the principle of unfolding at work. Its effect is that matches
may now be of infinite length since formulas are no longer deconstructed at every move of
the game. Nevertheless, as we will see, it will still be very useful to declare a winner of such
an infinite game. Here we arrive at one of the key ideas underlying the semantics of fixpoint
formulas, which in a slogan can be formulated as follows:

ν means unfolding, µ means finite unfolding.

Giving a more detailed interpretation to this slogan, in case of a unique variable that is
unfolded infinitely often during a match π, we will declare ∃ to be the winner of π if this
variable is a ν-variable, and ∀ in case we are dealing with a µ-variable. But what happens in
case that various variables are unfolded infinitely often? As we shall see, in these cases there
is always a unique such variable that ranks higher than any other such variable.

Definition 2.23 Let ξ be a clean µMLD-formula, and S a labelled transition system. A match
of the game E(ξ,S) is a (finite or infinite) sequence of positions

π = (ϕi, si)i<κ

(where κ is either a natural number or ω) which is in accordance with the rules of the
evaluation game — that is, π is a path through the game graph given by the admissibility
relation of Table 3. A full match is either an infinite match, or a finite match in which the

Lectures on the modal µ-calculus 2-11

player responsible for the last position got stuck. In practice we will always refer to full
matches simply as matches. A match that is not full is called partial.

Given an infinite match π, we let Unf∞(π) ⊆ BV (ξ) denote the set of variables that are
unfolded infinitely often during π. �

Proposition 2.24 Let ξ be a clean µMLD-formula, and S a labelled transition system. Then
for any infinite match π of the game E(ξ, S), the set Unf∞(π) has a highest ranking member,
in terms of the dependency order of Definition 2.20.

Proof. Since π is an infinite match, the set U := Unf∞(π) is not empty. Let y be an element
of U which is maximal (with respect to the ranking order ≤ξ) — such an element exists since
U is finite. We claim that

from some moment on, π only features subformulas of δy. (9)

To prove this, note that since y is ≤ξ-maximal in U , there must be a position in π such that
y is unfolded to δy, while no variable z >ξ y is unfolded at any later position in π. But
then a straightforward induction shows that all formulas featuring at later positions must be
subformulas of δy: the key observation here is that if z P δy unfolds to δz, and by assumption
z 6>ξy, then it must be the case that δz P δy.

As a corollary of (9), we claim that

y is in fact the maximum of U (with respect to ≤ξ). (10)

To see this, suppose for contradiction that there is a variable x ∈ U which is not below y.
It follows from (9) that δx P δy, and without loss of generality we may assume x to be such
that δx is a maximal subformula of δy such that x 6≤ξ y (in the sense that z ≤ξ y for all z ∈ U
with δx / δz.) In particular then we have y 6∈ FV (δx). But since y is unfolded infinitely often,
there must be a variable z ∈ FV (δx) which allows π to ‘leave’ δx infinitely often; this means
that z ∈ U , δx P δz but δz 6P δx. From this it is immediate that x ≤ξ z, while from z ∈ U
and (9) we obtain δz P δy. It now follows from our maximality assumption on x that z ≤ξ y.
But then by transitivity of ≤ξ we find that x ≤ξ y indeed. In other words, we have arrived
at the desired contradiction.

This shows that (10) holds indeed, and from this the Proposition is immediate. qed

Given this result, there is now a natural formulation of the winning conditions for infinite
matches of evaluation games.

Definition 2.25 Let ξ be a clean µMLD-formula. The winning conditions of the game E(ξ,S)
are given in Table 4. �

We can now formulate the game-theoretic semantics of the modal µ-calculus as follows.

Definition 2.26 Let ξ be a clean formula of the modal µ-calculus, and let S be a transition
system of the appropriate type. Then we say that ξ is (game-theoretically) satisfied at s,
notation: S, s
g ξ if (ξ, s) ∈Win∃(E(ξ,S)). �

2-12 The modal µ-calculus

∃ wins π ∀ wins π

π is finite ∀ got stuck ∃ got stuck

π is infinite max(Unf∞(π)) is a ν-variable max(Unf∞(π)) is a µ-variable

Table 4: Winning conditions of E(ξ,S)

Remark 2.27 As mentioned we have kept this introduction to evaluation games for fixpoint
formulas rather informal, referring to Chapter 5 for a more rigorous discussion of infinite
games. Nevertheless, we want to mention already here that evaluation games, on the ground
of being so-called parity games, have two very useful properties that make them attractive
to work with. To start with, every evaluation game is determined in the sense that every
position is winning for exactly one of the two players. And second, one may show that winning
strategies for either player of an evaluation game, can always be assumed to be positional,
that is, do not depend on moves made earlier in the match, but only on the current position.
Combining this, evaluation games enjoy positional determinacy ; that is, every position (ϕ, s)
is winning for exactly one of the two players, and each player Π ∈ {∃,∀} has a positional
strategy fΠ which is winning for the game E(ξ,S)@(ϕ, s) for every position (ϕ, s) that is
winning for Π. �

Remark 2.28 Observe that we have defined the game-theoretic semantics for clean formula
only. In the next section we define an alternative version of the evaluation game which works
for arbitrary tidy formulas.

It is certainly possible to extend this definition to arbitrary fixpoint formulas; a straight-
forward approach would be to involve the construction tree of a non-clean formula ξ, and
redefine a position of the evaluation game E(ξ, S) to be a pair, consisting of a node in this
construction tree and a point in the Kripke structure. Alternatively, one may work with a
clean alphabetical variant of the formula ξ; once we have given the algebraic semantics for
arbitrary formulas, it is not hard to show that in that semantics, alphabetic variants are
equivalent. �

2.3 Examples

Example 2.29 As a first example, consider the formulas ηx.p∨x, and fix a Kripke model S.
Observe that any match of the evaluation game E(ηx.p∨x,S) starting at position (ηx.p∨x, s)
immediately proceeds to position (p∨ x, s), after which ∃ can make a choice. In case η is the
least fixpoint operator, η = µ, we claim that

S, s
g µx.p ∨ x iff s ∈ V (p).

For the direction from right to left, assume that s ∈ V (p). Now, if ∃ chooses the disjunct
p at the position (s, p ∨ x), she wins the match because ∀ will get stuck at (s, p). Hence
s ∈Win∃(E(µx.p ∨ x,S)).

On the other hand, if s 6∈ V (p), then ∃ will lose if she chooses the disjunct p at position
(s, p ∨ x). So she must choose the disjunct x which then unfolds to p ∨ x so that ∃ is back

Lectures on the modal µ-calculus 2-13

at the position (s, p ∨ x). Thus if ∃ does not want to get stuck, her only way to survive is to
keep playing the position (s, x), thus causing the match to be infinite. But such a match is
won by ∀ since the only variable that gets unfolded infinitely often is a µ-variable. Hence in
this case we see that s 6∈Win∃(E(νx.p ∨ x,S)).

If on the other hand we consider the case where η = ν, then ∃ can win any match:

S, s
g νx.p ∨ x.

It is easy to see that now, the strategy of always choosing the disjunct x at a position of the
form (s, p ∨ x) is winning. For, it forces all games to be infinite, and since the only fixpoint
variable that gets ever unfolded here is a ν-variable, all infinite matches are won by ∃.

Concluding, we see that µx.p ∨ x is equivalent to the formula p, and νx.p ∨ x, to the
formula >. �

Example 2.30 Now we turn to the formulas µx.3x and νx.3x. First consider how a match
for any of these formulas proceeds. The first two positions of such a match will be of the
form (ηx.3x, s)(3x, s), at which point it is ∃’s turn to make a move. Now she either is stuck
(in case the state s has no successor) or else the next two positions are (x, t)(3x, t) for some
successor t of s, chosen by ∃. Continuing this analysis, we see that there are two possibilities
for a match of the game E(ηx.3x,S):

1. the match is an infinite sequence of positions

(ηx.3x, s0)(3x, s0)(x, s1)(3x, s1)(x, s2) . . .

corresponding to an infinite path s0Rs1Rs2R . . . through S.

2. the match is a finite sequence of positions

(ηx.3x, s0)(3x, s0)(x, s1)(3x, s1) . . . (3x, sk)

corresponding to a finite path s0Rs1R . . . sk through S, where sk has no successors.

Note too that in either case it is only ∃ who has turns, and that her strategy corresponds to
choosing a path through S. From this it is easy to derive that
• µx.3x is equivalent to the formula ⊥,
• S, s
g νx.3x iff there is an infinite path starting at s. �

I Until operator

The examples that we have considered so far involved only a single fixpoint operator. We
now look at an example containing both a least and a greatest fixpoint operator.

Example 2.31 Let ξ be the following formula:

ξ = νx.µy. (p ∧3x)︸ ︷︷ ︸
αp

∨ (p ∧3y)︸ ︷︷ ︸
αp

2-14 The modal µ-calculus

Then we claim that for any LTS S, and any state s in S:

S, s
g ξ iff there is some path from s on which p is true infinitely often. (11)

To see this, first suppose that there is a path π = s0s1s2 . . . as described in the right hand
side of (11) and suppose that ∃ plays according to the following strategy:

(a) at a position (αp ∨ αp, t), choose (αp, t) if S, t
g p and choose (αp, t) otherwise;

(b) at a position (3ϕ, t), distinguish cases:
- if the match so far has followed the path, with t = sk, choose (ϕ, sk+1);
- otherwise, choose an arbitrary successor (if possible).

We claim that this is a winning strategy for ∃ in the evaluation game initialized at (ξ, s).
Indeed, since ∃ always chooses the propositionally safe disjunct of αp ∨ αp, she forces ∀,
when faced with a position of the form (α±p, t) = (±p∧3z, t) to always choose the diamond
conjunct 3z, or lose immediately. In this way she guarantees to always get to positions of the
form (3z, si), and thus she can force the match to last infinitely long, following the infinite
path π. But why does she actually win this match? The point is that, whenever she chooses
αp, three positions later, x will be unfolded, and likewise with αp and y. Thus, p being true
infinitely often on π means that the ν-variable x gets unfolded infinitely often. And so, even
though the µ-variable y might get unfolded infinitely often as well, she wins the match since
x ranks higher than y anyway.

For the other direction, assume that S, s
g ξ so that ∃ has a winning strategy in the
game E(ξ,S) initialized at (ξ, s). It should be clear that any winning strategy must follow (a)
above. So whenever ∀ faces a position (p ∧3z, t), p will be true, and likewise with positions
(p ∧ 3z, t). Now consider a match in which ∀ plays propositionally sound, that is, always
chooses the diamond conjunct of these positions. This match must be infinite since both
players will stay alive forever: ∀ because he can always choose a diamond conjunct, and ∃
because we assumed her strategy to be winning. But a second consequence of ∃ playing a
winning strategy, is that it cannot happen that y is unfolded infinitely often, while x is not.
So x is unfolded infinitely often, and as before, x only gets unfolded right after the match
passed a world where p is true. Thus the path chosen by ∃ must contain infinitely many states
where p holds. �

2.4 Bisimulation invariance and the bounded tree model property

Given the game-theoretic characterization of the semantics, it is rather straightforward to
prove that formulas of the modal µ-calculus are bisimulation invariant. From this it is im-
mediate that the modal µ–calculus has the tree model property. But in fact, we can use the
game semantics to do better than this, proving that every satisfiable modal fixpoint formula
is satisfied in a tree of which the branching degree is bounded by the size of the formula.

Theorem 2.32 (Bisimulation Invariance) Let ξ be a modal fixpoint formula with FV (ξ) ⊆
P, and let S and S′ be two labelled transition systems with points s and s′, respectively. If
S, s ↔P S′, s′, then

S, s
g ξ iff S′, s′
g ξ.

Lectures on the modal µ-calculus 2-15

Proof. Assume that s ↔P s′ and that S, s
g ξ, with FV (ξ) ⊆ P. We will show that
S′, s′
g ξ. By definition we may assume that ∃ has a winning strategy f in the evaluation
game E := E(ξ,S) initialized at (ξ, s); that is, given an f -guided partial E-match π ending in
a position for ∃, we let f(π) denote the next position as determined by f .

We need to provide her with a winning strategy in the game E ′ := E(ξ,S′)@(ξ, s′). She
obtains her strategy f ′ in E ′ from playing a shadow match of E , using the bisimilarity relation
to guide her choices.

To see how this works, let’s simply start with comparing the initial position (ξ, s′) of E ′
with its counterpart (ξ, s) of E . (From now on we will write s↔ s′ instead of s↔P s

′).

• In case ξ is a literal, it is easy to see that both (ξ, s) and (ξ, s′) are final positions. Also,
since f is assumed to be winning, ξ must be true at s, and so it must hold at s′ as well.
Hence, ∃ wins the match.

If ξ is not a literal, we distinguish cases.

• First suppose that ξ = ξ1∨ξ2. If f tells ∃ to choose disjunct ξi at (ξ, s), then she chooses
the same disjunct ξi at position (ξ, s′). If ξ = ξ1 ∧ ξ2, it is ∀ who moves. Suppose in E ′
he chooses ξi, making (ξi, s

′) the next position. We now consider in E the same move
of ∀, so that the next position in the shadow match is (ξi, s).

• A third possibility is that ξ = 3ψ. In order to make her move at (ξ, s′), ∃ first looks
at (ξ, s). Since f is a winning strategy, it indeed picks a successor t of s. Then because
s ↔ s′, there is a successor t′ of s′ such that t ↔ t′. This t′ is ∃’s move in E ′, so that
(ψ, t) and (ψ, t′) are the next positions in E and E ′, respectively.

• If ξ = 2ψ, we are dealing again with positions for ∀. Suppose in E ′ he chooses the
successor t′ of s′, so that the next position is (ψ, t′). (In case s′ has no successors, ∀
immediately loses, so that there is nothing left to prove.) Now again we turn to the
shadow match; by bisimilarity of s and s′ there is a successor t of s such that t ↔ t′.
So we may assume that ∀ moves the game token of E to position (ψ, t).

• Finally, if ξ = ηx δx then the next positions in E and E ′ are, respectively, (δx, s) and
(δx, s

′).

The crucial observation is that if ∃ does not win immediately, then at least she can
guarantee that the next positions in E and E ′ are of the form (ϕ, u) and (ϕ, u′) respectively,
with u ↔ u′, and such that the move in E is consistent with f . We may in fact show that
she can maintain this condition throughout the match, and it is not hard to see that she can
construct a winning strategy based on this.

Making this proof sketch a bit more precise, we introduce some terminology (anticipating
the formal treatment of games in Chapter 5). Generally we identify matches of a game with
certain sequences of positions in that game, and we say that a match π = p0p1 . . . pn is guided
by a strategy f for player Π ∈ {∃, ∀} if for every i < n such that position pi belongs to Π,
the next position pi+1 is indeed the position dictated by the strategy f . In the context of
this particular proof we say that an E ′-match π′ = (ϕ′0, s

′
0)(ϕ′1, s

′
1) . . . (ϕ′n, s

′
n) is linked to an

2-16 The modal µ-calculus

E-match π = (ϕ0, s0)(ϕ1, s1) . . . (ϕn, sn) (of the same length), if ϕ′i = ϕi and S′, s′i ↔ S, si
for all i with 0 ≤ i ≤ n. The key claim in the proof states that, for a E ′-match π′, if ∃ has
established such a bisimilarity link with an E-match that is f -guided, then she will either win
the E ′-game immediately, or else she can maintain the link during one further round of the
game.

Claim 1 Let π′ be a finite E ′-match, and assume that π′ is linked to some f -guided E-match
π. Then one of the following two cases apply.

1) both last(π′) and last(π) are positions for ∃, and ∃ can continue π′ with a legitimate
move (ϕ, t′) such that π′ · (ϕ, t′) is bisimilarity-linked to π · (ϕ, t), where (ϕ, t) is the move
dicated by f in π.

2) both last(π′) and last(π) are positions for ∀, and for every move (ϕ′, t) for ∀ in π′ there
is a legitimate move (ϕ, t) for ∀ in π such that π′ · (ϕ, t′) is bisimilarity-linked to π · (ϕ, t).

The proof of this Claim proceeds via an obvious adaptation of the case-by-case argument
just given for the initial positions of E ′ and E . Omitting the details, we move on to show that
based on Claim 1, ∃ has a winning strategy in E ′.

By a straightforward inductive argument we may provide ∃ with a strategy f ′ in E ′,
and show how to maintain, simultaneously, for every f ′-guided match π, an f -guided E-
match which is linked to π′. For the base case of this induction, simply observe that by
the assumption that S, s ↔ S′, s′, the initial positions of E ′ and E constitute linked (trivial)
matches. For the inductive case we consider an f ′-guided E ′-match π′, and inductively assume
that there is a bisimilarity-linked f -guided E-match π. Now distinguish cases:

• If last(π′) is a position for ∃, we use item 1) of Claim 1 to define her move (ϕ, t′); it
follows that π′ · (ϕ, t′) and π · (ϕ, t) are bisimilarity-linked (where (ϕ, t) is the move
dicated by f in π).

• On the other hand, in case last(π′) is a position for ∀, assume that he makes some move,
say, (ψ, t′); now we use item 2) of the claim to define a continuation π · (ψ, t) of π that
is bisimilarity-linked to π′ · (ψ, t′).

To see why the strategy f ′ of ∃ is winning for her, consider a full (i.e., finished) f ′-guided
match π′, and distinguish cases. If π′ is finite, this means that one of the players must be
stuck, and we have to show that this player must be ∀. But we just showed that there must
be an f -guided match π which is bisimilarity-linked to π′. It follows from the definiton of
linked matches that the final positions of π′ and π must be, respectively, of the form (ϕ, t′)
and (ϕ, t) for some formula ϕ and states t′, t such that S′, t′ ↔ S, t. From this it is not hard
to derive that the same player who got stuck in π′ also got stuck in π; and since π is guided
by ∃’s supposedly winning strategy f , this player must be ∀ indeed.

If π′ is infinite, say π′ = (ϕi, s
′
i)i<ω, the shadow E-match maintained by ∃ is infinite as

well. More precisely, the inductive argument given above reveals the existence of an infinite,
f -guided E-match π = (ϕi, si)i<ω such that S′, s′i ↔ S, si for all i < ω. The key observation,
however, is that the two sequences of formulas, in the E ′-match π′ and its E-shadow π,
respectively, are exactly the same. This means that also in the infinite case the winner of π′

is the winner of π, and since π is f -guided, this winner must be ∃. qed

Lectures on the modal µ-calculus 2-17

As an immediate corollary, we obtain the tree model property for the modal µ-calculus.

Theorem 2.33 (Tree Model Property) Let ξ be a modal fixpoint formula. If ξ is satisfi-
able, then it is satisfiable at the root of a tree model.

Proof. For simplicity, we confine ourselves to the basic modal language. Suppose that ξ is
satisfiable at state s of the Kripke model S. Then by bisimulation invariance, ξ is satisfiable
at the root of the unravelling ~Ss of S around s, cf. Definition 1.23. This unravelling clearly is
a tree model. qed

For the next theorem, recall that the size of a formula is simply defined as the number of
its subformulas.

Theorem 2.34 (Bounded Tree Model Property) Let ξ be a modal fixpoint formula. If
ξ is satisfiable, then it is satisfiable at the root of a tree, of which the branching degree is
bounded by the size |ξ| of the formula.

Proof. Suppose that ξ is satisfiable. By the Bisimulation Invariance Theorem it follows that
ξ is satisfiable at the root r of some tree model T = 〈T,R, V 〉. So ∃ has a winning strategy
f in the game E@(ξ, r), where we abbreviate E := E(ξ,T). By the Positional Determinacy of
the evaluation game, we may assume that this strategy is positional — this will simplify our
argument a bit. We may thus represent this strategy as a map f that, among other things,
maps positions of the form (3ϕ, s) to positions of the form (ϕ, t) with Rst.

We will prune the tree T, keeping only the nodes that ∃ needs in order to win the match.
Formally, define subsets (Tn)n∈ω as follows:

T0 := {r},
Tn+1 := Tn ∪ {s | (ϕ, s) = f(3ϕ, t) for some t ∈ Tn and 3ϕ P ξ},
Tω :=

⋃
n∈ω Tn.

Let Tω be the subtree of T based on Tω. (Note that Tω is in general not a generated submodel
of T: not all successors of nodes in Tω need to belong to Tω.) From the construction it is
obvious that the branching degree of Tω is bounded by the size of ξ, because ξ has at most
|ξ| diamond subformulas.

We claim that Tω, r
g ξ. To see why this is so, let E ′ := E(ξ,Tω) be the evaluation game
played on the pruned tree. It suffices to show that the strategy f ′, defined as the restriction
of f to positions of the game E ′, is winning for ∃ in the game starting at (ξ, r). Consider an
arbitrary E ′-match π = (ξ, r)(ϕ1, t1) . . . which is consistent with f ′. The key observation of
the proof is that π is also a match of E@(ξ, r), that is consistent with f . To see this, simply
observe that all moves of ∀ in π could have been made in the game on T as well, whereas by
construction, all f ′ moves of ∃ in E ′ are f moves in E .

Now by assumption, f is a winning strategy for ∃ in E , so she wins π in E . But then π is
winning as such, i.e., no matter whether we see it as a match in E or in E ′. In other words,
π is also winning as an E ′-match. And since π was an arbitrary E ′-match starting at (ξ, r),
this shows that f ′ is a winning strategy, as required. qed

2-18 The modal µ-calculus

2.5 Traces, the closure map and the closure game

In this section we define an alternative version of the evaluation game for µ-calculus formulas,
in which the equivalence

ηxχ ≡ χ[ηxχ/x]

is exploited more directly than in the subformula game that we defined in section 2.2. The
idea in the closure game is that, at a position (ηxχ, s) the fixpoint formula will simply be
unfolded, yielding the pair (χ[ηxχ/x], s) as the (unique) next position. That is, the admissible
moves in the closure game are given in Table 5.

Position Player Admissible moves

(ϕ ∨ ψ, s) ∃ {(ϕ, s), (ψ, s)}
(ϕ ∧ ψ, s) ∀ {(ϕ, s), (ψ, s)}
(3ϕ, s) ∃ {(ϕ, t) | sRt}
(2ϕ, s) ∀ {(ϕ, t) | sRt}
(p, s) with p ∈ FV (ξ) and s ∈ V (p) ∀ ∅
(p, s) with p ∈ FV (ξ) and s /∈ V (p) ∃ ∅
(p, s) with p ∈ FV (ξ) and s ∈ V (p) ∃ ∅
(p, s) with p ∈ FV (ξ) and s /∈ V (p) ∀ ∅
(ηx.ϕ, s) - {(ϕ[ηxϕ/x], s)}

Table 5: Positions and admissible moves in the closure evaluation game Ec(ξ,S)

In order to turn this table into a proper game, we need to introduce appropriate winning
conditions for the two players. For this purpose we introduce some terminology and notation,
and we make some observations. We start with the notion of a trace.

Traces and the closure game

Definition 2.35 Let →C be the binary relation between tidy µ-calculus formulas given by
the following exhaustive list:

1) (ϕ0 ~ ϕ1)→C ϕi, for any ϕ0, ϕ1 ∈ µML, ~ ∈ {∧,∨} and i ∈ {0, 1};
2) ♥ϕ→C ϕ, for any ϕ ∈ µML and ♥ ∈ {3,2});
3) ηx.ϕ→C ϕ[ηx.ϕ/x], for any ηx.ϕ ∈ µML, with η ∈ {µ, ν}.

We call a →C-path ψ0 →C ψ1 →C · · · →C ψn a (finite) trace; similarly, an infinite trace is a
sequence (ψi)i<ω such that ψi →C ψi+1 for all i < ω. �

Intuitively a trace is a sequence that corresponds to the formula part of a possible match
of the closure game. The closure of a formula consists of the formulas that can be encountered
in such a match.

Definition 2.36 We define the relation �C as the reflexive and transitive closure of →C ,
and define the closure of a tidy formula ψ as the set

Cl(ψ) := {ϕ | ψ �C ϕ}.

Lectures on the modal µ-calculus 2-19

Given a set of formulas Ψ, we put Cl(Ψ) :=
⋃
ψ∈Ψ Cl(ψ), and we call Ψ closed if Ψ = Cl(Ψ).

Formulas in the set Cl(ψ) are said to be derived from ψ. The closure graph of ψ is the directed
graph Cξ := (Cl(ξ),→C). �

In words, Cl(ξ) is the smallest set which contains ξ and is closed under direct boolean and
modal subformulas, and under unfoldings of fixpoint formulas. In terms of traces: a formula
χ belongs to the closure of a formula ξ iff there is a trace from ξ to χ. Furthermore, a trace
starting at ξ is nothing but a path in the closure graph starting at ξ.

Remark 2.37 The final example of Remark 2.18 shows that the closure of a non-tidy formula
may not even be defined — unless we work with alphabetical variants. We will come back to
this point later. �

The following example will be instructive for understanding the concept of closure, and
its relation with subformulas.

Example 2.38 Consider the following formulas:

ξ1 := µx1νx2µx3.
(
((x1 ∨ x2) ∨ x3) ∧2((x1 ∨ x2) ∨ x3)

)
ξ2 := νx2µx3.

(
((ξ1 ∨ x2) ∨ x3) ∧2((ξ1 ∨ x2) ∨ x3)

)
ξ3 := µx3.

(
((ξ1 ∨ ξ2) ∨ x3) ∧2((ξ1 ∨ ξ2) ∨ x3)

)
ξ4 :=

(
((ξ1 ∨ ξ2) ∨ ξ3) ∧2((ξ1 ∨ ξ2) ∨ ξ3)

)
α := (ξ1 ∨ ξ2) ∨ ξ3

β := ξ1 ∨ ξ2,

and let Φ be the set Φ := {ξ1, ξ2, ξ3, ξ4,2α, α, β}.
For i = 1, 2, 3, the formula ξi+1 is the unfolding of the formula ξi. Thus we find Cl(ξ1) = Φ;

in fact, we have Cl(ϕ) = Φ for every formula ϕ ∈ Φ. In Figure 2 we depict the closure graph
of ξ1.

ξ1start ξ2 ξ3 ξ4

α

2α

β

Figure 2: A closure graph

Observe that the formulas ξ1, ξ2, ξ3 and ξ4 are equivalent to one another, and hence also
to α. Note too that the formula ξ1 is the only clean formula in Φ, and that ξ is a subformula
of every formula in Cl(ξ1). �

2-20 The modal µ-calculus

The closure of ξ consists of the formulas that one may encounter in a match of the closure
game Ec(ξ,S), and, as a consequence of this, we will take Cl(ξ)× S as the set of positions in
this game. As we will see now, the key observation for defining the winning conditions of this
game is that every infinite trace can be identified as either a µ-trace or a ν-trace. This is in
some sense the analogon of Proposition 2.24.

Proposition 2.39 1) Let τ be a finite trace. Then there is a unique formula on τ which is
a subformula of every formula on τ .

2) Let τ be a infinite trace. Then there is a unique formula which appears infinitely often
on τ , and is a subformula of cofinitely many formulas on τ . This formula is always a fixpoint
formula.

Proof.

I Proof to be supplied.

qed

Definition 2.40 Let τ be an infinite trace. The formula ηxϕ which appear infinitely often
on τ and is a subformula of all formulas on τ is called the most significant formula of τ ,
notation: msf(τ). Depending on the nature of η we call τ either a µ-trace or a ν-trace. �

This concept enables us to complete the definition of the closure game.

Definition 2.41 Let S = (S,R, V) be a Kripke model and let ξ be a tidy formula in µML.
We define the evaluation game Ec(ξ,S) as the game (G,E,Ω) of which the board consists of
the set Cl(ξ) × S, and the game graph (i.e., the partitioning of Cl(ξ) × S into positions for
the two players, together with the set E(z) of admissible moves at each position), is given in
Table 5.

The winner of an infinite match π = (ξn, sn)n<ω is ∃ if its left projection πL := (ξn)n<ω is
a ν-trace, and ∀ if it is a ν-trace. �

The closure map

The closure operation is one of the most fundamental tools in the theory of the modal µ-
calculus, and in this subsection we discuss some of its properties, the most important being
Proposition 2.45 stating that the closure of a finite set is always finite.

We first gather some basic observations. To start with, while Example 2.38 clearly shows
that the unfolding of a clean formula will generally not be clean, tidyness is preserved.

Proposition 2.42 Let ξ ∈ µML be a tidy formula, and let ϕ be derived from ξ. Then

1) BV (ϕ) ⊆ BV (ξ) and FV (ϕ) ⊆ FV (ξ);
2) ϕ is tidy;
3) if ψ is free for x in ξ then it is also free for x in ϕ.

Lectures on the modal µ-calculus 2-21

Proof. The proofs of the first two items proceed by a straightforward induction on the trace
ξ �C ϕ. For instance, for the preservation of tidyness it suffices to prove that χ is tidy if ♥χ
is so (where ♥ ∈ {3,2}), that χ0 and χ1 are tidy if χ0 ~ χ1 is so (where ~ ∈ {∧,∨}), and
that the unfolding of a tidy formula is tidy again. The proofs of the first two claims are easy,
and the third claim was stated in Proposition 2.19.

I For part (3)) ...

qed

Second, the following proposition states that Cl is indeed a closure operation. We leave
the proof of this proposition as an exercise for the reader.

Proposition 2.43 Cl is a closure operation on the collection of tidy formulas:

1) Φ ⊆ Cl(Φ);
2) Cl is monotone: Φ ⊆ Ψ implies Cl(Φ) ⊆ Cl(Ψ);
3) Cl(Cl(Φ)) ⊆ Cl(Φ).

The proposition below will prove to be very useful. It details how the closure map interacts
with various connectives and formula constructors of the µ-calculus.

Proposition 2.44 Let ξ be a tidy formula. Then the following hold.

1) Let ` P ξ be a literal occurring in ξ, and assume that ` ∈ FV (ξ) in case ` is a proposition
letter. Then ` ∈ Cl(ξ).

2) If ξ = ♥χ, then ξ is tidy and Cl(ξ) = {♥χ} ∪ Cl(χ), where ♥ ∈ {3,2}.
3) If ξ = χ0 ~ χ1 then both χi are tidy and Cl(ξ) = {χ0 ~ χ1} ∪ Cl(χ0) ∪ Cl(χ1), where
~ ∈ {∧,∨}.

4) If ξ = χ[ψ/x], χ is tidy, x ∈ FV (χ) and ψ is free for x in χ, then ψ is tidy and

Cl(ξ) = {ϕ[ψ/x] | ϕ ∈ Cl(χ)} ∪ Cl(ψ).

5) Let ξ = ηx.χ, where η ∈ {µ, ν}; assume that x ∈ FV (χ), and let x∗ be some fresh
variable. Then χ[x∗/x] is tidy and

Cl(ξ) = {ϕ[ηx.χ/x∗] | ϕ ∈ Cl(χ[x∗/x])}. (12)

Before we turn to the proof of Proposition 2.44, we briefly comment on the formulation
of part 5). Note that if ξ is of the form ξ = ηxχ, then χ is not necessarily tidy, so that Cl(χ)
may not be defined. For this reason we use a fresh propositional variable x∗. However, in
case χ is tidy, (12) simplifies to

Cl(ξ) = {ϕ[ηx.χ/x] | ϕ ∈ Cl(χ)}. (13)

Proof. We prove the first and fourth claim of the proposition, leaving the other parts to the
reader. The second and third claim are easy to prove, and part 5) is a fairly direct consequence
of part 4).

2-22 The modal µ-calculus

For the first item, define the height of ` in ξ as the length of the shortest chain of the
form ϕ0 /0 ϕ1 /0 · · · /0 ϕn such that ϕ0 = `, ϕn = ξ, and, in case ` is a propositional variable
p, no formula ϕi is of the form ηpψ. It is then straightforward to prove that ` ∈ Cl(ξ) by
induction on the height of ` in ξ. We leave the details for the reader.

For the proof of 4), assume that x ∈ FV (χ) and that ψ is free for x in χ. By Proposi-
tion 2.42(3), the formula ψ is free for x in every ϕ ∈ Cl(χ). To prove the inclusion ⊆ it suffices
to show that the set {ϕ[ψ/x] | ϕ ∈ Cl(χ)} ∪Cl(ψ)} has the required closure properties. This
is easily verified, and so we omit the details.

For the opposite inclusion, we first show that

ϕ[ψ/x] ∈ Cl(χ[ψ/x]), for all ϕ ∈ Cl(χ), (14)

and we prove this by induction on the trace from ξ to χ. It is immediate by the definitions
that χ[ψ/x] ∈ Cl(χ[ψ/x]), which takes care of the base case of this induction.

In the inductive step we distinguish three cases. First, assume that ϕ ∈ Cl(χ) because the
formula ♥ϕ ∈ Cl(χ), with ♥ ∈ {3,2}. Then by the inductive hypothesis we find ♥ϕ[ψ/x] =
(♥ϕ)[ψ/x] ∈ Cl(χ[ψ/x]); but then we may immediately conclude that ϕ[ψ/x] ∈ Cl(χ[ψ/x])
as well. The second case, where we assume that ϕ ∈ Cl(χ) because there is some formula
ϕ~ ϕ′ or ϕ′ ~ ϕ in Cl(χ) (with ~ ∈ {∧,∨}), is dealt with in a similar way.

In the third case, we assume that ϕ ∈ Cl(χ) is of the form ϕ = ρ[λy.ρ/y], with λ ∈ {µ, ν}
and λy.ρ ∈ Cl(χ). Then inductively we may assume that (λy.ρ)[ψ/x] ∈ Cl(χ[ψ/x]). Now we
make a case distinction: if x = y we find that (λy.ρ)[ψ/x] = λy.ρ, while at the same time
we have ϕ[ψ/x] = ρ[λy.ρ/y][ψ/x] = ρ[λy.ρ/y], so that it follows by the closure properties
that ϕ[ψ/x] ∈ Cl(χ) indeed. If, on the other hand, x and y are distinct variables, then we
find (λy.ρ)[ψ/x] = λy.ρ[ψ/x], and so it follows by the closure properties that the formula
(ρ[ψ/x])

[
λy.ρ[ψ/x]/y

]
belongs to Cl(χ[ψ/x]). But since ψ is free for x in χ, the variable y

is not free in ψ, and so a straightforward calculation shows that (ρ[ψ/x])
[
λy.ρ[ψ/x]/y

]
=

ρ[λy.ρ/y][ψ/x] = ϕ[ψ/x], and so we find that ϕ[ψ/x] ∈ Cl(χ[ψ/x]) in this case as well. This
proves (14).

To see why this implies part 4) of the proposition, it remains to show that Cl(ψ) ⊆ Cl(ξ).
But from x ∈ FV (χ) we infer x ∈ Cl(χ) by part 1), and from this we obtain that ψ =
x[ψ/x] ∈ Cl(ξ). This suffices by Proposition 2.43. qed

As an almost immediate corollary of Proposition 2.54 we find that the closure set of a
µ-calculus formula is always finite.

Proposition 2.45 Let ξ ∈ µML be some formula. Then the set Cl(ξ) is finite.

Proof. We prove the proposition by induction on the length of a formula, as defined in
Definition 2.5. More precisely, we claim that

|Cl(ξ)| ≤ |ξ|` (15)

for every tidy formula ξ ∈ µML.
In case ξ is a formula of length 1 it must be atomic, so (15) is obvious. For the inductive

case we consider a formula ξ with |ξ|` > 1; such a formula cannot be atomic, and so it must

Lectures on the modal µ-calculus 2-23

be a boolean, modal or fixpoint formula. We now make a case distinction, only considering
the cases where ξ is a conjunction or a µ-formula.

First let ξ be of the form ξ = ξ0 ∧ ξ1. By Proposition 2.44(3) we obtain |Cl(ξ)| ≤
|Cl(ξ0)|+ |Cl(ξ1)|, and the induction hypothesis yields |Cl(ξi)| ≤ |ξi|`. Thus we find |Cl(ξ)| ≤
|ξ0|` + |ξ1|` < |ξ|`.

If ξ is of the form ξ = µxχ we further distinguish cases. If x is not free in χ we have
χ[ξ/x] = χ and so Cl(ξ) = {ξ}∪Cl(χ). Thus, using the induction hypothesis on χ, we obtain
|Cl(ξ)| ≤ 1 + |Cl(χ)| ≤ 1 + |χ|` = |ξ|`, as required. On the other hand, if x does occur
freely in χ, by Proposition 2.44(5) we find |Cl(ξ)| ≤ |Cl(χ[x∗/x])|. But since χ[x∗/x] has
the same length as χ we may use the induction hypothesis for it; this gives |Cl(χ[x∗/x])| ≤
|χ[x∗/x]|` = |χ|`. Combining these observations we find that |Cl(ξ)| ≤ |χ|` = |ξ|` − 1 which
obviously suffices to prove (15). qed

Remark 2.46 Note that we can give a much sharper upper bound to the size of a formula’s
closure set than (15) which bounds this size by the length of the formula. In fact, we will
see further on that the number of formulas that can be derived from a formula may be
exponentially smaller than its number of subformulas, and that the first number is a more
suitable size measure than the latter. �

2.6 Basic syntax: continued

I In this section we discuss some further basic syntactic concepts

o size

o alternation depth

o guardedness

o free subformulas

o expansion map

The size of a formula

Turning to computational aspects of the modal µ-calculus, we will see that two measures of
a formulas feature prominently when we are interested in the complexity of algorithms for,
e.g., model checking of a formula on a model, or satisfiability checking of a formula: its size
and its alternation depth. Both notions are in fact quite subtle in that they admit several
non-equivalent definitions.

When it comes to size, there are at least three definitions that look reasonable, at first
sight: in principle one could define the size of a formula as its length, its subformula-size, or
its closure-size.

I For reasons that will be discussed later on, we opt for the third option: closure

size.

Definition 2.47 The size |ξ| of a tidy formula ξ is given by

|ξ| := |Cl(ξ)|,

i.e., it is defined as the number of formulas that are derived from ξ.

2-24 The modal µ-calculus

The subformula-size of a clean formula ξ is defined as follows:

|ξ|d := |Sf (ξ)|,

i.e., |ξ|d is given as the number of subformulas of ξ. �

I Discuss the various options.

I Each definition corresponds to a certain way of representing a formula as a graph-based

structure: the length of a formula corresponds to the number of nodes in its syntax

tree, its subformula-size to the number of ondes in its subformula dag, and its closure-size

to the size of its closure graph.

I Note that while the notion of length applies to all formulas, this is different

for the other two measures.

I It is well-known that the subformula-size of a formula can be exponentially smaller

than its length, further on we will see that, perhaps counterintuitively, the closure-size

of a formula can be exponentially smaller than its subformula size.

Alternation

I For the time being alternation is covered in a separate section.

Guardedness

We finish our sequence of basic syntactic definitions with the notion of guardedness, which
will become important later on.

Definition 2.48 A variable x is guarded in a µMLD-formula ϕ if every occurrence of x in ϕ
is in the scope of a modal operator. A formula ξ ∈ µMLD is guarded if for every subformula
of ξ of the form ηx.δ, x is guarded in δ. �

In the next chapter we will prove that every formula can be effectively rewritten into an
equivalent, clean and guarded formula.

Free subformulas

We now have a closer look at the relation between the sets Sf (ξ) and Cl(ξ). Our first
observation concerns the question, which subformulas of a formula also belong to its closure.
This brings us to the notion of a free subformula.

Definition 2.49 Let ϕ and ψ be µ-calculus formulas. We say that ϕ is a free subformula of
ψ, notation: ϕ Pf ψ, if ψ = ψ′[ϕ/x] for some formula ψ′ such that x ∈ FV (ψ′) and ϕ is free
for x in ψ′. �

Note that in particular all literals occurring in ψ are free subformulas of ψ. The following
characterisation is useful. Recall that we write ϕ�C ψ if ψ ∈ Cl(ϕ), or equivalently, if there
is a trace (possibly of length zero) from ϕ to ψ.

Lectures on the modal µ-calculus 2-25

Proposition 2.50 Let ϕ and ψ be µ-calculus formulas. If ψ is tidy, then the following are
equivalent:

1) ϕ Pf ψ;
2) ϕ P ψ and FV (ϕ) ∩ BV (ψ) = ∅;
3) ϕ P ψ and ψ �C ϕ.

Proof. We will prove the equivalence of the statements 1) - 3) to a fourth statement, viz.:
4) there is a /0-chain ϕ = χ0 /0χ1 /0 · · ·/0χn = ψ, such that no χi has the form χi = ηy.ρi

with y ∈ FV (ϕ).

For the implication 1) ⇒ 4), assume that ϕ Pf ψ, then by definition ψ is of the form
ψ′[ϕ/x] where x ∈ FV (ψ′) and ϕ is free for x in ψ′. But if x ∈ FV (ψ), then it is easy to
see that there is a /0-chain x = χ′0 /0 χ

′
1 /0 · · · /0 χ

′
n = ψ′ such that no χ′i is of the form

χ′i = 〈x.ρ′. Assume for contradiction that one of the formulas χ′i is of the form χi = ηy.ρi
where y ∈ FV (ϕ). Since ϕ is free for x in ψ′ this would mean that there is a formula of
the form 〈x.χ with ηy.ρi P 〈x.χ P ψ′. However, the only candidates for this would be the
formulas χ′j with j > i, and we just saw that these are not of the shape 〈x.ρ′. This provides
the desired contradiction.

For the opposite implication 4)⇒ 1), assume that there is a /0-chain ϕ = χ0 /0χ1 /0 · · ·/0

χn = ψ as in the formulation of 4). One may then show by a straightforward induction that
ϕ Pf χi, for all i ≥ 0.

For the implication 2)⇒ 4), assume that ϕ P ψ and FV (ϕ)∩BV (ψ) = ∅. It follows from
ϕ P ψ that there is a /0-chain ϕ = χ0 /0 χ1 /0 · · · /0 χn = ψ. Now suppose for contradiction
that one of the formulas χi would be of the form χi = ηy.ρi with y ∈ FV (ϕ). Then we would
find y ∈ FV (ϕ) ∩ BV (ψ), contradicting the assumption that FV (ϕ) ∩ BV (ψ) = ∅.

In order to prove the implication 4) ⇒ 3), it suffices to show, for any n, that if (χi)0≤i≤n
is an /0-chain of length n + 1 such that no χi has the form χi = ηy.ρi with y ∈ FV (χ0),
then χn �C χ0. We will prove this claim by induction on n. Clearly the case where n = 0 is
trivial.

For the inductive step we consider a chain

χ0 /0 χ1 /0 · · · /0 χn /0 χn+1

such that no χi has the form χi = ηy.ρi with y ∈ FV (χ0), and we make a case distinction as
to the nature of χn+1. Clearly χn+1 cannot be an atomic formula.

If χn+1 is of the form ρ0 ~ ρ1 with ~ ∈ {∧,∨}, then since χn /0 χn+1, the first formula
must be of the form χn = ρi with i ∈ {0, 1}. But since it follows by the induction hypothesis
that χn �C χ0, we obtain from χn+1 →C χn that χn+1 �C χ0 as required. The case where
χn+1 is of the form ♥ρ with ♥ ∈ {3,2} is handled similarly.

This leaves the case where χn+1 = λy.ρ is a fixpoint formula. Then since χn /0 χn+1

it must be the case that χn = ρ. Furthermore, it follows from the assumption in 4) that
y 6∈ FV (χ0). From this it is not so hard to see that

χ0 /0 χ1[χn+1/y] /0 · · · /0 χn[χn+1/y]

2-26 The modal µ-calculus

is a /0-chain to which the induction hypothesis applies. It follows that χn[χn+1/y] �C χ0.
From this and the observation that χn+1 →C χn[χn+1/y] we find that χn+1 �C χ0 indeed.
This finishes the proof of the implication 4) ⇒ 3).

Finally, it follows from Proposition 2.42(1) that ψ �C ϕ implies FV (ϕ) ∩ BV (ψ) ⊆
FV (ψ) ∩ FV (ψ) = ∅. From this the implication 3) ⇒ 2) is immediate. qed

As a nice application of the notion of a free subformula, the following proposition states
that under some mild conditions, the substitution operation [ξ/x] is in fact injective. We
leave the proof of this proposition as an exercise to the reader.

Proposition 2.51 Let ϕ0, ϕ1 and ξ be formulas such that ξ is free for x in both ϕ0 and ϕ1,
and not a free subformula of either ϕi. Then

ϕ0[ξ/x] = ϕ1[ξ/x] implies ϕ0 = ϕ1. (16)

The expansion map

The most important observation here concerns the existence of a surjective map from Sf (ξ)
to Cl(ξ), at least for a clean formula ξ. Recall that, given a clean formula ξ, we define the
dependency order <ξ on the bound variables of ξ as the least strict partial order such that
x <ξ y if δx / δy and y P δx.

Definition 2.52 Writing BV (ξ) = {x1, . . . , xn}, where we may assume that i < j if xi <ξ xj ,
we define the expansion expξ(ϕ) of a subformula ϕ of ξ as:

expξ(ϕ) := ϕ[ηx1x1.δx1/x1] . . . [ηxnxn.δxn/xn].

That is, we substitute first x1 by ηx1x1.δx1 in ϕ; in the resulting formula, we substitute x2

by ηx2x2.δx2 , etc. If no confusion is likely we write exp(ϕ) instead of expξ(ϕ). A proposition
letter p is active in ϕ if p occurs in δy for some y >ξ x, or equivalently, if p occurs in expξ(ϕ).
�

Without proof we mention the following result.

Proposition 2.53 Let ξ ∈ µML be a clean formula and S a pointed Kripke structure. Then
for all subformulas ϕ P ξ and all states s in S we have

(ϕ, s) ∈Win∃(E(ξ,S)) iff S, s
g expξ(ϕ).

The proposition below states that, for a clean formula xi, the expansiom map is a surjec-
tion from its set of subformulas of ξ to its closure. As an immediate corollary we obtain that
the size of Cl(ξ) is bounded by that of Sf (ξ).

Proposition 2.54 Let ξ be a clean µML-formula. Then

Cl(ξ) = {expξ(ϕ) | ϕ P ξ}. (17)

Proof. For the time being we confine ourselves to a brief sketch. For the inclusion ⊆ it
suffices to show that the set {expξ(ϕ) | ϕ P ξ} has the relevant closure properties. This is a
fairly routine proof. For the opposite inclusion it suffices to prove that expξ(ϕ) ∈ Cl(ξ), for
every ϕ ∈ Sf (ξ), which can be done by a straightforward induction. qed•

Lectures on the modal µ-calculus 2-27

2.7 Alternation depth

After size, the most important complexity measure of modal µ-calculus formulas concerns the
degree of nesting of least- and greatest fixpoint operators in the syntax tree (or dag) of the
formula. Intuitively, the alternation depth of a formula ξ will be defined as the length of a
maximal chain of nested, alternating fixpoint operators. As in the case of size, there is more
than one reasonable way to make this intuition precise

As a first example, consider the formula

ξ1 = µx.(νy.p ∧2y) ∨3x,

expressing the reachability of some state from which only p-states will be reachable. Clearly
this formula features a ν-operator in the scope of a µ-operator, and in the most straightforward
approach one might indeed take this as nesting, and define the (simple) alternation depth of
the formula ξ1 as 2. However, a closer inspection of the formula ξ1 reveals that, since the
variable x does not occur in the subformula νy.p ∧2y, the latter subformula does not really
depend on x. This is different in the following example:

ξ2 = νx.µy.(p ∧3x) ∨3y,

stating the existence of a path on which p is true infinitely often. Here the variable x does
occur in the subformula µy.(p ∧ 3x) ∨ 3y; that is, ξ2 contains a ‘real’ ν/µ-chain of fixpoint
operators. In the definition of alternation depth ad that we shall adopt, we will see that
ad(ξ2) = 2 but ad(ξ1) = 1.

The formal definition of alternation depth involves inductively defined formula collections
Θη
n, where η ∈ {µ, ν} and n is a natural number. Intuitively, the class Θη

n consists of those
µ-calculus formulas where n bounds the length of any alternating nesting of fixpoint operators
of which the most significant formula is an η-formula. We will make this intuition more precise
further on.

For the next definition, recall our notation µ = ν, ν = µ.

Definition 2.55 By natural induction we define classes Θµ
n,Θν

n of µ-calculus formulas. With
η, λ ∈ {µ, ν} arbitrary, we set:

1. all atomic formulas belong to Θη
0;

2. if ϕ0, ϕ1 ∈ Θη
n, then ϕ0 ∨ ϕ1, ϕ0 ∧ ϕ1,3ϕ0,2ϕ0 ∈ Θη

n;

3. if ϕ ∈ Θη
n then ηx.ϕ ∈ Θη

n;

4. if ϕ(x), ψ ∈ Θη
n, then ϕ[ψ/x] ∈ Θη

n, provided that ψ is free for x in ϕ;

5. all formulas in Θλ
n belong to Θη

n+1.

The alternation depth ad(ξ) of a formula ξ is defined as the least n such that ξ ∈ Θµ
n ∩Θν

n.
A formula is alternation free if it has alternation depth at most 1. �

Roughly, we obtain Θµ
0 by closing the set of basic modal formulas under the boolean and

modal operators, and the greatest fixpoint operator; and similarly for Θν
0 . Inductively, we

obtain Θη
n+1 by closing the set Θη

n under the boolean and modal operations, substitution, and
the η-operator.

2-28 The modal µ-calculus

Remark 2.56 I Make connection with Σ/Π- notation (CHECK):

o Σ0,Π0 := Θµ
0 ∩Θν

0

o Σn+1 := Θν
n, Πn+1 := Θµ

n.

�

Example 2.57 Observe that the basic modal (i.e., fixpoint-free) formulas are exactly the
ones with alternation depth zero. Formulas that use µ-operators or ν-operators, but not
both, have alternation depth 1. For example, observe that µx.p∨ x belongs to Θν

0 but not to
Θµ

0 : none of the clauses in Definition 2.55 is applicable. On the other hand, using clause (5)
it is easy to see that µx.p ∨ x ∈ Θν

1 ∩Θµ
1 , from which it is immediate that ad(µx.p ∨ x) = 1.

Consider the formula ξ1 = µx.(νy.p ∧ 2y) ∧ 3x. Taking a fresh variable q, we find
µx.q ∧ 3x ∈ Θν

0 ⊆ Θν
1 and νy.p ∧ 2y ∈ Θµ

0 ⊆ Θν
1 , so that by the substitution rule we have

ξ1 = (µx.q ∧ 3x)[νy.p ∧ 2y/q] ∈ Θν
1 . Similarly we may show that ξ1 ∈ Θµ

1 , so that ξ1 has
alternation depth 1.

The formula ξ2 = νx.µy.(p∧3x)∨3y is of higher complexity. It is clear that the formula
µy.(p ∧ 3x) ∨ 3y belongs to Θν

0 but not to Θµ
0 . From this it follows that ξ2 belongs to Θµ

1

but there is no way to place it in Θν
1 . Hence we find that ad(ξ2) = 2.

As a third example, consider the formula

ξ3 = µx.νy.(2y ∧ µz.(3x ∨ z)).

This formula looks like a µ/ν/µ-formula, in the sense that it contains a nested fixpoint chain
µx/νy/µz. However, the variable y does not occur in the subformula µz.(3x∨ z), and so the
variable z is not dependent on y. Consequently we may in fact consider ξ3 as a µ/ν-formula.
Formally, we observe that µz.3x ∨ z ∈ Θν

0 ⊆ Θν
1 and νz.2y ∧ p ∈ Θµ

0 ⊆ Θν
1 ; from this it

follows by the substitution rule that the formula νy.(2y ∧µz.(3x∨ z)) belongs to the set Θν
1

as well; from this it easily follows that ξ3 ∈ Θν
1 . It is not hard to show that ξ3 6∈ Θµ

1 , so that
we find ad(ξ3) = 2. �

In the propositions below we make some observations on the sets Θη
n and on the notion of

alternation depth. First we show that each class Θµ
n is closed under subformulas and derived

formulas.

Proposition 2.58 Let Let ξ and ϕ be µ-calculus formulas.
1) If ϕ P ξ and ξ ∈ Θη

n then ϕ ∈ Θη
n.

2) If ξ �C ϕ and ξ ∈ Θη
n then ϕ ∈ Θη

n.

Proof. We prove the statement in part 1) by induction on the derivation of ξ ∈ Θη
n. In the

base case of this induction we have that n = 0 and ξ is an atomic formula. But then obviously
all subformulas of ξ are atomic as well and thus belong to Θη

n.
In the induction step of the proof it holds that n > 0; we make a case distinction as to

the applicable clause of Definition 2.55.
In case ξ ∈ Θη

n because of clause (2) in Definition 2.55, we make a further case distinction
as to the syntactic shape of ξ. First assume that ξ is a conjunction, say, ξ = ξ0 ∧ ξ1, with
ξ0, ξ1 ∈ Θη

n. Now consider an arbitrary subformula ϕ of ξ; it is not hard to see that either

Lectures on the modal µ-calculus 2-29

ϕ = ξ or ϕ P ξi for some i ∈ {0, 1}. In the first case we are done, by assumption that ξ ∈ Θη
n;

in the second case, we find ϕ ∈ Θη
n as an immediate consequence of the induction hypothesis.

The cases where ξ is a disjunction, or a formula of the form 2ψ or 3ψ are treated in a similar
way.

If ξ ∈ Θη
n because of clause (3) of the definition, then ξ must be of the form ξ = ηx.χ,

with χ ∈ Θη
n. We proceed in a way similar to the previous case: any subformula ϕ P ξ is

either equal to ξ (in which case we are done by assumption), or a subformula of χ, in which
we are done by one application of the induction hypothesis.

In the case of clause (4), assume that ξ is of the form χ[ψ/x], where ψ is free for x in
χ, and χ and ψ are in Θη

n. Then by the induction hypothesis all subformulas of χ and ψ
belong to Θη

n as well. Now consider an arbitrary subformula ϕ of ξ; it is easy to see that
either ϕ P χ, ϕ P ψ or else ϕ is of the form ϕ = ϕ′[ψ/x] where ϕ′ P χ. In either case it is
straightforward to prove that ϕ ∈ Θη

n, as required.

Finally, in case ξ is in Θη
n because of clause (5), it belongs to Θλ

n−1 for some λ ∈ {µ, ν}.
Then by induction hypothesis all subformulas of ξ belong to Θλ

n−1. We may then apply the
same clause (5) to see that any such ϕ also belongs to the set Θη

n.

To prove part 2), it suffices to show that the class Θη
n is closed under unfoldings, since by

part 1) we already know it to be closed under subformulas. So assume that λx.χ ∈ Θη
n for

some n and λ ∈ {µ, ν}. Because χ P ηx.χ it follows from part 1) that χ ∈ Θλ
n. But then we

may apply clause (4) from Definition 2.55 and conclude that χ[η.χ/x] ∈ Θλ
n. qed

As an immediate corollary of Proposition 2.58 we find the following.

Proposition 2.59 Let ξ and χ be µ-calculus formulas. Then

1) if χ ∈ Sf (ξ) then ad(χ) ≤ ad(ξ);
2) if χ ∈ Cl(ξ) then ad(χ) ≤ ad(ξ).

In the case of a clean formula there is a simple characterisation of alternation depth,
making precise the intuition about alternating chains, in terms of the formula’s dependency
order on the bound variables.

Definition 2.60 Let ξ ∈ µML be a clean formula. A dependency chain in ξ of length d is a
sequence x = x1 · · ·xd such that x1 <ξ x2 · · · <ξ xd; such a chain is alternating if xi and xi+1

have different parity, for every i < d. For η ∈ {µ, ν}, we call an alternating dependency chain
x1 · · ·xd an η-chain if xd is an η-variable, and we let dη(ξ) denote the length of the longest
η-chain in ξ; we write dη(ξ) = 0 if ξ has no such chains. �

Proposition 2.61 Let ξ be a clean formula. Then for any k ∈ ω and η ∈ {µ, ν} we have

ξ ∈ Θη
k iff dη(ξ) ≤ k, (18)

As a corollary, the alternation depth of ξ is equal to the length of its longest alternating
dependency chain.

2-30 The modal µ-calculus

One of the key insights in the proof of this Proposition is that, with ψ free for x in ϕ, any
dependency chain in ϕ[ψ/x] originates entirely from either ϕ or ψ. Recall from Definition 8.2
that we write µ = ν and ν = µ.

Proof. We prove the implication from left to right in (18) by induction on the derivation
that ξ ∈ Θη

k. In the base step of this induction (corresponding to clause (1) in the definition
of alternation depth) ξ is atomic, so that we immediately find dη(ξ) = 0 as required.

In the induction step of the proof, we make a case distinction as to the last applied clause
in the derivation of ξ ∈ Θη

k, and we leave the (easy) cases, where this clause was either (2) or
(3), for the reader.

Suppose then that ξ ∈ Θη
k on the basis of clause (4). In this case we find that ξ = ξ′[ψ/z]

for some formulas ξ′, ψ such that ψ is free for z in ξ′ and ξ′, ψ ∈ Θη
k. By the ‘key insight’

mentioned right after the formulation of the Proposition, any η-chain in the formula ξ is a
η-chain in either ξ′ or ψ. But then by the induction hypothesis it follows that the length of
any such chain must be bounded by k.

Finally, consider the case where ξ ∈ Θη
k on the basis of clause (5). We make a further case

distinction. If ξ ∈ Θη
k−1, then by the induction hypothesis we may conclude that dη(ξ) ≤ k−1,

and from this it is immediate that dη(ξ) ≤ k. If, on the other hand, ξ ∈ Θη
k−1 then the

induction hypothesis yields dη(ξ) ≤ k − 1. But since dη(ξ) ≤ dη(ξ) + 1 we obtain dη(ξ) ≤ k
indeed.

The opposite, right-to-left, implication in (18) is proved by induction on k. In the base
step of this induction we have dη(ξ) = 0, which means that ξ has no η-variables; from this it
is easy to derive that ξ ∈ Θη

0.
For the induction step, we assume as our induction hypothesis that (18) holds for k ∈ ω,

and we set out to prove the same statement for k + 1 and an arbitrary η ∈ {µ, ν}:

if dη(ξ) ≤ k + 1 then ξ ∈ Θη
k+1. (19)

We will prove (19) by an ‘inner’ induction on the length of ξ. The base step of this inner
induction is easy to deal with: if |ξ| = 1 then ξ must be atomic so that certainly ξ ∈ Θη

k+1.
In the induction step we are considering a formula ξ with |ξ| > 1. Assume that dη(ξ) ≤

k+1. We make a case distinction as to the shape of ξ. The only case of interest is where ξ is a
fixpoint formula, say, ξ = ηx.χ or ξ = ηx.χ. If ξ = ηx.χ, then obviously we have dη(ξ) = δη(χ),
so by the inner induction hypothesis we find χ ∈ Θη

k+1. From this we immediately derive that
ξ = ηx.χ ∈ Θη

k+1 as well.
Alternatively, if ξ = ηx.χ, we split further into cases: If χ has an η-chain y1 · · · yk+1 of

length k + 1, then obviously we have x 6∈ FV (δk+1) (where we write δk+1 instead of δyk+1
),

for otherwise we would get x >ξ yk+1, so that we could add x to the η-chain y1 · · · yk+1 and
obtain an η-chain y1 · · · yk+1x of length k + 2. But if x 6∈ FV (δk+1) we may take some fresh
variable z and write ξ = ξ′[ηyk+1.δk+1/z] for some formula ξ′ where the formula ηyk+1.δk+1

is free for z. By our inner induction hypothesis we find that both ξ′ and ηyk+1.δk+1 belong to
Θη
k+1. But then by clause (4) of Definition 2.55 the formula ξ also belongs to the set Θη

k+1.
If, on the other hand, χ has no η-chain of length k + 1, then we clearly have dη(χ) ≤ k.

Using the outer induction hypothesis we infer χ ∈ Θη
k, and so by clause (3) of Definition 2.55

we also find ξ = ηx.χ ∈ Θη
k. Finally then, clause (5) gives ξ ∈ Θη

k+1. qed

Lectures on the modal µ-calculus 2-31

One may prove a similar (but somewhat more involved) characterisation in the wider
setting of tidy formulas, as we will see further on.

2.8 The cover modality and disjunctive formulas

In the theory of the modal µ-calculus, a fundamental role is played by the so-called disjunc-
tive formulas. These are built using the cover modality discussed in Section 1.7, and, as
discussed there in the setting of basic modal logic, characterised by a severely restricted use
of conjunctions.

I For the time being we confine attention to the monomodal case

We first introduce the full language of the nabla-based version of the modal µ-calculus.
This is simply the extension of the language ML∇ with fixpoint operators. Recall that in this
language we work with the finitary versions of conjunction and disjunction.

Definition 2.62 The formulas of the language µML∇ are given by the following grammar:

ϕ ::= p | p |
∨

Φ |
∧

Φ | ∇Φ | µxϕ | νxϕ

where p and x are propositional variables, Φ ⊆ω µML∇, and the formation of the formulas
ηxϕ is subject to the proviso that there are no occurrences of the literal x in ϕ. �

As in the basic (fixpoint-free) case, the only conjunctions that we allow in a disjunctive
formula are of the form α • Φ, which stands for the conjunction (

∧
α) ∧ ∇Φ. Note as well

that in the definition of disjunctive formulas it is convenient to make an a priori distinction
between free and bound variables; roughly, the idea is that the free variables can only occur
(positively or negatively) among the proposition letters that occur to the left of the bullet
conjunctions, while the bound variables can occur anywhere else but not there.

Definition 2.63 Let P be a finite set of propositional variables. To define the set µDML(P)
of (monomodal) disjunctive formulas in P we start with the formulas given by the following
grammar:

ϕ ::= x |
∨

Φ | α • Φ | µxϕ | νxϕ

where x is a propositional variable not in P, Φ is a finite set of formulas from this grammar,
α is a finite set of literals over P, and the formulas µxϕ and νxϕ can only be formed if is ϕ
guarded in x. The set µDML(P) consists of all formulas ξ that meet this pattern and satisfy
the condition that FV (ξ) ⊆ P.

We let µDML be the set of formulas that are disjunctive in some set P. �

I Note that disjunctive formulas are tidy and guarded.

In practice we will often pretend that atomic formulas, and in fact all propositional for-
mulas, are disjunctive. This is justified by the following example.

2-32 The modal µ-calculus

Example 2.64 As in the basic case, the constant ⊥ can be seen as an abbreviation of the
disjunctive formula

∨
∅. Different from the basic case, however, we can do without the

constant > as a primitive constant either, since the presence of the greatest fixpoint operator
enables us to write

> ≡ νx (∅ •∅ ∨∅ • {x}).

Literals do not qualify as disjunctive formulas, but any literal ` is equivalent to a disjunctive
formula as well:

` ≡ {`} • {>} ∨ {`} •∅.

For this reason we may in practice pretend that atomic formulas, and in fact all propositional
formulas, are disjunctive.

Another example of a disjunctive formulas is µx
(
{p, q}•

{
x, νy

(
{p}•{x∨y}

)})
, but not

its subformula {p, q} •
{
x, νy

(
{p} • {x∨ y}

)}
(since in the latter formula x is free, and hence,

it may not occur in the set to the right of either of the bullet conjunctions). Further examples

of non-disjunctive formulas are µxx (unguarded) and µx
(
{p, q} •

{
x, νy

(
{p, x} • {x,>}

)})
(here the subformula {p, x} • {x,>} is not admissible since x, being a bound variable, may
not occur in the set to the left of the bullet conjunction). �

Turning to the semantics of disjunctive formulas, below we introduce the evaluation game
for this language. For this definition we recall that a relation Z ⊆ S × S′ is full on some pair
(U,U ′) ∈ ℘(S)× ℘(S′) if U ⊆ Dom(Z) and U ′ ⊆ Ran(Z), or, in other words, if every u ∈ U
is related by Z to some u′ ∈ U ′, and vice versa.

Position Player Admissible moves

(
∨

Φ, s) ∃ {(ϕ, s) | ϕ ∈ Φ}
(α • Φ, s) ∀ {(

∧
α, s), (∇Φ, s)}

(
∧
α, s) with s

∧
α ∀ ∅

(
∧
α, s) with s 6

∧
α ∃ ∅

(∇Φ, s) ∃ {Z ⊆ Φ×R[s] | Z is full on Φ and R[s]}
Z ⊆ µDML(P)× S ∀ Z
(ηxx.δx, s) − {(δx, s)}
(x, s), with x ∈ BV (ξ) − {(δx, s)}

Table 6: Evaluation game for disjunctive formulas (subformula version)

Definition 2.65 The positions and admissible moves of the evaluation game for clean dis-
junctive formulas are given in Table 6. The winning conditions are as in the evaluation games
for arbitrary µML-formulas. �

Most of the moves of the evaluation game speak for themselves (given the interpretation
of α •Φ as (

∧
α)∧∇Φ). A minor deviation from the earlier evaluation games is that here we

break off a match immedidately if we reach a position of the form (
∧
α, s) where α is a set of

literals, rather than breaking down the conjunction in subsequent moves.

Lectures on the modal µ-calculus 2-33

What makes the evaluation game for disjunctive formulas special is the kind of move that
∃ makes at a position of the form (∇Φ, s): here she picks a relation Z ⊆ µDML(P) × S of
witnesses (with the requirement that Z is full on Φ and R[s]). Such a binary relation Z thus
forms a new type of position, which is not a formula-state pair, but rather, a set of such pairs.
These relational positions all belong to ∀, and his task at a position Z is simply to pick a
witness from Z, that is, a pair (ψ, t) in Z. Of course this is in accordance with the semantic
meaning of the cover modality.

In the following definition and propositions we isolate the key game-theoretic property
of disjunctive formulas. Recall that, for a given strategy f in some evaluation game E(ξ,S)
starting at position (ξ, s), we call a position (ϕ, t) f -reachable if there is some f -guided match
in which the position (ϕ, t) is reached. We say that the state t is f -reachable if there is some
formula ϕ such that the position (ϕ, t) is f -reachable.

Definition 2.66 Let ξ be a disjunctive formula, and let (S, s) be a pointed model.
A strategy f for ∃ in the evaluation game E(ξ,S)@(ξ, s) is called separating if at every

f -reachable position of the form (∇Φ, s), f picks a relation Z ⊆ Φ×R[s] such that for every
t ∈ R[s] there is exactly one ϕ ∈ Φ such that (ϕ, t) ∈ Z.

A strategy f for ∃ in E(ξ,S)@(ξ, s) is thin if for every t ∈ S, if t is f -reachable, then there
is at most one formula ϕ of the form α • Φ such that (ϕ, t) is f -reachable.

If f is a separating strategy which is winning for ∃ in E(ξ,S)@(ξ, s) then we say that ξ is
strongly satisfied in S at s, notation: S, s
s ξ. �

The name ‘separating’ is chosen for obvious reasons: if, at position (∇Φ, s), ∃ picks a
functional relation Z, she effectively separates the elements of Φ from one another, in the
sense that there are no two witnesses (ϕ, t), (ϕ′, t) in Z with ϕ 6= ϕ′. It is easy to see that
separating winning strategies on tree models are thin.

Proposition 2.67 Let ξ be a disjunctive formula, and let (S, s) be a tree model. If f is a
separating winning strategy for ∃ in E(ξ,S)@(ξ, s) then f is thin.

Strong satisfaction is a very strong kind of satisfaction indeed, and in later chapters we
will use it as a key model-theoretic tool. The thinness of separating strategies on tree models
will turn out to be an extremely useful property. The fundamental model-theoretic property
of disjunctive formulas is that without loss of generality we may always assume that winning
strategies are separating, provided that we allow ourselves to move to a bisimilar model.

I The proof of this theorem hinges on the semantics of the cover modality.

Theorem 2.68 Let ξ be a disjunctive formula, and let (S, s) be a pointed model. Then the
following are equivalent:

1) S, r
 ξ
2) S′, r′
s ξ for some pointed tree model such that S, r ↔ S′, r′.

Proof. (Sketch) We may focus on the direction from left to right, since the opposite direction
is an immediate consequence of bisimulation invariance. So assume that S, s
 ξ, where ξ

2-34 The modal µ-calculus

is disjunctive, and let f be a winning strategy for ∃ in the evaluation game E starting from
position (ξ, s). Without loss of generality we may assume that f is positional. Let k be the
maximal size of a set Φ such that ∇Φ is a subformula of ξ.

I (Define notion of subformula, ensure that
∧
α and ∇Φ are direct subformulas of

α • Φ.)

We leave it for the reader to construct a tree model S′ with root r′, together with a bounded
morphism g : S′ → S such that every non-root node s′ of S′ has at least k many siblings t′

such that g(t′) = g(s′).

Our goal will be to supply ∃, in the evaluation game of ξ on (S′, r′), with a separating
winning strategy f ′ which is closely linked to f . The key claim in our proof will be the
observation that the gain in branching degree enables her to separate the elements of any set
Φ, in case the formula (∇Φ, s) is encountered during the play.

Claim 1 Let s ∈ S and s′ ∈ S′ be such that g(s′) = s. Let ∇Φ be a subset of ξ, and let
Z ⊆ Φ×R[s] be full on Φ and R[s]. Then there is a separating relation Z ′ ⊆ Φ×R′[s′] such
that Z ′ is full on Φ and R′[s′] and (ϕ, g(t′)) ∈ Z whenever (ϕ, t′) ∈ Z ′.

Proof of Claim Given a successor t ∈ R[s], we define Φt := {ϕ ∈ Φ | (ϕ, t) ∈ Z}; that is,
Φt consists of all formulas that ∃ connects to t with her choice of the relation Z. Furthermore
let At := R[s′] ∩ g−1(t) consist of all successors of s′ that g maps to t; then our assumption
on g states that k ≤ |At|.

Clearly then we have |Φt| ≤ |Φ| ≤ k ≤ |At|, so that we may assume the existence of a
surjection

ζt : At → Φt,

and since the sets At partition the set R′[s′], we may easily combine the maps ζt into a single
map

ζ : R′[s′]→ Φ,

simply by putting ζ(t′) := ζg(t′)(t
′). It is then straightforward to verify that the relation Z ′

given by

Z ′ := {(t′, ζ(t′) | t′ ∈ R′[s′]}

satisfies the requirements of the Claim. J

On the basis of this claim we will be able to provide ∃ with a winning strategy in the
evaluation game in E ′ := E(ξ,S′).

Claim 2 ∃ has a strategy f ′ in E ′ which guarantees that every f ′-guided play π = (ϕ1, s
′
1) · · · (ϕn, s′n)

starting at position (ϕ1, s
′
1) = (ξ, r′) is such that the sequence πg = (ϕ1, g(s′1)) · · · (ϕn, g(s′n))

is an f -guided match of E starting at position (ξ, r).

Proof of Claim Since we assumed that ∃’s strategy f in E is positional, we will in fact also
be able to provide her with a positional strategy in E ′. The definition of f ′ is straightforward:

Lectures on the modal µ-calculus 2-35

• At a position of the form (ϕ0 ∨ ϕ1, s
′), check whether the position (ϕ0 ∨ ϕ1, g(s′)) is

winning for ∃ in E . If so, in E ′ at position (ϕ0 ∨ϕ1, g(s′)), f ′ picks the same disjunct as
f does at the position (ϕ0 ∨ ϕ1, g(s′)). If not, f ′ picks ϕi randomly.

• At a position of the form (∇Φ, s′), check whether the position (∇Φ, g(s′)) is winning
for ∃ in E . If so, suppose that Z ⊆ Φ×R[g(s′)] is the relation picked by f ; then ∃ picks
some arbitrary but fixed relation Z ′ ⊆ Φ × R′[s′] as given by Claim 1. If not, f picks
some random legitimate relation Z ′ (unless she gets stuck).

The statement of the Claim can then be proved by a straightforward induction on the length
n of the f ′-guided play π, with the note that (for the well-definedness and legitimacy of f ′)
we also need to show that the last position (ϕn, s

′
n) of π is such that (ϕn, g(s′n)) is winning

for f in E . J

Now assume that in E ′, ∃ plays some arbitrary but fixed strategy f ′ as given by Claim 2.
It easily follows from the same claim (and the assumption that f is winning for her in E) that
playing f ′ she will never get stuck. This means that she wins every finite f ′-guided E ′-match.

To see that f ′ is winning for her in E ′, consider an arbitary infinite f ′-guided match
π = (ϕn, s

′
n)n<ω starting at (ϕ0, s

′
0) = (ξ, r′). It follows from Claim 2 that the sequence

πg = (ϕn, g(s′n))n<ω is an f -guided E-match, and thus, won by ∃. But then clearly π, which
features exactly the same infinite sequence of formulas as πg, is also winning for her.

Finally it is immediate from its definition and Claim 1 that f ′ is separating. qed

Since the cover modality can be expressed in terms of the box and diamond operators, it
is obvious that µDML can be thought of as a fragment of the full language of the µ-calculus.
One of the fundamental theorems in the theory of the modal µ-calculus is that µDML has the
same expressive power as the full language. This equivalence is in fact effective, as stated by
the next theorem.

Theorem 2.69 There are effective procedures transforming an arbitrary formula ϕ ∈ µML
into an equivalent disjunctive formula, and vice versa. As a corollary, the languages µML,
µML∇ and µDML all have the same expressive power.

The proof of Theorem 2.68 will be given in a later chapter.

Notes

The modal µ-calculus was introduced by D. Kozen [15]. Its game-theoretical semantics goes
back to at least Emerson & Jutla [11] (who use alternating automata as an intermediate step).
As far as we are aware, the bisimulation invariance theorem, with the associated tree model
property, is a folklore result. The bounded tree model property is due to Kozen & Parikh [17].

There are various ways to make the notion of alternation depth precise; we work with the
most widely used definition, which originates with Niwiński [22].

I More notes to be supplied.

2-36 The modal µ-calculus

Exercises

Exercise 2.1 Express in words the meaning of the following µ-calculus formula:

νx.µy.(p ∧2x) ∨ (p ∧2y).

Exercise 2.2 (defining modal µ-formulas) Give a modal µ-formula ϕ(p, q) such that for
all transition systems S, and all states s0 in S:

S, s0
g ϕ(p, q) iff there is a path s0Rs1 . . . Rsn (n ≥ 0) such that S, sn
g p
and S, si
g q for all i with 0 ≤ i < n.

Exercise 2.3 (characterizing winning strategies)
A board is a structure B = 〈B0, B1, E〉 such that B0∩B1 = ∅ and E ⊆ B2, where B = B0]B1

is a set of objects called positions. A match on B consists of the players 0 and 1 moving a
token from one position to another, following the edge relation E. Player i is supposed to
move the token when it is situated on a position in Bi. Suppose in addition that B is also
partitioned into green and red positions, B = G]R.

We will use a modal language to describe this structure, with the modalities being in-
terpreted by the edge relation E, the proposition letter p0 and r referring to the positions
belonging to player 0, and the red positions, respectively. That is, V (p0) = B0 and V (r) = R.

(a) Consider the game where player 0 wins as soon as the token reaches a green position.
(That is, all infinite matches are won by player 1. Player 0 wins if player 1 gets stuck, or
if the token reaches a green position; player 1 wins a finite match if player 0 gets stuck.)
Show that the formula ϕa = µx.r ∨ (p0 ∧ 3x) ∨ (p0 ∧ 2x) characterizes the winning
positions for player 0 in this game, in the sense that for any position b ∈ B, we have

B, V, b
g ϕ iff player 0 has a w.s. in the game starting at position b.

(b) Now consider the game where player 0 wins if she manages to reach a green position
infinitely often. (More precisely, infinite matches are won by 0 iff a green position is
reached infinitely often; finite matches are lost by a player is he/she gets stuck.) Give
a formula ϕb that characterizes the winning positions in this game.

Exercise 2.4 (characterizing fairness) Let D = {a, b} be the set of atomic actions, and
consider the following formula ξ, with subformulas as indicated:

ξ = νx.µy.νz.

δ︷ ︸︸ ︷
2ax︸︷︷︸
α1

∧ (2a⊥ ∨2by)︸ ︷︷ ︸
α2

∧ 2bz︸︷︷︸
α3

Fix an LTS S = (S,Ra, Rb, V). We say that the transition a is enabled at state s of S if
S, s
g 3a>.

Show that ξ expresses some kind of fairness condition, i.e., the absence of a path starting
at s on which a is enabled infinitely often, but executed only finitely often. More precisely,

prove that S, s
g ξ iff there is no path of the form s0
d0→ s1

d1→ s2 · · · such that s = s0,
di ∈ {a, b} for all i, a is enabled at si for infinitely many i, but di = a for only finitely many
i.

Lectures on the modal µ-calculus 2-37

Exercise 2.5 (filtration) Recall that, given a finite, closed set of formulas Σ and a model
S = (S,R, V), we say that a model S′ = (S′, R′, V ′) is a filtration of S through Σ if there is a
surjective map f : S → S′ such that:

a) for all proposition letters p ∈ Σ: u ∈ V (p) iff f(u) ∈ V ′(p).
b) uRv implies f(u)R′f(v)
c) if 3ϕ ∈ Σ and f(u)R′f(v), then S, v
g ϕ implies S, u
g 3ϕ
d) f(u) = f(v) if and only if u and v satisfy precisely the same formulas in Σ.
Say that a formula ξ of the µ-calculus admits filtration if, for every model S, there is a

finite set of formulas Σ containing ξ, and a filtration S′ of S through Σ such that S′, f(s)
g ϕ
iff S, s
g ϕ, for each s in S and each ϕ ∈ Σ.

Prove that the formula µx.2x does not admit filtration.

Exercise 2.6 We write ϕ |= ψ to denote that ψ is a local consequence of ϕ, that is, if for all
pointed Kripke models (S, s) it holds that S, s
g ϕ implies S, s
g ψ.

(a) Show that µx.νy. α(x, y) |= νy.µx. α(x, y), for all formulas α.

(b) Show that µx.µy. α(x, y) ≡ µy.µx. α(x, y), for all formulas α.

(c) Show that µx.(x ∨ γ(x)) ∧ δ(x) |= µx.γ(x) ∧ δ(x), for all formulas γ, δ.

Exercise 2.7 (boolean µ-calculus) Show that the least and greatest fixpoint operators do
not add expressive power to classical propositional logic, or, in other words, that the modality-
free fragment of the modal µ-calculus is expressively equivalent to classical propositional logic.
(Hint: use Exercise 2.6(c).)

Exercise 2.8 (co-induction) Let ϕ,ψ be any two clean formulas of the modal µ-calculus
such that ψ is free for x in ϕ; it will also be convenient to assume that ψ is not a subformula
of ϕ. Show by a game semantic argument that the following so-called ‘co-induction principle’
holds for greatest fixpoints: if ψ |= ϕ[ψ/x], then ψ |= νx.ϕ also. Here we write ‘|=’ for the
local consequence relation, as in Exercise 2.6.

Exercise 2.9 (injectivity of substitution) Prove Proposition 2.51.

3 Fixpoints

The game-theoretic semantics of the modal µ-calculus introduced in the previous chapter has
some attractive characteristics. It is intuitive, relatively easy to understand, and, as we shall
see further on, it can be used to prove some important properties of the formalism. However,
it has some drawbacks as well. For instance, the evaluation games of the previous chapter
have only been defined for formulas that are either clean or tidy. The game semantics can
be extended to arbitrary formulas but this will make the game somewhat more involved, in
particular if we want to define evaluation games for formulas that are not in negation normal
form.

Furthermore, the game-theoretical semantics is not compositional ; that is, the meaning
of a formula is not defined in terms of the meanings of its subformulas. These shortcomings
vanish in the algebraic semantics that we are about to introduce. In order to define this term,
we first consider an example.

Example 3.1 Recall that in Example 2.1, we informally introduced the formula µx.p∨3dx
as the smallest fixpoint or solution of the ‘equation’ x ≡ p ∨3dx.

To make this intuition more precise, we have to look at the formula δ = p ∨ 3dx as an
operation. The idea is that the value (that is, the extension) of this formula is a function
of the value of x, provided that we keep the value of p constant. Varying the value of x
boils down to considering ‘x-variants’ of the valuation V of S = 〈S,R, V 〉. Let, for X ⊆ S,
V [x 7→ X] denote the valuation that is exactly like V apart from mapping x to X, and let
S[x 7→ X] denote the x-variant 〈S,R, V [x 7→ X]〉 of S. Then [[δ]]S[x 7→X] denotes the extension
of δ in this x-variant. It follows from this that the formula δ induces the following function
δSx on the power set of S:

δSx(X) := [[δ]]S[x7→X].

In our example we have

δSx(X) = V (p) ∪ 〈R〉(X).

Now we can make precise why µx.p∨3dx is a fixpoint formula: its extension, the set [[µx.p∨
3dx]], is a fixpoint of the map δSx:

[[µx.p ∨3dx]] = V (p) ∪ 〈R〉([[µx.p ∨3dx]]).

In fact, as we shall see in this chapter, the formulas µx.p∨3dx and νx.p∨3dx are such that
their extensions are the least and greatest fixpoints of the map δSx, respectively. �

It is worthwhile to discuss the theory of fixpoint operators at a more general level than
that of modal logic. Before we turn to the definition of the algebraic semantics of the modal
µ-calculus, we first discuss the general fixpoint theory of monotone operations on complete
lattices.

3-2 Fixpoints

3.1 General fixpoint theory

Basics

In this chapter we assume some familiarity2 with partial orders and lattices (see Appendix A).

Definition 3.2 Let P and P′ be two partial orders and let f : P → P ′ be some map. Then f
is called monotone or order preserving if f(x) ≤′ f(y) whenever x ≤ y, and antitone or order
reversing if f(x) ≥′ f(y) whenever x ≤ y. �

Definition 3.3 Let P = 〈P,≤〉 be a partial order, and let f : P → P be some map. Then
an element p ∈ P is called a prefixpoint of f if f(p) ≤ p, a postfixpoint of f if p ≤ f(p), and
a fixpoint if f(p) = p. The sets of prefixpoints, postfixpoints, and fixpoints of f are denoted
respectively as PRE(f), POS(f) and FIX(f).

In case the set of fixpoints of f has a least (respectively greatest) member, this element
is denoted as LFP.f (GFP.f , respectively). These least and greatest fixpoints may also be
called extremal fixpoints. �

The following theorem is a celebrated result in fixpoint theory.

Theorem 3.4 (Knaster-Tarski) Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C

be monotone. Then f has both a least and a greatest fixpoint, and these are given as

LFP.f =
∧

PRE(f), (20)

GFP.f =
∨

POS(f). (21)

Proof. We will only prove the result for the least fixpoint, the proof for the greatest fixpoint
is completely analogous.

Define q :=
∧

PRE(f), then we have that q ≤ x for all prefixpoints x of f . From this
it follows by monotonicity that f(q) ≤ f(x) for all x ∈ PRE(f), and hence by definition of
prefixpoints, f(q) ≤ x for all x ∈ PRE(f). In other words, f(q) is a lower bound of the set
PRE(f). Hence, by definition of q as the greatest such lower bound, we find f(q) ≤ q, that
is, q itself is a prefixpoint of f .

It now suffices to prove that q ≤ f(q), and for this we may show that f(q) is a prefixpoint
of f as well, since q is by definition a lower bound of the set of prefixpoints. But in fact, we
may show that f(y) is a prefixpoint of f for every prefixpoint y of f — by monotonicity of f
it immediately follows from f(y) ≤ y that f(f(y)) ≤ f(y). qed

Another way to obtain least and greatest fixpoints is to approximate them from below
and above, respectively.

Definition 3.5 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be some map.

Then by ordinal induction we define the following maps on C:

f0
µ(c) := c, f0

ν (c) := c,

fα+1
µ (c) := f(fαµ (c)) fα+1

ν (c) := f(fαν (c)),

fλµ (c) :=
∨
α<λ f

α
µ (c) fλν (c) :=

∧
α<λ f

α
ν (c),

2Readers lacking this background may take abstract complete lattices to be concrete power set algebras.

Lectures on the modal µ-calculus 3-3

where λ denotes an arbitrary limit ordinal. �

Proposition 3.6 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be monotone.

Then f is inductive, that is, fαµ (⊥) ≤ fβµ (⊥) for all ordinals α and β such that α < β.

Proof. We leave this proof as an exercise to the reader. qed

Given a set C, we let |C| denote its cardinality or size.

Corollary 3.7 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be monotone.

Then there is some α of size at most |C| such that LFP.f = fαµ (⊥).

Proof. By Proposition 3.6, f is inductive, that is, fαµ (⊥) ≤ fβµ (⊥) for all ordinals α and β
such that α < β. It follows from elementary set theory that there must be two ordinals α, β of
size at most |C| such that fαµ (⊥) = fβµ (⊥). From the definition of the approximations it then
follows that there must be an ordinal α such that fαµ (⊥) = fα+1

µ (⊥), or, equivalently, fαµ (⊥)

is a fixpoint of f . To show that it is the smallest fixpoint, one may prove that fβµ (⊥) ≤ LFP.f
for every ordinal β. This follows from a straightforward ordinal induction. qed

Definition 3.8 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be monotone.

The least ordinal α such that fαµ (⊥) = fα+1
µ (⊥) is called the unfolding ordinal of f . �

3.2 Boolean algebras

In the special case that the complete lattice is in fact a (complete) boolean algebra, there is
more to be said.

Dual maps

In the case of monotone maps on complete boolean algebras, the least and greatest fixed
points become interdefinable, using the notion of (boolean) duals of maps.

Definition 3.9 A complete boolean algebra is a structure B = 〈B,
∨
,
∧
,−〉 such that 〈B,

∨
,
∧
〉

is a complete lattice and 〈B,∨,∧,−,⊥,>〉 is a boolean algebra, where ∨ and ∧ are the binary
versions of

∨
and

∧
, respectively, and ⊥ :=

∨
∅, > :=

∧
∅. �

In a boolean algebra B, the complementation operation − : B → B is an antitone (order-
reversing) map such that x∧−x = ⊥ and x∨−x = > for all x ∈ B. If B is complete it holds
that −

∨
X =

∧
{−x | x ∈ X} and −

∧
X =

∨
{−x | x ∈ X}.

Definition 3.10 Let B = 〈B,
∨
,
∧
,−〉 be a complete boolean algebra. Given a map f : B →

B, the function f∂ : B → B given by

f∂(b) := −f(−b).

is called the (boolean) dual of f . �

3-4 Fixpoints

Proposition 3.11 Let B = 〈B,
∨
,
∧
,−〉 be a complete boolean algebra, and let g : B → B be

monotone. Then g∂ is monotone as well, (g∂)∂ = g, and

LFP.g∂ = −GFP.g,

GFP.g∂ = −LFP.g.

Proof. We only prove that LFP.g∂ = −GFP.g, leaving the other parts of the proof as
exercises to the reader.

First, note that by monotonicity of g∂ , the Knaster-Tarski theorem gives that

LFP.g∂ =
∧

PRE(g∂).

But as a consequence of the definitions, we have that

b ∈ PRE(g∂) ⇐⇒ −b ∈ POS(g).

From this it follows that

LFP.g∂ =
∧
{b | −b ∈ POS(g)}

=
∧
{−a | a ∈ POS(g)}

= −
∨

POS(g)

= −GFP.g

which finishes the proof of the Theorem. qed

Further on we will see that Proposition 3.11 allows us to define negation as an abbreviated
operator in the modal µ-calculus.

Games

In case the boolean algebra in question is in fact a power set algebra, a nice game-theoretic
characterization of least and greatest fixpoint operators can be given.

Definition 3.12 Let S be some set and let F : ℘(S) → ℘(S) be a monotone operation.
Consider the unfolding games Uµ(F) and Uν(F). The positions and admissible moves of
these two graph games are the same, see Table 7.

Position Player Admissible moves

s ∈ S ∃ {A ∈ ℘(S) | s ∈ F (A)}
A ∈ ℘(S) ∀ A

Table 7: Unfolding games for F : ℘(S)→ ℘(S)

The winning conditions of finite matches are standard (the player that got stuck loses
the match). The difference between Uµ(F) and Uν(F) shows up in the winning conditions of
infinite matches: ∃ wins the infinite matches of Uν(F), but ∀ those of Uµ(F). �

Lectures on the modal µ-calculus 3-5

Observe that the positions in a match of the unfolding game alternate between ‘state
positions’ s, where ∃ needs to pick a subset A ⊆ S such that s belongs to F (A), and ‘subset
positions’ A, of which ∀ has to pick an element.

Example 3.13 In fact, we have already seen an example of the unfolding game Uν in the
bisimilarity game of Definition 1.26. Given two Kripke models S and S′, consider the map
F : ℘(S × S′) given by

F (Z) := {(s, s′) ∈ S × S′ | Z is a local bisimulation for s and s′},

then it is straightforward to verify that B(S,S′) is nothing but the unfolding game Uν(F). �

The following proposition substantiates the slogan that ‘ν means unfolding, µ means finite
unfolding’.

Theorem 3.14 Let S be some set and let F : ℘(S)→ ℘(S) be a monotone operation. Then

1. GFP.F = {s ∈ S | s ∈Win∃(Uν(F))},

2. LFP.F = {s ∈ S | s ∈Win∃(Uµ(F))},

Proof. For the inclusion ⊇ of part 1, it suffices to prove that W := S ∩Win∃(Uν(F)) is a
postfixpoint of F :

W ⊆ F (W). (22)

Let s be an arbitrary point in W , and suppose that ∃’s winning strategy tells her to choose
A ⊆ S at position s. Then no matter what element s1 ∈ A is picked by ∀, ∃ can continue the
match and win. Hence, all elements of A are winning positions for ∃. But from A ⊆ W it
follows that F (A) ⊆ F (W), and by the legitimacy of ∃’s move A at s it holds that s ∈ F (A).
We conclude that s ∈ F (W), which proves (22).

For the converse inclusion ⊆ of part 1 of the proposition, take an arbitrary point s ∈
GFP.F . We need to provide ∃ with a winning strategy in the unfolding game Uν(F) starting
at s. This strategy is actually as simple as can be: ∃ should always play GFP.F . Since
GFP.F = F (GFP.F), this strategy prescribes legitimate moves for ∃ at every point in GFP.F .
And, if she sticks to this strategy, ∃ will stay alive forever and thus win the match, no matter
what ∀’s responses are.

For the second part of the theorem, let W denote the set W := S∩Win∃(Uµ(F)) of states
in S that are winning positions for ∃ in Uµ(F). We first prove the inclusion W ⊆ LFP.F .
Clearly it suffices to show that all points outside the set LFP.F are winning positions for ∀.

Consider a point s 6∈ LFP.F . If s 6∈ F (A) for any A ⊆ S then ∃ is stuck, hence loses
immediately, and we are done. Otherwise, suppose that ∃ starts a match of Uµ(F) by playing
some set B ⊆ S with s ∈ F (B). We claim that B is not a subset of LFP.F , since otherwise we
would have F (B) ⊆ F (LFP.F) ⊆ LFP.F ; which would contradict the fact that s 6∈ LFP.F .
But if B 6⊆ LFP.F then ∀ may continue the match by choosing a point s1 ∈ B \LFP.F . Now
∀ can use the same strategy from s1 as he used from s, and so on. This strategy guarantees
that either ∃ gets stuck after finitely many rounds (in case ∀ manages to pick an sn for which

3-6 Fixpoints

there is no A such that sn ∈ F (An)), or else the match will last forever. In both cases ∀ wins
the match.

For the opposite inclusion ⊆ of part 2, it suffices to show that W is a prefixpoint of F ,
that is, F (W) ⊆ W . For that purpose, let s ∈ S be such that s ∈ F (W). In order to show
that s ∈ W we need to provide ∃ with a winning strategy in Uµ(F), starting at s. But this
is straightforward: since s ∈ F (W), the set W itself is a legitimate move for ∃ at position s.
Then, after ∀ picks some element t ∈W , she can simply continue with her strategy in Uµ(F)
that is winning when starting at position t. qed

3.3 Vectorial fixpoints

Suppose that we are given a finite family {C1, . . . ,Cn} of complete lattices, and put C =∏
1≤i≤nCi. Given a finite family of monotone maps f1, . . . , fn with fi : C → Ci, we may

define the map f : C → C given by f(c) := (f1(c), . . . , fn(c)). Monotonicity of f is an easy
consequence of the monotonicity of the maps fi separately, and so by completeness of C, f
has a least and a greatest fixpoint. In this context we will also use vector notation, for
instance writing

µ


x1

x2
...
xn

 .


f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fn(x1, . . . , xn)


for LFP.f . An obvious question is whether one may express these multi-dimensional fixpoints
in terms of one-dimensional fixpoints of maps that one may associate with f1, . . . , fn.

The answer to this question is positive, and the basic observation facilitating the compu-
tation of multi-dimensional fixpoints is the following so-called Bekič principle.

Proposition 3.15 Let D1 and D2 be two complete lattices, and let fi : D1 × D2 → Di for
i = 1, 2 be monotone maps. Then

η

(
x
y

)
.

(
f1(x, y)
f2(x, y)

)
=

(
ηx.f1(x, ηy.f2(x, y))
ηy.f2(ηx.f1(x, y), y)

)
where η uniformly denotes either µ or ν.

Proof. Define D := D1 × D2, and let f : D → D be given by putting f(d) := (f1(d), f2(d)).
Then f is clearly monotone, and so it has both a least and a greatest fixpoint.

By the order duality principle it suffices to consider the case η = µ of least fixed points
only. Suppose that (a1, a2) is the least fixpoint of f , and let b1 and b2 be given by{

b1 := µx.f1(x, µy.f2(x, y)),
b2 := µy.f2(µx.f1(x, y), y).

Then we need to show that a1 = b1 and a2 = b2.
By definition of (a1, a2) we have{

a1 = f1(a1, a2),
a2 = f2(a1, a2),

Lectures on the modal µ-calculus 3-7

whence we obtain {
µx.f1(x, a2) ≤ a1 and
µy.f2(a1, y) ≤ a2,

From this we obtain by monotonicity that

f2(µx.f1(x, a2), a2) ≤ f2(a1, a2) = a2,

so that we find b2 ≤ a2 by definition of b2. Likewise we may show that b1 ≤ a1.
Conversely, by definition of b1 and b2 we have(

b1
b2

)
=

(
f1(b1, µy.f2(b1, y))
f2(µx.f1(x, b2), b2)

)
.

Then with c2 := µy.f2(b1, y), we have b1 = f1(b1, c2). Also, by definition of c2 as a fixpoint,
c2 = f2(b1, c2). Putting these two identities together, we find that(

b1
c2

)
=

(
f1(b1, c2)
f2(b1, c2)

)
= f

(
b1
c2

)
.

Hence by definition of (a1, a2), we find that a1 ≤ b1 (and that a2 ≤ c2, but that is of less
interest now). Analogously, we may show that a2 ≤ b2. qed

Proposition 3.15 allows us to compute the least and greatest fixpoints of any monotone
map f on a finite product of complete lattices in terms of the least and greatest fixpoints of
operations on the factors of the product, through a elimination method that is reminiscent of
Gaussian elimination in linear algebra.

To see how it works, suppose that we are dealing with lattices C1, . . . ,Cn+1,C and maps
f1, . . . , fn+1, f , just as described above, and that we want to compute η~x.f , that is, find the
elements a1, . . . , an+1 such that

a1

a2
...

an+1

 = η


x1

x2
...

xn+1

 .


f1(x1, . . . , xn, xn+1)
f2(x1, . . . , xn, xn+1)

...
fn+1(x1, . . . , xn, xn+1)


We may define

gn+1(x1, . . . , xn) := ηxn+1.fn+1(x1, . . . , xn+1),

and then use Proposition 3.15, with D1 = C1 × · · · × Cn, and D2 = Cn+1, to obtain
a1

a2
...
an

 = η


x1

x2
...
xn

 .


f1(x1, . . . , xn, gn+1(x1, . . . , xn))
f2(x1, . . . , xn, gn+1(x1, . . . , xn))

...
fn(x1, . . . , xn, gn+1(x1, . . . , xn))


We may then inductively assume to have obtained the tuple (a1, . . . , an). Finally, we may
compute an+1 := gn+1(a1, . . . , an).

Observe that in case Ci = Cj for all i, j and the operations fi are all term definable in
some formal fixpoint language, then each of the components ai of the extremal fixpoints of f
can also be expressed in this language.

3-8 Fixpoints

3.4 Algebraic semantics for the modal µ-calculus

Basic definitions

In order to define the algebraic semantics of the modal µ-calculus, we need to consider formulas
as operations on the power set of the (state space of a) transitions system, and we have to
prove that such operations indeed have least and greatest fixpoints. In order to make this
precise, we need some preliminary definitions.

Definition 3.16 Given an LTS S = 〈S, V,R〉 and subset X ⊆ S, define the valuation V [x 7→
X] by putting

V [x 7→ X](y) :=

{
V (y) if y 6= x,
X if y = x.

Then, the LTS S[x 7→ X] is given as the structure 〈S, V [x 7→ X], R〉. �

Now inductively assume that [[ϕ]]S has been defined for all LTSs. Given a labelled
transition system S and a propositional variable x ∈ P, each formula ϕ induces a map
ϕS
x : ℘(S)→ ℘(S) defined by

ϕS
x(X) := [[ϕ]]S[x 7→X]

Example 3.17 a) Where ϕa = p ∨ x we have (ϕa)
S
x(X) = [[p ∨ x]]S[x7→X] = V (p) ∪X.

b) Where ϕb = x we have (ϕb)
S
x(X) = [[x]]S[x7→X] = S \X.

c) Where ϕc = p ∨3dx we find (ϕc)
S
x(X) = [[p ∨3dx]]S[x 7→X] = V (p) ∪ 〈Rd〉X.

d) Where ϕd = 3dx we find (ϕd)
S
x(X) = [[3dx]]S[x 7→X] = 〈Rd〉(S \X). �

Remark 3.18 Clearly, relative to a model S, X is a fixpoint of ϕS
x iff X = ϕS

x(X); a prefix-
point iff ϕS

x(X) ⊆ X and a postfixpoint iff X ⊆ ϕS
x(X).

Writing S
 ϕ for S = [[ϕ]]S, an alternative but equivalent way of formulating this is to
say that in S, X is a prefixpoint of a formula ϕ(x) iff S[x 7→ X]
 ϕ → x, a postfixpoint iff
S[x 7→ X]
 x→ ϕ, and a fixpoint iff S[x 7→ X]
 x↔ ϕ. �

Example 3.19 Consider the formulas of Example 3.17.
a) The sets V (p) and S are fixpoints of ϕa, as is in fact any X with V (p) ⊆ X ⊆ S.
b) Since we do not consider structures with empty domain, the formula x has no fixpoints

at all. (Otherwise X would be identical to its own complement relative to some nonempty
set S.)

c) Two fixpoints of ϕc were already given in Example 2.1.
d) Consider any model Z = 〈Z, S, V 〉 based on the set Z of integers, where S = {(z, z+1) |

z ∈ Z} is the successor relation. Then the only two fixpoints of ϕd are the sets of even and
odd numbers, respectively. �

In particular, it is not the case that every formula has a least fixpoint. If we can guarantee
that the induced function ϕS

x of ϕ is monotone, however, then the Knaster-Tarski theorem
(Theorem 3.4) provides both least and greatest fixpoints of ϕS

x. Precisely for this reason, in
the definition of fixpoint formulas, we imposed the condition in the clauses for ηx.ϕ, that x
may only occur positively in ϕ. As we will see, this condition on x guarantees monotonicity
of the function ϕS

x.

Lectures on the modal µ-calculus 3-9

Definition 3.20 Given a µMLD-formula ϕ and a labelled transition system S = 〈S, V,R〉, we
define the meaning [[ϕ]]S of ϕ in S, together with the map ϕS

x : ℘(S)→ ℘(S) by the following
simultaneous formula induction:

[[⊥]]S = ∅ [[>]]S = S
[[p]]S = V (p) [[p]]S = S \ V (p)
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S [[ϕ ∧ ψ]]S = [[ϕ]]S ∩ [[ψ]]S

[[3dϕ]]S = 〈Rd〉[[ϕ]]S [[2dϕ]]S = [Rd][[ϕ]]S

[[µx.ϕ]]S =
⋂

PRE(ϕS
x) [[νx.ϕ]]S =

⋃
POS(ϕS

x)

The map ϕS
x, for x ∈ Prop, is given by ϕS

x(X) = [[ϕ]]S[x 7→X]. �

Theorem 3.21 Let ϕ be an µMLD-formula, in which x occurs only positively, and let S be a
labelled transition system. Then [[µx.ϕ]]S = LFP.ϕS

x, and [[νx.ϕ]]S = GFP.ϕS
x.

Proof. This is an immediate consequence of the Knaster-Tarski theorem, provided we can
prove that ϕS

x is monotone in x if all occurrences of x in ϕ are positive. We leave the details
of this proof to the reader (see Exercise 3.2). qed

Negation in the modal µ-calculus

It follows from the definitions that the set µMLD is closed under taking negations. Informally,
let ∼ϕ be the result of simultaneously replacing all occurrences of > with ⊥, of p with p and
vice versa (for free variables p), of ∧ with ∨, of 2d with 3d, of µx with νx, and vice versa, while
leaving occurrences of bound variables unchanged. As an example, ∼(µx.p ∨3x) = νx.p∧2x.
Formally, it is easiest to define ∼ϕ via the boolean dual of ϕ.

Definition 3.22 Given a modal fixpoint formula ϕ, we define its boolean dual ϕ∂ inductively
as follows:

⊥∂ := > >∂ := ⊥
p∂ := p (p)∂ := p
(ϕ ∨ ψ)∂ := ϕ∂ ∧ ψ∂ (ϕ ∧ ψ)∂ := ϕ∂ ∨ ψ∂
(3dϕ)∂ := 2dϕ

∂ (2dϕ)∂ := 3dϕ
∂

(µx.ϕ)∂ := νx.ϕ∂ (νx.ϕ)∂ := µx.ϕ∂

Based on this definition, we define the formula ∼ϕ as the formula ϕ∂ [p
 p | p ∈ FV (ϕ)]
that we obtain from ϕ∂ by replacing all occurrences of p with p, and vice versa, for all free
proposition letters p ∈ FV (ϕ). �

Example 3.23 Here are two examples:

ϕ := µx.p ∨3(x ∧ q) ψ := νp µx.p ∨3(x ∧ q)
ϕ∂ := νx.p ∧2(x ∨ q) ψ∂ := µp νx.p ∧2(x ∨ q)
∼ϕ := νx.p ∧2(x ∨ q) ∼ψ := µp νx.p ∧2(x ∨ q)

Note the difference between ∼ϕ and ∼ψ with respective to the propositional variable p, which
is free in ϕ but bound in ψ. �

3-10 Fixpoints

The following proposition states that the operation ∼ functions as a standard boolean
negation. We let ∼SX := S \X denote the complement of X in S.

Proposition 3.24 Let ϕ be a modal fixpoint formula. Then ∼ϕ corresponds to the negation
of ϕ, that is,

[[∼ϕ]]S = ∼S [[ϕ]]S (23)

for every labelled transition system S.

Proof. We first show, by induction on ϕ, that ϕ∂ corresponds to the boolean dual of ϕ.
For this purpose, given a labelled transition system S = (S,R, V), we let S∼ denote the
complemented model, that is, the structure (S,R, V ∼), where V ∼(p) := ∼SV (p). Then we
claim that

[[ϕ∂]]S = ∼S [[ϕ]]S
∼
, (24)

and we prove this statement by induction on the complexity of ϕ. Leaving all other cases as
exercises for the reader, we concentrate on the inductive case where ϕ is of the form µx.ψ. In
this case the left hand side of (24) evaluates to

[[(µx.ψ)∂]]S = [[νx.ψ∂]]S (Definition (µx.ψ)∂)

= GFP.(ψ∂)Sx (Theorem 3.21)

while for the right hand side we find

∼S [[µx.ψ]]S
∼

= ∼SLFP.ψS∼
x (Theorem 3.21)

= GFP.(ψS∼
x)∂ (Proposition 3.11)

In other words, to prove (24) it suffices to show that

(ψ∂)Sx = (ψS∼
x)∂ . (25)

To this aim, take an arbitrary subset U of S. Applying the map on the left hand side of (25)
to U , we find

(ψ∂)Sx(U) = [[ψ∂]]S[x 7→U],

while the map on the right hand side yields

(ψS∼
x)∂(U) = ∼SψS∼

x (∼SU) = ∼S [[ψ]](S
∼[x 7→∼SU]) = ∼S [[ψ]](S[x 7→U])∼ ,

so that by the inductive hypothesis we find that (ψ∂)Sx(U) = (ψS∼
x)∂(U), as required to prove

(25), and thus (24).
In other words, we have shown that the formula ϕ∂ indeed behaves as the boolean dual

of ϕ. To see that, likewise, the formula ∼ϕ behaves as the negation of ϕ, we now show how
to derive (23) from (24). First observe that for any formula χ we have

[[χ[p
 p | p ∈ FV (χ)]]]S = [[χ]]S
∼
. (26)

But then, taking ϕ∂ for χ, we find that

[[∼ϕ]]S = [[ϕ∂ [p
 p | p ∈ FV (ϕ)]]]S = [[ϕ∂]]S
∼

= ∼S [[ϕ]](S
∼)∼ = ∼S [[ϕ]]S,

where the first equality holds by the definition of ∼ϕ, the second by (26), the third equality
is (24), and the fourth equality follows from the trivial observation that (S∼)∼ = S. qed

Lectures on the modal µ-calculus 3-11

Remark 3.25 It follows from the Proposition above that we could indeed have based the
language of the modal µ-calculus on a smaller alphabet of primitive symbols. Given a set D of
atomic actions, we could have defined the set of modal fixpoint formulas using the following
induction:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 3dϕ | µx.ϕ

where p and x are propositional variables, d ∈ D, and in µx.ϕ, all free occurrences of x must
be positive (that is, under an even number of negation symbols). Here we define FV (¬ϕ) =
FV (ϕ) and BV (¬ϕ) = BV (ϕ).

In this set-up, the constant > and the connectives ∧ and 2d are defined using the standard
abbreviations, while for the greatest fixpoint operator we may put

νx.ϕ := ¬µx.¬ϕ(¬x).

Note the triple use of the negation symbol here, which can be explained by Proposition 3.11
and the observation that we may think of ¬ϕ(¬x) as the formulas ϕ∂ . �

Other immediate consequences

Earlier on we defined the notions of clean and guarded formulas.

Proposition 3.26 Every fixpoint formula is equivalent to a clean formula, and hence, to a
tidy one.

Proof. We leave this proof as an exercise for the reader. qed

Proposition 3.27 Every fixpoint formula is equivalent to a guarded formula.

Proof.(Sketch) We prove this proposition by formula induction. Clearly the only nontrivial
case to consider concerns the fixpoint operators. Consider a formula of the form ηx.δ(x),
where δ(x) is guarded and clean, and suppose that x has an unguarded occurrence in δ.

First consider an unguarded occurrence of x in δ(x) inside a fixpoint subformula, say, of
the form θy.γ(x, y). By induction hypothesis, all occurrences of y in γ(x, y) are guarded.
Obtain the formula δ from δ by replacing the subformula θy.γ(x, y) with γ(x, θy.γ(x, y)).
Then clearly δ is equivalent to δ, and all of the unguarded occurrences of x in δ are outside
of the scope of the fixpoint operator θ.

Continuing like this we obtain a formula ηx.δ(x) which is equivalent to ηx.δ(x), and in
which none of the unguarded occurrences of x lies inside the scope of a fixpoint operator. That
leaves ∧ and ∨ as the only operation symbols in the scope of which we may find unguarded
occurrences of x.

From now on we only consider the case where η = µ, leaving the very similar case where
η = ν as an exercise. Clearly, using the laws of classical propositional logic, we may bring the
formula δ into conjunctive normal form

(x ∨ α1(x)) ∧ · · · ∧ (x ∨ αn(x)) ∧ β(x), (27)

3-12 Fixpoints

where all occurrences of x in α1, . . . , αn and β are guarded. (Note that we may have β = >,
or αi = ⊥ for some i.)

Clearly (27) is equivalent to the formula

δ′(x) := (x ∨ α(x)) ∧ β(x),

where α = α1 ∧ · · · ∧ αn. Thus we are done if we can show that

µx.δ′(x) ≡ µx.α(x) ∧ β(x). (28)

Since α∧β implies δ′, it is easy to see (and left for the reader to prove) that µx.α∧β implies
µx.δ′. For the converse, it suffices to show that ϕ := µx.α(x) ∧ β(x) is a prefixpoint of δ′(x).
But it is not hard to derive from ϕ ≡ α(ϕ) ∧ β(ϕ) that

δ′(ϕ) = (ϕ ∨ α(ϕ)) ∧ β(ϕ) ≡ ((α(ϕ) ∧ β(ϕ)) ∨ α(ϕ)) ∧ β(ϕ) ≡ α(ϕ) ∧ β(ϕ) ≡ ϕ,

which shows that ϕ is in fact a fixpoint, and hence certainly a prefixpoint, of δ′(x). qed

Combining the proofs of the previous two propositions one easily shows the following.

Proposition 3.28 Every fixpoint formula is equivalent to a clean, guarded formula, and
hence, to a tidy, guarded one.

Remark 3.29 The equivalences of the above propositions are in fact effective in the sense
that there are algorithms for computing an equivalent clean and/or guarded equivalent to an
arbitrary formula in µML. It is an interesting question what the complexity of these algorithms
is, and what the minimum size of the equivalent formulas is. We will return to this issue later
on, but already mention here that there are formulas that are exponentially smaller than
any of their clean equivalents. The analogous question for guarded transformations, i.e.,
constructions that provide guarded equivalents to an arbitrary formula, is open. �

3.5 Adequacy

In this section we prove the equivalence of the two semantic approaches towards the modal µ-
calculus. Since the algebraic semantics is usually taken to be the more fundamental notion, we
refer to this result as the Adequacy Theorem stating, informally, that games are an adequate
way of working with the algebraic semantics.

I For the time being we only consider the subformula game.

Theorem 3.30 (Adequacy) Let ξ be a clean µMLD-formula. Then for all labelled transition
systems S and all states s in S:

s ∈ [[ξ]]S ⇐⇒ (ξ, s) ∈Win∃(E(ξ,S)). (29)

Proof. The theorem is proved by induction on the complexity of ξ. We only discuss the
inductive steps where ξ is of the form ηx.δ (with η denoting either µ or ν), leaving the other
cases as exercises to the reader.

Lectures on the modal µ-calculus 3-13

Preparatory observations Our proof for these inductive cases will involve three games:
the unfolding game for δSx, and the evaluation games for ξ and δ, respectively. It is based on
two key observations: One concerns the nature of the unfolding game for δSx and its role in
the semantics for ηx.δ; the other observation concerns the similarity between the evaluation
games for ξ and for δ.

1. Starting with the first observation, note that by definition of the algebraic semantics
of the fixpoint operators, the set [[ηx.δ]]S is the least/greatest fixed point of the map
δSx : ℘(S)→ ℘(S), and that by our earlier Theorem 3.14 on unfolding games, we have

[[ηx.δ]]S = Win∃(Uη(δSx)) ∩ S. (30)

Hence, in order to prove (29), it suffices to show that, for any state s0:

s0 ∈Win∃(Uη(δSx)) ⇐⇒ (ξ, s0) ∈Win∃(E(ξ,S)). (31)

In other words, the crucial tasks in the proof of this inductive step concern the trans-
formation of a winning strategy for ∃ in the unfolding game Uη(δSx)@s0 to a winning
strategy for her in the evaluation game E(ξ,S)@(ξ, s0), and vice versa.

Given the importance of the unfolding game for δSx then, let us look at it in a bit more
detail. Note that a round of this game, starting at position s ∈ S, consists of ∃ picking
a subset A ⊆ S that is subject to the constraint that s ∈ δSx(A) = [[δ]]S[x 7→A]. But here
the inductive hypothesis comes into play: it implies that, for all A ⊆ S, we have

s ∈ δSx(A) ⇐⇒ (δ, s) ∈Win∃(E(δ, S[x 7→ A])). (32)

In other words, each round of the unfolding game for the map δSx crucially involves the
evaluation game for the formula δ, played on some x-variant S[x 7→ A] of S.

2. This leads us to the comparison between the games G := E(ξ,S) and GA := E(δ, S[x 7→
A]). The second key observation in the inductive step for the fixpoint operators is that
these games are very similar indeed. For a start, the positions of the two games are
essentially the same. Positions of the form (ξ, t), which exist in the first game but not
in the second, are the only exception — but in G, any position (ξ, t) is immediately
and automatically succeeded by the position (δ, t) which does exist in the second game.
What is important is that the positions for ∃ are exactly the same in the two games,
and thus we may apply her positional strategies for the one game in the other game
as well. The only real difference between the games shows up in the rule concerning
positions of the form (x, u). In GA, x is a free variable (x ∈ FV (δ)), so in a position
(x, u) the game is over, the winner being determined by u being a member of A or not.
In G however, x is bound, so in position (x, u), the variable x will get unfolded to δ.

Combining these two observations, the key insight in the proof of (31) will be to think of
E(ξ,S) as a variant of the unfolding game U := Uη(δSx) where each round of U corresponds to
a version of the game GT , with T being the subset of S picked by ∃ in U . We are now ready
for the details of the proof of (31).

3-14 Fixpoints

For the direction from left to right of (31), suppose that ∃ has a winning strategy
in the game U starting at some position s0. Without loss of generality (see Exercise 3.7) we
may assume that this strategy is positional. Thus we may represent it as a map T : S →
℘(S), where we will write Ts rather than T (s). By the legitimacy of this strategy, for every
s ∈ Win∃(U) it holds that s ∈ δSx(Ts). So by the inductive hypothesis (32), for each such s
we may assume the existence of a winning strategy fs for ∃ in the game GTs@(δ, s). Given
the similarities between the games G and GTs (see the discussion above), this strategy is also
applicable in the game G@(δ, s), at least, until a new position of the form (x, t) is reached.

This suggests the following strategy g for ∃ in G@(ξ, s0):

1. after the initial automatic move, the position of the match is (δ, s0); ∃ first plays her
strategy fs0 ;

2. each time a position (x, s) is reached, the match automatically moves to position (δ, s),
where we distinguish cases:

(a) if s ∈Win∃(U) then ∃ continues with fs;

(b) if s /∈Win∃(U) then ∃ continues with a random strategy.

First we show that this strategy guarantees that whenever a position of the form (x, s) is
visited, s belongs to Win∃(U), so that case (b) mentioned above never occurs. The proof is by
induction on the number of positions (x, s) that have been visited already. For the inductive
step, if s is a winning position for ∃ in U , then, as we saw, fs is a winning strategy for ∃ in
the game GTs@(δ, s). This means that if a position of the form (x, t) is reached, the variable
x must be true at t in the model S[x 7→ Ts], and so t must belong to the set Ts. But by
assumption of the map T : S → ℘(S) being a winning strategy in U , any element of Ts is
again a member of Win∃(U).

In fact we have shown that every unfolding of the variable x in G marks a new round in
the unfolding game U . To see why the strategy g guarantees a win for ∃ in G@(ξ, s0), consider
an arbitrary G@(ξ, s0)-match π in which ∃ plays g. Distinguish cases.

First suppose that x is unfolded only finitely often. Let (x, s) be the last basic position in
π where this happens. Given the similarities between the games G and GTs , the match from
this moment on can be seen as both a g-guided G-match and an fs-guided GTs-match. As we
saw, fs is a winning strategy for ∃ in the game GTs@(δ, s). But since no further position of
the form (x, t) is reached, and G and GTs only differ when it comes to x, this means that π is
also a win for ∃ in G.

If x is unfolded infinitely often during the match π, then by the fact that ξ = ηx.δ, it is
the highest variable that is unfolded infinitely often. We have to distinguish the case where
η = ν from that where η = µ. In the first case, ∃ is the winner of the match π, and we are
done. If η = µ, however, x is a least fixpoint variable, and so ∃ would lose the match π.
We therefore have to show that this situation cannot occur. Suppose for contradiction that
s1, s2, . . . are the positions where x is unfolded. Then it is easy to verify that the sequence
s0Ts0s1Ts1 . . . constitutes a U-match in which ∃ plays her strategy T . But this is not possible,
since T was assumed to be a winning strategy for ∃ in the least fixpoint game U = Uµ(δSx).

Lectures on the modal µ-calculus 3-15

For the direction from right to left of (31), we will show how each positional winning
strategies f for ∃ in G induces a positional strategy for her in U , and that this strategy Uf is
winning for her starting at every position s ∈W := {s ∈ S | (ξ, s) ∈Win∃(G)}.

So fix a positional winning strategy f for ∃ in G; that is, ∃ is guaranteed to win any
f -guided match starting at a position (ϕ, t) ∈Win∃(G). Observe that, as discussed above, we
may and will treat f as a positional strategy in each of the games GA as well.

Given a state s ∈W , we let Tf (s) be the strategy tree induced by f in GA@(δ, s), where A
is some arbitrary subset of S. That is, the nodes of Tf consist of all f -guided finite matches
in GA that start at (δ, s). In more detail, the root of this tree is the single-position match
(δ, s); to define the successor relation of Tf , let Σ be an arbitrary f -guided match starting
at position first(Σ) = (δ, s). If last(Σ) is a position owned by ∃, then Σ will have a single
successor in Tf , viz., the unique extension of Σ with the position f(Σ) picked by f . On the
other hand, if last(Σ) is owned by ∀, then every possible continuation Σ · b, where b is an
admissible position picked by ∀, is a successor of Σ.

We let Uf (s) be the set of states u such that the position (x, u) occurs as the last element
(x, u) = last(Σ) of some match Σ in Tf (s). It is easy to see that any GA-match Σ ending in a
position of the form (x, u), is finished immediately, and thus provides a leaf of the tree Tf . It
is also an easy consequence of the definitions that, whenever t ∈ Uf (s) for some s ∈W , then
there is an f -guided match Σs,t such that first(Σs,t) = (δ, s) and last(Σs,t) = (x, t). Note that
this match Σs,t can be seen both as a (full) GA-match and as a (partial) G-match.

Given our definition of a set Uf (s) ⊆ S for every s ∈W , in effect we have defined a map

Uf : W → ℘(S).

Claim 1 Viewing this map Uf as a positional strategy for ∃ in U , we claim that in fact it is
a winning strategy for her in U@s0.

Proof of Claim We need two auxiliary claims on Uf . First we observe that

if s ∈W then s ∈ δSx(Uf (s)). (33)

For a proof of (33), it is obvious from the definition of Uf (s) that f is a positional winning
strategy for ∃ in GUf (s) = E(δ, S[x 7→ Uf (s)]) starting at (δ, s). But then by the inductive

hypothesis on δ we obtain that S[x 7→ Uf (s)], s
 δ, or, equivalently, s ∈ δSx(Uf (s)).
Second, we claim that

if s ∈W then Uf (s) ⊆W. (34)

To see this, first note that if s ∈ W then by definition (ξ, s) ∈ Win∃(G); but from this it is
immediate that (δ, s) ∈Win∃(G), and since we assumed f to be a positional winning strategy
for ∃ in G, it follows by definition of Uf (s) that for every u ∈ Uf (s) the position (x, u) is
winning for ∃ in Win∃(G). But from this it is easy to derive that both (δ, u) and (ξ, u) are
winning position for ∃ in G as well. The latter fact then shows that u ∈ W and since u was
an arbitrary element of Uf (s), (34) follows.

We can now prove that Uf is a winning strategy for ∃ in U@s0. First of all, it follows
from (33) that Uf (s) is a legitimate move in U for every position s ∈W . From this and (34)
we may conclude that ∃ never gets stuck in an Uf -guided U-match starting at s0; that is, she

3-16 Fixpoints

wins every finite Uf -guided U-match. In case η = ν this suffices, since in UGν(δSx) all infinite
matches are won by ∃.

Where η = µ we have a bit more work to do, since in this case all infinite matches of Uµ(δSx)
are won by ∀. Suppose for contradiction that Σ = s0Uf (s0)s1Uf (s1) · · · would be an infinite
Uf -guided match of Uµ(δSx). Then for every i ∈ ω we have that si+1 ∈ Uf (si), so that there
is a partial f -guided match Σi = Σsisi+1 with first(Σi) = (δ, si) and last(Σi) = (x, si+1). But
then it is straightforward to verify that the infinite match ΣG := Σ0 ·Σ1 ·Σ2 · · · we obtain by
concatenating the individual f -guided matches Σi, constitutes an infinite f -guided G-match
with first(ΣG) = first(Σ0) = (ξ, s0). Since the highest fixpoint variable unfolded infinitely
often during ΣG obviously would be x, this match would be lost by ∃. Here we arrive at the
desired contradiction, since (ξ, s0) ∈Win∃(G), and f was assumed to be a positional winning
strategy in G. J

qed

Convention 3.31 In the sequel we will use the Adequacy Theorem without further notice.
Also, we will write S, s
 ϕ in case s ∈ [[ϕ]]S, or, equivalently, S, s
g ϕ.

I Adequacy of the closure game to be discussed and proved.

Notes

What we now call the Knaster-Tarski Theorem (Theorem 3.4) was first proved by Knaster [14]
in the context of power set algebras, and subsequently generalized by Tarski [27] to the
setting of complete lattices. The Bekič principle (Proposition 3.15) stems from an unpublished
technical report.

I more notes and references to be supplied

As far as we know, the results in section 3.2 on the duality between the least and the
greatest fixpoint of a monotone map on a complete boolean algebra, are folklore. The char-
acterization of least and greatest fixpoints in game-theoretic terms is fairly standard in the
theory of (co-)inductive definitions, see for instance Aczel [1]. The equivalence of the algebraic
and the game-theoretic semantics of the modal µ-calculus (here formulated as the Adequacy
Theorem 3.30) was first established by Emerson & Jutla [11].

Exercises

Exercise 3.1 Prove Proposition 3.6: show that monotone maps on complete lattices are
inductive.

Exercise 3.2 Prove Theorem 3.21.
(Hint: given complete lattices C and D, and a monotone map f : C ×D → C, show that the
map g : D → C given by

g(d) := µx.f(x, d)

Lectures on the modal µ-calculus 3-17

is monotone. Here µx.f(x, d) is the least fixpoint of the map fd : C → C given by fd(c) =
f(c, d).)

Exercise 3.3 Let F : ℘(S) → ℘(S) be some monotone map. A collection D ∈ ℘℘(S)
of subsets of S is directed if for every two sets D0, D1 ∈ D, there is a set D ∈ D with
Di ⊆ D for i = 0, 1. Call F (Scott) continuous if it preserves directed unions, that is, if
F (
⋃
D) =

⋃
D∈D F (D) for every directed D.

Prove the following:

(a) F is Scott continuous iff for all X ⊆ S: F (X) =
⋃
{F (Y) | Y ⊆ω X}.

(Here Y ⊆ω X means that Y is a finite subset of X.)

(b) If F is Scott continuous then the unfolding ordinal of F is at most ω.

(c) Give an example of a Kripke frame S = 〈S,R〉 such that the operation [R] is not
continuous.

(d) Give an example of a Kripke frame S = 〈S,R〉 such that the operation [R] has clos-
ing/unfolding ordinal ω + 1.

Exercise 3.4 By a mutual induction we define, for every finite set P of propositional vari-
ables, the fragment µMLCP by the following grammar:

ϕ ::= p | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | µq.ϕ′,

where p ∈ P, ψ ∈ µML is a P-free formula, and ϕ′ ∈ µMLCP∪{q}.
Prove that for every Kripke model S, every formula ϕ ∈ µMLCP , and every proposition

letter p ∈ P, the map ϕS
p : ℘(S)→ ℘(S) is continuous.

Exercise 3.5 Let F : ℘(S) → ℘(S) be a monotone operation, and let γF be its unfolding
ordinal. Sharpen Corollary 3.7 by proving that the cardinality of γF is bounded by |S| (rather
than by |℘(S)|).

Exercise 3.6 The proof of Theorem 3.14 is based on the characterisation of least fixed points
as the intersection of all prefixpoints, and similarly, of greatest fixpoints as the union of all
postfixpoints. Can you also prove the theorem using the characterisation of least- and greatest
fixpoints via ordinal approximations?

Exercise 3.7 Prove that the unfolding game of Definition 3.12 satisfies positional deter-
minacy. That is, let Uµ(F) be the least fixpoint unfolding game for some monotone map
F : ℘(S) → ℘(S). Prove the existence of two positional strategies f∃ : S → ℘(S) and
f∀ : ℘(S)→ S such that for every position p of the game, either f∃ is a winning strategy for
∃ in Uµ(F)@p, or else f∀ is a winning strategy for ∀ in Uµ(F)@p.

Exercise 3.8 Let C be a complete boolean algebra and let f : C → C be a monotone map.
Pick an element d ∈ C and let µx.f(x) be the least fixpoint of f .

3-18 Fixpoints

(a) Show that d ∧ µx.f(x) = ⊥ iff d ∧ µx.f(x ∧ ¬d) = ⊥, where µx.f(x ∧ ¬d) denotes the
smallest fixpoint of the map sending any element x ∈ C to f(x ∧ ¬d).

(b) Conclude that, for any formula of the form µx.ϕ and an arbitrary formula γ: the formula
γ ∧ µx.ϕ is satisfiable iff the formula γ ∧ µx.ϕ[x ∧ ¬γ/x] is satisfiable. (A formula ϕ is
called satisfiable if there exists a pointed Kripke model such that S, s
 ϕ.)

I add exercise on the closure ordinal of a formula

I add exercise on (complete) additivity

4 Stream automata and logics for linear time

As we already mentioned in the introduction in the theory of the modal µ-calculus and other
fixpoint logics a fundamental role is played by automata. As we will see further on, these
devices provide a very natural generalization to the notion of a formula. This chapter gives an
introduction to the theory of automata operating on (potentially infinite) objects. Whereas
in later chapters we will meet various kinds of automata for classifying trees and general
transition systems, here we confine our attention to the devices that operate on streams or
infinite words, these being the simplest nontrivial examples of infinite behavior.

Convention 4.1 Throughout this chapter (and the next), we will be dealing with some
finite alphabet C. Generic elements of C may be denoted as c, d, c0, c1, . . . , but often it will
be convenient to think of C as a set of colors. In this case we will denote the elements of C
with lower case roman letters that are mnemonic of the most familiar corresponding color (‘b’
for blue, ‘g’ for green, etcetera).

Definition 4.2 Given an alphabet C, a C-stream is just an infinite C-sequence, that is, a
map γ : ω → C from the natural numbers to C (see Appendix A). C-streams will also be
called infinite words or ω-words over C. Sets of C-streams are called stream languages or
ω-languages over C. �

Remark 4.3 This definition is consistent with the terminology we introduced in Chapter 1.
There we defined a ℘(P)-stream or stream model for P to be a Kripke model of the form
S = 〈ω, V,Succ〉, where Succ is the standard successor relation on the set ω of natural
numbers, and V : P → ℘(ω) is a valuation. If we represent V coalgebraically as a map
σV : ω → ℘(P) (cf. Remark 1.3), then in the terminology of Definition 4.2, S is indeed a
℘(P)-stream. �

4.1 Deterministic stream automata

We start with the most general definition of a deterministic stream automaton.

Definition 4.4 Given an alphabet C, a deterministic C-automaton is a quadruple A =
〈A, δ,Acc, aI〉, where A is a finite set, aI ∈ A is the initial state of A, δ : A × C → A
its transition function, and Acc ⊆ Aω its acceptance condition. The pair 〈A, δ〉 is called the
transition diagram of A.

Given an automaton A = 〈A, δ,Acc, aI〉, we may extend the map δ : A×C → A to a map
δ̂ : A× C∗ → A by putting

δ̂(a, ε) := a

δ̂(a, uc) := δ(δ̂(a, u), c).

We will write a
c→ a′ if a′ = δ(a, c), and a

w
� a′ if a′ = δ̂(a,w). In words, a

w
� a′ if there is a

w-labelled path from a to a′.

�

4-2 Stream automata

Example 4.5 The transition diagram and initial state of a deterministic automaton can
nicely be represented graphically, as in the picture below, where C = {b, r, g}:

����a0⇒ ����a1 ����a2

	

r, g

-b 	

r, g

~

r, g

}

b

	

b

�

An automaton comes to life if we supply it with input, in the form of a stream over
its alphabet: It will process this stream, as follows. Starting from the initial state aI , the
automaton will step by step pass through the stream, jumping from one state to another as
prescribed by the transition function.

Example 4.6 Let A0 be any automaton with transition diagram and initial state as given
above, and suppose that we give this device as input the stream α = brgbrgbrgbrgbrgb · · · .
Then we find that A0 will make an infinite series of transitions, determined by α:

a0
b→ a1

r→ a2
g→ a2

b→ a1 · · ·

Thus the machine passes through an infinite sequence of states:

ρ = a0a1a2a2a1a2a2a1a2a2 . . .

This sequence is called the run of the automaton on the word α — a run of A is thus an
A-stream.

For a second example, on the word α′ = brbgbrgrgrgrgrgr · · · the run of the automaton
A0 looks as follows:

a0
b→ a1

r→ a2
b→ a1

g→ a2
b→ a1

r→ a2
g→ a2

r→ a2
g→ · · ·

we see that from the sixth step onwards, the machine device remains circling in its state a2:
· · · a2

r→ a2
g→ a2

r→ · · · . �

Definition 4.7 The run of an automaton A = 〈A, δ,Acc, aI〉 on a C-stream γ = c0c1c2 . . . is
the infinite A-sequence

ρ = a0a1a2 . . .

such that a0 = aI and ai
ci→ ai+1 for every i ∈ ω. �

Generally, whether or not an automaton accepts an infinite word, depends on the existence
of a successful run — note that in the present deterministic setting, this run is unique. In
order to determine which runs are successful, we need the acceptance condition.

Lectures on the modal µ-calculus 4-3

Definition 4.8 A run ρ ∈ Aω of an automaton A = 〈A, δ,Acc, aI〉 is successful with respect
to an acceptance condition Acc if ρ ∈ Acc.

An C-automaton A = 〈A, δ,Acc, aI〉 accepts a C-stream γ if the run of A on γ is successful.
The ω-language Lω(A) associated with A is defined as the set of streams that are accepted
by A. Two automata are called equivalent if they accept the same streams. �

A natural requirement on the acceptance condition is that it only depends on a bounded
amount of information about the run.

Remark 4.9 In the case of automata running on finite words, there is a very simple and
natural acceptance criterion. The point is that runs on finite words are themselves finite too.
For instance, suppose that in Example 4.6 we consider the run on the finite word brgb:

a0
b→ a1

r→ a2
g→ a2

b→ a1.

Then this runs ends in the state a1. In this context, a natural criterion for the acceptance
of the word abca by the automaton is to make it dependent on the membership of this final
state a1 in a designated set F ⊆ A of accepting states.

A structure of the form A = 〈A, δ, F, aI〉 with F ⊆ A may be called a finite word automa-
ton, and we say that such a structure accepts a finite word w if the unique state a such that

aI
w
� a belongs to F . The language L(A) is defined as the set of all finite words accepted by

A. �

4.2 Acceptance conditions

For runs on infinite words, a natural acceptance criterion would involve the collection of states
that occur infinitely often in the run.

Definition 4.10 Let α : ω → A be a stream over some finite set A. Given an element a ∈ A,
we define the frequency of a in α as #a(α) := |{n ∈ ω | α(n) = a}|. Based on this, we set
Occ(α) := {a ∈ A | #a(α) > 0} and Inf (α) := {a ∈ A | #a(α) = ω} �

In words, Occ(α) and Inf (α) denote the set of elements of A that occur in α at least once
and infinitely often, respectively.

Definition 4.11 Given a transition diagram 〈A, δ〉, we define the following types of accep-
tance conditions:

• A Muller condition is given as a collectionM⊆ ℘(A) of subsets of A. The corresponding
acceptance condition is defined as

AccM := {α ∈ Aω | Inf (α) ∈M}.

• A Büchi condition is given as a subset F ⊆ A. The corresponding acceptance condition
is defined as

AccF := {α ∈ Aω | Inf (α) ∩ F 6= ∅}.

4-4 Stream automata

• A parity condition is given as a map Ω : A→ ω. The corresponding acceptance condition
is defined as

AccΩ := {α ∈ Aω | max{Ω(a) | a ∈ Inf (α)} is even }.

Automata with these acceptance conditions are called Muller, Büchi and parity automata,
respectively. �

Of these three types of acceptance conditions, the Muller condition perhaps is the most
natural. It exactly and directly specifies the subsets of A that are admissible as the set Inf (ρ)
of a successful run. The Büchi condition is also fairly intuitive: an automaton with Büchi
condition F accepts a stream α if the run on α passes through some state in F infinitely
often. This makes Büchi automata the natural analog of the automata that operate on finite
words, see Remark 4.9.

The parity condition may be slightly more difficult to understand. The idea is to give
each state a of A a weight Ω(a) ∈ ω. Then any infinite A-sequence α = a0a1a2 . . . induces
an infinite sequence Ω(a0)Ω(a1) . . . of natural numbers. Since the range of Ω is finite this
means that there is a largest natural number Nα occurring infinitely often in this sequence,
Nα := max{Ω(a) | a ∈ Inf (α)}. Now, a parity automaton accepts an infinite word iff the
number Nρ of the associated run ρ is even.

At first sight, this condition will seem rather contrived and artificial. Nevertheless, for a
number of reasons the parity automaton is destined to play the leading role in these notes.
Most importantly, the distinction between even and odd parities directly corresponds to that
between least and greatest fixpoint operators, so that parity automata are the more direct
automata-theoretic counterparts of fixpoint formulas. An additional theoretic motivation to
use parity automata is that their associated acceptance games have some very nice game-
theoretical properties, as we will see further on.

Let us now first discuss some examples of automata with these three acceptance conditions.

Example 4.12 Suppose that we supply the device of Example 4.5 with the Büchi acceptance
condition F0 = {a1}. That is, the resulting automaton A0 accepts a stream α iff the run
of A0 passes through the state a1 infinitely often. For instance, A0 will accept the word
α = brgbrgbrgbrgbrgbrgb · · · , because the run of A0 is the stream a0a1a2a2a1a2a2a1a2a2 . . .
which indeed contains a1 infinitely many times. On the other hand, as we saw already, the
run of A0 on the stream α′ = brbgbrgrgrgrgrgr · · · loops in state a2, and so α′ will not be
accepted.

In general, it is not hard to prove that A0 accepts a C-stream γ iff γ contains infinitely
many b’s. �

Example 4.13 Consider the automaton A1 given by the following diagram and initial state:

Lectures on the modal µ-calculus 4-5

����a0 ����ab⇒ ����ag

����af ����ar

R

r, g

-b ~

g

}

b

?

b

	

r, g

6

g

@
@
@
@
@
@
@
@
@R

r

I

r

I

b, r, g

� b

As an example of a Muller acceptance condition, consider the set{
{a0} , {ag} , {ab, ag} , {ab, ar, ag}

}
The resulting automaton accepts those infinite streams in which every b is followed by a finite
number of r’s, followed by a g. To see this, here is a brief description of the intuitive meaning
of the states:

a0 represents the situation where the automaton has not encountered any b’s;

af is the ‘faulty’ state;

ab is the state where the automaton has just processed a b; it now has to pass through a
finite sequence of r’s, eventually followed by a g;

ar represents the situation where the automaton, after seeing a b, has processed a finite,
non-empty, sequence of r’s;

ag is the state where the automaton, after passing the last b, has fulfilled its obligation to
process a g.

We leave the details of the proof as an exercise to the reader. �

Example 4.14 For an example of a parity automaton, consider the transition diagram of
Example 4.5, and suppose that we endow the set {a0, a1, a2} with the priority map Ω given
by Ω(ai) = i. Given the shape of the transition diagram, it then follows more or less directly
from the definitions that the resulting automaton accepts an infinite word over C = {b, r, g}
iff it either stays in a0, or visits a2 infinitely often. From this one may derive that Lω(A)
consists of those C-streams containing infinitely many r’s or infinitely many g’s (or both). �

It is important to understand the relative strength of Muller, Büchi and parity automata
when it comes to recognizing ω-languages. The Muller acceptance condition is the more
fundamental one in the sense that the other two are easily represented by it.

4-6 Stream automata

Proposition 4.15 There is an effective procedure transforming a deterministic Büchi stream
automaton into an equivalent deterministic Muller stream automaton.

Proof. Given a Büchi condition F on a set A, define the corresponding Muller condition
MF ⊆ ℘(A) as follows:

MF := {B ⊆ A | B ∩ F 6= ∅}.

Clearly then, AccMF
= AccF . It is now immediate that any Büchi automaton A = 〈A, δ, F, aI〉

is equivalent to the Muller automaton 〈A, δ,MF , aI〉. qed

Proposition 4.16 There is an effective procedure transforming a deterministic parity stream
automaton into an equivalent deterministic Muller stream automaton.

Proof. Analogous to the proof of the previous proposition, we put

MΩ := {B ⊆ A | max(Ω[B]) is even },

and leave it for the reader to verify that this is the key observation in turning a parity
acceptance condition into a Muller one. qed

Interestingly enough, Muller automata can be simulated by devices with a parity condition.

Proposition 4.17 There is an effective procedure transforming a deterministic Muller stream
automaton into an equivalent deterministic parity stream automaton.

Proof. Given a Muller automaton A = 〈A, δ,M, aI〉, define the corresponding parity au-
tomaton A′ = 〈A′, δ′,Ω, a′I〉 as follows. The crucial concept used in this construction is that
of latest appearance records. The following notation will be convenient: given a finite sequence
in A∗, say, α = a1 . . . an, we let α̃ denote the set {a1, . . . , an}, and α[O/a] the sequence α
with every occurrence of a being replaced with the symbol O.

To start with, the set A′ of states is defined as the collection of those finite sequences over
the set A ∪ {O} in which every symbol occurs exactly once:

A′ = {a1 . . . akOak+1 . . . am | A = {a1, . . . , am}}.

The intuition behind this definition is that a state in A′ encodes information about the states
of A that have been visited during the initial part of its run on some word. More specifically,
the state a1 . . . akOak+1 . . . am encodes that the states visited by A are an+1, . . . , am (for some
n ≤ m, not necessarily n = k), and that of these, am is the state visited most recently, am−1

the one before that, etc. The symbol O marks the previous position of am in the list.
For a proper understanding of A′ we need to go into more detail. First, for the initial

position of A′, fix some enumeration d1, . . . , dm of A with aI = dm, and define

a′I := d1 . . . dmO.

For the transition function, consider a state α = a1 . . . akOak+1 . . . am in A′, and a color c ∈ C.
To obtain the state δ′(α, c), replace the occurrence of δ(am, c) in a1 . . . am with O, and make

Lectures on the modal µ-calculus 4-7

the state δ(am, c) itself the rightmost element of the resulting sequence. Thus the O in the
new sequence marks the latest appearance of the state δ(am, c). Formally, we put

δ′(a1 . . . akOak+1 . . . am, c) := (a1 . . . am)[O/δ(am, c)] · δ(am, c).

(Here we include the cases where k = 0 or k = m; these cover the situations where O appears
at, respectively, the beginning or the end of the word.) For an example, see 4.18 below.

Now consider the runs ρ and ρ′ of A and A′, respectively, on some C-stream γ. Recall
that Inf (ρ) denotes the set of states of A that are visited infinitely often during ρ. From a
certain moment on, ρ will only pass through states in Inf (ρ); let A continue its run until it
has passed through each state in Inf (ρ) at least one more time. It is not too hard to see that
from that same moment t on, ρ′ will only pass through states of the form a1 . . . akOak+1 . . . am
such that the states in Inf (ρ) form a final segment al+1 . . . am of the sequence a1 . . . am.

We now arrive at the role of the special symbol O. Since O marks the previous position
of am, all states occurring to its right after time t must belong to the set Inf (ρ). In other
words, we have

Inf (ρ′) ⊆ {αOβ ∈ A′ | β̃ ⊆ Inf (ρ)}.

Furthermore, among the states αOβ ∈ Inf (ρ′), the ones with the longest tail β (i.e., with
maximal |β|), are exactly the ones where Inf (ρ) is identical to β̃. Obviousy, these will be of
interest for the definition of the acceptance condition of A′. To make the discussion somewhat
more precise, define, for a subset Q of the state space A′, Q := {αOβ ∈ Q | |β̃′| ≤ |β̃| for all
α′Oβ′ ∈ Q}. That is, Q consists of the sequences αOβ ∈ Q where β takes maximal length.
Then one may show that

αOβ ∈ Inf (ρ′) implies β̃ = Inf (ρ)}. (35)

This shows how to encode the success of runs of A in a parity condition for A′. Putting

Ω(αOβ) :=

{
2 · |β|+ 1 if β̃ 6∈ M,

2 · |β|+ 2 if β̃ ∈M,

we ensure that the states in Inf (ρ′) receive maximal priority, and that this priority is even.

We now have the following chain of equivalences:

A accepts γ

⇐⇒ Inf (ρ) ∈M (definition acceptance A)

⇐⇒ β̃ ∈M whenever αOβ ∈ Inf (ρ′) (statement (35))

⇐⇒ max{Ω(αOβ) | αOβ ∈ Inf (ρ′)} is even (as discussed above)

⇐⇒ A′ accepts γ. (definition acceptance A′)

Clearly this establishes the equivalence of A and A′. qed

4-8 Stream automata

Example 4.18 With A1 the Muller automaton of Example 4.13, here are some examples of
the transition function δ′ of its parity equivalent A′:

δ′(abaragafa0O, b) := Oaragafa0ab δ′(Oaragafa0ab, b) := aragOa0abaf
δ′(abaragafa0O, r) := abaragafOa0 δ′(Oaragafa0ab, r) := Oagafa0abar
δ′(abaragafa0O, g) := abaragafOa0 δ′(Oaragafa0ab, g) := arOafa0abag

Likewise, a few examples of the priority map:

Ω(abaragafOa0) := 4
Ω(agafa0abOar) := 3
Ω(afara0Oabag) := 6
Ω(afa0Oabarag) := 8

As the initial state of A′, one could for instance take the sequence araragafa0O. �

The following example shows that, in the case of deterministic stream automata, the
recognizing power of Muller and parity automata is strictly stronger than that of Büchi
automata.

Example 4.19 Consider the following language over the alphabet C = {b, r}:

L = {α ∈ Cω | r 6∈ Inf (α)}.

That is, L consists of those C-streams that contain at most finitely many red items (that
is, the symbol r occurs at most finitely often). We will give both a Muller and a parity
automaton to recognize this language, and then show that there is no Büchi automaton for
L.

It is not difficult to see that there is a deterministic Muller automaton recognizing this
language. Consider the automaton A2 given by the following diagram,

����ab⇒ ����ar	

b

~

r

}

b

	

r

and Muller acceptance condition M2 := {{ab}}. It is straightforward to verify that the run
of A2 on an {b, r}-stream α keeps circling in ab iff from a certain moment on, α only produces
b’s.

For a parity automaton recognizing L, endow the diagram above with the priority map
Ω2 given by Ω2(ab) = 0, Ω2(ar) = 1. With this definition, there can only be one set of
states of which the maximum priority is even, namely, the singleton {ab}. Hence, this parity
acceptance condition is the same as the Muller condition {{ab}}.

However, there is no deterministic Büchi automaton recognizing L. Suppose for contra-
diction that L = Lω(A), where A = 〈A, δ, F, aI〉 is some Büchi automaton. Since the stream

Lectures on the modal µ-calculus 4-9

α0 = bbb . . . belongs to L, it is accepted by A. Hence in particular, the run ρ0 of A on α0 will
pass some state f0 ∈ F after a finite number, say n0, of steps.

Now consider the stream α1 = bn0rbbb Since runs are uniquely determined, the initial
n0 steps of the run ρ1 of A on α1 are identical to the first n0 steps of A on α0, and so ρ1 also
passes through f0 after n0 steps. But since α1 belongs to L too, it too is accepted by A. Thus
on input α1, A will visit a state in F infinitely often. That is, we may certainly choose an
n1 ∈ ω such that ρ1 passes through some state f1 ∈ F after n0 + n1 + 1 steps. Now consider
the stream α2 = bn0rbn1rbbb . . ., and analyze the run ρ2 of A on α2. Continuing like this, we
can find positive numbers n0, n1, . . . such that for every k ∈ ω, the stream

αk = bn0rbn1 . . . rbnkrbbb . . . ∈ L, for all k. (36)

Consider the stream
α = (bn0r)(bn1r) . . . (bnkr) . . .

Containing infinitely many r’s, α does not belong to L. Nevertheless, it follows from (36)
that the run ρ of A on α passes through the states f0, f1, . . . as described above. Since F is
finite, there is then at least one f ∈ F appearing infinitely often in this sequence. Thus we
have found an f ∈ F that is passed infinitely often by ρ, showing that A accepts α. This
gives the desired contradiction. �

Remark 4.20 Since it is easy to see that the complement

L = {α ∈ Cω | r ∈ Inf (α)}

of the language studied in Example 4.19 is recognized by a Büchi automaton, the example
also shows that the class of Büchi recognizable stream languages is not closed under taking
complementations. �

4.3 Nondeterministic automata

Nondeterministic automata generalize deterministic ones in that, given a state and a color,
the next state is not uniquely determined, and in fact need not exist at all.

Definition 4.21 Given an alphabet C, a nondeterministic C-automaton is a quadruple A =
〈A,∆,Acc, aI〉, where A is a finite set, aI ∈ A is the initial state of A, ∆ : A×C → ℘(A) its
transition function of A, and Acc ⊆ Aω its acceptance condition. �

As a consequence, the run of a nondeterministic automaton on a stream is no longer
uniquely determined either.

Definition 4.22 Given a nondeterministic automaton A = 〈A,∆,Acc, aI〉, we define the
relations → ⊆ A × C × A and � ⊆ A × C∗ × A in the obvious way: a

c→ a′ if a′ ∈ ∆(a, c),

a
ε
� a′ if a = a′, and a

wc
� a′ if there is a a′′ such that a

w
� a′′

c→ a′. A run of a nondeterministic
automaton A = 〈A,∆,Acc, aI〉 on an C-stream γ = c0c1c2 . . . is an infinite A-sequence

ρ = a0a1a2 . . .

such that a0 = aI and ai
ci→ ai+1 for every i ∈ ω. �

4-10 Stream automata

Now that runs are no longer unique, an automaton may have both successful and un-
successful runs on a given stream. Consequently, there is a choice to make concerning the
definition of the notion of acceptance.

Definition 4.23 A nondeterministic C-automaton A = 〈A,∆,Acc, aI〉 accepts a C-stream γ
if there is a successful run of A on γ. �

Further concepts, such as the language recognized by an automaton, the notion of equiv-
alence of two automata, and the Büchi, Muller and parity acceptance conditions, are defined
as for deterministic automata. Also, the transformations given in the Propositions 4.15, 4.16
and 4.17 are equivalence-preserving for nondeterministic automata just as for deterministic
one. Different from the deterministic case, however, is that nondeterministic Büchi automata
have the same accepting power as their Muller and parity variants.

Proposition 4.24 There is an effective procedure transforming a nondeterministic Muller
stream automaton into an equivalent nondeterministic Büchi stream automaton.

Proof. Let A = 〈A,∆,M, aI〉 be a nondeterministic Muller automaton. The idea underlying
the definition of the Büchi equivalent A′ is that A′, while copying the behavior of A, guesses
the set M = Inf (ρ) of a successful run of A, and at a certain (nondeterministically chosen)
moment confirms this choice by moving to a position of the form (a,M,∅). In order to make
sure that not too many streams are accepted, the device has to keep track which of the states
in M have been visited by A, resetting this counter to the empty set every time when all
M -states have been passed.

In some more detail, A′ consists of a copy of A, together with, for every set M ∈ M, a
part AM which, roughly spoken, corresponds to a copy of A from which all states outside of
M have been removed, and whose states record the part of M that recently has been visited.

A′ := A ∪
⋃

M∈M
{(a,M,P) | a ∈M,P ⊆M},

a′I := aI

∆′(a, c) := ∆(a, c) ∪
⋃

M∈M
{(b,M,∅) | b ∈ ∆(a, c) ∩M}

∆′((a,M,P), c) :=

{
{(b,M, P ∪ {a}) | b ∈ ∆(a, c) ∩M} if P ∪ {a} 6= M,
{(b,M,∅) | b ∈ ∆(a, c) ∩M} if P ∪ {a} = M.

F := {(a,M,P) ∈ A′ | P = ∅}.

We leave it as an exercise for the reader to verify that the resulting automaton is indeed
equivalent to A. qed

We now turn to the determinization problem for stream automata. In the case of automata
operating on finite words, it is not difficult to prove that nondeterminism does not really
add recognizing power: any nondeterministic automaton A may be ‘determinized’, that is,
transformed into an equivalent deterministic automaton Ad.

Lectures on the modal µ-calculus 4-11

Remark 4.25 Finite word automata (see Example 4.9) can be determinized by a fairly
simple subset construction.

Let A = 〈A,∆, F, aI〉 be a nondeterministic word automaton. A run of A on a finite word

w = c1 · · · cn is defined as a finite sequence a0a1 · · · an such that a0 = aI and ai
ci→ ai+1 for all

i < n. A accepts a finite word w if there is a successful run, that is, a run a0a1 · · · an ending
in an accepting state an.

Given such a nondeterministic automaton, define a deterministic automaton A+ as follows.
For the states of A+ we take the macro-states of A, that is, the nonempty subsets of A. The
deterministic transition function δ is given by

δ(P, c) :=
⋃
a∈P

∆(a, c).

In words, δ(P, c) consists of those states that can be reached from some state in P by making
one a-step in A. The accepting states of A+ are those macro-states that contain an accepting
state from A: F+ := {P ∈ A+ | P ∩ F 6= ∅}, and its initial state is the singleton {aI}.

In order to establish the equivalence of A and A+, we need to prove that for every word
w, A has an accepting run on w iff the unique run of A+ on w is successful. The key claim in
this proof is the following statement:

δ̂({aI}, w) = {a ∈ A | aI
w
�A a}. (37)

stating that δ̂({aI}, w) consists of all the states that A can reach from aI on input w. We
leave the straightforward inductive proof of (37) as an exercise for the reader.

The equivalence of A and A+ then follows by the following chain of equivalences, for any

finite word w: A+ accepts w iff δ̂({aI}, w) ∈ F+ iff δ̂({aI}, w) ∩ F 6= ∅ iff aI
w
�A a for some

a ∈ F iff A accepts w. �

Unfortunately, the class of Büchi automata does not admit such a determinization pro-
cedure. As a consequence of Proposition 4.24 above, and witnessed by the Examples 4.19
and 4.26, the recognizing power of nondeterministic Büchi automata is strictly greater than
that of their deterministic variants.

Example 4.26 For a nondeterministic Büchi automaton recognizing the language

L = {α ∈ Cω | r 6∈ Inf (α)}

of Example 4.19, consider the automaton given by the following picture:

����a0⇒ �����
��a1

	

b, r

-b 	

b

In general, the Büchi acceptance condition F ⊆ A of an automaton A is depicted by the set
of states with double circles. So in this case, F = {a1}. �

4-12 Stream automata

There is positive news as well. A key result in automata theory states that when we turn
to Muller and parity automata, nondeterminism does not increase recognizing power. This
result follows from Proposition 4.24 and Theorem 4.27 below.

Theorem 4.27 There is an effective procedure transforming a nondeterministic Büchi stream
automaton into an equivalent deterministic Muller stream automaton.

The proof of Theorem 4.27 will be given in the next section. As an important corollary
we mention the following Complementation Lemma.

Proposition 4.28 Let A be a nondeterministic Muller or parity automaton. Then there is
an automaton A of the same kind, such that Lω(A) is the complement of the language LωA.

Leaving the proof of this proposition as an exercise for the reader, we finish this section
with a summary of the relative power of the automata concept in the diagram below. Arrows
indicate the reducibility of one concept to another, ‘D’ and ‘ND’ are short for ‘deterministic’
and ‘nondeterministic’, respectively.

D Büchi =⇒ D Muller ⇐⇒ D parity

⇓ m m

ND Büchi ⇐⇒ ND Muller ⇐⇒ ND parity

Having established these equivalences we naturally arrive at the following definition.

Definition 4.29 Let C be a finite set. A C-stream language L ⊆ Cω is called ω-regular if
there exists a C-stream automaton A = (A,∆,Ω, aI) such that L = Lω(A), where A is either
a (deterministic/nondeterministic) Muller or parity automaton, or a nondeterministic Büchi
automaton. �

4.4 Determinization of stream automata

This section is devoted to the proof of Theorem 4.27, which is based on a modification of the
subset construction of Remark 4.25.

I more information on determinization/simulation to be supplied

Remark 4.30 This modification will have to be fairly substantial: As we will see now,
Theorem 4.27 cannot be proved by a straightforward adaptation of the subset construction
discussed in Remark 4.25. Consider the Büchi automaton A given by the following picture:

����a0⇒ �����
��a1

	

b, r

-r 	

b

Lectures on the modal µ-calculus 4-13

We leave it for the reader to verify that Lω(A) consists of those streams of bs and rs that
contain at least one and at most finitely many red items. In particular, the stream rω =
rrrrr . . . is rejected, while the stream rbω = rbbbb . . . is accepted.

Now consider a deterministic automaton A+ of which the transition diagram is given by
the subset construction. Then the run of the automaton A+ on rω is identical to its run on
rbω:

a0{a0, a1}{a0, a1}{a0, a1} . . .

In other words, no matter which acceptance condition we give to A+, the automaton will
accept either both rω and rbω, or neither. In either case Lω(A+) will be different from Lω(A).

As a matter of fact, it will be instructive to see in a bit more detail how the runs of A on
rω and rbω, respectively, appear as ‘traces’ in the run of A+ on these two streams:

&%
'$c
a0

-
HHH

HHH
HHj

r

r

c
a0

s
a1

-
HHH

HHH
HHj

r

r

c
a0

s
a1

-
HHH

HHH
HHj

r

r

c
a0

s
a1

-
HHH

HHH
HHj

r

r s s s

&%
'$c
a0

-
HH

HHH
HHHj

r

r

c
a0

s
a1

-

-

b

b

c
a0

s
a1

-

-

b

b

c
a0

s
a1

-

-

b

b

s s s

Clearly, where the second run contains one single trace that corresponds to a successful
run of the automaton A, in the first run, all traces that reach a successful state are aborted
immediately. These two pictures clarify the subtle but crucial distinctions that get lost if we
try to determinize via a straightforward subset construction. �

In Safra’s modification of the subset construction, the states of the deterministic au-
tomaton are finite, structured collections of macro-states; more specifically, if we order these
macro-states by the inclusion relation we obtain a certain tree structure. The key idea un-
derlying this modification is that at each step of the run, those elements of a macro-state
that are accepting (i.e., members of the Büchi set of the original automaton), will be given
some special treatment. Ultimately this enables one to single out the runs with a sequence of
macro-states containing a good trace (that is, an infinite sequence of states constituting an
accepting run of the nondeterministic automaton).

For the formal definition of Safra trees, we recall that we call two distinct nodes in a tree
are called siblings if they have the same parent, and that, where � denotes the parent-child
relation, its transitive closure denotes the ancestor/descendant relation. That is, if s�+ t we
call s a descendant of t, and t an ancestor of s. Furthermore, we recall that, where s and t
are distinct nodes that are not related by the ancestor/descendant relation, there is a unique

4-14 Stream automata

pair of siblings (s′, t′) such that s and t are either equal to or descendants of, respectively, s′

and t′; we call this pair the ancestral sibling pair of (s, t).

Definition 4.31 An ordered tree is a structure 〈S, r,�, <H〉 such that 〈S,�〉 is a tree with
root r; � is the ‘child-of’ relation, with s� t denoting that s is a child of t; and <H is a sibling
ordering relation, that is, a strict partial order on S that totally orders the children of every
node; if s <H t we may say that s is older than t. Given two distinct nodes s and t such that
neither s �∗ t nor t �∗ s, we say that s is to the left of t if the unique ancestral sibling pair
(s′, t′) of (s, t) is such that s′ <H t′.

A Safra tree over a setB is a pair (S,L) where S is a finite ordered tree, and L : S → ℘+(B)
is a labelling assigning a non-empty macrostate L(s) to every node s in such a way that (i)
for every node s, the set

⋃
{L(t) | t� s} is a proper subset of L(s), and (ii) L(s) ∩ L(t) = ∅

if s and t are siblings. �

It is not hard to see that for any Safra tree (S,L) and for every state b ∈ B, b belongs
to some label set of the tree iff it belongs to the label of the root. And, if b belongs to the
label of the root, then there is a unique node s ∈ S, the so-called lowest node of b, such that
b ∈ L(s) but s has no child t with b ∈ L(t). From these observations one easily derives that

|S| ≤ |B|, (38)

for every Safra tree over the set B.

We now turn to the details of the Safra construction.

Definition 4.32 Let B be a nondeterministic Büchi automaton B = 〈B, bI ,∆, F 〉. We will
define a deterministic Muller automaton BS = 〈BS , aI , δ,M〉.

Assume that B has n states, and let N := {1, . . . , 2n}; we will think of N as the set of
(potential) nodes of a Safra tree. The carrier BS will consist of the collection of all colored
Safra trees over B, that is, all triples (S,L, θ) such that (S,L) is a Safra tree over B with
S ⊆ N , and θ is a map coloring nodes of the tree either white or green. The initial state of
BS will be the Safra tree consisting of a single white node 1 labelled with the singleton {bI}.

For the transition function on BS , take an arbitrary colored Safra tree (S,L, θ). On input
c ∈ C, the deterministic transition function δ on BS transforms (S,L, θ) into a new colored,
labelled Safra tree, by performing the sequence of actions below. (Note that at intermediate
stages of this process, the structures may violate the conditions of Safra trees.)

1. Make macro-move Apply the power set construction to the individual nodes: for each
node s, replace its label L(s) ⊆ B with the set L′(s) :=

⋃
a∈L(s) ∆(a, c).

2. Separate accepting states For each node s ∈ S such that L′(s) contains accepting states,
add a new3 node s′ ∈ N \ S to S as the youngest child of s, and label s′ with the set
 L′(s′) := L′(s) ∩ F . (Such an s′ can be canonically chosen as the smallest n ∈ N such
that n 6∈ S).

3Observe that by (38) and the definition of N , there will always be sufficiently many nodes in N such that
at least one element of N is left as a ‘spare’ node, possibly to be used at a later stage.

Lectures on the modal µ-calculus 4-15

3. Merge traces For each node s, remove those members from its label that already belong to
the label of a state to the left of s (3a). After that remove all nodes with empty labels
(3b).

4. Mark successful nodes For each (remaining) node s of which the label is identical to the
union of the labels of its children, remove all proper descendants of s, and mark s by
coloring it green. All other nodes are colored white.

For the Muller acceptance conditionM of BS , put M ∈M if there is some s ∈ {0, . . . , 2n}
such that s is present as a node of every tree in M , and s is colored green in some tree in M .
�

Example 4.33 I Example to be supplied

�

The following proposition states that the size of the Safra automaton is exponentially
bounded.

Proposition 4.34 Let B be a nondeterministic Büchi automaton with n states. Then |BS |
has at most 2O(n∗log(n)) states.

Proof. We will prove the Proposition by showing there are at most (2n+1)7n coloured Safra
trees over a set B of size n. For this purpose we represent coloured Safra trees in terms of
functions. Recall that N = {1, . . . , 2n} denotes the set of (potential) nodes of a Safra tree.

• To start with, the parent relation � of a Safra tree can be represented by a parent
function p : N → N ∪ {0} which maps every non-root node in the tree to its unique
parent, and every other element of N to 0. There are at most (2n+ 1)2n of such maps.

• Similarly, the sibling order <H can be represented by a map from N → N ∪ {0} which
maps any node which has older siblings to the youngest of these, and every other node
to 0. Again, there at most (2n+ 1)2n of such maps.

• The macro-state labelling L of a Safra can be represented by the function m : B →
N ∪ {0} which maps a state b ∈ B to 0 if b 6∈ L(r) (i.e., b is not present in the Safra
tree), and to the unique-lowest node s in the tree such that b ∈ L(s), otherwise. The
number of these maps is therefore bounded by (2n+ 1)n.

• Finally, for reasons of similarity, the colouring map θ can be represented as a map from
N to N ∪ {0} which maps s ∈ N to 0 if it coloured green, and to 1 if it is either white
or not present in the tree. Hence there are at most (2n+ 1)2n of such maps.

Every coloured Safra tree can thus be represented as a quadruple of maps from either N
or B to N ∪ {0}, and so the number of these trees is bounded by (2n + 1)2n ∗ (2n + 1)2n ∗
(2n+ 1)n ∗ (2n+ 1)2n = (2n+ 1)7n. qed

It is obvious from the construction that BS is a deterministic automaton, so what is left
of the proof of Theorem 4.27 is to establish the equivalence of B and BS .

4-16 Stream automata

Proposition 4.35 Let B be a nondeterministic Büchi automaton. Then

Lω(B) = Lω(BS).

Proof.(Sketch) For the inclusion ⊆, assume that there is a successful run ρ = b0b1 . . . of B
on some C-stream γ = c0c1 Consider the (unique) run σ = (S0, L0, θ0)(S1, L1, θ1) . . .
of BS on γ. Here each (Si, Li, θi) is a Safra tree with labeling Li and coloring θi. We claim
that there is an object s which after some initial phase belongs to each Safra tree of σ, and
which is marked green infinitely often. The basic idea underlying the proof of this claim is to
‘follow’ the run ρ as a trace through the successive trees of σ.

First note that at every stage i, the state bi of ρ belongs to the label Li(ri) of the root
ri of the Safra tree Si. It follows that the root always has a non-empty label, and hence it
is never removed; thus we have r0 = r1 = . . ., and so, with r := r0, we have already found a
node r such that r is present in every Safra tree in Inf (σ). Now if r is colored green infinitely
often, we are done.

So suppose that this is not the case. In other words, after a certain moment i, r will no
longer be marked. Since ρ = (bi)i∈ω is by assumption a successful run of B, it passes infinitely
often through a successful state. Hence we may consider the first time j > i for which bj is
an accepting state. But if bj ∈ F , then in step 2 of stage j it has been put in the label set of
a new child, say, s, of r. In step 3a, bj may be removed from the label set of s, but only in
case it was already present in the label set of an older sibling of s. It is not hard to see that
in step 3b or 4, bj will not be removed from the label sets it belongs to after step 3a.

We claim that in fact

for all k ≥ j, bk ∈ Lk(sk), for some child sk of r. (39)

The proof of this claim rests on the observation that bk can only fail to be a member of
the set

⋃
{Lk(s) | s�k r} in case r is a successful node in Sk, and we assumed that this was

not the case. (Here �k denotes the child relation in the Safra tree Sk.) Now note that the
merging of traces (as described in step 3a of the procedure) may cause states to be moved to
the label set of a sibling, but only to an older one. Such a shift can thus only happen finitely
often, so that after some stage j1 there is a node s such that

for all k > j1 : s ∈ Sk, s�k r, and bk ∈ Lk(s). (40)

We can now repeat the argument with this s taking the role of r: either s itself is marked
green infinitely often, or eventually, at some stage l, the ρ-state bl ∈ F will be placed at the
next level, and remain there. Since the depth of the Safra trees involved is bounded, there
must be some node s which after some initial phase belongs to each Safra tree in σ, and which
is marked infinitely often.

For the opposite inclusion ⊇, suppose that the (unique) run σ = (S0, L0, θ0)(S1, L1, θ1) . . .
of BS on the input stream γ = c0c1 . . . is successful. Then by definition there is some node
s ∈ N = {0, . . . , 2n} which after some initial phase will belong to each Safra tree in σ and
which will subsequently be marked green infinitely often, say at the stages k1 < k2 < · · · .
For each i > 0, let Ai denote the macro-state of s at stage ki, that is: Ai := Lki(s).

Lectures on the modal µ-calculus 4-17

For natural numbers p and q, let γ[p, q) denote the finite word cp · · · cq−1, so that γ is
equal to the infinite concatenation

γ = γ[0, k1) · γ[k1, k2) · γ[k2, k3) · · ·

Since our construction is a refinement of the standard subset construction of Remark 4.25,
by (37) it easily follows from the definitions of δ that for every state a ∈ A1 there is a
γ[0, k1)-labeled path from bI to a, or briefly:

for all a ∈ A1 we have bI
γ[0,k1)
� a. (41)

With a little more effort, crucially involving the conditions for marking nodes, and the
rules governing the creation and maintenance of nodes, one may prove that

for all i > 0 and for all a ∈ Ai+1 there is an a′ ∈ Ai such that a′
γ[ki,ki+1)
�F a. (42)

Here a′
γ[ki,ki+1)
�F a means that there is a γ[ki, ki+1)-labelled path from a′ to a which passes

through some state in F . Details of this proof are left as an exercise to the reader.
The remainder of the proof consists of finding a successful run of B on γ as the concate-

nation of a run segment given by (41) and infinitely many run segments given by (42). For
this we use König’s Lemma.

Defining A0 := {bI}, we will construct a tree, all of whose nodes are pairs of the form
(a, i) with a ∈ Ai. As the (unique) parent of a node (a, i+ 1) we pick one of the pairs (a′, i)
given by (41) (in case i = 0) or (42) (in case i > 0). Obviously this is a well-formed, infinite,
finitely branching tree. So by König’s Lemma, there is an infinite branch (a0, 0)(a1, 1) · · · .
By construction, we have a0 = bI , while for each i ≥ 0 there is a γ[ki, ki+1)-labelled path in B
from ai to ai+1 which passes through some accepting state of B. The infinite concatenation
of these paths gives a run of B on γ, which visits infinitely often an accepting state of B, and
hence by finiteness of B, it visits some state of B infinitely often. Clearly then this run is
accepting. qed

4.5 Logic and automata

I discuss the relation between stream automata, the linear µ-calculus, and monadic

second-order logic;

I discuss linear time logic

4.6 A coalgebraic perspective

In this section we introduce a coalgebraic perspective on stream automata. We have two
reasons for doing so. First, we hope that this coalgebraic presentation will facilitate the
introduction, further on, of automata operating on different kinds of structures. And second,
we also believe that the coalgebraic perspective, in which the similarities between automata
and the objects they classify comes out more clearly, makes it easier to understand some of
the fundamental concepts and results in the area.

In this context, it makes sense to consider a slightly wider class than streams only.

4-18 Stream automata

Definition 4.36 A C-flow is a pair S = 〈S, σ〉 with σ : S → C × S. Often we will write
σ(s) = (σC(s), σ0(s)). If we single out an (initial) state s0 ∈ S in such a structure, we obtain
a pointed C-flow (S, s0). �

Example 4.37 Streams over an alphabet C can be seen as pointed C-flows: simply identify
the word γ = c0c1c2 . . . with the pair (〈ω, λn.(cn, n+1)〉, 0). Conversely, with any pointed flow
〈S, s〉 we may associate a unique stream γS,s by inductively defining s0 := s, si+1 := σ0(si),
and putting γS(n) := σC(sn). �

It will be instructive to define the following notion of equivalence between flows. As its
name already indicates, we are dealing with the analog of the notion of a bisimulation between
two Kripke models. Since flows, having a deterministic transition structure, are less complex
objects than Kripke models, the notion of bisimulation is also, and correspondingly, simpler.

Definition 4.38 Let S and S′ be two C-flows. Then a nonempty relation Z ⊆ S × S′ is a
bisimulation if the following holds, for every (s, s′) ∈ Z:

(color) σC(s) = σ′C(s′);

(successor) (σ0(s), σ′0(s′)) ∈ Z.

Two pointed flows (S, s) and (S′, s′) are called bisimilar, notation: S, s ↔ S′, s′ if there is
some bisimulation Z linking s to s′. In case the flows S and S′ are implicitly understood, we
may drop reference to them and simply call s and s′ bisimilar. �

As an example, it is not hard to see that any pointed flow (S, s) is bisimilar to the stream
γS,s that we may associate with it (see Example 4.37). Restricted to the class of streams,
bisimilarity means identity.

Definition 4.39 A stream is called regular if it is bisimilar to a finite pointed flow. �

Associated is a new perspective on nondeterministic stream automata which makes them
very much resemble these flows. Roughly speaking the idea is this. Think of establishing a
bisimulation between two pointed flows in terms of one structure 〈A, aI , α〉 classifying the
other, 〈S, sC , σ〉.

Now on the one hand make a restriction in the sense that the classifying flow must be
finite, but on the other hand, instead of demanding its transition function to be of the form
α : A→ C×A, allow objects α(a) to be sets of pairs in C×A, rather than single pairs. That
is, introduce non-determinism by letting the transition map ∆ of A be of the form

∆ : A→ ℘(C ×A). (43)

Remark 4.40 This presentation (43) of nondeterminism is completely equivalent to the one
given earlier. The point is that there is a natural bijection between maps of the above kind,
and the ones given in Definition 4.21 as the transition structure of nondeterministic automata:

A→ ℘(C ×A) ∼= (A× C)→ ℘(A). (44)

Lectures on the modal µ-calculus 4-19

To see why this is so, an easy proof suffices. Using the principle of currying we can show that

A→ ((C ×A)→ 2) ∼= (A× C ×A)→ 2 ∼= (A× C)→ (A→ 2),

where the first and last set can be identified with respectively the left and right hand side of
(44) using the bijection between subsets and their characteristic functions.

Concretely, we may identify a map ∆ : (A×C)→ ℘(A) with the map ∆′ : A→ ℘(C×A)
given by

∆′(a) := {(c, a′) | a′ ∈ ∆(a, c)}. (45)

�

Thus we arrive at the following reformulation of the definition of nondeterministic au-
tomata. Note that with this definition, a stream automaton can be seen as a kind of ‘multi-
stream’ in the sense that every state harbours a set of potential ‘local realizations’ as a
flow. Apart from this, an obvious difference with flows is that stream automata also have an
acceptance condition.

Definition 4.41 A nondeterministic C-stream automaton is a quadruple A = 〈A,∆,Acc, aI〉
such that ∆ : A→ ℘(C×A) is the transition function, Acc ⊆ Aω is the acceptance condition,
and aI ∈ A is the initial state of the automaton. �

Finally, it makes sense to formulate the notion of an automaton accepting a flow in terms
that are related to that of establishing the existence of a bisimulation. The nondeterminism
can nicely be captured in game-theoretic terms — note however, that here we are dealing
with a single player only.

In fact, bisimilarity between two pointed flows can itself be captured game-theoretically,
using a trivialized version of the bisimilarity game for Kripke models of Definition 1.26.
Consider two flows A and S. Then the bisimulation game B(A,S) between A and S is defined
as a board game with positions of the form (a, s) ∈ A×S, all belonging to ∃. At position (a, s),
if a and s have a different color, ∃ loses immediately; if on the other hand αC(a) = σC(s),
then as the next position of the match she ‘chooses’ the pair consisting of the successors of a
and s, respectively. These rules can concisely be formulated as in the following Table:

Position Player Admissible moves

(a, s) ∈ A× S ∃ {(α0(a), σ0(s)) | αC(a) = σC(s)}

Finally, the winning conditions of the game specify that ∃ wins all infinite games. We leave
it for the reader to verify that a pair (a, s) ∈ A× S is a winning position for ∃ iff a and s are
bisimilar.

In order to proceed, however, we need to make a slight modification. We add positions
of the form (α, s) ∈ (C × A) × S, and insert an ‘automatic’ move immediately after a basic
position, resulting in the following Table.

Position Player Admissible moves

(a, s) ∈ A× S - {(α(a), s)}
(α, s) ∈ (C ×A)× S ∃ {(α0, σ0(s)) | αC = σC(s)}

4-20 Stream automata

The acceptance game of a nondeterministic automaton A and a flow S can now be formu-
lated as a natural generalization of this game.

Definition 4.42 Given a nondeterministic C-stream automaton A = 〈A, aI ,∆,Acc〉 and a
pointed flow S = 〈S, s0, σ〉, we now define the acceptance game A(A, S) as the following board
game.

Position Player Admissible moves

(a, s) ∈ A× S ∃ {(α, s) ∈ (C ×A)× S | α ∈ ∆(a)}
(α, s) ∈ (C ×A)× S ∃ {(α0, σ0(s)) | αC = σC(s)}

Table 8: Acceptance game for nondeterministic stream automata

Its positions and rules are given in Table 8, whereas the winning conditions of infinite
matches are specified as follows. Given an infinite match of this game, first select the sequence

(a0, s0)(a1, s1)(a2, s2) . . .

of basic positions, that is, the positions reached during play that are of the form (a, s) ∈ A×S.
Then the match is winning for ∃ if the ‘A-projection’ a0a1a2 . . . of this sequence belongs to
Acc. �

Definition 4.43 A nondeterministic C-stream automaton A = 〈A, aI ,∆,Acc〉 accepts a
pointed flow S = 〈S, s0, σ〉 if the pair (aI , s0) is a winning position for ∃ in the game A(A, S).
�

The following proposition states that the two ways of looking at nondeterministic au-
tomata are equivalent.

Proposition 4.44 Let A = 〈A, aI ,∆,Acc〉, with ∆ : (A× C)→ ℘(A) be a nondeterministic
C-automaton, and let A′ be the nondeterministic C-stream automaton 〈A, aI ,∆′,Acc〉, where
∆′ : A→ ℘(C ×A) is given by (45). Then A and A′ are equivalent.

In the sequel we will identify the two kinds of nondeterministic automata, speaking of
the coalgebraic presentation 〈A, aI ,∆′ : A → ℘(C × A),Acc〉 of an automaton 〈A, aI ,∆ :
(A× C)→ ℘(A),Acc〉.

Notes

The idea to use finite automata for the classification of infinite words originates with Büchi.
In [6] he used stream automata with (what we now call) a Büchi acceptance condition to
prove the decidability of the second-order theory of the natural numbers (with the successor
relation). In the subsequent development of the theory of stream automata, other acceptance
conditions were introduced. The Muller condition is named after the author of [21]. The
invention of the parity condition, which can be seen as a refinement of the Rabin condition,
is usually attributed to Emerson & Jutla [11], Mostowski [20], and/or Wagner.

Lectures on the modal µ-calculus 4-21

The first construction of a deterministic equivalent to a nondeterministic Muller automa-
ton was given by McNaughton [18]. The construction we presented in section 4.4 is due to
Safra [26]. Finally, the coalgebraic perspective on stream automata presented in the final
section of this chapter is the author’s.

Exercises

Exercise 4.1 Provide Büchi automata recognizing exactly the following stream languages:

(a) La = {α ∈ {a, b, c}ω | a and b occur infinitely often in α}

(b) Lb = {α ∈ {a, b, c}ω | any a in α is eventually followed by a b}

(c) Lc = {α ∈ {a, b}ω | between any two a’s is an even number of b’s}

(d) Ld = {α ∈ {a, b, c}ω | ab and cc occur infinitely often in α}

Exercise 4.2 Let C be a finite set. Show that the class of ω-regular languages over C is
closed under the Boolean operations, i.e., show that

(a) If L ⊆ Cω is ω-regular then its complement L := {γ ∈ Cω | γ 6∈ L} is ω-regular.

(b) If L1 and L2 are ω-regular C-stream languages, then L1 ∪ L2 is ω-regular.

(c) If L1 and L2 are ω-regular C-stream languages, then L1 ∩ L2 is ω-regular.

Exercise 4.3 Observe that Büchi automata can also be seen as finite automata operating
on finite words (see Example 4.9.

(a) Show the following, for any deterministic Büchi automaton A:

Lω(A) = {α ∈ Σω | infinitely many prefixes of α belong to L(A)}.

(b) Does this hold for nondeterministic Büchi automata as well?

Exercise 4.4 Let C and D be finite sets and let f : C → D be a function. The function
f can be extended to a function f : Cω → Dω in the obvious way by putting f(γ) :=
f(c0)f(c1)f(c2) . . . ∈ Dω for any C-stream γ ∈ Cω. For a given C-stream language L ⊆ Cω

we define
f(L) := {f(γ) | γ ∈ L} ⊆ Dω.

(a) Show that L ⊆ Cω is ω-regular implies f(L) ⊆ Dω is ω-regular.

(b) Show that there is a C-stream language L ⊆ Cω such that L = Lω(A) for some de-
terministic Büchi automaton A and such that f(L) ⊆ Dω is not recognizable by any
deterministic Büchi automaton.

Exercise 4.5 Prove that nondeterministic Büchi automata have the same recognizing power
as their Muller variants by showing that the automata A′ and A in the proof of Proposition 4.24
are indeed equivalent.

4-22 Stream automata

Exercise 4.6 Consider the language Ld of exercise 4.1.

(a) Give a clear description of the complement Ld of Ld.

(b) Give a nondeterministic Büchi automaton recognizing exactly the language Ld.

(c) Prove that there is no deterministic Büchi automaton recognizing the language Ld.
(Hint: use the theorem from Exercise 4.3.)

Exercise 4.7 Provide deterministic Muller automata recognizing the following languages:

(a) Ld of exercise 4.1.

(b) La = {α ∈ {a, b, c}ω | between every pair of a’s is an occurrence of bb or cc }.

Exercise 4.8 (regularity) Let C be a finite set, and let L ⊆ Cω be a stream language over
C. Prove that if L is ω-regular, then it contains a stream of the form uvω where u ∈ C∗ and
v ∈ C+.

Exercise 4.9 Describe the languages that are recognized by the following Muller automata
(presented in tabular form, with ⇒ indicating the initial state):

(a)

A a b

⇒ q0 q1 q2

q1 q0 q2

q2 q1 q0

with F := {{q0, q1}, {q0, q2}}.

(b) The same automaton as in (a) but with F := {{q1, q2}, {q0, q1, q2}}.

(c)

A a b c

⇒ q0 q1 q0 q0

q1 q0 q2 q0

q2 q0 q0 q3

q3 q0 q0 q0

with F := {{q0}, {q0, q1}, {q0, q1, q2}}.

Exercise 4.10 Prove (42) in the proof of Proposition 4.35. That is, show that

for all i > 0 and for all a ∈ Ai+1 there is an a′ ∈ Ai such that a′
γ[ki,ki+1)
�F a.

Can you also prove that, conversely,

for all i > 0 and for all a ∈ Ai there is an a′ ∈ Ai+1 such that a′
γ[ki,ki+1)
�F a?

5 Parity games

A large part of the theory of modal fixpoint logic involves nontrivial concepts and results
from the theory of infinite games. In this chapter we discuss some of the highlights of this
theory in a fair amount of detail. This allows us to be rather informal about game-theoretic
concepts in the rest of the notes.

5.1 Board games

The games that we are dealing with here can be classified as board or graph games. They are
played by two agents, here to be called 0 and 1.

Definition 5.1 If σ ∈ {0, 1} is a player, then σ denotes the opponent 1− σ of σ. �

A board game is played on a board or arena, which is nothing but a directed graph in
which each node is marked with either 0 or 1. A match or play of the game consists of the
two players moving a pebble or token across the board, following the edges of the graph. To
regulate this, the collection of graph nodes, usually referred to as positions of the game, is
partitioned into two sets, one for each player. Thus with each position we may associate a
unique player whose turn it is to move when the token lies on position p.

Definition 5.2 A board or arena is a structure B = 〈B0, B1, E〉, such that B0 and B1

are disjoint sets, and E ⊆ B2, where B := B0 ∪ B1. We will make use of the notation
E[p] for the set of admissible or legitimate moves from a board position p ∈ B, that is,
E[p] := {q ∈ B | (p, q) ∈ E}. Positions not in E[p] will sometimes be referred to as illegitimate
moves with respect to p. A position p ∈ B is a dead end if E[p] = ∅. If p ∈ B, we let σp
denote the (unique) player such that p ∈ Bσp , and say that p belongs to σp, or that it is σp’s
turn to move at p. �

A match of the game may in fact be identified with the sequence of positions visited during
play, and thus corresponds to a path through the graph. We refer to the Appendix A for some
notation concerning paths.

Definition 5.3 A path through a board B = 〈B0, B1, E〉 is a nonempty (finite or infinite)
sequence π ∈ B∞ such that Eπiπi+1 whenever applicable. A full or complete match or play
through B is either an infinite B-path, or a finite B-path π ending with a dead end (i.e.
E[last(π)] = ∅).

A partial match is a finite path through B that is not a full match; in other words, the last
position of a partial match is not a dead end. We let PMσ denote the set of partial matches
such that σ is the player whose turn it is to move at the last position of the match. In the
sequel, we will denote this player as σπ; that is, σπ := σlast(π). �

Each full or completed match is won by one of the players, and lost by their opponent;
that is, there are no draws. A finite match ends if one of the players gets stuck, that is, is
forced to move the token from a position without successors. Such a finite, completed, match
is lost by the player who got stuck.

5-2 Parity games

The importance of this explains the definition of the notion of a subboard. Note that any
set of positions on a board naturally induces a board of its own, based on the restricted edge
relation. We will only call this structure a subboard, however, if there is no disagreement
between the two boards when it comes to players being stuck or not.

Definition 5.4 Given a board B = 〈B0, B1, E〉, a subset A ⊆ B determines the following
board BA := 〈A ∩ B0, A ∩ B1, E�A〉, where E�A := E ∩ (A × A) is the restriction of E to A.
This structure is called a subboard of B if for all p ∈ A it holds that E[p] = ∅ iff E�A[p] = ∅.
�

If neither player ever gets stuck, an infinite match arises. The flavor of a board game is
very much determined by the winning conditions of these infinite matches.

Definition 5.5 Given a board B, a winning condition is a map W : Bω → {0, 1}. An
infinite match π is won by W (π). A board game is a structure G = 〈B0, B1, E,W 〉 such that
〈B0, B1, E〉 is a board, and W is a winning condition on B. �

Although the winning condition given above applies to all infinite B-sequences, it will
only make sense when applied to matches. We have chosen the above definition because it is
usually much easier to formulate maps that are defined on all sequences.

Before players can actually start playing a game, they need a starting position. The
following definition introduces some terminology and notation.

Definition 5.6 An initialized board game is a pair consisting of a board game G and a
position q on the board of the game; such a pair is usually denoted G@q.

Given a (partial) match π, its first element first(π) is called the starting position of the
match. We let PMσ(q) denote the set of partial matches for σ that start at position q. �

Central in the theory of games is the notion of a strategy. Roughly, a strategy for a player
is a method that the player uses to decide how to continue partial matches when it is their
turn to move. More precisely, a strategy is a function mapping partial plays for the player to
new positions. It is a matter of definition whether one requires a strategy to always assign
moves that are legitimate, or not; here we will not make this requirement.

Definition 5.7 Given a board game G = 〈B0, B1, E,W 〉 and a player σ, a σ-strategy, or a
strategy for σ, is a map f : PMσ → B. In case we are dealing with an initialized game G@q,
then we may take a strategy to be a map f : PMσ(q)→ B. A match π is consistent with or
guided by a σ-strategy f if for any partial match π′ < π with last(π′) ∈ Bσ, the next position
on π (after π′) is indeed the element f(π′).

A σ-strategy f is surviving in G@q if the moves that it prescribes to f -guided partial
matches in PMσ@q are always admissible to σ, and winning for σ in G@q if in addition all
f -guided full matches starting at q are won by σ. A position q ∈ B is winning for σ if σ has a
winning strategy for the game G@q; the collection of all winning positions for σ in G is called
the winning region for σ in G, and denoted as Winσ(G). �

Lectures on the modal µ-calculus 5-3

Intuitively, f being a surviving strategy in G@q means that σ never gets stuck in an
f -guided match of G@q, and so guarantees that σ can stay in the game forever.

Convention 5.8 Observe that we allow strategies that prescribe illegitimate moves. In prac-
tice, it will often be convenient to extend the definition of a strategy even further to include
maps f that are partial in the sense that they are only defined on a proper subset of PMσ.
We will only permit ourselves such a sloppiness if we can guarantee that f(π) is defined for
every π ∈ PMσ that is consistent with the partial σ-strategy f , so that the situation where
the partial strategy actually would fail to suggest a move, will never occur.

It is easy to see that a position in a game G cannot be winning for both players. On the
other hand, the question whether a position p is always a winning position for one of the
players, is a rather subtle one. Observe that in such games the two winning regions partition
the game board.

Definition 5.9 The game G on the board B is determined if Win0(G) ∪Win1(G) = B; that
is, each position is winning for one of the players. �

It turns out that the axiom of choice implies the existence of infinite games that admit
positions from which neither player has a winning strategy.

I Add some more detail, including a remark on the axiom of determinacy in set theory.

In principle, when deciding how to move in a match of a board game, players may use
information about the entire history of the match played thus far. However, it will turn out
to be advantageous to work with strategies that are simple to compute. Particularly nice
are so-called positional strategies, which only depend on the current position (i.e., the final
position of the partial play). Although their importance is sometimes overrated, positional
strategies are convenient to work with, and they will be critically needed in the proofs of some
of the most fundamental results in the automata-theoretic approach to fixpoint logic.

Definition 5.10 A strategy f is positional or history-free if f(π) = f(π′) for any π, π′ with
last(π) = last(π′). �

Convention 5.11 A positional σ-strategy may be represented as a map f : Bσ → B.

As a slight generalisation of positional strategies, finite-memory strategies can be com-
puted using only a finite amount of information about the history of the match. More details
can be found in Exercise 5.2.

5.2 Winning conditions

In case we are dealing with a finite board B, then we may nicely formulate winning conditions
in terms of the set of positions that occur infinitely often in a given match. But in the case of
an infinite board, there may be matches in which no position occurs infinitely often (or more
than once, for that matter). Nevertheless, we may still define winning conditions in terms of

5-4 Parity games

objects that occur infinitely often, if we make use of finite colorings of the board. If we assign
to each position b ∈ B a color, taken from a finite set C of colors, then we may formulate
winning conditions in terms of the colors that occur infinitely often in the match.

Definition 5.12 A coloring of B is a function Γ : B → C assigning to each position p ∈ B
a color Γ(p) taken from some finite set C of colors. By putting Γ(p0p1 · · ·) := Γ(p0)Γ(p1) · · ·
we can naturally extend such a coloring Γ : B → C to a map Γ : Bω → Cω. �

Now if Γ : B → C is a coloring, for any infinite sequence π ∈ Bω, the map Γ◦π ∈ Cω forms
the associated sequence of colors. But then since C is finite there must be some elements of
C that occur infinitely often in this stream.

Definition 5.13 Let B be a board and Γ : B → C a coloring of B. Given an infinite sequence
π ∈ Bω, we let Inf Γ(π) denote the set of colors that occur infinitely often in the sequence
Γ ◦ π.

A Muller condition is a collectionM⊆ ℘(C) of subsets of C. The corresponding winning
condition is defined as the following map WM : Bω → {0, 1}:

WM(π) :=

{
0 if Inf Γ(π) ∈M
1 otherwise.

A Muller game is a board game of which the winning conditions are specified by a Muller
condition. �

In words, player 0 wins an infinite match π = p0p1 · · · if the set of colors one meets
infinitely often on this path, belongs to the Muller collection M.

I Examples to be supplied.

Muller games have two nice properties. First, they are determined. This follows from a
well-known general game-theoretic result, but can also be proved directly. In addition, we
may assume that the winning strategies of each player in a Muller game are finite-memory
strategies. These results can in fact be generalised to arbitrary regular games, that is, board
games where the winning condition is given as an ω-regular language over some colouring of
the board. We refer to Exercise 5.2) for more details.

These results becomes even nicer if the Muller condition allows a formulation in terms of
a priority map. In this case, as colors we take natural numbers. Note that by definition of
a coloring, the range Ω[B] of the coloring function Ω is finite. This means that every subset
of Ω[B] has a maximal element. Hence, every match determines a unique natural number,
namely, the ‘maximal color’ that one meets infinitely often during the match. Now a parity
winning condition states that the winner of an infinite match is 0 if this number is even, and
1 if it is odd. More succinctly, we formulate the following definition.

Definition 5.14 Let B be some set; a priority map on B is a coloring Ω : B → ω, that
is, a map of finite range. A parity game is a board game G = 〈B0, B1, E,WΩ〉 in which the
winning condition is given by

WΩ(π) := max(Inf Ω(π)) mod 2.

Such a parity game is usually denoted as G = 〈B0, B1, E,Ω〉. �

Lectures on the modal µ-calculus 5-5

The key property that makes parity games so interesting is that they enjoy positional
determinacy. We will prove this in section 5.4. First we turn to a special case, viz., the
reachability games.

5.3 Reachability Games

Reachability games are a special kind of board games. They are played on a board such as
described in section 5.1, but now we also choose a subset A ⊆ B. The aim of the game is for
the one player to move the pebble into A and for the other to avoid this to happen.

Definition 5.15 Fix a board B and a subset A ⊆ B. The reachability game Rσ(B, A) is
then defined as the game over B in which σ wins as soon as a position in A is reached or if
σ gets stuck. On the other hand, σ wins if he can manage to keep the token outside of A
infinitely long, or if σ gets stuck. �

As an example, if A = ∅, in order to win the game Rσ(B, A) for player σ it simply suffices
to stay alive forever, while σ can only win by forcing σ to get stuck.

Remark 5.16 If we want reachability games to fit the format of a board game exactly, we
have to modify the board, as follows. Given a reachability game Rσ(B, A), define the board
B′ := 〈B′0, B′1, E′〉 by putting:

B′σ := Bσ \A
B′σ := Bσ ∪A
E′ := {(p, q) ∈ E | p 6∈ A}.

In other words, B′ is like B except that player σ gets stuck in a position belonging to A.
Furthermore, the winning conditions of such a game are very simple: simply define W :
Bω → {0, 1} as the constant function mapping all infinite matches to σ. This can easily be
formulated as a parity condition. �

Since reachability games can thus be formulated as very simple parity games, the follow-
ing theorem, stating that reachability games enjoy positional determinacy, can be seen as a
warming up exercise for the general case. We leave the proof of this result as an exercise for
the reader.

Theorem 5.17 (Positional determinacy of reachability games) Let R be a reachabil-
ity game. Then there are positional strategies f0 and f1 for 0 and 1, respectively, such that
for every position q there is a player σ such that fσ is a winning strategy for σ in R@q.

Definition 5.18 The winning region for σ in Rσ(B, A) is called the attractor set of σ for
A in B, notation: AttrB

σ(A). In the sequel we will fix a positional winning strategy for σ in
Rσ(B, A) and denote it as attrB

σ(A). �

Note that σ-attractor sets always contain all points from which σ can make sure that σ
gets stuck. Furthermore, it is easy to see that in attrσ(A)-guided matches the pebble never
leaves Attrσ(A) (at least if the match starts inside Attrσ(A)!).

5-6 Parity games

Proposition 5.19 Attrσ is a closure operation on P(B), i.e.

1. A ⊆ A′ implies Attrσ(A) ⊆ Attrσ(A′),

2. A ⊆ Attrσ(A),

3. Attrσ(Attrσ(A)) = Attrσ(A).

A kind of counterpart to attractor sets are traps. In words, a set A is a σ-trap if σ can’t
get the pebble out of A, while her opponent has the power to keep it inside A.

Definition 5.20 Given a board B, we call a subset A ⊆ B a σ-trap if E[b] ⊆ A for all
b ∈ A ∩Bσ, while E[b] ∩A 6= ∅ for all b ∈ A ∩Bσ. �

Note that a σ-trap does not contain σ-endpoints and that σ will therefore never get stuck
in a σ-trap. We conclude this section with a useful proposition.

Proposition 5.21 Let B be a board and A ⊆ B an arbitrary subset of B. Then the following
assertions hold.

1. If A is a σ-trap then A is a subboard of B.

2. The union
⋃
{Ai | i ∈ I} of an arbitrary collection of σ-traps is again a σ-trap.

3. If A is a σ-trap then so is Attrσ(A).

4. The complement of Attrσ(A) is a σ-trap.

5. If A is a σ-trap in B then any C ⊆ A is a σ-trap in B iff C is a σ-trap in BA.

Proof. All statements are easily verified and thus the proof is left to the reader. qed

5.4 Positional Determinacy of Parity Games

Theorem 5.22 (Positional Determinacy of Parity Games) For any parity game G there
are positional strategies f0 and f1 for 0 and 1, respectively, such that for every position q there
is a player σ such that fσ is a winning strategy for σ in G@q.

5.4.1 The finite case

I Details to be supplied

Lectures on the modal µ-calculus 5-7

5.4.2 The general case

To prove positional determinacy for arbitrary parity games, we start with the definition of
players’ paradises. In words, a subset A ⊆ B is a σ-paradise if σ has a positional strategy f
which guarantees her both that she wins the game, and that the token stays in A.

Definition 5.23 Given a parity game G(B,Ω), we call a σ-trap A a σ-paradise if there exists
a positional winning strategy f : A ∩Bσ → A. �

The following proposition establishes some basic facts about paradises.

Proposition 5.24 Let G(B,Ω) be a parity game. Then the following assertions hold:

1. The union
⋃
{Pi | i ∈ I} of an arbitrary set of σ-paradises is again a σ-paradise.

2. There exists a largest σ-paradise.

3. If P is a σ-paradise then so is Attrσ(P).

Proof. The main point of the proof of part (1) is that we somehow have to uniformly choose
a strategy on the intersection of paradises, such that we will end up following the strategy of
only one paradise. For this purpose, we assume that we have a well-ordering on the index set
I (i.e., for the general case we assume the Axiom of Choice).

For the details, assume that {Pi | i ∈ I} is a family of paradises, and let fi be the positional
winning strategy for Pi. Note that P :=

⋃
{Pi | i ∈ I} is a trap for σ by Proposition 5.21.

Assume that < is a well-ordering of I, so that for each q ∈ P there is a minimal index min(q)
such that q ∈ Pmin(q). Define a positional strategy on P by putting

f(q) := fmin(q)(q).

This strategy ensures at all times that the pebble either stays in the current paradise, or
else it moves to a paradise of lower index, and so, any match where σ plays according to f will
proceed through a sequence of σ-paradises of decreasing index. Because of the well-ordering,
this decreasing sequence of paradises cannot be strictly decreasing, and thus we know that
after finitely many steps the pebble will remain in the paradise where it is, say, Pj . From
that moment on, the match is continued as an fj-guided match inside Pj , and since fj is by
assumption a winning strategy when played inside Pj , this match is won by σ.

Part (2) of the proposition should now be obvious: clearly the union of all σ-paradises is
the greatest σ-paradise.

In order to prove part (3) we need to show that there exists a winning strategy for σ.
The principal idea is to first move to P by attrσ(P) and once there to follow the winning
strategy in P . Let f ′ be the winning strategy for P , we then define the following strategy f
on Attrσ(P) by

f(p) :=

{
f ′(p) if p ∈ P
attrσ(P)(p) otherwise.

A match consistent with this strategy will stay in Attrσ(P) because it is a σ-trap and f(p) ∈
Attrσ(P) for all p ∈ Attrσ(P). It is winning because if ever the match arrives at a point

5-8 Parity games

p ∈ P then play continues as if the match were completely in P ; and since f ′ was supposed
to be a winning strategy for σ this play is won by σ. However if we start outside P we will
at first follow the strategy attrσ(P) which will ensure that σ either wins or that the pebble
ends up in P , in which case σ will also win. qed

Now we are ready to prove the main assertion from which Theorem 5.22 immediately
follows.

Proposition 5.25 The board of a parity game G(B,Ω) can be partitioned into a 0-paradise
and a 1-paradise.

Proof. We will prove this proposition by induction on d, the maximal parity in the game (i.e.
n = max(Ω[B])). If d = 0 we are dealing with a reachability game (namely R1(B,∅)), and
from the results in section 5.3 we may derive that Attr1(∅) is a 1-paradise and its complement
is a 0-paradise. So the proposition holds in case d = 0.

Therefore in the remainder we can assume that d ≥ 1. Let σ := d mod 2, that is, σ wins
an infinite play π if max(Inf (π)) = max(Ω[B]) = d. Let Pσ be the maximal σ-paradise, with
associated positional strategy f . It now suffices to show that X := B \ Pσ is a σ-paradise.

First we shall show that X is a σ-trap. By proposition 5.24(3) it follows that Attrσ(Pσ) is
itself also a σ-paradise. By maximality of Pσ and the fact that Attrσ is a closure operation,
it follows that Pσ = Attrσ(Pσ). Thus by Proposition 5.21(4) we see that X, being the
complement of a σ-attractor set is a σ-trap.

Consider GX , the subgame4 of G restricted to X. Define N := {b ∈ X | Ω(b) = d} to be the
set of all points in X with priority d and let Z := X \AttrBX

σ (N). Since Z is the complement
of a σ-attractor set in BX it is a σ-trap in BX and hence a σ-trap of B.

Pσ

N

AttrBX
σ (N)

Zσ Zσ

By the induction hypothesis we can split the subgame GZ into a 0-paradise Z0 and a 1-paradise
Z1, see the picture. The winning strategies in these paradises we call f0 and f1 respectively.
(All notions are with regard to the game GZ .) We want to show that Zσ = ∅, so that Z = Zσ.

4For the time being, we take a simple perspective on subgames. Given a parity game G = (B0, B1, E,Ω),
every subset A ⊆ B induces a subgame GA := (B0 ∩ A,B1 ∩ A,E �A ,Ω�A) where E �A and Ω�A) are simply
the restrictions of E and Ω to A.

Lectures on the modal µ-calculus 5-9

To this aim, we claim that Pσ ∪ Zσ is a σ-paradise in G, and in order to prove this, we
consider the following strategy g of σ:

g(b) :=

{
f(b) if b ∈ Pσ
fσ(b) if b ∈ Zσ.

It is left as an exercise for the reader to show that this is indeed a positional winning strategy
for σ in G, and in addition it keeps the pebble inside Pσ ∪ Zσ. By the definition of Pσ as the
maximal σ-paradise, we see that Pσ = Pσ ∪Zσ and since Pσ and Zσ are disjoint we conclude
that Zσ is empty indeed.

This means we can write

X = Zσ ∪AttrBX
σ (N).

We are now almost ready to define the winning strategy for σ which keeps the token inside
X. Recall that X is a σ-trap, so that for each b ∈ X ∩Bσ, we may pick an arbitrary element
k(b) ∈ E[b] ∩X. Now define the following strategy h in G for σ on X.

h(b) :=


k(b) if b ∈ N
attrσ(N)(b) if b ∈ AttrBX

σ (N) \N
fσ(b) if b ∈ Zσ = Z.

It is left as an exercise for the reader to show that h is indeed a winning strategy for σ in G
and that it keeps the pebble in X. qed

Finally, the assertion made in Theorem 5.22 follows directly from this proposition because
by definition of paradises there now exists for every point b ∈ B a positional winning strategy
for the game G(B,Ω).

I strategies as 1-player games

I automatic moves

I shadow matches?

5.5 Size issues and algorithmic aspects

5.6 Game equivalences

Notes

The application of game-theoretic methods in the area of logic and automata theory goes back
to work of Büchi. The positional determinacy of parity games was proved independently by
Emerson & Jutla [11] and by Mostowski in an unpublished technical report. Our proof of
this result is based on Zielonka [29].

5-10 Parity games

Exercises

Exercise 5.1 (positional determinacy of reachability games) Give a direct proof of
the positional determinacy of reachability games, that is: prove Theorem 5.17.

Exercise 5.2 (regular games & finite memory strategies) An infinite game G = 〈B0, B1, E,W 〉
is called regular if there exists an ω-regular language L over some finite alphabet C and a
colouring Γ : B → C, such that player 0 wins (pi)i<ω ∈ Bω precisely if the induced sequence
(Γ(pi))i<ω ∈ Cω belongs to L.

A strategy α for player σ in an infinite game G = 〈B0, B1, E,W 〉 is a finite memory
strategy if there exists a finite set M , called the memory set, an element mI ∈ M and a
map (α1, α2) : B × M → B × M such that for all pairs of sequences p0 · · · pk ∈ B∗ and
m0 · · ·mk ∈ M∗: if m0 = mI , p0 · · · pk ∈ PMσ and mi+1 = α2(pi,mi) (for all i < k), then
α(p0 · · · pk) = α1(pk,mk).

Now let G be a regular game.

(a)∗ Show that G is determined, and that player 0 has a finite memory strategy which is
winning for her in G@p for every p ∈Win0.
Hint: define an auxiliary game with positions B × M , where M is the carrier of a
deterministic parity automaton M recognizing L.

(b) Does the same statement hold for player 1? That is, if p ∈Win1, can you now conclude
that player 1 has a winning finite memory strategy in G@p?

6 Parity formulas & model checking

In this chapter we introduce parity formulas. In short, these are graph-based modal formulas
with an added parity condition, that will allow us to view the evaluation games of µ-calculus
formulas as instances of parity games. Providing a link between the world of µ-calculus
formulas and that of parity games, they illuminate the complexity-theoretic analysis of the
model checking problem of the modal µ-calculus. Parity formulas can also be studied in their
own right, as an interesting generalisation of the regular (tree-based) µ-calculus formulas.

6.1 Parity formulas

We start with the basic definition of a parity formula. Recall that, given a set P of proposition
letters, we define the sets Lit(P) and At(P) of literals and atomic formulas over P by setting
Lit(P) := {p, p | p ∈ P} and At(P) := Lit(P) ∪ {>,⊥}, respectively.

Definition 6.1 Let P be a finite set of proposition letters. A parity formula over P is a
quintuple G = (V,E,L,Ω, vI), where

a) (V,E) is a finite, directed graph, with |E[v]| ≤ 2 for every vertex v;5

b) L : V → At(P) ∪ {∧,∨,3,2, ε} is a labelling function;

c) Ω : V
◦→ ω is a partial map, the priority map of G; and

d) vI is a vertex in V , referred to as the initial node of G;

such that

1) |E[v]| = 0 if L(v) ∈ At(P), and |E[v]| = 1 if L(v) ∈ {3,2} ∪ {ε};
2) every cycle of (V,E) contains at least one node in Dom(Ω).

A node v ∈ V is called silent if L(v) = ε, constant if L(v) ∈ {>,⊥}, literal if L(v) ∈ Lit(P),
atomic if it is either constant or literal, boolean if L(v) ∈ {∧,∨}, and modal if L(v) ∈ {3,2}.

Elements of Dom(Ω) will be called states, and we refer to (V,E) as the (underlying) graph
of the parity formula. We say that a proposition letter q occurs in G if L(v) ∈ {q, q} for some
v ∈ V .

A parity formula G = (V,E, L,Ω, vI) is balanced if Dom(Ω) = {v ∈ V | L(v) = ε}. �

Remark 6.2 Parity formulas share many characteristics of automata. Since we decided to
use the term ‘formulas’ to describe them, it will be useful to have an adjective to describe
‘normal’ formulas, that is, the elements of the language of the modal µ-calculus. We will refer
to these as ‘regular’ formulas. �

Example 6.3 In Figure 3 we give two examples of parity formulas. The picture on the left
displays a parity formula that is directly based on the µ-calculus formula ξ = µx.(p ∨3x) ∨
νy.(q ∧2(x ∨ y)), by adding back edges to the subformula dag of ξ. The picture on the right
displays a parity formula that corresponds to the formula ξ1 of Example 2.38. In both cases
we display the label and (if defined) the priority of a node inside its representing circle. �

5When discussing disjunctive parity formulas we will drop this requirement, allowing E[v] to be of arbitrary
finite size.

6-2 Parity formulas

εstart

∨|1

ε

∧|0

2

∨

ε|0ε|1

q

∨

3p

ε|3start ε|2 ε|1 ∧

∨

2

∨

Figure 3: Two parity formulas

The definition of parity formulas needs little explanation. Condition 2) says that every
cycle must pass through at least one state; this is needed to provide a winner for infinite
matches of the evaluation games that we use to define the semantics of parity formulas. The
rules (admissible moves) in this evaluation game are completely obvious.

Definition 6.4 Let S = (S,R, V) be a Kripke model for a set P of proposition letters, and let
G = (V,E, L,Ω, vI) be a parity P-formula. The evaluation game E(G,S) is the parity game
(G,E′,Ω′) of which the board consists of the set V × S, the priority map Ω′ : V × S → ω is
given by

Ω′(v, s) :=

{
Ω(v) if v ∈ Dom(Ω)
0 otherwise,

and the game graph is given in Table 9. Note that we do not need to assign a player to
positions that admit a single move only. �

Definition 6.5 We say that a parity formula G = (V,E, L,Ω, vI) holds at or is satisfied by
a pointed Kripke model (S, s), notation: S, s
 G, if the pair (vI , s) is a winning position for
∃ in E(G, S). We let Q(G) denote the query of G, that is, the class of pointed Kripke models
where G holds, and we call two parity formulas G and G′ equivalent if they determine the
same query, notation: G ≡ G′. We will use the same terminology and notation to compare
parity formulas with standard formulas. �

The two key complexity measures of a parity formula, viz., size and index, both have
perspicuous definitions. We will introduce these measures here, together some other useful
notions pertaining to parity formulas.

Lectures on the modal µ-calculus 6-3

Position Player Admissible moves

(v, s) with L(v) = p and s ∈ V (p) ∀ ∅
(v, s) with L(v) = p and s /∈ V (p) ∃ ∅
(v, s) with L(v) = p and s ∈ V (p) ∃ ∅
(v, s) with L(v) = p and s /∈ V (p) ∀ ∅
(v, s) with L(v) = ⊥ ∃ ∅
(v, s) with L(v) = > ∀ ∅
(v, s) with L(v) = ε - E[v]× {s}
(v, s) with L(v) = ∨ ∃ E[v]× {s}
(v, s) with L(v) = ∧ ∀ E[v]× {s}
(v, s) with L(v) = 3 ∃ E[v]×R[s]
(v, s) with L(v) = 2 ∀ E[v]×R[s]

Table 9: The evaluation game E(G,S)

Definition 6.6 The size of a parity formula G = (V,E,L,Ω, vI) is defined as its number of
nodes: |G| := |V |. �

Next to size, as the second fundamental complexity measure for a parity formula we need
is its index, which corresponds to the alternation depth of regular formulas. It concerns the
degree of alternation between odd and even positions in an infinite match of the evaluation
game, and it is thus closely related to the range of the priority map of the formula. The most
straightforward approach would be to define the index of a parity formula as the size of this
range; a slightly more sophisticated approach is a clusterwise version of this.

Definition 6.7 Let G = (V,E, L,Ω, vI) be a parity formula, and let u and v be vertices in
V . We say that v is active in u if E+uv, and we let ./E ⊆ V × V hold between u and v
is u is active in v and vice versa, i.e., ./E := E+ ∩ (E−1)+. We let ≡E be the equivalence
relation generated by ./E ; the equivalence classes of ≡E will be called clusters. A cluster C is
called degenerate if it is a singleton {v} such that v is not active in itself, and nondegenerate
otherwise.

The collection of clusters of a parity formula G is denoted as Clus(G), and we say that a
cluster C is higher than another cluster C ′ if there are some u ∈ C and u ∈ C ′ with E+uu′.
�

Note that in a nondegenerate cluster there is a nontrivial path between any pair of vertices.
Intuitively, vertices belong to the same (nondegenerate) cluster if they can jointly occur
infinitely often in some infinite match of some acceptance game for the formula. Furthermore,
note that the notion of one cluster being higher than another could have been defined in many
different (but equivalent) ways. For instance, C is higher than C ′ iff for every u ∈ C there is
a u′ ∈ C ′ with E+uu′, iff E+uu′ holds for every u ∈ C and u′ ∈ C, etc. Finally, observe that
the ‘higher than’ relation between clusters is a partial order.

6-4 Parity formulas

Proposition 6.8 Let τ = (tn)n∈ω be an infinite path through the graph of a parity formula
G. Then G has a unique cluster C such that, for some k, all tn with n > k belong to C. This
cluster is nondegenerate.

As a corollary of this, the relative priorities of states only matter if we stay in the same
cluster.

Definition 6.9 Let G = (V,E,L,Ω, vI) be a parity formula. Given a cluster C of G, we
define its index as the number of priorities reached by states in C, that is, indG(C) =
|Ran(Ω �C)|. The index of G is given as the maximal index of its nondegenerate clusters,
ind(G) := max{indG(C) | C ∈ Clus(G) nondegenerate}. �

Note that a nondegenerate cluster must have at least one state. Consequently, a parity
formula has a nonzero index iff it has nondegenerate clusters.

6.2 Basics

Model checking for parity formulas

Since the evaluation game for parity formulas is given as a parity game, we immediately get
a quasi-polynomial upper bound on the time complexity of the model checking problem for
parity formulas. Recall that the size of a (pointed) labelled transition system is simply defined
as the number of points in the model.

Definition 6.10 The model checking problem for parity formulas is the problem to compute
whether S, s
 G, where S is a (finite) labelled transition system, and G is a parity formula.
�

Theorem 6.11 Assume that the problem of determining the winning regions of a parity game
G can be solved in time f(n, d), where n and d are, respectively, the size and the index of G.
Then the model checking problem for parity formulas can be solved in time f(m · n, d + 1),
where m is the size of the labelled transition system, and n and d are the size and index of
the parity formula, respectively.

Remark 6.12 In the above theorem we state the model checking problem as being solvable
in time f(m ·n, d+1), and not f(m ·n, d). The reason for adding the ‘+1’ is a technicality: the
index of a parity game is usually defined as the global range of the priority map, whereas for
parity formulas it makes sense to define the index as the clusterwise size of the priority map.
This makes a difference of 1 in the case of a parity formula of index d which has a cluster C
with Ran(Ω�C) = {0, . . . , d− 1} and another cluster C ′ with Ran(Ω�C′) = {1, . . . , d}. �

In the next section we will see how we can use this result to analyse the computational
complexity of the model checking problem for regular formulas.

Lectures on the modal µ-calculus 6-5

Basic observations on parity formulas

Our first basic observation concerns the balanced parity formulas.

Proposition 6.13 Let G be a parity formula. Then there is an equivalent balanced parity
formula G′ of size |G′| ≤ 2 · |G|.

I More basic observations to be added.

Operations on parity formulas

Parity formulas are interesting logical objects in their own right, and so one might want to
develop their theory. To start with, it is fairly easy to define various operations on par-
ity formulas, such as modal and boolean operations (including negation), least and fixpoint
operations, and substitution.

I Examples to follow.

Morphisms and equivalence notions between parity formulas

Furthermore, it would be of interest to study various structural notions of equivalence between
parity formulas. A simple but very useful concept is that of two parity formulas being parity
variants.

Definition 6.14 A parity variant of a parity formula G = (V,E, L,Ω, vI) is a parity formula
G = (V,E,L,Ω′, vI) such that (i) Ω(v) ≡2 Ω′(v), for all v, and (ii) Ω(u) < Ω(v) iff Ω′(u) <
Ω′(v), for all u and v that belong to the same cluster but have different parity. �

It is easy to see that parity variants are semantically equivalent, and have the same size
(but not necessarily the same index). From this it follows that there are certain normal forms
for parity formulas.

Definition 6.15 A parity formula G = (V,E,L,Ω, vI) is called lean if Ω is injective, and
tight if for any cluster C, the range of Ω on C is connected, that is, of the form Ran(Ω�C) =
[k, . . . , n] for some natural numbers k, n with k ≤ n. Here we define [k, . . . , n] := {i ∈ ω | k ≤
i ≤ n}. �

It is not hard to see that every parity formula can be effectively transformed into either
a lean or a tight parity variant.

I Other notions of equivalence to be discussed.

6-6 Parity formulas

6.3 From regular formulas to parity formulas

In this section we will see how to represent a regular formula as an equivalent parity formula.
In order to use the complexity result for the model checking problem for parity formulas to
make similar observations on the model checking of regular formulas, we obviously want to
minimimize the size and the index of the representation. It should come as no surprise that
the index of this parity formula will somehow correspond to the alternation depth of the
formula, while the size of the parity formula will clearly depend on the graph structure that
we pick to represent the original formula.

Suppose that we are looking for a parity formula G = (V,E, L,Ω, vI) representing the
regular formula ξ. It seems that there are three natural candidates for the underlying graph
(V,E) of G: we could take the syntax tree of ξ, its subformula graph, or its closure graph.
Note that each of these three structures induces a natural size measure of µ-calculus formu-
las, respectively length, subformula-size, and (closure-)size. The tree representation has the
advantage of being immediately available for any ξ ∈ µML, whereas the subformula and clo-
sure graph are defined only for the clean and the tidy formulas, respectively. Because of the
unwieldy size of syntax trees, however, we focus here on the other two kinds of representations.

Recall that the subformula dag of a clean formula ξ is the graph (Sf (ξ), .0), where .0 is the
converse of the direct subformula relation /0. We obtain the subformula graph (Sf (ξ), .0∪B)
from this by adding the set B := {(x, δx) | x ∈ BV (ξ)} of back edges to this dag. The closure
graph of a tidy formula ξ ∈ µML is the structure Cξ = (Cl(ξ),→C), where →C is the trace
relation (restricted to the closure of ξ). In the remainder of this section we will see how to
expand either of these two graphs into a full parity formula structure.

In both cases it is obvious how to define the labelling map L, and which vertex to take as
the initial one. It is also more or less clear what the states should be, i.e., on which vertices
the priority map Ω should be defined: In the case of the subformula graph of a clean formula
ξ we will take the set BV (ξ) of bound variables of ξ, while in the closure graph of a tidy
formula ξ we will consider the set of all fixpoint formulas in the closure of ξ.

For the actual values of the priority map however, there is some choice. Observe, however,
that in both versions of the evaluation game, the winning conditions are defined in terms
of some priority order on the set of states, in combination with a fixed assignment of a
parity/player to each state. For instance, in the case of the subformula game for a clean
formula ξ, we use the subordination order 4ξ on BV (ξ), together with the partition of BV (ξ)
into µ- and ν-variables. To assign a winner to an infinite match π, we consider the 4ξ-
maximal element of the set Unf∞(π) (consisting of those bound variables that are unfolded
infinitely often during π), and the winner of π is then determined by the nature of this
variable. Similarly, in the case of the closure game for ξ, we can look at the fixpoint formulas
that occur infinitely often in an infinite match of the game, and observe that this set has a
smallest element with respect to the subformula ordering.

It therefore makes sense to discuss how to transform a priority order on the set of states
into a suitable priority map, in some generality. As we will see, playing with the shape of
the priority order may have an effect on the index of the associated priority map, and one
priority order may yield a lower index than another.

Lectures on the modal µ-calculus 6-7

6.3.1 From parity posets to priority maps

In this subsection we will see how to transform a priority order on some partitioned set of
states, into a suitable priority map. We first develop some terminology. Throughout this
subsection the reader should think of Z as the set of states in a parity formula that is either
based on the subformula graph or on the closure graph of a formula ξ.

Definition 6.16 A parity poset is a structure Z = (Z,4, p), where (Z,4) is a finite poset
and p is a parity map on P , that is, a map p : Z → {0, 1}. We write z ≺ z′ if z 4 z′ and
z 6= z′. �

Example 6.17 Where ξ is a clean formula, take Z := BV (ξ), and let p be the function
mapping µ-variables to 1 and ν-variables to 0. The most obvious priority order on BV (ξ) is
the relation 4′ξ given by

x 4′ξ y if δx P δy.

For any tidy formula ξ, we may take Z to be the set of fixpoint formulas belonging to
Cl(ξ), and let p be the function mapping µ-formulas to 1 and ν-formulas to 0. The most
obvious priority order on this set is the relation Q, that is, the converse of the subformula
relation. �

To give a precise formulation of the required connection between parity posets and priority
maps, we need the notion of an alternating chain in a parity poset, which is a good measure
of its complexity.

Definition 6.18 Let Z = (Z,4, p) be a parity poset. An alternating chain in Z of length
k in Z is a finite sequence z1 · · · zk of states such that, for all i < k, zi ≺ zi+1 while zi and
zi+1 have different parity. The alternation depth ad(Z) of Z is the maximal length of an
alternating chain in Z. �

Since the parity map on a set of states is usually fixed, with a slight abuse of notation
we will often write ad(4) rather than ad(Z,4, p); this notation is particularly useful if we
compare distinct priority relations on a fixed set Z (with a fixed parity map p).

Interestingly, in both parity posets discussed in Example 6.17, the priority relation is in
fact not optimal. That is, there are alternative relations that yield a lower alternation depth.

Example 6.19 Where ξ is a clean formula, an alternative order on BV (ξ) is the relation 4ξ
we obtain by first defining

x 40 y if y P δx P δy,

and then making 4 the reflexive-transitive closure of 40:

4:= (40)∗.

That is: 4 is the dependency order of Definition 2.20. For an example where the two orders
give a different alternation depth, we refer to the formula ξ3 in Example 2.57.

I alternative to Q for tidy formulas: later/elsewhere

6-8 Parity formulas

�

Definition 6.20 Let Z = (Z,4, p) be a parity poset, and let Ω : Z → ω be some priority
map. Then we say that Ω represents Z if it satisfies the following conditions, for all x, z ∈ Z:

1) p(z) = Ω(z) mod 2;

2) x 4 z implies Ω(x) ≤ Ω(z).

If in addition we have ad(Z) = |Ran(Ω)|, we say that Ω represents Z tightly. �

The role of the tightness condition in Definition 6.20 is to keep Ran(Ω) small. The condi-
tions 1 and 2 constitute some kind of soundness condition: if Ω represents Z, then it yields
the same winning conditions as Z. This is the content of the next Proposition, the proof of
which is trivial.

Proposition 6.21 Let Z = (Z,4, p) and Ω : Z → ω be, respectively, a parity poset and
a priority map representing it. Furthermore, let ζ = (zn)n<ω be an infinite sequence of
elements in Z, and assume that the set Inf (ζ) has a 4-greatest element z. Then p(z) = 0 iff
max

(
Ω[Inf (ζ)]

)
is even.

Example 6.22 An example of a parity poset and two representative priority maps is given
in Figure 4. The priority map in the middle is not tight, the one to the right is. �

1

1

1

1

0

0

0

0

1

3

5

7

2

4

6

8

1

1

3

3

2

2

4

4

Figure 4: From a parity poset to a priority map

The key result here is that, under a mild condition that is met in the relevant cases, every
parity poset is indeed tightly represented by some priority map.

Definition 6.23 Let Z = (Z,4, p) be a parity poset. We say that Z is weakly directed if Z
admits a partition of directed subsets, no pair of which is connected via the relation 4. �

It will be convenient for us to define a canonical priority map representing a given weakly
directed parity poset Z = (Z,4, p).

Lectures on the modal µ-calculus 6-9

Definition 6.24 Let Z = (Z,4, p) be a parity poset. Given a point z ∈ Z we define h↑(z)
(respectively, h↓(z)) as the maximal length of an alternating chain starting at z (ending at z,
respectively). We define the following map ΩZ : P → ω:

ΩZ(z) :=

{
ad(Z)− h↑(z) if ad(Z)− h↑(z) ≡2 p(z)
ad(Z)− h↑(v) + 1 if ad(Z)− h↑(z) 6≡2 p(z),

(46)

and we will call this map the priority map induced by Z. �

With a minor abuse of notation, we will often denote the priority map ΩZ as Ω4.

Theorem 6.25 Every weakly directed parity poset Z = (Z,4, p) is tightly represented by its
induced priority map ΩZ.

I Proof to be supplied.

Example 6.26 The condition of weak directedness in Theorem 6.25 is needed. For a very
simple example witnessing this, consider the parity poset below, which has alternation depth
2.

1

1

0

0

It is not hard to see that no priority map representing this parity poset can have a range of
size 2. �

6.3.2 Parity formulas on the subformula graph

The following theorem shows that for a clean formula, we can indeed obtain an equivalent
parity formula which is based on its subformula graph, which we defined as the subformula
dag, expanded with back edges.

Theorem 6.27 There is an algorithm that constructs, for a clean formula ξ ∈ µML(P), an
equivalent parity formula Hξ over P, such that |Hξ| = |ξ|d and ind(Hξ) = ad(ξ).

The basic idea underlying the proof of Theorem 6.27 is to view the evaluation games for
clean formulas in µML as instances of parity games. Given an arbitrary formula ξ ∈ µML, we
then need to see which modifications are needed to turn the subformula dag (Sf (ξ), .0) into
a parity formula Hξ such that, for any model S, the evaluation games E(ξ,S) and E(Hξ, S)
are more or less identical. Clearly, the fact that the positions of the evaluation game E(ξ,S)
are given as the pairs in the set Sf (ξ)× S, means that we can take the set

Vξ := Sf (ξ)

as the carrier of Hξ indeed.

6-10 Parity formulas

Looking at the admissible moves in the two games, it turns out that we cannot just take
the converse direct subformula relation .0 as the edge relation of Hξ: we need to add all back
edges from the set

Bξ := {(x, δx) | x ∈ BV (ξ)},

where, as usual, we let δx denote the unique formula such that, for some η ∈ {µ, ν} the
formula ηx.δx is a subformula of ξ. In fact, if we write Dξ for the relation .0, restricted to
Sf (ξ), then we can take

Eξ := Dξ ∪Bξ,

as the edge relation of Hξ. Furthermore, the labelling map Lξ is naturally defined via the
following case distinction:

Lξ(ϕ) :=


ϕ if ϕ ∈ {>,⊥} ∪ {p, p | p ∈ FV (ξ)}
� if ϕ is of the form ϕ0 � ϕ1 with � ∈ {∧,∨}
♥ if ϕ is of the form ♥ψ with ♥ ∈ {3,2}
ε if ϕ is of the form ηxx.δx with η ∈ {µ, ν}
ε if ϕ ∈ BV (ξ).

With this definition, it is easy to see that the boards of the two evaluation games E(ξ,S) and
E(Hξ, S) are isomorphic (in fact, identical), for any labeled transition system S. As the initial
node vξ of Hξ we simply take

vξ := ξ.

In order to finish the definition of the parity formula Hξ it is then left to come up with
a suitable priority map Ωξ on Vξ. For this we can simply base ourselves on the discussion in
the previous subsection, taking

Ωξ := ΩPξ

where 4ξ is the dependency order on the bound variables of ξ as introduced in Definition 2.20,
cf. also Example 6.19. Note that Ωξ is a partial map, it is only defined for those subformulas
of ξ that belong to its bound variables.

That is, we define

Hξ := (Vξ, Eξ, Lξ,Ωξ, ξ).

It then follows from Theorem 6.25 that the index of Hξ is given by the alternation depth of
4ξ. In order to get an exact match of the index of Hξ and the inductively defined alternation
depth of ξ we need to work a bit harder, but in fact this work has been done already:
Proposition 2.61 states that

ad(ξ) = ad(4ξ).

Proof of Theorem 6.27. In the light of the above discussion, the equivalence of ξ and Hξ

follows from the easily verified fact that Ωξ satisfies the conditions 1 and 2 of Definition 6.20,
see Proposition 6.21. It is immediate by the definitions that |Hξ| = |Sf (ξ)| = |ξ|d. Finally,
we obtain ind(Hξ) = ad(ξ) as a consequence of Proposition 2.61 and Theorem 6.25. qed

Lectures on the modal µ-calculus 6-11

6.3.3 Parity formulas on the closure graph

The next theorem states that for an arbitrary tidy formula, we can also find an equivalent
parity formula that is based on the formula’s closure graph, and has an index which is bounded
by the alternation depth of the formula.

Theorem 6.28 There is a construction transforming an arbitrary tidy formula ξ ∈ µML into
an equivalent balanced parity formula Gξ which is based on the closure graph of ξ, so that
|G| = |ξ|; in addition we have ind(Gξ) ≤ ad(ξ).

When it comes to complexity issues, this is in fact the main result that bridges the gap
between the world of formulas and that of automata and parity games. In particular, as an
immediate corollary of Theorem 6.28 and the quasi-polynomial time complexity result on the
model checking problem for parity formulas (Theorem 6.11), we find that model checking for
µ-calculus formulas can be solved in quasi-polynomial time.

Theorem 6.29 Assume that the problem of determining the winning regions of a parity game
G can be solved in time f(n, d), where n and d are, respectively, the size and the index of G.
Then the model checking problem for parity formulas can be solved in time f(m · n, d), where
m is the size of the labelled transition system, and n and d are the size and alternation depth
of the formula, respectively.

The priority map Ωg that we will define on the closure graph of a tidy formula is in fact
global in the sense that it can be defined uniformly for all (tidy) formulas, independently
of any ambient formula. Furthermore, we will base this map on a partial order of fixpoint
formulas, the closure priority relation 4C that we will introduce now. Recall that Pf denotes
the free subformula relation introduced in Definition 2.49.

Definition 6.30 We let ≡C denote the equivalence relation generated by the relation →C ,
in the sense that: ϕ ≡C ψ if ϕ �C ψ and ψ �C ϕ. We will refer to the equivalence classes
of ≡C as (closure) clusters, and denote the cluster of a formula ϕ as C(ϕ).

We define the closure priority relation 4C on fixpoint formulas by putting ϕ 4C ψ pre-
cisely if ψ �ψ

C ϕ, where �ψ
C is the relation given by ρ �ψ

C σ if there is a trace ρ = χ0 →C

χ1 →C · · · →C χn = σ such that ψ Pf χi, for every i ∈ [0, . . . , n]. We write ϕ ≺C ψ if
ϕ 4C ψ and ψ 64C ϕ. �

The above definition of the closure priority relation is rather involved, but this seems to
be unavoidable if we want to have an exact match of the index of Gξ to the alternation depth
of ξ. A simpler alternative (which does not give such an exact match) is given in Remark 6.31
below.

Remark 6.31 The definition of the priority order 4C may look overly complicated. In fact,
simpler definitions would suffice if we are only after the equivalence of a tidy formula with an
associated parity formula that is based on its closure graph, i.e., if we do not need an exact
match of index and alternation depth.

6-12 Parity formulas

In particular, we could have introduced an alternative priority order4′C by putting ϕ 4′C ψ
if ϕ ≡C ψ and ψ Pf ϕ. If we would base a priority map Ω′g on this priority order instead of
on 4C , then we could prove the equivalence of any tidy formula ξ with the associated parity
formula G′ξ := (Cξ,Ω′g �Cl(ξ) , ξ). However, we would not be able to prove that the index of
G′ξ is bounded by the alternation depth of ξ.

To see this, consider the following formula:

αx := νx.
(
(µy.x ∧ y) ∨ νz.(z ∧ µy.x ∧ y)

)
.

We leave it for the reader to verify that this formula has alternation depth two, and that its
closure graph looks as follows:

νx

∨

νz

∧

µy

∧

Let αy and αz be the other two fixpoint formulas in the cluster of αx, that is, let αy :=
µy.αx ∧ y and αz := νz.z ∧αy. These formulas correspond to the nodes in the graph that are
labelled µy and νz, respectively. Now observe that we have αx /f αy /f αz, so that this cluster
has an alternating 4′C-chain of length three: αz ≺′C αy ≺′C αx. Note however, that any trace
from αy to αz must pass through αx, the 4C-maximal element of the cluster. In particular,
we do not have αz 4C αy, so that there is no 4C-chain of length three in the cluster. �

Here are some basic observations on the relation 4C and its connection with the cluster
equivalence relation ≡C .

Proposition 6.32 1) The relation 4C is a partial order.
2) The relation 4C is included in the closure equivalence relation: ϕ 4C ψ implies ϕ ≡C ψ.
3) The relation 4C is included in the converse free subformula relation: ϕ 4C ψ implies

ψ Pf ϕ.

Proof. For item 1) we need to show that 4C is reflexive, transitive and antisymmetric.
Reflexivity is obvious, and antisymmetry follows from 3). For transitivity assume that ϕ 4C ψ
and ψ 4C χ hold. By definition this means that ψ �ψ

C ϕ and χ �χ
C ψ. The latter entails

that χ Pf ψ and the former means that there is some →C-trace from ψ to ϕ such that ψ
is a free subformula of every formula along this trace. Because χ Pf ψ and Pf is transitive
it then also holds that χ is a free subformula of every formula on the trace from ψ to ϕ.
Composing this trace with the one from χ to ψ we obtain a trace from χ to ϕ such that χ is
a free subformula of all formulas along this trace. Hence χ�χ

C ϕ and so ϕ 4C χ.
For item 2) we assume that ϕ 4C ψ and need to show that ϕ �C ψ and ψ �C ϕ.

The assumption ϕ 4C ψ means that ψ �ψ
C ϕ which clearly entails ψ �C ϕ. But, as

Lectures on the modal µ-calculus 6-13

already observed above, ψ �ψ
C ϕ also entails that ψ Pf ϕ, from which ϕ �C ψ follows by

Proposition 2.50.

Item 3) is immediate by the definition of 4C . qed

Since 4C is a partial order, we may use Definition 6.20 to base a priority map on it. We
are now ready for the definition of the parity formula Gξ corresponding to a tidy formula ξ.

Definition 6.33 Fix some tidy formula ξ. We define Cξ be the closure graph (Cl(ξ),→C) of
ξ, expanded with the natural labelling LC given by

LC(ϕ) =


ϕ if ϕ ∈ At(P)
♥ if ϕ = ♥ψ
� if ϕ = ψ0 � ψ1

ε if ϕ = ηx.ψ

Furthermore, we define Ωg as the priority map that is induced by the partial order 4C ; in
particular, Ωg is a partial map on tidy formulas that is only defined for fixpoint formulas.
Finally, we let Gξ be the parity formula Gξ := (Cξ,Ωg �Cl(ξ) , ξ). �

I Proof of Theorem 6.28 to be supplied.

Note that this proof needs the observation that the alternation depth of a tidy formula ξ
coincides with its alternation depth in terms of the relation 4C (restricted to ξ).

6.4 From parity formulas to regular formulas

In section 6.3 we saw constructions that, for a given regular formula, produce equivalent parity
formulas based on, respectively, the subformula graph and the closure graph of the original
formula. We will now move in the opposite direction: we will give a construction that turns
an arbitrary parity formula G into an equivalent regular formula ξG ∈ µML. Basically this
construction takes a parity formulas as a system of equations, and it solves these equations
by a Gaussian elimination of variables. As a result, the transformation from parity formulas
to regular formulas can be seen as some sort of unravelling construction.

Interestingly, we encounter a significant difference between the two size measures intro-
duced in Definition 2.47: whereas the closure-size of the resulting formula ξG is linear in
the size of G, its number of subformulas is only guaranteed to be exponential. And in fact,
Proposition 6.41 shows that there is a family of parity formulas for which the translation
actually reaches this exponential subformula-size.

The key proposition of this section is formulated in terms of balanced formulas.

Proposition 6.34 There is an effective procedure providing for any balanced parity formula
G = (V,E,L,Ω, vI) over some set P of proposition letters, a map trG : V → µML(P) such
that

1) G〈v〉 ≡ trG(v), for every v ∈ V ;
2) |trG(v)| ≤ |G|;

6-14 Parity formulas

3) |Sf (trG(v))| is at most exponential in |G|;
4) ad(trG(vI)) ≤ ind(G).

Clearly, the algorithm mentioned in the Proposition will produce, given a balanced parity
formula G = (V,E, L,Ω, vI), an equivalent µ-calculus formula.

Definition 6.35 Let G = (V,E, L,Ω, vI) be a parity formula over some set P of proposition
letters. We define

ξG := trG(vI)

and call ξG the µ-calculus formula associated with G. �

As an immediate corollary of the Propositions 6.13 and 6.34 we obtain the following result
for arbitrary parity formulas.

Theorem 6.36 Let G be a parity formula. Then we find ξG ≡ G, |ξG| ≤ 2 · |G| and ad(ξG) ≤
ind(G).

In the remainder of the section we focus on the proof of Proposition 6.34. Both the
definition of the collection of translation maps trG and the proofs of their most important
properties will proceed by an induction on a certain complexity measure of parity formulas
that we shall call its weight.

Definition 6.37 We define the weight of a parity formula G = (V,E, L,Ω, vI) as the pair
(|Dom(Ω)|, |G|) consisting of, respectively, the number of states and the size of G. Pairs of
this form will be ordered lexicographically. �

Definition 6.38 The goal of this definition is to supply, by induction on the weight of parity
formulas, a map

trG : V → µML(P)

for every balanced parity formula G = (V,E,L,Ω, vI) over some set P of proposition letters.

Consider a parity formula G = (V,E,L,Ω, vI), and let T be the top cluster of G, that is,
the cluster of the initial state vI . We make the following case distinction.

Case 1: T is degenerate. In this case we must have T = {vI}, with vI 6∈ Ran(E), and for
every u 6= vI we may consider the parity formula G−〈u〉 obtained by removing vI from G
and making u the initial node. Each parity formula G−〈u〉 has the same number of states as
G, but less vertices, so that inductively we may assume that we have defined some formula
trG−(u) for each u 6= vI . (Here we write trG− instead of trG−〈u〉; this is justified since the
translation we define does not depend on the initial node.)

We define

trG(u) := trG−(u)

Lectures on the modal µ-calculus 6-15

for u 6= vI , while for vI we set6

trG(vI) :=


L(vI) if L(vI) ∈ At(P)
♥trG−(u) if L(v) = ♥ ∈ {3,2} and E(v) = {u}⊙
{trG−(u) | u ∈ E(v)} if L(v) = � ∈ {∧,∨}

Case 2: T is nondegenerate. In this case we have T ∩ Dom(Ω) 6= ∅. Take an arbitrary state
z ∈ T such that Ω(z) equals the maximal priority reached on T . Since G is balanced, z is
silent (that is, L(z) = ε); let z′ be its unique successor.

Consider the parity formula G− = (V,E−, L−,Ω−, vI), which is characterised by the
definition of E−:

E− := E \ {(z, z′)},

that is, we obtain E− from E by cutting the edge from z to z′. Furthermore, we define

L−(v) :=

{
L(v) if v 6= z
z if v = z,

that is, G− sees z is a proposition letter. Finally, we set Ω− := Ω�V \{z} , so that G− has one
state less than G.

Inductively, then, we may assume that for all v ∈ V , some formula trG−(v) has been
defined. We now define

trG(z) := ηzz.trG−(z′)
trG(v) := trG−(v)[trG(z)/z] if v 6= z.

where ηz := µ if Ω(z) is odd, and ηz := ν if Ω(z) is even. �

I Example to be supplied!

Remark 6.39 Before we turn to the proof of Proposition 6.34 we note that the translation
trG is well-defined.

I some detail to be supplied

Note in particular that, although the definition of the translation map trG involves many
substitution operations, it does not involve any renaming of variables. �

Proof of Proposition 6.34. I equivalence G〈v〉 ≡ trG(v) to be proved.

Claim 1 |trG(v)| ≤ |G|.
6Note that the formulation of the boolean clause of our definition (i.e., the case where L(v) = � ∈ {∧,∨}) is

a bit sloppy, since our language only has binary conjunctions and disjunctions, no conjunctions or disjunctions
over finite sets. A more precise definition can be given as follows; assume that � = ∧, the case where � = ∨
is treated analogously. Assume that we have some arbitrary but fixed ordering of the vertices in G. We put
trG(v) = > if E(v) = ∅, trG(v) = trG(u) if E(v) = {u}, and trG(v) = trG(u0)∧ (. . .∧ (trG(uk−1)∧ trG(uk))
if E(v) = {u0, . . . , uk} where each ui comes before ui+1 in the mentioned ordering.

6-16 Parity formulas

Proof of Claim For the proof of this claim we define, for an arbitrary parity formula
G = (V,E,L,Ω, vI), the closure of G as follows:

Cl(G) :=
⋃{

Cl(trG(v)) | v ∈ V
}
,

and our proof will consist of showing that

|Cl(G)| ≤ |G|. (47)

Clearly this suffices to prove the claim.
We will prove (47) by induction on the weight of G. As in Definition 6.38, we let T be

the top cluster of G, and make a case distinction. Leaving the case where T is degenerate as
an exercise, we focus on the case where T is nondegenerate.

We let z and G− be as in Definition 6.38. Our key observation is that

Cl(G) ⊆ {ϕ[τ] | ϕ ∈ Cl(G−)}, (48)

where τ is the substitution τ = [trG(z)/z]. For a proof of (48), we have to show that

Cl(trG(v)) ⊆ {ϕ[τ] | ϕ ∈ Cl(G−)},

for every vertex v in V . To show this we make a case distinction. In case v = z, we have
trG(z) = ηzz.trG−(z′), and so we find

Cl(trG(z)) = {trG(z)} ∪ {ϕ[τ] | ϕ ∈ Cl(trG−(z′))} (Proposition 2.44)

⊆ {z[τ]} ∪ {ϕ[τ] | ϕ ∈ Cl(trG−(z′))} (obvious)

⊆ {z[τ]} ∪ {ϕ[τ] | ϕ ∈ Cl(G−)} (definition Cl(G−))

⊆ {ϕ[τ] | ϕ ∈ Cl(G−)} (z ∈ Cl(G−))

On the other hand, if v 6= z, we have trG(v) = trG−(v)[trG(z)/z], and so here we obtain

Cl(trG(v)) = {ϕ[τ] | ϕ ∈ Cl(trG−(v))} ∪ Cl(trG(z)) (Proposition 2.44)

= {ϕ[τ] | ϕ ∈ Cl(G−)(v))} ∪ Cl(trG(z)) (definition Cl(G−))

⊆ {ϕ[τ] | ϕ ∈ Cl(G−)} (just proved)

Now that we have established (48), the remainder of the proof is straightforward:

|Cl(G)| ≤ |Cl(G−)| ≤ |G−| ≤ |G|.

Here the first inequality is an immediate consequence of (48), the second inequality is the
induction hypothesis on G−, and the third inequality follows from the observation that G−
has the same set of states as G. This proves (47), which, as we already saw, suffices to prove
the Claim. J

I to be supplied: proofs of Proposition items 3) and 4)

qed

Lectures on the modal µ-calculus 6-17

Remark 6.40 Note that in item 3) of Proposition 6.34 we cannot state that the subformula-
size of trG is at most exponential in the size of G since the formula trG will generally not be
clean, and so its subformula-size may not be defined. For this reason we compare the number
of subformulas of trG to the size of G. �

I Closure can be exponentially smaller than number of subformulas

Proposition 6.41 There is a family (Fn)n∈ω such that for every n it holds that |Fn| ≤ 2n+2,
which implies that |ξFn | is linear in n, while |Sf (ξn| ≥ 2n.

Proof. For the time being, we refer to Example 7.10 in C. Kupke, J. Marti & Y. Venema,
Size matters in the modal µ-calculus, arXiv:2010.14430v1. qed

6.5 Guarded transformation

As an example of an important construction on parity formulas, we consider the operation
of guarded transformation. Recall from Definition 2.48 that a µ-calculus formula is guarded
if every occurrence of a bound variable is in the scope of a modal operator which resides
inside the variable’s defining fixpoint formula. Intuitively, the effect of this condition is that,
when evaluating a guarded formula in some model, between any two iterations of the same
fixpoint variable, one has make a transition in the model. Many constructions and algorithms
operating on µ-calculus formulas presuppose that the input formula is in guarded form, which
explains the need for low-cost guarded transformations, that is, efficient procedures for bring-
ing a µ-calculus formula into an equivalent guarded form.

It is easy to translate the notion of guardedness to parity formulas, but in fact we will need
something stronger in the next chapter, when we present the automata-theoretic perspective
on the modal µ-calculus.

Definition 6.42 A path π = v0v1 · · · vn through a parity formula is unguarded if n ≥ 1,
v0, vn ∈ Dom(Ω) while there is no i, with 0 < i ≤ n, such that vi is a modal node. A parity
formula is guarded if it has no unguarded cycles, and strongly guarded if it has no unguarded
paths. �

In words, a parity formula is strongly guarded if every path, leading from one state
(node in Dom(Ω)) to another contains at least one modal node (occurring after the path’s
starting state). The following theorem states that on arbitrary parity formulas, we can give an
exponential-size guarded transformation; note that the index of the formula does not change.
At the time of writing it is not known whether every parity formula can be transformed into
a guarded equivalent of subexponential size.

Theorem 6.43 There is an algorithm that transforms a parity formula G = (V,E,L,Ω, vI)
into a strongly guarded parity formula Gg such that

1) Gg ≡ G;
2) |Gg| ≤ 21+|Dom(Ω)| · |G|;
3) ind(Gg) ≤ ind(G);

6-18 Parity formulas

We will prove Theorem 6.43 via a construction that step by step improves the ‘degree
of guardedness’ of the parity formula. In the intermediate steps we will be dealing with a
modified notion of guardedness.

Definition 6.44 A parity formula G = (V,E,L,Ω, vI) is strongly k-guarded if it every un-
guarded path π = v0v1 · · · vn satisfies Ω(vn) > k. �

Clearly, a parity formula is (strongly) guarded iff it is (strongly) m-guarded, where m is the
maximum priority value of the formula. Hence, we may prove Theorem 6.43 by successively
applying the following proposition. Recall that a parity formula is called lean if its priority
map is injective. We say that a parity formula has silent states only if each of its states is
labelled ε.

Proposition 6.45 Let G be a lean, strongly k-guarded parity formula with silent states only.
Then we can effectively obtain a lean, k+1-guarded parity formula G′, with silent states only,
and such that G′ ≡ G, |G′| ≤ 2 · |G| and ind(G′) ≤ ind(G).

Proof. Let G = (V,E,L,Ω, vI) be an arbitrary lean, strongly k-guarded parity formula with
silent states, that is, Dom(Ω) ⊆ L−1(ε). Without loss of generality we may assume that in
fact Dom(Ω) = L−1(ε). If G happens to be already k + 1-guarded, then there is nothing to
do: we may simply define G′ := G.

On the other hand, if G is k+1-unguarded, then in particular there must be a state z ∈ V
such that Ω(z) = k + 1. By injectivity of Ω, z is unique with this property. In this case we
will build the parity formula G′, roughly, on the disjoint union of G, a copy of a part of G
that is in some sense generated from z, and an additional copy of z itself.

For the definition of G′, let W z be the smallest set W ⊆ V containing z, which is such
that E[w] ⊆W whenever w ∈W is boolean. Now define

V ′ :=
(
V × {0}

)
∪
(
W z × {1}

)
∪
(
{z} × {2}

)
.

In the sequel we may write u0 instead of (u, 0), for brevity. Furthermore, recall that we use
Vm to denote the set of modal vertices of G. The edge relation E′ is now given as follows:

E′ :=
{

(u0, v0) | (u, v) ∈ E and v 6= z
}

∪
{

(u1, v1) | (u, v) ∈ E and v 6= z
}

∪
{

(u0, z1) | (u, z) ∈ E
}

∪
{

(u1, v0) | (u, v) ∈ E and u ∈ Vm
}
∪
{

(u1, u0) | u ∈ Dom(Ω) and Ω(u) > k + 1
}

∪
{

(u1, z2) | (u, z) ∈ E and u 6∈ Vm
}

To understand the graph (V ′, E′), it helps, first of all, to realise that the set W z provides a
subgraph of (V,E), which forms a dag with root z and such that every ‘leaf’ is either a modal
or propositional node, or else a state v ∈ Dom(Ω) with Ω(v) > k. (It cannot be the case
that Ω(v) ≤ k due to the assumed k-guardedness of G.) Second, it is important to realise
that the only way to move from the V -part of V ′ to the W z-part is via the root z1 of the
W z-part, while the only way to move in the converse direction is either directly following a

Lectures on the modal µ-calculus 6-19

modal node, or else by making a dummy transition from some vertex u1 to its counterpart
u0 for any u ∈W z with Ω(u) > k. Finally, we add a single vertex z2 to V ′.

Furthermore, we define the labelling L′ and the priority map Ω′ of G′ by putting

L′(ui) :=

{
L(u) if i = 0, 1
ẑ if ui = z2

where we recall that ẑ = ⊥ if Ω(z) is odd and ẑ = > if Ω(z) is even, and

Ω′(ui) :=

{
Ω(u) if i = 0 and u ∈ Dom(Ω)
↑ otherwise.

In words, the label of a node (v, i) in G′ is identical to the one of v in G, with the
sole exception of the vertex (z, 2). To explain the label of the latter node, note that by
construction, any unguarded E′-path from z1 to z2 projects to an unguarded k+ 1-cycle from
z to z in G. If Ω(z) = k + 1 is odd, any such cycle represents (tails of) infinite matches that
are lost by ∃; for this reason we may label the ‘second’ appearance of z in the E′-path, i.e.,
as the node z2, with ⊥.

We now turn to the proof of the proposition. It is not hard to show that G′ is lean and
that |G′| ≤ 2 · |G|.

To show that ind(G′) ≤ ind(G), note that obviously, the projection map ui 7→ u preserves
the cluster equivalence relation, i.e., ui ≡E′ vj implies u ≡E v. Hence, the image of any
cluster C ′ of G′ under this projection is part of some cluster C of G. But then by definition of
Ω′ it is easy to see that ind(C ′) ≤ ind(C). From this it is immediate that ind(G′) ≤ ind(G).

To see why G′ is k + 1-guarded, suppose for contradiction that it has a k + 1-unguarded
path π = (v0, i0)(v1, i1) · · · (vn, in). It is easy to see that this implies that the projection
v0v1 · · · vn of π is an unguarded path in G (here we ignore possible dummy transitions of the
form (u1, u0)), and so by assumption on G it must be the case that Ω′(vn, in) = Ω(vn) = k+1.
This means that (vn, in) = (z, 0); but the only way to arrive at the node (z, 0) in (V ′, E′) is
directly following a modal node (in W z × {1}), which contradicts the unguardedness of the
path π.

In order to finish the proof of the Proposition, we need to prove the equivalence of G′ and
G; but this can be established by a relatively routine argument of which we skip the details.
qed

Proof of Theorem 6.43. Let G be an arbitrary parity formula; without loss of generality
we may assume that G is lean, i.e., Ω is injective. Let Ran(Ω) = {k1, . . . , kn}; then |Dom(Ω)| =
n. To ensure that all states are silent, we may have to duplicate some vertices; that is, we
continue with a version H of G that has at most twice as many vertices, but the same index,
the same number of states, and silent state only.

By a straightforward induction we apply Proposition 6.45 to construct, for every i ∈
[1, . . . , n], a ki-guarded parity automaton Hi with silent states only, and such that Hi ≡ G,
|Hi| ≤ 2i+1 · |G|, and ind(Hi) = ind(G). Clearly then we find that Hn is the desired strongly
guarded equivalent of G; and since n = |Dom(Ω)| we find that |Hn| ≤ 21+n · |G| as required.

qed

6-20 Parity formulas

Remark 6.46 On a closer inspection of the construction in the proof of Proposition 6.45,
the reader may observe that inductively, we may assume that for every i, every predecessor
of a state in Hi with priority at most ki is in fact a modal node. From this, it follows that
we may impose, in the formulation of Theorem 6.43, an additional constraint on Gg, namely,
that every predecessor of a state is a modal node, more formally, that (Eg)−1[Dom(Ω] ⊆ V g

m.
�

7 Tableau games and derivation systems

7.1 The Tableau Game

Introduction

In this section we introduce the tableau game: a two-player board game that we will use
to investigate whether a given formula, or set of formulas, is satisfiable or not. This game
will be closely connected with the evaluation game, in that one match of the tableau game
corresponds to a bundle of matches of the evaluation game. Since we will be working with the
version of the evaluation game that is based on the closure of a tidy formula, in the tableau
game as well a prominent role will be reserved for infinite traces.

7.1.1 The tableau game

As mentioned the tableau game is about the satisfiability of finite sets of formulas, that we
shall call sequents.

Definition 7.1 A sequent is simply a finite set of tidy formulas. We define the following
operation on sequents:

♥Σ := {♥ϕ | ϕ ∈ Σ}
♥−1Σ := {ϕ | ♥ϕ ∈ Σ}

for every modal operator ♥. �

Convention 7.2 As is common in proof theory, we will often denote the union operation
on sequents simply by a comma instead of using the set-theoretic symbol ∪, and we will not
write the parentheses in case of a singleton set. For instance, we let Σ, ϕ denote the sequent
Σ ∪ {ϕ}.

The tableau game T is a board game with two players: B, or Builder (female) and R, or
Refuter (male). A position of this game is either a sequent or a pair consisting of a sequent
Σ and a formula ϕ. Such a pair will be written as 〈Σ, ϕ〉 to distinguish it from the set Σ, ϕ.
For the intuition underlying this game: it is Builder’s goal to show that the sequent Φ, which
provides the initial position of the game, is satisfiable in some pointed Kripke model, while
Refuter intends to prove this claim wrong.

The game proceeds in rounds, of two moves each. Both the start and the end of a
round consist of some basic position, that is, some sequent Σ ⊆ Cl(Φ) (where Φ is the initial
position). At a basic position Σ, Refuter is required to pick some formula ϕ ∈ Σ; depending
on the shape of ϕ, some rule will be applied to the sequent; the result of which will be a
new sequent that provides the next basic position. For instance, if Refuter picks a fixpoint
formula then this formula is simply unfolded; if he picks a disjunction then it is up to Builder
to pick a disjunct, etc.

The details of the rules and their effects are specified in Table 10, and discussed in Re-
mark 7.7. As usual, we say that a player gets stuck if there is no legitimate move available to
them; in this case the game is over and the player who got stuck loses the match. For instance,
if Φ is empty then Refuter will immediately get stuck; this corresponds to our agreement that

7-2 Tableau games and derivation systems

∧
∅ ≡ >: the conjunction of the empty set of formulas is equivalent to the constant >,

and hence certainly satisfiable. If none of the players gets stuck the resulting match will be
infinite, and we need to check how the winning conditions determine a winner of the match.

Position Player Admissible moves

Σ R {〈Γ, ϕ〉 | Γ ∪ {ϕ} = Σ}
〈Γ,⊥〉 B ∅
〈Γ,>〉 − {Γ}
〈Γ, `〉, with ` ∈ Γ B ∅
〈Γ, `〉, with ` 6∈ Γ R ∅
〈Γ, ϕ0 ∧ ϕ1〉 − {Γ ∪ {ϕ0, ϕ1}}
〈Γ, ϕ0 ∨ ϕ1〉 B {Γ ∪ {ϕ0},Γ ∪ {ϕ1}}
〈Γ, ηxψ〉 − {Γ ∪ {ψ[ηxψ/x]}}
〈Γ,3dψ〉 − {{ψ} ∪2−1

d Γ}
〈Γ,2dψ〉 R ∅

Table 10: Tableau game

Intuitively, in a game T @Φ, a winning strategy for Builder should correspond to a model
for Φ, whereas a winning strategy for Refuter, which we will refer to as a refutation, constitutes
a formal proof for the unsatisfiability of Φ, and hence, of the validity of the formula

∨
Φ,

where Φ := {ϕ | ϕ ∈ Φ}. In correspondence with this, one may see Table 10 as providing
the proof rules of some derivation system, with the understanding that it is refuter who
determines the order in which these rules are applied.

Definition 7.3 The tableau game, denoted as T , is a board game, with players B (or Builder,
female) and R (or Refuter, male). Its positions are given by the set

℘ω(µMLt) ∪ {〈Γ, ϕ〉 | Γ ∈ ℘ω(µMLt), ϕ ∈ µMLt},

where we recall that µMLt denotes the set of tidy µ-calculus formulas. Positions of the form
Σ ∈ ℘ω(Cl(µMLt) will be called basic. The board of the game is given in Table 10, and its
winning conditions are given in Definition 7.19 below. �

Note that T is a global game, so to say, in the sense that its board consists of the set of
all sequents of tidy formulas, and all sequent/formula pairs of tidy formulas. Nevertheless,
our attention will almost exclusively be directed towards initialized games of the form T @Φ,
for some sequent Φ. It is not hard to see that every position that is reachable in T from Φ
will consist of formulas from Cl(Φ) only.

Before we define the winning conditions we introduce some terminology, and we comment
on the dynamics of the game; in particular we discuss the rules that we may associate with
each position of the form 〈Γ, ϕ〉.

Definition 7.4 Consider a position in T of the form 〈Γ, ϕ〉. We will refer to ϕ as the principal
formula of this position, and to Γ as its context ; formulas in Γ will be called side formulas.

Lectures on the modal µ-calculus 7-3

We will also call ϕ an active formula of the position 〈Γ, ϕ〉. In case ϕ is of the form 3dψ, all
formulas of the form 2dχ are called active as well. In all other cases the principal formula ϕ
is the only active formula. �

Note that at a basic position Σ, Refuter not only picks a formula ϕ ∈ Σ, he also picks a
context Γ, and he can either choose Γ = Σ (so ϕ ∈ Γ) or Γ = Σ \ {ϕ} (so ϕ 6∈ Γ). We need
some terminology here.

Definition 7.5 Let Σ be some position in T , and suppose that Refuter picks, as the next
position, the pair 〈Γ, ϕ〉. In case Γ = Σ we call his move cumulative; if, on the other hand
Γ = Σ \ {ϕ}, we call it reductive. In case Refuter always plays reductively, we say that he
follows a reductive strategy. �

Convention 7.6 For the time being we will always want to restrict Refuter to play reduc-
tively. This means that the admissible moves of Refuter at a sequent position Σ are of the
form 〈Γ, ϕ〉 with Γ := Σ \ {ϕ}.

In Remark 7.7 we discuss the various tableau rules/moves of the tableau game.

Remark 7.7 In this remark we discuss the various positions of the form 〈Γ, ϕ〉, their owners,
and the moves available to these owners.

Case ϕ = ⊥. In this case the sequent Γ, ϕ is surely not satisfiable. Accordingly, positions
of type 〈Γ,⊥〉 belong to Builder, but since there are no legitimate moves, she will get
stuck immediately.

Case ϕ = >. In this case the formula ϕ has no effect on the satisfiability of the sequent, and
so it can be removed. Note that if Γ = ∅, Refuter will get stuck at the next position;
this is appropriate, since the singleton {>} is satisfiable.

Case ϕ = `. Note that this covers both the cases where ` = p and where ` = p, for some
proposition letter p; in the first case we have ` = p and in the second case, ` = p.

Either way we make a further case distinction: if the negation ` of the literal belongs
to Γ, the sequent Γ, ϕ is surely not satisfiable; this position can thus be treated in a
similar way as the one where ϕ = ⊥. On the other hand, if ` does not belong to Γ,
then there is no way of telling whether Γ, ` is satisfiable or not, at least not without
further analysis of Γ. Refuter has picked the formula ` to soon, as it were, and in order
to discourage him from doing so, we designed the game in such a way that he gets stuck
in this situation.

Case ϕ = ϕ0∧ϕ1. Note that the sequent Γ, ϕ0∧ϕ1 is satisfiable iff Γ, ϕ0, ϕ1 is satisfiable; hence
if Refuter has picked a conjunction it will immediately be replaced by its conjuncts.

Case ϕ = ϕ0 ∨ϕ1. In this case we find that Γ, ϕ0 ∨ϕ1 is satisfiable iff at least one of Γ, ϕ0 or
Γ, ϕ1 is satisfiable, and since Builder is the player who aims for showing satisfiability, it
is up to her to pick one of these two sequents.

7-4 Tableau games and derivation systems

Case ϕ = ηxψ. This case is simple: if a fixpoint formula is principal, then it will simply be
unfolded.

Case ϕ = 3dψ. In this case the match moves to a ‘successor state’, so to speak, which serves
as a witness for the formula ψ. However, at this successor state, then, not only ψ, but
also every formula ϕ such that 2dϕ ∈ Γ, must be true.

Case ϕ = 2dψ. Picking a box formula constitutes a mistake for Refuter, since box formulas
only form a ‘real’ requirement in tandem with a diamond formula. To discourage Refuter
from picking a box formula, we make sure that at a position of the form 〈Γ,2dψ〉 he
loses immediately. �

Convention 7.8 In the sequel we will present strategies for Refuter in a proof-theoretic
format. That is, a strategy f will be given as a labelled tree, of which the nodes represent
the partial f -guided matches. Furthermore, every node t is labelled with the sequent Σt

representing the final position of the partial match represented by t. Furthermore, at any
node t we will underline the formula picked by Refuter’s strategy. Assuming that Refuter
uses a reductive strategy, the node t thus also reveals the resulting position. In other words,
the labelled tree thus completely determines Refuter’s strategy.

We now turn to the definition of the winning conditions of the tableau game. First we
consider the ways in which one of the two players could win or lose a finite match.

To start with, observe that Refuter can force an (almost) immediate win at those sequents
that contain ⊥, or, for some proposition letter p, both p and p. Similarly, if Σ contains the
formula

∨
∅, Builder will get stuck immediately if this formula is selected by Refuter.

On the other hand, as we already mentioned Refuter will get stuck at the empty sequent
since there is no principal formula to pick. Another possibility for Refuter to get stuck is
at a sequent that consists of atomic and box formulas only, if the propositional part does
not contain ⊥ or a pair p, p. In such a case Refuter may survive for one more round if the
sequent contains the formula >, but after that every principal formula he picks will result in
an immediate loss.

Example 7.9 Consider the ML-sequent 23p ∨2⊥,32(p ∨ q),22q.

p, p, q p, q, q

p, p ∨ q), q

3p,2(p ∨ q),2q

23p,32(p ∨ q),22q
⊥,2(p ∨ q),2q

2⊥,32(p ∨ q),22q

23p ∨2⊥,32(p ∨ q),22q

The labelled tree above represents a refutation for this sequent, that is, a winning strategy
for Refuter. �

It is not hard to see that, at least if Refuter plays reductively, all matches of the tableau
game for a sequent of basic modal formulas will be finite.

Lectures on the modal µ-calculus 7-5

7.1.2 Trails and traces

In this subsection we discuss how to assign a winner to an infinite match of the tableau game.
It will be useful to have a generic notation for an arbitrary match of the tableau game.

Convention 7.10 First of all, note that every match of T is a path of positions that alternate
between sequents and sequent-formula pairs, Observe that the successor of a sequent position
of the form Σ is always a sequent formula pair 〈Γ, χ〉 such that Σ = Γ ∪ {χ}, that is, Σ
can always be retrieved from Γ and χ. Hence, to denote an infinite match of the form
π = Σ0〈Γ0, χ0〉Σ1〈Γ1, χ1〉Σ2 · · · without loss of information we may write π = (〈Γn, χn〉)n<ω.
By a slight abuse of notation we will usually denote this match as π = (Γn, χn)n<ω.

To determine the winner of an infinite match, we need to keep track of the so-called trails
of formulas. Basically, a trail is a record of the possible development of an individual formula
during a match, as determined by the proof rules.

Example 7.11 Consider the sequent

Φ = {〈∗〉(p ∨ q), [∗]p, [∗]q},

where 〈∗〉(p ∨ q) = µx (p ∨ q) ∨3x, [∗]p = νy p ∧2y, and [∗]q = νz q ∧2z. The labelled tree
below represents a strategy for Refuter.

p, p,2[∗]p, q,2[∗]q q, p,2[∗]p, q,2[∗]q

p ∨ q, p,2[∗]p, q,2[∗]q

...

(p ∨ q) ∨3〈∗〉(p ∨ q), p ∧2[∗]p, q ∧2[∗]q

(p ∨ q) ∨3〈∗〉(p ∨ q), p ∧2[∗]p, [∗]q

(p ∨ q) ∨3〈∗〉(p ∨ q), [∗]p, [∗]q

〈∗〉(p ∨ q), [∗]p, [∗]q (†)

3〈∗〉(p ∨ q), p,2[∗]p, q,2[∗]q

(p ∨ q) ∨3〈∗〉(p ∨ q), p,2[∗]p, q,2[∗]q

(p ∨ q) ∨3〈∗〉(p ∨ q), p,2[∗]p, q ∧2[∗]q

(p ∨ q) ∨3〈∗〉(p ∨ q), p ∧2[∗]p, q ∧2[∗]q

(p ∨ q) ∨3〈∗〉(p ∨ q), p ∧2[∗]p, [∗]q

(p ∨ q) ∨3〈∗〉(p ∨ q), [∗]p, [∗]q

〈∗〉(p ∨ q), [∗]p, [∗]q

Note that this tree is infinite but regular in the sense that the subtree generated from the
node labelled (†) is isomorphic to the tree itself. In the tree we also display the (in this case
unique) trail on the infinite branch of the tree which starts at the formula 〈∗〉(p ∨ q) at the
root node. �

7-6 Tableau games and derivation systems

Roughly speaking, we will declare that

an infinite match of the tableau game is winning for Refuter if it carries a µ-trail.

Clearly then, we need to define this notion of a µ-trail. The following example shows that
this definition is somewhat tricky.

Example 7.12 Consider the sequent

Φ := {µxx, νy y}.

First of all, note that since µxx ≡ ⊥ and νy y ≡ >, the sequent Φ is not satisfiable, and so
we want Refuter to have a winning strategy in the tableau game. Now consider the following
four strategies for Refuter:

...
µxx, νy y

µxx, νy y

µxx, νy y

µxx, νy y

µxx, νy y

...
µxx, νy y

µxx, νy y

µxx, νy y

µxx, νy y

µxx, νy y

...
µxx, νy y

µxx, νy y

µxx, νy y

µxx, νy y

µxx, νy y

...
µxx, νy y

µxx, νy y

µxx, νy y

µxx, νy y

µxx, νy y

The difference is that Refuter keeps unfolding µxx in the leftmost strategy, he keeps unfolding
νy y in the second strategy, he unfolds µxx twice and then keeps unfolding νy y in the third
strategy, and he alternates between unfolding the two fixpoint formulas in the rightmost
strategy. In this example, we shall call the two red sequences µ-trails, since the µ-formula is
unfolded infinitely often, whereas the green trails in the middle are not µ-trails, since each of
them only features finitely many unfoldings of µxx. Hence the first and the fourth strategy
are winning for Refuter, the second and the third one are not. �

In order to formulate the winning conditions of the tableau game unambiguously, we
need a precise definition of the notion of a trail and of its associated trace. For this purpose,
consider one round of the tableau game, say, of the form Σ · 〈Γ, χ〉 ·Σ′. With this configuration
we associate a direct trail relation TΓ,χ between Σ and Σ′; intuitively, we put a pair (ϕ,ψ) in
this relation if ψ is the ‘residu’ of ϕ after the application of the rule associated with the pair
(Γ, χ). This situation has two distinct manifestations: one in which ϕ is an active formula,
and one in which ϕ is a side formula. Roughly, the idea is that the active trail relation
contains pairs of the form (ϕ,ψ) where ϕ is active and ψ is a direct derivative of ϕ, while
the passive trail relation gathers all pairs (ϕ,ψ) where ϕ is a side formula and ψ is equal to
ϕ. The trail relation is then simply defined as the union of the active and the passive trail
relation.

Example 7.13 To give two simple examples: if Σ = {ϕ ∧ ψ,ψ, χ}, and Refuter picks the
conjunction ϕ ∧ ψ as his principal formula, then the next sequent is Σ′ = {ϕ,ψ, χ}. Now the

Lectures on the modal µ-calculus 7-7

active trail relation consists of the pairs (ϕ∧ψ,ϕ) and (ϕ∧ψ,ψ) and the passive trail relation
of the pairs (ψ,ψ) and (χ, χ).

If Θ = {2ϕ,2ψ,3ϕ,3ξ, p, ηxχ} and Refuter picks the formula 3ϕ, then the next sequent
is Θ′ = {ϕ,ψ}. The active trail relation consists of the pairs (3ϕ,ϕ), (2ϕ,ϕ) and (2ψ,ψ),
and the passive trail relation is empty. �

Below we spell out the definition in detail; recall that the diagonal relation on a set A is
denoted by IdA.

Definition 7.14 Let Σ, 〈Γ, ϕ〉 and Σ′ be positions in the tableau game T @Φ, and assume
that 〈Γ, ϕ〉 is a legitimate move at Σ, and likewise for Σ′ at 〈Γ, ϕ〉. We define two relations
AΓ,ϕ,PΓ,ϕ ⊆ Σ× Σ′, by means of the following case distinction:

Case ϕ = >. We define AΓ,ϕ := ∅ and PΓ,ϕ := IdΓ.

Case ϕ = ϕ0 ∧ ϕ1. We define AΓ,ϕ := {(ϕ0 ∧ ϕ1, ϕ0), (ϕ0 ∧ ϕ1, ϕ1)} and PΓ,ϕ := IdΓ.

Case ϕ = ϕ0 ∨ ϕ1. We define AΓ,ϕ := {(ϕ0 ∨ ϕ1, ϕi)} (depending on Builder’s choice) and
PΓ,ϕ := IdΓ.

Case ϕ = ηxψ. We define AΓ,ϕ := {(ηxψ, ψ[ηxψ/x])} and PΓ,ϕ := IdΓ.

Case ϕ = 3dψ. We define AΓ,ϕ := {(3dψ,ψ)} ∪ {(2dχ, χ) | 2dχ ∈ Σ} and PΓ,ϕ := ∅.

Finally, the general trail relation TΓ,ϕ is simply defined as TΓ,ϕ := AΓ,ϕ ∪ PΓ,ϕ. �

Note that in the definition of the trail relation we do not need to consider the cases where
the formula ϕ is a literal, a box formula, or equal to the formula ⊥, since in these cases the
position 〈Γ, ϕ〉 does not have a successor.

Remark 7.15 If Refuter has made a reductive move, resulting in a position 〈Γ, ϕ〉 such that
ϕ 6∈ Γ, then the relations AΓ,ϕ and PΓ,ϕ are disjoint.

Should we allow cumulative moves, however, then this need not longer be the case. Con-
sider for instance the sequent Σ = {µxx, νy y}. If Refuter picks the formula µxx and cumu-
latively takes Γ := Σ, then we find that the pair (µxx, µxx) belongs to both the active and
the passive trail relation. �

Definition 7.16 Let π = Σ0〈Γn, ζn〉,Σn+1)n<κ be some match of the tableau game. The
trail graph of π is defined as the pair (V,E) with

V := {(ϕ, n) | 0 ≤ n < κ, ϕ ∈ Σn}
E := {

(
(ϕ, n), (ψ, n+ 1)

)
| (ϕ,ψ) ∈ TΓn,ζn}.

We will often write ϕ@n ψ@n+ 1 to denote that
(
(ϕ, n), (ψ, n+ 1)

)
∈ E. More generally,

we will write ϕ@n ψ@m if there is a path through the trail graph from (ϕ, n) to (ψ,m).
A trail on π is any sequence τ = (ϕn)n<ω such that the sequence (ϕn, n)n<ω is a path

through the trail graph of π. In case π is infinite, a trail τ on π is called progressive if τ(n)
is active infinitely often, that is: τ(n) = ζn for infinitely many n. �

7-8 Tableau games and derivation systems

To determine the winner of an infinite match, we are only interested in the active part of
its trails. For that purpose we define the notion of a condensation of a trail; this is the trace
we obtain from the trace by omitting the passive steps.

Definition 7.17 Let τ = (ϕn)n<κ be a trail on the match π = Σ0(〈Γn, ζn〉,Σn+1)n<κ of the
tableau game T @Φ. Then the condensation τ̂ is obtained from τ by omitting all ϕi+1 from
τ for which (ϕi, ϕi+1) belongs to the passive trail relation Pvi,vi+1 . Any sequence of the form
τ̂ for some trail on π is called a trace on π. �

Example 7.18 The red trail in the refutation of Example 7.11 is of the form

ϕ,ψ, ψ, ψ, ψ, ψ,3ϕ,ϕ, ψ, ψ, . . .

where we abbreviate ϕ := 〈∗〉(p ∨ q) and ψ := (p ∨ q) ∨3〈∗〉(p ∨ q) (and we indicate whether
the formula is active by underlining it). Its condensation is the infinite trace

ϕ,ψ,3ϕ,ϕ, ψ,3ϕ, . . .

In the four matches of Example 7.12 we get the following four trails of µ-formulas (with active
formulas underlined), together with their condensations:

1. µx x, µxx, µxx, µxx, µxx, . . . µx x, µx x, µx x, µx x, µx x, . . .

2. µx x, µxx, µx x, µx x, µx x, . . . µx x
3. µx x, µxx, µxx, µx x, µxx, . . . µx x, µx x

4. µx x, µxx, µx x, µxx, µx x, . . . µx x, µx x, µx x, µx x, µx x, . . .

Clearly only the first and the last trail are progressive and condense into an infinite trace. �

It is not difficult to see that condensed trails are traces, and that the condensation of a
progressive trail is infinite. This observation then provides us with the right tool for defining
the winning conditions of the tableau game.

Definition 7.19 Let π be some infinite T -match. For η ∈ {µ, ν}, we define an η-trail on π to
be a progressive trail on π whose condensation is a η-trace. A infinite T -match π is winning
for Refuter if it carries a µ-trail. �

7.2 Determinacy and adequacy

I intro

7.2.1 Determinacy

Proposition 7.20 Let Φ be some µML-sequent. Then the tableau game T @Φ is ω-regular:
the set of matches that are won by either player forms an ω-regular language.

I Proof TBS

Lectures on the modal µ-calculus 7-9

Theorem 7.21 (Determinacy) Let Φ be some µML-sequent. Then the tableau game T (Σ)
is determined: either Builder or Refuter has a winning strategy.

Proof. This is an immediate consequence of Proposition 7.20 and X . qed

Theorem 7.22 (Adequacy) Let Φ be some µML-sequent. Then Φ is satisfiable iff Builder
has a winning strategy in the tableau game T (Φ).

We will discuss and prove the two directions of the adequacy theorem separately.

7.2.2 Soundness

Proposition 7.23 (Soundness) Let Φ be some µML-sequent. If Φ is satisfiable then Builder
has a winning strategy in the tableau game T @Φ.

Proof. Assume that the µML-sequent Φ is satisfied at the point s0 of the model S. This means
that (

∧
Φ, s0) is a winning position for ∃ in the evaluation game E := E(

∧
Φ, S)@(

∧
Φ, s0).

Fix some positional winning strategy f for ∃ in this game.
We will use this strategy f to provide Builder with a winning strategy f̃ in T @Φ. Next to

the definition of f̃ we will associate, with each f̃ -guided match π, a state sπ ∈ S. Intuitively,
the role of sπ will be as follows. Let π ∈ PMB be some partial match ending at a position of
the form 〈Γ, ϕ0 ∨ϕ1〉; that is, Refuter has just picked the disjunction ϕ0 ∨ϕ1 as his principal
formula. Then f̃ will suggest to Builder to choose the sequent Γ, ϕi, where ϕi is ∃’s choice
at the position (ϕ0 ∨ ϕ1, sπ). For this to work, and in particular, to make sure that Builder
wins all infinite f̃ -guided matches, she needs to maintain a rather tight connection between
the strategies f and f̃ , to the effect that

(*) every trail on an f̃ -guided T -match corresponds to an f -guided E-match.

More precisely: along with the definition of f̃ we will inductively define a monotone family
ρπ of functions, where for every f̃ -guided match π that ends at a sequent position, ρπ maps
every trail τ on π to an f -guided E-match ρπ(τ) such that last(ρπ(τ)) = (last(τ), sπ) and

τ̂ = (ρπ(τ))L,

where we recall that, generally, ρL denotes the left projection of the match ρ, that is, the trace
of formulas determined by ρ, cf. Definition 2.41. Here the monotonicity condition requires
that π < π′ and τ < τ ′ imply ρπ(τ) < ρπ′(τ

′). Note that it follows from this that S, sπ
 ϕ,
for every formula ϕ which belongs to the sequent that constitutes the final position of π.

At the start of the game, the match π consists of the single position Φ; we define sπ := s0

and ρπ(τ) := (last(τ), s0), for any trail τ on π. (Note that any such trail consists of a single
formula first(τ) = last(τ) ∈ Φ.) With these definitions it is easy to see that the condition (*)
is met.

For the inductive step, assume that π is an f̃ -guided match ending at a sequent position,
say, last(π) = Σ, and that we have defined the position sπ satisfying (*). We already observed
that this implies that S, sπ
 Σ. Assume that Refuter’s move at this position is the pair 〈Γ, ϕ〉,
extending π to the match π′ = π · 〈Γ, ϕ〉. We can now simply define sπ′ := sπ. For the next
step we make a case distinction as to the nature of ϕ.

7-10 Tableau games and derivation systems

Case ϕ = >. In this case the next position is Γ, so that the match π′ is extended to

π′′ := π · 〈Γ,>〉 · Γ.

We define sπ′′ := sπ.

In order to check that the condition (*) still holds, consider an arbitrary trail τ on
π′′. It is easy to see that τ must be of the form τ = σ · ψ, where σ is a trail on π,
last(σ) = ψ and (ψ,ψ) belongs to the passive trail relation. From this it is immediate
that τ̂ = σ̂. Furthermore, by the induction hypothesis we have σ̂ = (ρπ(σ))L. We define
ρπ′′(τ) := ρπ(σ), and so we obtain τ̂ = (ρπ′′(τ))L as required.

Case ϕ = ⊥. Note that, actually, this case cannot occur since S, sπ
 Σ.

Case ϕ = `. This case is left as an exercise for the reader.

Case ϕ = ϕ0 ∨ ϕ1. This is the only case where we need to extend the definition of f̃ . Define

f̃(π · 〈Γ, ϕ0 ∨ ϕ1〉) := Γ ∪ {ϕi},

where ϕi is the formula picked by ∃’s winning strategy f at position (ϕ0∨ϕ1, sπ). Note
that the latter position is winning for ∃ by the inductive hypothesis, so that f provides
a legitimate move. In this case the match π′ is extended to

π′′ := π · 〈Γ, ϕ0 ∨ ϕ1〉 · Γ ∪ {ϕi}.

We define sπ′′ := sπ and proceed to check the condition (*). For this purpose consider
an arbitrary trail τ on π′′. There are two subcases to distinguish:

Subcase τ = σ · ϕi, with last(σ) = ϕ0 ∨ ϕ1. By the induction hypothesis we have σ̂ =
(ρπ(σ))L. Now define ρπ′′(τ) := ρπ(σ) · (ϕi, sπ), so that we obtain (ρπ′′(τ))L =
(ρπ(σ))L · ϕi = σ̂ · ϕi = σ̂ · ϕi = τ̂ .

Subcase τ = σ · ψ, where last(σ) = ψ for some idle formula ψ 6= ϕ0 ∨ϕ1. In this case it
is easy to see that τ̂ = σ̂, and we may proceed as in the case where ϕ = >.

Case ϕ = ϕ0 ∧ ϕ1. In this case the next position in T is Γ, ϕ0, ϕ1, so that the match π′ is
extended to

π′′ := π · 〈Γ, ϕ0 ∧ ϕ1〉 · Γ ∪ {ϕ0, ϕ1}.

We define sπ′′ := sπ and proceed to check the condition (*). For this purpose consider
an arbitrary trail τ on π′′. As in the previous case, where ϕ was a disjunction, there
are two subcases to consider: an active one where τ is the continuation of a trail σ on π
with last(σ) = ϕ and last(τ) ∈ {ϕ0, ϕ1}, and a passive one where τ is the continuation
of a trail σ on ϕ with the side formula ψ = last(σ). In both cases it is straightforward
to check that we can update the map ρ in such a way that (*) holds indeed.

Case ϕ = ηxψ. This case is left as an exercise for the reader.

Lectures on the modal µ-calculus 7-11

Case ϕ = 3dψ. In this case the next position in T is the sequent 2−1
d Σ ∪ {ψ}, and we find

π′′ := π · 〈Γ,3dψ〉 ·2−1
d Σ ∪ {ψ}.

Define sπ′′ := t, where t ∈ Rd[sπ] is ∃’s choice at position (3dψ, sπ) of the evaluation
game as suggested by her positional strategy f — recall that by the induction hypothesis
we have S, sπ
 3dψ.

To show that the condition (*) holds, we consider an arbitrary trail τ on π′′; this trail
must be of the form σ ·χ for a (unique) π-trail σ, where either χ = ψ and last(σ) = 3dψ,
or last(σ) = 2dχ. Furthermore, inductively we may assume that σ̂ = (ρπ(σ))L.

Here we distinguish two subcases:

Subcase χ = ψ and last(σ) = 3dψ. In this case we have τ = σ · ψ. Define ρπ′′(τ) :=

ρπ(σ) · (ψ, t), then we find (ρπ′′(τ))L = (ρπ(σ))L ·ψ = σ̂ ·ψ = σ̂ · ψ = τ̂ as required.

Subcase last(σ) = 2dχ. Now define ρπ′′(τ) := ρπ(σ) · (χ, t); that is, the continuation
of the E-match ρπ(σ) in which ∀ at position (last(σ), sπ) = (2dχ, sπ) picks the
successor t of sπ, thus moving the E-match to position (χ, t) = (last(τ), sπ′′). Here
we find (ρπ′′(τ))L = (ρπ(σ))L · χ = σ̂ · χ = σ̂ · χ = τ̂ , again as required.

Case ϕ = 2dψ. In this case Refuter gets stuck and loses immediately.

To see why f̃ is a winning strategy for B in T @Φ, we consider an arbitrary full f̃ -guided
match π. First of all, observe that in all the cases above where the position 〈Γ, ϕ〉 belonged
to Builder, we could indeed supply her with some move. Hence, as long as she maintains the
condition (*), Builder cannot get stuck. In particular, this means that she wins π in case it
is finite.

This leaves the case where π is infinite. Consider an arbitrary progressive trail τ on π,
then our goal is to show that τ̂ is a ν-trace. The point, here, is that τ is the limit of a
family of trails, each of which corresponds to an f -guided match of E . But then τ itself also
corresponds to an f -guided E-match ρπ(τ), namely, the limit of the mentioned E-matches —
it is here that we need the monotonicity condition. But since f is assumed to be winning
strategy for ∃ in E , this match ρτ is won by ∃, which simply means that τ̂ = (ρπ(τ)L is a
ν-trace indeed. qed

Completeness

Turning to the completeness of the tableau game, the intuitions are as follows. Assume that
Builder has a winning strategy f in the tableau game T @Φ, we will use this strategy to
construct a model Sf in which Φ can be satisfied. For the states of this model, we will take
f -guided matches — but only the ones in which Refuter plays in a certain, locally exhaustive
way. To make these intuitions precise we need some definitions.

Definition 7.24 A trace τ is called local if it features no transition of the form ♥ϕ →C ϕ,
for any modality ♥. A T -match π is called local if it features no modal position, that is, no
positions of the form 〈Γ,3dψ〉 or 〈Γ,2dψ〉. �

7-12 Tableau games and derivation systems

Note that a local trace may end at a box- or diamond formula; in fact it may also start
with one, but only if it is a one-formula trace. Concerning the relation between local matches
and local traces: a match π is local if, and only if, each of its trails condensates to a local
trace.

As mentioned, the only strategies of Refuter that we will take account, when constructing
a model Sf from a winning strategy for Builder, are the locally exhaustive ones. Intuitively,
a strategy is locally exhaustive if Refuter makes sure that every boolean or fixpoint formula
will become principal, before he is allowed to pick a modal formula.

Definition 7.25 Let Φ be some µML-sequent. A strategy g for Refuter is locally exhaustive
in T @Φ if every g-guided T @Φ-match π satisfies the following conditions:

1. at a sequent position Σ, Refuter never picks an atomic or modal formula if there are
still boolean or fixpoint formulas available in Σ;

2. if π is infinite, say, π = (Γn, ζn)n<ω, then for every k < ω and for every formula ϕ ∈ Σk

that is either a conjunction, a disjunction or a fixpoint formula, there is some m > k
such that ϕ = ζm, while the partial match (Γn, ζn)k≤n<m is local.

A T @Φ-match π is locally exhaustive if it is local, guided by some locally exhaustive and re-
ductive strategy of Refuter, and maximal with respect to these two properties. The collection
of these matches is denoted as LE . �

Example 7.26 Of the four strategies in Example 7.12, only the rightmost one is locally
exhaustive.

Also note that ‘locally exhaustive’ does not necessarily mean ‘fair’, and certainly not
‘winning’. For instance, any locally exhaustive strategy operating on the sequent Σ =
{νx x,2p,3p} will keep picking νx x as the principal formula, and thus miss the easy win
arising from picking the formula 3p. �

Remark 7.27 Locally exhaustive strategy are not hard to find. Refuter can easily arrange
one by maintaining, throughout any match of T @Φ, a priority list of all boolean and fixpoint
formulas in Cl(Φ). At any position during the match π he then picks, as the principal formula,
the first formula on this list that belongs to Σ; and after this move he updates the list by
moving the chosen formula to the end of the list. �

Locally exhaustive matches are either infinite or end with a sequent that consists of modal
and atomic formulas only. As we will see now, if we can guarantee that these matches are
finite, the completeness proof becomes much easier.

Completeness: the guarded case

Recall that a modal µ-calculus formula ξ is guarded if for every subformula of ξ of the form
ηx.δ, x is guarded in δ, that is, every free occurrence of x in δ is in the scope of a modality.
The key property of these formulas is that any local trace starting with a guarded formula is
finite. As a corollary of this, any local T -match starting with a guarded sequent is finite as
well, as the following proposition shows.

Lectures on the modal µ-calculus 7-13

Proposition 7.28 Let Φ be some µML-sequent consisting of guarded formulas, and let λ be
some local match of T @Φ in which Refuter plays reductively. Then λ is finite. In particular,
every locally exhaustive match is finite, and ends with a sequent consisting of modal and
atomic formulas only.

Proof. Let Cl loc(Φ) be the smallest subset of Cl(Φ) that contains Φ and is closed under
taking the direct derivatives of boolean and fixpoint formulas. For any formula ϕ ∈ Cl loc(ϕ),
define ld(ϕ), the local depth of ϕ, as the maximal number of steps from ϕ to an atomic or
modal formula — this is well-defined, precisely by guardedness. Extending this definition to
sequents, we put

ld(Φ) :=
∑
ϕ∈Φ

ld(ϕ).

Now let λ be some local match in which Refuter plays reductively. It is then straightforward
to see that the local depth of the successive sequents in λ strictly decreases, and from this it
immediately follows that λ is finite. qed

Remark 7.29 It also follows from Proposition 7.28 that, in a tableau games starting from
a guarded sequent, every reductive strategy of Refuter that does not pick modal or atomic
formulas as principal formulas, is locally exhaustive. �

As we will see now, Proposition 7.28 simplifies the construction of a model from a winning
strategy for Builder significantly.

Proposition 7.30 (Completeness for guarded formulas) Let Φ be some µML-sequent con-
sisting of guarded formulas. If Builder has a winning strategy in the tableau game T @Φ, then
Φ is satisfiable.

Proof. For the time being we restrict the proof to the monomodal case. Assume that B has
a winning strategy f in T @Φ; we will use f to define a Kripke model Sf , and then show that
Φ is satisfiable in Sf .

For the definition of Sf we recall some notation: where (πi)0≤i≤k is a tuple of sequences,
we let

⊙
i≤k πi denote their concatenation, that is:

⊙
i≤k πi := π0 · π1 · · ·πk.

Basically, for the set Sf of states of Sf we take the collection of f -guided matches where
between the modal positions we find locally exhaustive matches. Formally, a state of Sf will
be any tuple of the form

(πi)0≤i≤k,

where k ≥ 0, the sequence
⊙

i≤k πi is an f -guided match, π0 is a locally exhaustive match
starting at Φ, and for each i > 0, πi is a match of the form πi = 〈Γi,3ϕi〉 ·λi with λi a locally
exhaustive match starting at the position 2−1Γi ∪ {ϕi}.

Note that by Proposition 7.28 every πi must be finite (due to guardedness) and end with
a sequent position consisting of atomic and modal formula only (due to maximality); we will
write Σi := last(πi) (so Σi = last(λi) for i > 0). Observe as well that, since

⊙
i≤k πi must be

7-14 Tableau games and derivation systems

a well-defined T -match, the latter condition implies that 3ϕi ∈ Σi−1 and Γi = 2−1Σi−1. In
a picture we denote the match

⊙
i≤k πi as follows:

Φ · · · · · ·Σ0︸ ︷︷ ︸
π0

〈Γ1,3ϕ1〉 ·2−1Γ1 ∪ {ϕ1} · · · · · ·Σ1︸ ︷︷ ︸
λ1︸ ︷︷ ︸

π1

· · · 〈Γk,3ϕk〉 ·2−1Γk ∪ {ϕk} · · · · · ·Σk︸ ︷︷ ︸
λk︸ ︷︷ ︸

πk

For the accessibility relation Rf we take

Rf :=
{(

(πi)i≤k, (πi)i≤k+1

)
| (πi)i≤k, (πi)i≤k+1 ∈ Sf

}
,

and the valuation Vf is given by

Vf (p) := {(πi)i≤k | p ∈ last(πk}.

Consider any locally exhaustive match in T that starts with the position Φ, and let s0 be
the one-item tuple in Sf corresponding with this match. Our goal will be to show that

Sf , s0
 Φ. (49)

For the proof of (49), fix some formula ξ ∈ Φ. We will provide ∃ with a winning strategy
f̃ in the evaluation game E := E(Φ, Sf)@(ξ, s0). The strategy f̃ will be defined by induction
on the length of a partial E-match, and we will simultaneously prove that ∃ can maintain a
certain safety condition that we define now.

Consider an arbitrary E-match ρ ending at position (ϕ, s). Then, focussing on the
modal positions in ρ, there is a unique way of writing ρ = ρ0 · . . . · ρk−1 · ρk, such that
last(ρ0), . . . , last(ρk−1) are the only modal positions on ρ. Similarly, there is a unique way
of writing s = (πi)i≤k′ as in the definition of states given above; here for i > 0 we will write
πi = 〈Γi,3ϕi〉 · λi. We call ρ safe if k = k′ and, for all i < k, (ρi)L is a trace on πi, and
(ρk)L is a trace on some initial segment of πk. (Recall that, given a match ρ of the evaluation
game, we write ρL to denote the formula part of ρ, that is, where ρ = (ϕn, tn)n<κ, we have
ρL = (ϕn)n<κ.)

The key claim in the completeness proof is then the following.

Claim 1 Let ρ be some safe partial match of E . If ρ ∈ PM∃ then ∃ has a legitimate move
such that the resulting partial match is safe, and if ρ 6∈ PM∃ all possible continuations of ρ
are safe.

Proof of Claim Let (ϕ, s) be the last position of ρ, and let ρ0, . . . , ρk and π0, . . . , πk be
the respective matches of E and T that witness the safety of ρ. By the safety condition, the
final part ρk of ρ is a trace on some initial segment π′k of πk. We make a case distinction as
to whether ϕ is modal or not.

We first consider the case where ϕ is not modal. Since πk is a locally exhaustive match, we
may without loss of generality assume that ϕ is the principal formula of π′k, that is, last(π′k)
is of the form 〈Γ, ϕ〉 (and π′k is a proper initial segment of πk). Note that here ϕ 6∈ Γ since we
assume that Refuter plays reductively. We make a further case distinction as to the nature
of ϕ.

Lectures on the modal µ-calculus 7-15

Case ϕ = >. In this case ρ ∈ PM∀, but since ∀ has no legitimate moves, the statement in the
claim about all possible continuations of ρ is vacuously true.

Case ϕ = ⊥. Note that actually this case cannot occur since by assumption the match
⊙

i≤k πi
is f -guided; hence it cannot feature a position of the form 〈Γ,⊥〉 where Builder would
get stuck.

Case ϕ = ϕ0 ∨ ϕ1. Builder’s strategy f at the partial match
(⊙

i<k πi
)
� π′k (of which the

last position is last(π′k) = 〈Γ, ϕ〉) informs her which one of the disjuncts of ϕ to pick.
Say that f prescribes to pick the disjunct ϕi, moving in T to position Γ∪ {ϕi}, then in
the evaluation game ∃ extends the partial match ρ to ρ+ := ρ · ϕi.

Now observe that by definition of states, the sequence π′k · Γ, ϕi is an initial segment of
πk. It is then straightforward to verify that ρ+ is safe — the main observation is that
its final part (ρ+

k)L is obviously a trace on π′k · Γ, ϕi.

The remaining non-modal cases are left as exercises for the reader.

We now consider the case where ϕ is modal. Since πk features no modal positions, any
modal formula, once present at some sequent position on πk, will passively remain present
until the final position of πk is reached. Consequently, we may, without loss of generality,
assume that π′k = πk. Recall that the final position of πk must be a sequent position, say,
Σ := last(πk), and that we have ϕ ∈ Σ. We now make a further case distinction as to whether
ϕ is a box- or a diamond formula.

Case ϕ = 3ψ. In this case we have to find, in the evaluation game, a successor s+ of s for
∃, and we look for inspiration at the tableau game. That is, suppose that in T @Φ, at
position Σ, Refuter picks 3ψ as the next principal formula, that is, he extends π to the
match π · 〈Γ,3ψ〉, where Γ := Σ \ {3ψ}. The next position in the tableau game is then
fixed as Θ := 2−1Γ ∪ {ψ}, extending π to π · 〈Γ,3ψ〉 ·Θ.

Now let λk+1 some locally exhaustive match starting at position Θ, and such that⊙
(πi)i≤k+1 is an f -guided match of T @Φ, where πk+1 := 〈Γ,3ψ〉 · λk+1. Define s+ :=

(πi)i≤k+1, then it is straightforward to verify that (s, s+) ∈ Rf , and so ∃ is allowed
to pick s+ as the required successor of s in E . Furthermore, it is immediate by the
definitions that ρ+ := ρ · (ψ, s+) is a safe extension of ρ.

Case ϕ = 2ψ. Finally then assume that in E , ∀ picks some successor t of s. By definition
of Rf , with s = (πi)i≤k, the state t must be of the form t = (πi)i≤k+1, where for some
diamond formula 3χ ∈ Σ = last(πk), we have first(πk+1) = (Σ \ {3χ},3χ). Write
πk+1 = (Σ \ {3χ},3χ) · λk+1, then λk+1 is a locally exhaustive match; and writing
Θ := first(λk+1), it must be the case that Θ = 2−1(Σ \ {3χ}) ∪ {ψ} = 2−1Σ ∪ {ψ}.

But as we already saw, we have ϕ = 2ψ ∈ Σ, so that we find ψ ∈ Θ. In other words,
we have shown that the extension ρ+ := ρ · (ψ, t) of ρ is safe indeed.

This finishes the proof of the claim. J

7-16 Tableau games and derivation systems

To see why Claim 1 suffices to prove (49), consider an arbitrary full match ρ of E , where ∃
plays the strategy suggested by the claim. If ρ is finite then it is obvious that ∃ is the winner,
since it is an immediate consequence of the claim that she will not get stuck.

Now consider the case where ρ is infinite. It follows by guardedness that there is a unique
way of splitting up ρ as ρ =

⊙
i<ω ρi, such that last(ρ0), last(ρ1), . . . are the modal positions

on ρ. Furthermore, since ∃ maintained the safety conditions throughout the match, with each
k < ω we may associate a position sk = (πi)i≤k such that

⊙
i≤k πi is an f -guided match of

T @Φ, and for all i < k, (ρi)L is a trace on πi. It is then not hard to see that ρL is a trace
on
⊙

i≤k πi, while the latter match is clearly f -guided. It follows that ρ must be a ν-trace,
hence, winning for ∃ in E . qed

Completeness: the general case

We now turn to the completeness proof in the general case, that is, where we no longer restrict
to guarded formulas. The set-up of the proof is basically the same as in the guarded case:
given a sequent Φ for which Builder has a winning strategy in the tableau game, we construct
a model Sf based on Builder’s winning strategy f . In fact we would like to define the set Sf of
states in exactly the same way as before, but we face the problem that now locally exhaustive
matches are no longer necessarily finite. As a consequence, given a tuple s = (πi)i≤k of such
matches, we can no longer concatenate the πi’s, leave alone require that such a concatenation
is an f -guided T -match. As a solution to this problem we define, for each infinite match π
a finite representation π̃. We require this finite representation to be an initial segment of π
which is long enough to cover, in a sense to be made precise, all finite traces on π. As our
states we can then take those tuples s = (πi)i≤k for which the sequence πs := (π̃i)i<k · πk is
an f -guided T -match.

To define the operation ·̃ that provides a finite representation of π, we need some prepa-
rations. Recall that we write τ : ϕ �C ψ if τ is a finite trace such that first(τ) = ϕ and

last(τ) = ψ. In case τ passes a fixpoint formula, we write τ : ϕ�ξ
C ψ, where ξ = msf(τ) is the

most significant formula on τ , and if there is no such fixpoint formula, we write τ : ϕ�o
C ψ.

Definition 7.31 Let τ and τ ′ be two traces. We say that τ and τ ′ are interchangeable,
notation: τ ∼ τ ′, if we have both τ : ϕ�α

C ψ and τ ′ : ϕ�α
C ψ for some α ∈ Cl(ϕ) ∪ {o}. �

In words, τ and τ ′ are interchangeable if first(τ) = first(τ ′) and last(τ) = last(τ ′), and
either both τ and τ ′ pass some fixpoint formula and msf(τ) = msf(τ ′), or neither τ nor τ ′

passes a fixpoint formula. The name given to the interchangeability relation is inspired by
the following proposition. We omit its proof, which is a fairly straightforward manipulation
of the definitions.

Proposition 7.32 Let τ =
⊙

n<ω τn and τ ′ =
⊙

n<ω τ
′
n be two infinite traces such that

τn ∼ τ ′n for all n. Then τ and τ ′ have the same type, that is, for η ∈ {µ, ν} it holds that τ is
an η-trace iff τ ′ is an η-trace.

Obviously, the interchangeability relation, restricted to formulas in the closure of some
fixed set Φ, is an equivalence relation of finite index.

Lectures on the modal µ-calculus 7-17

Definition 7.33 Let λ = (Σn · 〈Γn, ζn〉)n<ω be an infinite (and hence) locally exhaustive
match. Let MFor(λ) and LFor(λ) be, respectively, the sets of modal and literal formulas
occurring in some sequent on λ, and let Tr lm(λ) be the set of traces on π that end at a literal
or modal formula. For τ ∈ Tr lm(λ), fix τ̃ as some trail of minimal length on λ such that
τ̃ ∼ τ .

Let λ̃ be the shortest initial segment of λ which is long enough to carry every trace in
{τ̃ | τ ∈ Tr lm(λ)} from beginning to end. For any match of the form π = 〈Γ, ϕ〉 · λ, we will
write π̃ := 〈Γ, ϕ〉 · λ̃. We shall refer to λ̃ and π̃ as the finite representation of λ (respectively,
of π). �

Arguing for the correctness of this definition, our point is that, due to the relation ∼ having
finite index, the set {τ̃ | τ ∈ Tr lm(λ)} is finite. From this it follows that λ̂ is well-defined,
and in fact, finite.

We are now ready to prove the completeness of the tableau game for arbitrary sequents.

Proposition 7.34 (Completeness (general case)) Let Φ be some µML-sequent. If Builder
has a winning strategy in the tableau game T @Φ, then Φ is satisfiable.

Proof. Let Φ be as in the statement of the theorem. As in the guarded case, we will define
a model Sf = (Sf , Rf , Vf) in which we will subsequently show Φ to be satisfiable.

As announced, a state of Sf will be any tuple of the form

s = (πi)0≤i≤k,

provided that πs :=
⊙

i≤k π̃i is an f -guided match, π0 is a locally exhaustive match starting
at Φ, and for each i > 0, πi is a match of the form πi = 〈Γi,3ϕi〉 · λi where λi is a locally
exhaustive match. For the accessibility relation Rf we take

Rf :=
{(

(πi)i≤k, (πi)i≤k+1

)
| (πi)i≤k, (πi)i≤k+1 ∈ Sf

}
,

and the valuation Vf is given by

Vf (p) := {(πi)i≤k | p ∈ last(π̃k}.

Observe that, in the case of guardedness we find that λ̃ = λ; from this it follows that the
two definitions coincide, which justifies our use of the same notation.

As before, let s0 be the one-item tuple in Sf corresponding with some T -match starting
from the position Φ. Our goal will be to show that

Sf , s0
 Φ. (50)

As in the guarded case, for the proof of (50), we will provide ∃ with a winning strategy f̃ in
the evaluation game E := E(Φ,Sf)@(ξ, s0) for some arbitrary but fixed formula ξ ∈ Φ, and we

will show that she can maintain the following notion of safety during any f̃ -guided E-match.
Consider an arbitrary E-match ρ ending at position (ϕ, s). Then, focussing on the

modal positions in ρ, there is a unique way of writing ρ = ρ0 · . . . · ρk−1 · ρk, such that

7-18 Tableau games and derivation systems

last(ρ0), . . . , last(ρk−1) are the only modal positions on ρ. Similarly, there is a unique way
of writing s = (πi)i≤k′ as in the definition of states given above; here for i > 0 we will

write πi = 〈Γi,3ϕi〈·λi. We call ρ safe if k = k′ and, for all i < k, (̃ρi)L is a trace on
π̃i, and (ρk)L is a trace on some initial segment of πk. Note that from this it follows that

(̃ρi)L · . . . · ˜(ρk−1)L · (ρk)L is a trace on πs.
The key claim in this version of the completeness proof is the following.

Claim 1 Let ρ be some safe partial match of E . If ρ ∈ PM∃ then ∃ has an legitimate move
such that the resulting partial match is safe, and if ρ 6∈ PM∃ all possible continuations of ρ
are safe.

Proof of Claim The proof of this claim is very similar to that of the corresponding state-
ment in the guarded case. Let (ϕ, s) be the last position of ρ, and let ρ0, . . . , ρk and π0, . . . , πk
be the respective matches of E and T that witness the safety of ρ.

By the safety condition, the final segment ρk of ρ is a trace on some initial segment π′k
of πk. The key innovative aspect in the current proof is the following. By the definition
of a state, the sequence πs :=

⊙
i≤k π̃i is a match which has πk as its tail; moreover, πs is

f -guided, so that we may use it to define ∃’s strategy in E .
For a proof of the claim, we make a case distinction as to the nature of ϕ. We only cover

the cases where ϕ is a disjunction or a diamond formula.

Case ϕ = ϕ0 ∨ ϕ1. Since πk is a locally exhaustive match, we may without loss of generality
assume that ϕ is the principal formula of π′k, that is, last(π′k) is of the form 〈Γ, ϕ〉 (and
π′k is a proper initial segment of πk). Builder’s strategy f at the partial match πs (of
which the last position is last(π′k) = 〈Γ, ϕ〉) informs her to pick one of the disjuncts
of ϕ, say, ϕi. She now picks the same disjunct in the evaluation game, extending the
match to ρ+ := ρ · (ϕi, s). It is completely straightforward to verify that this is indeed
a safe continuation of ρ.

In the case where ϕ is a modal formula, the key step is the following. Up to this moment
we have been exclusively working with the entire match πk, and the entire trace ρk, being the
final part of the E-match ρ. Since we are about to make a modal move, the trace τk := ρ̃k,
and the finite representative π̃k of πk now come into the picture. Note that by definition of τk
we have τk ∼ ρk, and that by definition of π̃k, this τk is actually a trace on π̃k. Furthermore,
since π̃k is an initial segment of πk, it is immediate that the sequence

⊙
i≤k π̃i, being an initial

segment of the f -guided T @Φ-match πs =
(⊙

i<k π̃i
)
· πk, is itself an f -guided T @Φ-match

as well. Finally, observe that last(τk) = last(ρk) = last(ρ) = ϕ; so, since ϕ is modal and τk is
a trace on π̃k, this means that we find ϕ ∈ Σ, where the sequent Σ is the last position of πk.

Case ϕ = 3ψ. In this case we have to find, in the evaluation game, a successor s+ of s for
∃, and we look for inspiration at the tableau game. That is, suppose that in T @Φ,
at position Σ = last(π̃k), Refuter picks 3ψ as the next principal formula, that is, he
extends the T -match

⊙
i≤k π̃i to

(⊙
i≤k π̃i

)
· 〈Γ,3ψ〉, where Γ := Σ \ {3ψ}. The next

position in the tableau game is then fixed as Θ := 2−1Γ∪ {ψ}, extending the T -match
further to

(⊙
i≤k π̃i

)
· 〈Γ,3ψ〉 ·Θ.

Lectures on the modal µ-calculus 7-19

Now let λk+1 and πk+1 := 〈Γ,3ψ〉 · λk+1 be such that λk+1 is some locally exhaustive
match starting at position Θ, and

(⊙
i≤k π̃i

)
· πk+1 is an f -guided match of T @Φ.

Define s+ := (πi)i≤k+1, then it is straightforward to verify that (s, s+) ∈ Rf , and so ∃
is allowed to pick s+ as the required successor of s in E . Furthermore, it is immediate
by the definitions that ρ+ := ρ · (ψ, s+) is a safe extension of ρ.

We leave the case where ϕ = 2ψ as an exercise for the reader. J

Let f̃ be any strategy in E as suggested by the claim, and let ρ be any f̃ -guided full match
of E . In order to show that ∃ is the winner of ρ, we distinguish cases. First of all, it is an
immediate consequence of the Claim that ∃ always has a move available if it is her turn, and
so she never gets stuck.

Hence, we may restrict attention to the case where ρ is infinite. For starters, note that
every finite initial segment of ρ is safe. We make a further case distinction, as to the number
of modal positions in ρ (that is, positions (ϕ, s) where ϕ = ♥ψ for some modality ♥).

I The case where ρ passes only finitely many modal positions is left as an exercise

for the reader.

The interesting case is where ρ passes infinitely many modal positions; in this case there is
a unique way of writing ρ =

⊙
k<ω ρk, where (last(ρk))k<ω is the sequence of modal positions

on ρ. Write last(ρk) = (ϕk, sk), then we may define (πk)k<ω such that sk = (πi)i≤k for all k.
It easily follows from the definitions of Sf and Rf that the sequence

⊙
k<ω π̃k is in fact an

f -guided T @Φ-match. But since every finite initial segment of ρ is safe, it easily follows that

for each k, the trace τk := (̃ρk)L is a trace on π̃k. It then follows that the trace τ :=
⊙

k<ω τk
is a trace on

⊙
k<ω π̃k, and hence, a ν-trace. It also follows that τn ∼ (ρk)L, for each k < ω,

and so ρ must also be a ν-trace by Proposition 7.32.
This finishes the proof of (50), and hence, that of the proposition. qed

Exercises

Exercise 7.1 I Show that weakening is an admissible rule

Exercise 7.2 I for guarded formulas, any reductive strategy suffices to prove completeness

Exercise 7.3 I Show that Refuter may always restrict to a reductive strategy. That

is, ...

Exercise 7.4 I Show that for guarded formulas, we may fix the order in which Refuter

picks formulas. Does this also hold in general?

7-20 Tableau games and derivation systems

7.3 Decidability of the satisfiability problem

7.4 Disjunctive normal forms via streamlined tableaux

7.5 A cut-free proof system

7.6 Other derivation systems

9 Modal automata

9.1 Introduction

In this chapter we introduce and discuss the automata that we shall use to study the modal
µ-calculus. These automata come in various shapes and types, but they all operate on the
same type of structures, namely pointed Kripke structures, or transition systems.

The basic idea is that automata can be seen as alternatives to formulas. In particular, an
automaton A will either accept of reject a given pointed Kripke model, and thus it can be
compared to a formula ξ, which will either be true or false at a point in a Kripke model. This
inspires the following definition.

Definition 9.1 Let A be an automaton, and assume that we have defined the notions of
acceptance and rejection of a pointed Kripke model by such an automaton. In case A accepts
the pointed Kripke structure (S, s) we write S, s
 A, and rejection of (S, s) by A is denoted
as S, s 6
 A. The class of pointed Kripke models that are accepted by a given automaton A is
denoted as Q(A), and we will sometimes refer to Q(A) as the class or query that is recognized
by A. Two automata A and A′ are equivalent, notation: A ≡ A′, if Q(A) = Q(A′).

We say that a formula ξ is equivalent to A, notation: ξ ≡ A, if S, s
 ξ iff A accepts (S, s),
for every pointed Kripke model (S, s). �

All our automata will be of the form A = 〈A,Θ,Acc, aI〉 where A is a finite set of states,
Acc ⊆ Aω is the acceptance condition (usually given by a parity map Ω), aI ∈ A is the starting
state of the automaton, and the transition map Θ has as its domain the set A × C, where
C = ℘(P) is the set of colors over some set P of proposition letters. We will almost exclusively
work with automata that are themselves logic-based, in the sense that the co-domain of Θ
is some logical language consisting of relatively simple one-step formulas over the carrier set
A of the automata. In other words, the states in A will play a double role as propositional
variables.

For each type of automaton that we will encounter, the question whether such a device
accepts or rejects a given pointed Kripke model (S, s) is determined by playing some kind
of infinite board game that we call the acceptance game associated with the automaton and
the Kripke structure. This game will always proceed in rounds, each of which starts and
ends at a so-called basic position (a, s) ∈ A × S, and consists of the two players, ∃ and
∀, moving a token via some intermediate position(s) to a new basic position. For a rough,
intuitive understanding of the acceptance game, the reader may think of ∃ claiming, at a basic
position (a, s), that the automaton A, taken from the perspective a, is a good ‘description’ of
the pointed structure (S, s).

The rules of the game are determined by the precise shape of the transition function Θ,
and in each case will be given explicitly. The winning conditions of the acceptance game
are fixed. Finite matches, as always, are lost by the player who got stuck. The winner of
an infinite match Σ is always determined by applying the acceptance condition Acc to the
infinite A-stream aIa1a2 · · · which is induced by the sequence (aI , s)(a1, s1)(a2, s2) · · · of basic
positions occurring in Σ. The definition of acceptance is also fixed: the automaton A accepts

9-2 Modal Automata

the pointed Kripke model (S, s) precisely if the pair (aI , s) is a winning position for ∃ in the
acceptance game.

To understand the connections between the various kinds of automata, it is good to
understand how one round of the game takes a match from one basic position (ai, si) to
the next (ai+1, si+1). In principle, it is ∃’s task to propose a set Zi ⊆ A × S of witnesses
that substantiate her claim that the automaton A, taken from the perspective ai, is a good
description of the pointed model (S, si). Then it is ∀ who picks the new basic position
(ai+1, si+1) as an element of the set Zi. In fact, all acceptance games featuring in this chapter
could be formulated in such a way that these are exactly the moves that players can make.
However, we will usually take a slightly different perspective on the witness relation. In
particular, since we are often thinking of A as a set of propositional variables, it will make
sense to represent a relation Z ⊆ A × S as either a valuation VZ : A → ℘S or as a marking
or coloring mZ : S → ℘A, defined by putting, respectively,

VZ(a) := {s ∈ S | (a, s) ∈ Z}
mZ(s) := {a ∈ A | (a, s) ∈ Z}.

As already mentioned, the automata that we shall meet here come in various shapes, and
they can be classified in many ways. One crucial distinction to make is that between alter-
nating and non-deterministic automata. Where the generic modal automaton that we will
introduce here is of the alternating type, many results on the modal µ-calculus are proved
using the subclass of non-deterministic automata, where the transition map is of a concep-
tually simpler kind. What makes an automaton nondeterministic is the interaction pattern
between the two players in the acceptance game: when the automaton is non-deterministic,
a winning strategy for ∃ should in principle (but depending on the branching structure of the
transition system) reduce the role of ∀ to that of a path finder in the model.

I For the time being we restrict attention to the mono-modal case.

9.2 Modal automata

Modal automata are based on the modal one-step language. This language consists of very
simple modal formulas, built up from a collection A of propositional variables, corresponding
to the bound variables of a formula.

Definition 9.2 Given a set X, we define the set Latt(X) of lattice terms over X through
the following grammar:

π ::= ⊥ | > | x | π ∧ π | π ∨ π,

where x ∈ X. Given a set A, we define the set 1ML(A) of modal one-step formulas over A by
the following grammar:

α ::= ⊥ | > | 3π | 2π | α ∧ α | α ∨ α,

with π ∈ Latt(A). �

Lectures on the modal µ-calculus 9-3

Examples of one-step formula are 3(a ∧ b) or 2⊥ ∨ (3a ∧ 2b). Observe that the set of
modal one-step formulas over A corresponds to the set of lattice terms over the set {3π,2π |
π ∈ Latt(A)}. Observe too that every occurrence of an element of A must be positive, and
in the scope of exactly one modality.

Definition 9.3 A modal P-automaton A is a quadruple (A,Θ,Ω, aI) where A is a non-empty
finite set of states, of which aI ∈ A is the initial state, Ω : A → ω is the priority map, and
the transition map

Θ : A× ℘P→ 1ML(A)

maps states to one-step formulas. The class of modal automata over the set P is denoted as
AutP(1ML). �

The operational semantics of modal automata is defined in terms of a so-called acceptance
game A(A, S) associated with a modal automaton A and a Kripke structure S. ∃’s moves
in this game will consist of ‘local’ valuations for the propositional variables in A, or rather,
markings m : S → ℘A. Such a marking turns a Kripke model over P into a Kripke model
over the set P ∪A.

Throughout this chapter we will represent a Kripke model (S,R, V) coalgebraically as
a triple (S,R, σV) where we think of the binary relation R as a map R : S → ℘(S), and
represent the valuation V : P→ ℘(S) as its transpose colouring σV : S → ℘(P).

Definition 9.4 Let P and A be disjoint sets of proposition letters and propositional variables,
respectively. Given a Kripke model S = (S,R, σV) over the set P, and an A-marking m : S →
℘A, we let S⊕m denote the Kripke model (S,R, σV ∪m), where σV ⊕m is the marking given
by σV ⊕m(s) := σV (s) ∪m(s). �

Definition 9.5 The acceptance game A(A,S) associated with such an automaton A and
a pointed Kripke model (S, s) is the parity game that is determined by the rules given in
Table 18. Positions of the form (a, s) ∈ A× S are called basic. �

Position Player Admissible moves Priority

(a, s) ∈ A× S ∃ {m : S → ℘A | S⊕m, s
 Θ(a, σV (s))} Ω(a)
m : S → ℘A ∀ {(b, t) | b ∈ m(t)} 0

Table 18: Acceptance game for modal automata

As explained in the introduction to this chapter, matches of the acceptance game proceed
in rounds, moving from one basic position to the next. During a round of the game, the
players are inspecting a local ‘window’ into the Kripke model, by means of a one-step formula.
Concretely, at the start of a round, ∃’s task at a basic position (a, s) is to satisfy the one-
step formula Θ(a, σV (s)) at the state s in S. For this purpose, she has to come up with a
interpretation for the variables in A, since this is not provided by the valuation V of S. More
specifically, ∃ has to select a marking m : S → ℘A, in such a way that the formula Θ(a, σV (s))

9-4 Modal Automata

becomes true at s in the model S⊕m (as given in Definition 9.4). Once ∃ has made her choice,
it is ∀’s turn; he needs to pick a new basic position from the witness set {(b, t) | b ∈ m(t)}.

Observe that both players could get stuck in such a match. For instance, it might be
impossible for ∃ to satisfy the formula Θ(a, σV (s)) at the state s, because the formula requires
s to have successors where it has none. Alternatively, if ∃ could pick the empty marking m
at a position (a, s), then she would immediately win the match since ∀ would get stuck.

I examples of modal automata

Remark 9.6 Note that it is in ∃’s interest to keep, at any basic position (s, a) of the ac-
ceptance game, the set of witnesses as small as possible. More precisely, if at some position
(a, s) of the game, ∃ has two admissible markings, say, m and m′, at her disposal, and these
are such that Zm := {(b, t) ∈ S × A | b ∈ m(t)} ⊆ Zm′ := {(b, t) ∈ S × A | b ∈ m′(t)}, then
it will always be to her advantage to choose the marking m rather than m′. In particular,
since all occurrences of propositional variables from A in one-step formulas must be in the
scope of exactly one modality, to satisfy such a formula at a given point s of the model, the
only points that matter are the successors of s. For these reasons, we may without loss of
generality restrict the admissible moves of ∃ at a position (a, s) of the acceptance game to
those markings m of which the domain is the collection of successors of current point s. In
section 9.4 we will work out this perspective. �

Convention 9.7 We will usually identify a match Σ = (a0, s0)m0(a1, s1)m1(a2, s2)m2 . . . of
the acceptance game A(A,S) with the sequence (a0, s0)(a1, s1)(a2, s2) . . . of its basic positions.

Some basic concepts concerning modal automata are introduced in the following definition.

Definition 9.8 Fix a modal P-automaton A = (A,Θ,Ω, aI).

Given a state a of A, we write ηa = µ if Ω(a) is odd, and ηa = ν if Ω(a) is even; we call ηa
the (fixpoint) type of a and say that a is an ηa-state. The sets of µ- and ν-states are denoted
with Aµ and Aν , respectively.

The occurrence graph of A is the directed graph (G,EA), where EAab if b occurs in Θ(a, c)
for some c ∈ ℘(P). We let �A denote the transitive closure of the converse relation E−1

A of
EA and say that b is active in a if b�A a. We write a ./A b if a�A b and b�A a. A cluster of
A is a cell of the equivalence relation generated by ./A (i.e., the smallest equivalence relation
on A containing ./A); a cluster C is degenerate if it is of the form C = {a} with a 6./A a.
The unique cluster to which a state a ∈ A belongs is denoted as Ca. We write a <A b if
Ω(a) < Ω(b), and a vA b if Ω(a) ≤ Ω(b).

An alternating Ω-chain of lenth k in A is a sequence a0a1 · · · ak of states that all belong
to the same cluster and satisfy, for all i < k, that Ω(ai) < Ω(ai+1) while ai and ai+1 have
different parity. �

The following proposition is immediate by the definitions.

Proposition 9.9 Let A = 〈A,Θ,Ω, aI〉 and A′ = 〈A,Θ′,Ω, aI〉 be two modal automata such
that Θ(a, c) ≡ Θ′(a, c) for each a ∈ A and c ∈ ℘(P). Then A ≡ A′.

Lectures on the modal µ-calculus 9-5

Remark 9.10 Another way of defining the semantics of modal automata is via the ‘slow’
acceptance game of Table 19, which is perhaps closer to the evaluation games of the modal µ-
calculus. In this set-up, at a basic position (a, s) ∃ does not have to come up with a marking
m, but rather, the state a is ‘unfolded’ into the formula Θ(a, σV (s)), and the two players
engage in a little sub-game in order to determine whether Θ(a, σV (s)) is true at s or not. At
the end of this sub-game, unless one of the players got stuck, the match arrives at another
basic position. We leave it as an exercise for the reader to check that the two games are in
fact equivalent. �

Position Player Admissible moves Priority

(a, s) ∈ A× S − {(Θ(a, σV (s)), s)} Ω(a)
(>, s) ∀ ∅ 0
(⊥, s) ∃ ∅ 0
(3π, s) ∃ {(π, t) | t ∈ R(s)} 0
(2π, s) ∀ {(π, t) | t ∈ R(s)} 0
(ϕ0 ∨ ϕ1, s) ∃ {(ϕ0, s), (ϕ1, s)} 0
(ϕ0 ∧ ϕ1, s) ∀ {(ϕ0, s), (ϕ1, s)} 0

Table 19: Slow acceptance game for modal automata

Regarding complexity matters, we define the size of a modal automaton to get a nice fit
with the (slow) acceptance game defined in Remark 9.10. In particular, this means that we
cannot simply define the size of an automaton as its number of states, we have to take the
transition map of the device into account as well. Note that the size |α| of a modal one-step
α is simply defined as its number of subformulas, or, equivalently, as the size of its closure.
The index of modal automata is defined in the same way as for parity formulas.

Definition 9.11 Let A = (A,Θ,Ω, aI) be a modal automaton. The size |A| of A is defined
as follows:

|A| :=
∑

(a,c)∈A×C

|Θ(a, c)|.

Its index ind(A) is given as the maximal length of an alternating Ω-chain in A. �

Later on this chapter we will provide effective translations transforming a µ-calculus for-
mula into an equivalent modal automaton, and vice versa. As a corollary of this result we
obtain that modal automata are bisimulation invariant — in Exercise 9.2 the reader is asked
to give a direct proof.

Theorem 9.12 Let A be a modal automaton.. Then for any bisimilar pair (S, s) and (S′, s′)
of pointed Kripke models it holds that

S, s
 A ⇐⇒ S′, s′
 A.

9-6 Modal Automata

9.3 Disjunctive modal automata

A key tool in the study of the model µ-calculus is provided by the automata that we are about
to introduce now, viz., the nondeterministic variants of the modal automata that we just met
in section 9.2. The disjunctive automata, as we shall call them, are obtained by restricting
the co-domain of the transition map of a modal automaton to the set of so-called disjunctive
one-step formulas, which are based on the cover modality discussed in section 1.7.

Definition 9.13 Given a finite set A, we define the set 1DML(A) of disjunctive modal one-step
formulas in A as follows

α ::= ⊥ | > | ∇B | α ∨ α,

where B ⊆ A.

A modal P-automaton A = (A,Θ,Ω, aI) is called disjunctive or non-deterministic if
Θ(a, c) ∈ 1DML(A), for every a ∈ A and c ∈ ℘(P). �

I example(s) to be supplied

Remark 9.14 As a variant of Definition 9.13, we will sometimes require that the range of
the transition map Θ of a disjunctive automaton is given by the formulas of the slightly more
restricted one-step language 1DMLr given by the following grammar:

α ::= ⊥ | ∇B | α ∨ α,

where B ⊆ A. In other words, in this set-up every formula Θ(a, c) is a finite disjunction of
nabla formulas; the difference with the language of Definition 9.13 is that here, the formula
> is not allowed.

We leave it as an exercise to the reader to prove that the two versions of the definition
are equivalent, in the sense that there are transformations from one type of automaton into
the other. �

As already mentioned, the key property making an automaton non-deterministic is that,
on Kripke structure with a sufficiently nice branching structure, a winning strategy for ∃ in
the acceptance game should always be able to find markings that are functional. We will now
make this statement more precise.

Definition 9.15 Let A and S be a modal automaton and a Kripke structure, respectively. A
strategy f for ∃ in the acceptance game A(A,S) is called separating if for all partial matches
Σ ending in a basic position (a, s), the marking mΣ : S → ℘A picked by f satisfies |mΣ(t)| ≤ 1
for all t ∈ S, and |mΣ(t)| = 0 for all t 6∈ σR(s). �

In words, a strategy is separating if it picks markings that assign to each point in S at
most one state in A, and assign the empty set to any point that is not a successor of the
currently inspected point of S. For a (non-)example, consider the one-step formula 3a0∧2a1;
it should be clear that to satisfy this formula at a point s, one needs at least one successor
of s where both a0 and a1 hold. This means that no separating strategy will prescribe a

Lectures on the modal µ-calculus 9-7

legitimate move for a position of the form (a, s) if the formula that ∃ needs to satisfy is
Θ(a, σV (s)) = 3a0 ∧2a1.

Separating winning strategies have the following property, which we will put to good use
in the sequel.

Definition 9.16 Let A and (S, r) be a modal automaton and a pointed Kripke structure,
respectively. A strategy f for ∃ in the acceptance game A(A, S)@(aI , r) is called functional
if for every s ∈ S there is at most one a ∈ A such that the position (a, s) is reachable in an
f -guided match of A(A, S)@(aI , r).

In case ∃ has a functional winning strategy in the acceptance game A(A,S)@(aI , r), we
say that A strongly accepts (S, r), and write S, r
s A. �

Proposition 9.17 Let A be a modal automaton, and let (S, s) be a pointed tree model. Then
every separating winning strategy in the acceptance game A(A, S)@(aI , s) is functional.

We have now arrived at the key result about disjunctive automata.

Theorem 9.18 Let A and (S, r) be a disjunctive modal automaton and a pointed Kripke
model, respectively. Then S, r
 A iff there is a rooted tree model (S′, r′) such that S, r ↔
(S′, r′) and S′, r′
s A.

Proof of Theorem 9.18. With A = (A,Θ,Ω, aI), let κ := |A| be the state-size of A. We
leave it for the reader to construct a tree model S′ with root r′, and a bounded morphism
g : S′ → S such that g(r′) = r and such that every s′ 6= r′ in S′ has at least κ − 1 many
siblings t′ such that g(t′) = g(s′).

By positional determinacy we may assume that ∃ has a positional strategy f in A(A, S)
which is winning when played from any winning position for ∃. We will use this strategy to
define a separating positional winning strategy for ∃ in A(A, S′).

The key claim is the following.

Claim 1 Let s ∈ S and s′ ∈ S′ be such that g(s′) = s, let α ∈ 1DML(A) be a one-step formula
and let m : R(s)→ ℘(A) be a marking such that S⊕m, g(s′)
 α. Then there is a separating
marking m′ : R′(s′)→ ℘(A) such that S′, s′
 α and m′(t′) ⊆ m(g(t′)), for all t′ ∈ R′(s′).

Proof of Claim In case α contains > as one of its disjuncts, we simply take the empty
marking for m′, that is, we define m′(t′) := ∅ for every t′ ∈ S′.

In the sequel we focus on the case where α does not contain > as one of its disjuncts (in
fact this is without loss of generality, cf. Remark 9.14). It follows from the legitimacy of m,
as a move for ∃ in A(A,S), that S,m, s
 α; this means that S⊕m, s
 ∇B for some disjunct
∇B of α, where B ⊆ A. We now consider two subcases.

If B = ∅, it follows from S⊕m, s
 ∇B that σR = ∅; but then we also have σR′(s
′) = ∅,

since g is a bounded morphism. In this case we also define m′ as the empty marking.
Finally, assume that B 6= ∅; since S ⊕ m, s
 ∇B we may without loss of generality

assume that ∅ 6= m(t) ⊆ B, for all t ∈ σR(s). Now consider an arbitrary successor t of s. By
the assumption on g there are at least κ many successors t′ of s′ such that g(t′) = t, and since

9-8 Modal Automata

κ ≥ |A| this implies that there is a surjection h : g−1(t) → m(t). Define m′ : σR′(s
′) → ℘A

by putting

m′(t′) := {h(t′)}.

We leave it as an exercise for the reader to check that S′,m′, s′
 ∇B. This means that
S′,m′, s′
 α, thus establishing that m′ is a legitimate move for ∃ at position (a, s′) in
A(A,S′) indeed. Finally, it is immediate from the definition of m′ that m′(t′) ⊆ m(g(t′)), for
all t′ ∈ σR′(s′). J

Based on Claim 1, we may provide ∃ with the following positional strategy f ′ in A(A,S′).
Given a position (a, s′), in case (a, g(s′)) is a winning position for ∃ in A(A, S), we let f ′

pick a marking m′ as given by the claim, while f ′ picks an random move in case (a, g(s′)) 6∈
Win∃(A(A,S)).

It is not hard to prove that for any f ′-guided (partial) match Σ = (an, s
′
n)n<λ of A(A,S′),

its g-projection Σg := (an, g(s′n))n<λ is a f -guided (partial) match of A(A, S′). From this it
is immediate that f ′ is a winning strategy when played from a winning position, while it is
obvious from its definition that f is separating. qed

Further on in this chapter we will prove a Simulation Theorem, providing a construction
which effectively transforms a given modal automaton into an equivalent disjunctive modal
automaton.

9.4 One-step logics and their automata

Modal one-step logic

As we saw in section 9.2, modal one-step formulas provide the co-domain of the transition
map of a modal automaton. The operational semantics of modal automata is given by a
two-player acceptance game, and a match of this game proceeds in rounds, during which the
players investigate a local window into the Kripke structure, by means of the semantics of
one of these one-step formulas. It will be rewarding to introduce some terminology for this
‘local window’ and study the semantics of one-step formulas in some more detail. This will
allow us to introduce the notion of a one-step logic and use it to generalise the notion of a
modal automaton.

The crucial observation is the following. Consider a modal automaton A = (A,Θ,Ω, aI)
and a Kripke model S. At a basic position (a, s) of the acceptance game A(A,S), ∃ has
to come up with a marking m which makes the one-step formula Θ(a, σV) true at s in the
expanded model S ⊕m. The point is that, because of the special shape of modal one-step
formulas, we do not use all information on the model S⊕m: in fact all we need access to is
the set R[s] of successors of s, and the marking m. In the sequel it will convenient to present
this information in the format of a one-step model, which is nothing but a set, together with
a marking for the set of variables.

Definition 9.19 Fix a set A. A one-step A-model over a set Y is a pair (Y,m) such that
m : Y → ℘(A) is an A-marking of the elements of Y with A-colors. �

Lectures on the modal µ-calculus 9-9

Remark 9.20 In order to deal with blind worlds (points in a Kripke model that have no
successors), we need to allow one-step models with an empty domain. Observe that there is in
fact exactly one such structure: the pair (∅,∅). Apart from this exception, a one-step model
is nothing but a structure in the sense of first-order model theory, for the signature consisting
of a monadic predicate for each element of A. That is, we may consider the A-model (Y,m)
as the structure (Y, Vm), simply by representing the marking m by its associated valuation
Vm interpreting the variables as subsets of the domain Y . �

Definition 9.21 The one-step satisfaction relation
1 between one-step models and modal
one-step formulas is defined as follows. Fix a one-step model (Y,m).

First, we define the value [[π]]0 of a formula π ∈ Latt(A) by the following induction:

[[a]]0 := Vm(a) (= {t ∈ Y | a ∈ m(t)})
[[>]]0 := Y [[⊥]]0 := ∅
[[π0 ∨ π1]]0 := [[π0]]0 ∪ [[π1]]0 [[π0 ∧ π1]]0 := [[π0]]0 ∩ [[π1]]0.

Sometimes we write (Y,m), t
0 π in case t ∈ [[π]]0 .
Second, we inductively define the one-step satisfaction relation as follows:

(Y,m)
1 >
(Y,m) 6
1 ⊥
(Y,m)
1 2π if [[π]]0 = Y
(Y,m)
1 3π if [[π]]0 ∩ Y 6= ∅
(Y,m)
1 α0 ∧ α1 if (Y,m)
1 α0 and (Y,m)
1 α1

(Y,m)
1 α0 ∨ α1 if (Y,m)
1 α0 or (Y,m)
1 α1

In case (Y,m)
1 α we say that α is true in the one-step model (Y,m). �

Example 9.22 In this format, the semantics of disjunctive formulas boils down to the fol-
lowing, as can easily be verified, for a subset B ⊆ A:

(Y,m)
1 ∇B iff B ⊆
⋃
{m(y) | y ∈ Y } and m(y) ∩B 6= ∅, for all y ∈ Y.

That is, ∇B holds in a one-step model (Y,m) iff every b ∈ B is satisfied at some y ∈ Y , and
every y ∈ Y satisfies some b ∈ B.

Furthermore, observe that the empty model will satisfy every formula of the form 2π,
and no formula of the form 3π. We have (Y,m)
1 ∇∅ iff Y = ∅. �

The following proposition, which can be proved by a straightforward induction on the
complexity of one-step formulas, shows that the one-step semantics developed above is just
an alternative perspective on the standard semantics of one-step formulas.

Proposition 9.23 Let S = (S,R, V) be a Kripke model, let s be a point in S, let m : R[s]→
℘(A) be an A-marking, and let α ∈ 1ML(A) be a modal one-step formula. Then

S⊕m, s
 α iff (R[s],m)
1 α.

Given Proposition 9.23, the acceptance game of modal automata can now be naturally
defined in terms of this one-step semantics, as in Table 20.

9-10 Modal Automata

Position Player Admissible moves Priority

(a, s) ∈ A× S ∃ {m : R(s)→ ℘A | (R(s),m)
1 Θ(a, σV (s))} Ω(a)
m ∀ {(b, t) | b ∈ m(t)} 0

Table 20: Acceptance game for one-step automata

General one-step logic

As we will see below, the notion of a one-step logic provides a way to generalise the concept
of a modal automaton to a much wider setting.

Definition 9.24 A one-step language is a map L which assigns to any finite set A a collection
L(A) of one-step formulas over A. This map is subject to the constraint that every map
τ : A→ A′ induces a substitution or renaming [τ] : L(A)→ L(A′) such that
1) [idA] = idL(A);
2) [τ ′ ◦ τ] = [τ ′] ◦ [τ], for any pair τ : A→ A′ and τ ′ : A′ → A′′;
3) α[τ] = α for any α ∈ L(A), if τ : A→ A′ is such that τ(a) = a for all a ∈ A. �

We will use postfix notation for this renaming, writing α[τ] for the formula we obtain
from α by renaming every variable a ∈ A by τ(a) ∈ A′. For instance, where α ∈ 1ML(A) is
the formula 3a ∧ 2(b ∨ c) and τ : A → A′ satisfies τ(a) = τ(c) = a′ and τ(b) = b′, we find
α[τ] = 3a′ ∧ 2(b′ ∨ a′). Note that it follows from the above definition that A ⊆ A′ implies
L(A) ⊆ L(A′), for any one-step language L.

Definition 9.25 A one-step logic is a pair (L,
1) consisting of a one-step language L and
an interpretation
1 which indicates, for every one-step A-model (Y,m) and every one-step
formula α ∈ L(A), whether α is true or false in (Y,m), denoted as, respectively, (Y,m)
1 α
and (Y,m) 6
1 α.

The interpretation
1 is subject to the condition of monotonicity : if m(t) ⊆ m′(t), for
all t ∈ Y , then (Y,m)
1 α implies (Y,m′)
1 α, for all α ∈ L(A). Furthermore, the
interpretation is supposed to be well-behaved with respect to renamings, in the following
sense. Observe that a map τ : A′ → A transforms any A-valuation V : A → ℘(Y) to an
A′-valuation V ◦ τ : A′ → ℘(Y); we will require that (Y,mV)
1 α[τ] iff (Y,mV ◦τ)
1 α, for
any formula α ∈ L(A). �

We will generally be sloppy and blur the distinction between a one-step language and a
one-step logic, in the understanding that the interpretation of one-step languages is generally
fixed (and always clear from context).

In Definition 9.21 we introduced the one-step perspective on modal logic. As a different,
particularly interesting example of a one-step logic, we may consider two versions of monadic
first-order logic, where we see the variables in A as monadic predicate symbols.

Definition 9.26 The set MFOE(A) of monadic first-order formulas over A is given by the
following grammar:

α ::= > | ⊥ | a(x) | ¬a(x) | x .
= y | x 6 .= y | α ∨ α | α ∧ α | ∃x.α | ∀x.α

Lectures on the modal µ-calculus 9-11

where a ∈ A and x, y are first-order (individual) variables. The language MFO(A) of monadic
first-order logic is the equality-free fragment of MFOE(A); that is, atomic formulas of the form
x

.
= y and x 6 .= y are not permitted:

α ::= > | ⊥ | a(x) | ¬a(x) | α ∨ α | α ∧ α | ∃x.α | ∀x.α

In both languages we use the standard definition of free and bound variables, and we call
a formula a sentence if it has no free variables. For each of the languages L ∈ {1FO, 1FOE}, we
define the positive fragment L+ of L as the language obtained by almost the same grammar
as for L, but with the difference that we do not allow negative formulas of the form ¬a(x)
(but do allow formulas x 6 .= y). �

To define the semantics of these formulas, we make a distinction between the empty one-
step model and non-empty models, cf. Remark 9.20. In the latter case we view a one-step
model (Y,m) as the first-order structure (Y, Vm). If we add to such a model an assignment g,
interpreting individual variables of the language as elements of the domain, we may inductively
define, in a completely straightforward way, the notion of a monadic formulas being true in
a model-with-assignment:

(Y,m), g |= α.

Note the truth of a sentence of the language does not depend on the assignment, so that may
simply write

(Y,m) |= α

in case (Y,m), g |= α for some/each assignment.

The empty model must be dealt with differently. Since we cannot define assignments on
the empty model in a meaningful way, we cannot interpret arbitrary formulas in the empty
model. Fortunately, however, we can give an interpretation for every sentence of the language,
simply by making every formula of the form ∀x.α true, and every formula of the form ∃x.α
false in the empty model. Using this as a basis for an inductive definition, we easily define a
truth relation

(∅,∅) |= α

for any monadic first-order sentence α.

In the light of the above discussion, we will take the (positive) sentences of the languages
MFOE(A) and MFOE(A) as two respective one-step languages.

Definition 9.27 We define the one-step languages 1FOE(A) and 1FO(A) as the collection of
positive sentences in MFOE(A) and MFOE(A), respectively. The semantics
1 of these languages
is defined by putting

(Y,m)
1 α iff (Y,m) |= α,

for any one-step model (Y,m). �

9-12 Modal Automata

One-step logic

Continuing our general discussion, we introduce some natural notions pertaining to one-step
logics.

Definition 9.28 Two one-step formulas α and α′ are (one-step) equivalent, denoted α ≡1 α
′,

if they are satisfied by exactly the same one-step models. �

Example 9.29 Examples of one-step equivalent pairs of formulas include instance of the
standard propositional distributive laws, such as the modal distributive law:

(3a1 ∨3a2) ∧2b ≡1 (3a1 ∧2b) ∨ (3a2 ∧2b),

the familiar axioms of modal logic, such as

2(a ∧ b) ≡1 2a ∧2b,

but also formulas involving the nabla modality, such as

∇B ∧∇B′ ≡1

∨{
∇{b ∧ b′ | bRb′} | R ⊆ B ×B′ and (B,B′) ∈ ℘R

}
(cf. Proposition 1.36(1)).

Examples such as

3(a1 ∧ a2) ∧2b ≡1 ∃x (a1(x) ∧ a2(x)) ∧ ∀y b(y).

show that Definition 9.28 also covers the notion of one-step equivalence across languages. �

We may lift the notion of equivalence to the level of one-step logics.

Definition 9.30 We say that two one-step (L,
1) and (L′,
1′) languages are (effectively)
equivalent if for every formula in L there is an (effectively obtainable) equivalent formula in
L′, and vice versa. �

A particular interesting example of such an equivalence is the following.

Proposition 9.31 The one-step languages 1ML and 1FO are effectively equivalent.

Proof. It is easy to rewrite a modal one-step formula into an equivalent first-order formula.
For the opposite direction, the key observation is that in equality-free monadic first-order
logic, every formula can be rewritten into a normal form where every monadic predicate is in
the scope of exactly one quantifier. qed

Among the results about the modal one-step language that we shall need later is the
following one-step version of the usual bisimulation invariance result for modal logic, i.e. all
one-step formulas are invariant for bisimulations between one-step models in a precise sense.

Lectures on the modal µ-calculus 9-13

Definition 9.32 We say that two one-step A-models (Y,m) and (Y ′,m′) are one-step bisim-
ilar, notation: (Y,m)↔1 (Y ′,m′), if they satisfy the following conditions:

(forth) for all s ∈ S, there is s′ ∈ S′ with m(s) = m′(s′);
(back) for all s′ ∈ S′, there is s ∈ S with m(s) = m′(s′). �

Proposition 9.33 (One-step Bisimulation Invariance) Let (Y,m) and (Y ′,m′) be two
one-step A-models. If (Y,m) ↔1 (Y ′,m′), then both one-step models satisfy the same formulas
in 1ML(A).

Automata for one-step logics

We now see how the concept of one-step logic naturally give rise to the following generalisation
of modal automata.

Definition 9.34 Let (L,
1) be a one-step logic. An L-automaton over a set P of proposition
letters is a quadruple A = 〈A,Θ,Ω, aI〉, where A is a finite state set with initial state aI ,
Θ : A× ℘(P)→ L(A) is a transition function, and Ω : A→ ω is a priority map.

The semantics of L-automata is given by a two-player acceptance game, of which the rules
are given in exactly the same way as those for modal automata, cf. Table 20. �

As we will see later on, the automata for 1FO and 1FOE are of particular interest since they
correspond to, respectively, the modal µ-calculus and (on tree models) monadic second-order
logic. The first observation is immediate by our earlier observations on the equivalence of
µML and modal automata, and Proposition 9.31.

An important theme in the study of these automata is how their properties are already de-
termined at the one-step level. Here are some first examples, regarding the closure properties
of L-automata. Recall that a query is simply a class of pointed Kripke models.

Definition 9.35 Given be a one-step logic (L,
1), we call a query K L-recognisable if there
is some L-automaton A that recognises K, i.e., such that S, s
 A iff S, s belongs to K. �

We will generally be interested in closure properties of the class of recognisable queries. It
is rather easy to see that if a one-step language is closed under taking conjunctions/disjunctions,
then the associated class of recognisable languages is closed under taking intersections/unions.
The question of closure under complementation is more interesting; note that since our one-
step languages consist of monotone formulas only, closure under negation at the one-step level
is not possible.

Definition 9.36 Let (L,
1) be a one-step logic. We say that L is closed under taking con-
junctions, if, given a pair of one-step formulas α and β, there is a one-step formula γ such
that any one-step model satisfies γ iff it satisfies both α and β. The notion of closure under
disjunctions is defined analogously.

Given two one-step formulas α and β in L(A), we call β a boolean dual of α if for every
one-step model (Y,m) we have that

(Y,m)
1 β iff (Y,m) 6
1 α,

9-14 Modal Automata

where m is the complement marking of m, given by m(t) := A \m(t), for all t ∈ Y . We say
that L is closed under taking boolean duals if every formula in L has a boolean dual in L. �

Example 9.37 The one-step modal language is closed under taking conjunctions, disjunc-
tions and boolean duals. We let α∂ be the formula we obtain from a formula α ∈ 1ML by
simultaneously replacing all occurrences of ⊥ by >, all conjunctions by disjunctions, all dia-

monds by boxes, and vice versa. For example:
(
3>∧2(a ∨ b)

)∂
= 2⊥∨3(a ∧ b). It is easy

to verify that for every α ∈ 1ML, the formulas α and α∂ are boolean duals of one another.
The one-step language of disjunctive modal logic is closed under taking disjunctions, but

not conjunctions or boolean duals. �

Proposition 9.38 Let (L,
1) be a one-step logic.
1) If L is closed under taking conjunctions, then the L-recognisable queries are closed under

taking intersections.
2) If L is closed under taking disjunctions, then the L-recognisable queries are closed under

taking unions.
3) If L is closed under taking boolean duals, then the L-recognisable queries are closed under

complementation.

Proof. We leave the proof of the first two statements as an exercise to the reader. For the
proof of the third part we need to show that with any L-automaton A we can associate an
L-automaton A which accepts exactly those pointed Kripke models that are rejected by A.

Let A = (A,Θ,Ω, aI) be an L-automaton, and define A to be the structure A := (A,Θ∂ ,Ω′, aI)
given by putting Θ∂(a, c) := Θ(a, c)∂ and Ω′(a) := 1 + Ω(a).

Now take an arbitrary pointed Kripke model (S, s). Comparing the acceptance games
A(A,S) and A(A, S) we observe that the role of ∃ in the latter game is basically the same as
that of ∀ in the first. From this it follows that any position (a, s) is winning for ∃ in A(A, S)
iff it is winning for ∀ in A(A,S). Using determinacy we derive that S, s
 A iff S, s 6
 A, as
required. qed

9.5 From formulas to automata and back

In this section we will substantiate our earlier claim that modal automata are indeed an
alternative way to look at the modal µ-calculus. That is, we will provide effective constructions
that transform a (parity) formula into an equivalent modal automaton, and vice versa. In both
directions we will let these transformations pass via the intermediate structures of transparent
modal automata; these are variations of modal automata in which the proposition letters,
instead of featuring as part of the domain of the transition map, may occur on the co-domain
side. That is, we have to extend the definition of one-step formulas, allowing (unguarded)
occurrences of proposition letters.

Definition 9.39 Given a set P of proposition letters and a set A of propositional variables,
we define the set 1EML(P, A) of extended one-step modal formulas over P and A using the
following grammar:

α ::= ⊥ | > | p | p | 3π | 2π | α ∧ α | α ∨ α,

Lectures on the modal µ-calculus 9-15

with P ∈ P and π ∈ Latt(A). �

Observe that in an extended modal one-step formula, the proposition letters from P may
only occur ‘at the surface’, that is, not in the scope of a modality; as in 1ML(A)-formulas,
every occurrence of a variable from A must be in the scope of exactly one modality.

Definition 9.40 A transparent modal automaton over a set P of proposition letters is a
quadruple of the form A = (A,Θ,Ω, aI), where A is a finite set of states, of which aI is the
initial state, Ω : A→ ω is a priority map, and

Θ : A→ 1EML(P, A)

is the transition map.
Given a Kripke model S = (S,R, V), we define the acceptance game A(A,S) as the parity

game of which the admissible moves and the priority map are given in Table 21. �

Position Player Admissible moves Priority

(a, s) ∈ A× S − {(Θ(a), s)} Ω(a)
(p, s), with p ∈ P and s ∈ V (p) ∀ ∅ 0
(p, s), with p ∈ P and s 6∈ V (p) ∃ ∅ 0
(p, s), with p ∈ P and s ∈ V (p) ∃ ∅ 0
(p, s), with p ∈ P and s 6∈ V (p) ∀ ∅ 0
(>, s) ∀ ∅ 0
(⊥, s) ∃ ∅ 0
(ϕ0 ∨ ϕ1, s) ∃ {(ϕ0, s), (ϕ1, s)} 0
(ϕ0 ∧ ϕ1, s) ∀ {(ϕ0, s), (ϕ1, s)} 0
(3π, s) ∃ {(π, t) | t ∈ R(s)} 0
(2π, s) ∀ {(π, t) | t ∈ R(s)} 0

Table 21: Acceptance game for transparent modal automata

The key feature of this acceptance game is that at a basic position of the form (a, s) ∈
A× S, the one-step formula Θ(a) that ∃ needs to satisfy at s does not depend on the colour
of s. On the other hand, this formula may now contain literals over P, and in this way the
colour of s does play a role when the players evaluate the truth of Θ(a).

In the sequel we will refer to standard modal automata (i.e., as given in Definition 9.3) as
chromatic to distinguish them from the transparent ones introduced here.

The main part of this section consists of constructions that transform chromatic modal
automata into transparent ones and vice versa, and transform parity formulas into transparent
modal automata and vice versa. In all cases we will compare the size and index of the input
and the output structure (these notions are defined for transparent automata as for chromatic
ones). Throughout the remainder we fix a set P of proposition letters, and we think of the
sizes of P and ℘(P) as being constant.

9-16 Modal Automata

Proposition 9.41 There is an effective construction that transforms a transparent modal
P-automaton A into a chromatic modal P-automaton Ac, such that

1) Ac ≡ A;
2) |Ac| = O(|A|);
3) ind(Ac) = ind(A).

Proof. The intuition behind the transformation is that in the acceptance game for a trans-
parent automaton we may encounter literals over P, which are to be evaluated at the current
state. Depending on the colour of the current state, every such literal will be evaluated to be
either true or false. This means, that if we fix this colour, as we do in the acceptance game of
a chromatic automaton, we can simply replace every literal with the appropriate boolean con-
stant (> or ⊥), thus obtaining at a one-step formula in the ‘not-extended’ language 1ML(A).
Performing this substitution systematically, we arrive at the following definitions.

Given a colour c ∈ ℘(P), we define the substitution τc : 1EML(P, A)→ 1ML(A) given by

τc(p) :=

{
> if p ∈ c
⊥ if p 6∈ c.

Based on this we go from a transparent modal automaton A = (A,Θ,Ω, aI) to its chromatic
counterpart Ac := (A,Θ′,Ω, aI) by putting

Θ′(a, c) := Θ(a)[τc].

The key observation about these substitutions is that for any Kripke model S = (S,R, V)
over P, any s in S, any A-marking m on s, and any extended one-step formula α we have

S⊕m, s
 α iff S⊕m, s
 α[τcs],

where cs is the colour of s under V .
It is this equivalence that enables us to move smoothly between the acceptance games

A(A,S) and A(Ac, S): it shows that at any basic position (a, s), any marking m : S → ℘(A) is
legitimate in A(A, S) iff it is legitimate in A(Ac, S). From this we easily infer that the winning
positions for ∃ in the two games coincide, which clearly suffices to prove the equivalence of A
and Ac (1). The statements (2) and (3) are trivial consequences of the definitions. qed

In the opposite direction there is an equally simple transformation.

Proposition 9.42 There is an effective construction that transforms a chromatic modal P-
automaton A into a transparent modal P-automaton At, such that

1) At ≡ A;
2) |At| = O(|A|);
3) ind(At) = ind(A).

Proof. Let A = (A,Θ,Ω, aI) be a chromatic automaton over some set P of proposition
letters. We will define At := (A,Θt,Ω, aI), where Θt : A→ 1EML(P, A) is given by

Θt(a) :=
∨

c∈℘(P)

(
�c ∧Θ(a, c)

)
.

Lectures on the modal µ-calculus 9-17

Here �c is the formula ‘exactly c’:

�c :=
∧
p∈c

p ∧
∧

p∈P\c

p,

which holds in a state s in a Kripke model over P if c is exactly the colour of s. It is easily
verified that At satisfies the conditions listed in the statement of the theorem. qed

We now turn to the equivalence of parity formulas and transparent modal automata. The
transformation of the first into the latter type of structure is the most complex construction
in this section — but the hardest part of the work has already been done in section 6.5 where
we discussed guarded transformations of parity formulas.

Proposition 9.43 There is an effective construction that transforms a parity P-formula G
into a transparent modal P-automaton AG, such that

1) AG ≡ G;
2) |AG| ≤ 2O(|G|)

3) ind(AG) = ind(G).

Proof. Recall that by Theorem 6.43 there is an algorithm that transforms G into an equiv-
alent strongly guarded parity formula H of size (roughly) exponential in |G|, and index
ind(H) = ind(G). Without loss of generality we may assume that every state of H is the
successor of some modal node, cf. Remark 6.46.

The transparent modal automaton A will be directly based on H. First of all, we let the
carrier A of A be the set of successors of modal nodes, together with the initital vertex vI ,
that is:

A := {vI} ∪ E[Vm].

Clearly then all states of H belong to A, and with every modal node u we may associate an
element au ∈ A: its unique successor. We define aI := vI , and as the priority map of A we
take the map Ω′ : A→ ω given by

Ω′(a) :=

{
Ω(a) if a ∈ Dom(Ω)
0. otherwise

It is left to define the transition map Θ : A → 1EML(P, A). Basically, for any a ∈ A we
will read off Θ(a) from a directed acyclic graph Da := (Da, Ea) that we will cut out from
the underlying graph (V,E) of H. We define Da as the smallest subset D of V that contains
a and is closed under taking E-successors of non-modal nodes (that is, if v ∈ D \ Vn, then
E[v] ⊆ D). Clearly, any node u ∈ Da must be either modal or atomic if E[u] is empty, and
either boolean or silent if it is not. The relation Ea can now be defined as follows:

Ea := {(u, v) ∈ E ∩ (Da ×Da) | v 6= a}.

It follows from the strong guardedness of H that D is acyclic, so that we may use the relation
Ea for recursive definitions. (It is for this reason that we did not define Ea as the restriction

9-18 Modal Automata

of E to the set Da; this would create cycles in case Da would contain a modal node u such
that Eua.) In particular, we will define a formula θa(u) ∈ 1EML for every u ∈ Da:

θa(u) :=


L(u) if u is atomic
♥au if u is modal and L(u) = ♥⊙
{L(v) | Euv} if u is boolean and L(u) = �

θa(v) if L(u) = ε and Euv.

Finally, then, we define

Θ(a) := θa(a).

It is easy to verify that every formula of the form θa(u) is an extended modal one-step formula
over P and A. This implies that Θ : A→ 1EML(P, A) is of the required type.

It is an immediate consequence of the definitions that |A| ≤ H and ind(A) ≤ ind(H);
from this we obtain the items (2) and (3) of the theorem. It thus remains to prove the
equivalence of A and H. But a moment of reflection will show that, for any Kripke model S,
the evaluation game E := E(H, S) and the acceptance game A := (A,S) are isomorphic, apart
from the automatic moves of type (a, s) → (Θ(a), s) in A, which have no counterpart in E .
qed

Proposition 9.44 There is an effective construction that transforms a transparent modal
P-automaton A into a parity P-formula GA, such that

1) GA ≡ A;
2) |GA| = |A|;
3) ind(GA) = ind(A).

Proof. Given A = (A,Θ,Ω, aI), define GA = (V,E,L,Ω, vI) by putting

V := A ∪
⋃
a∈A Sf (Θ(a))

E :=
{

(a,Θ(a)) | a ∈ A
}
∪
(
.0 ∩(V × V)

)
Ω(v) :=

{
Ω(v) if v ∈ A
↑ otherwise

vI := aI ,

where we recall that .0 is the converse of the direct subformula relation /0. We leave it for
the reader to verify that GA satisfies the conditions (1), (2) and (3). qed

9.6 Simulation Theorem

In this section we will prove the most important result of this chapter, viz., the Simulation
Theorem stating that every modal automaton can be replaced with an equivalent disjunctive
modal automaton.

Theorem 9.45 There is a construction sim transforming a modal automaton A into an equiv-
alent disjunctive modal automaton sim(A).

Lectures on the modal µ-calculus 9-19

The definition of the simulating automaton proceeds in two stages. We first come up with
an automaton A] of which the transition map already has the right shape, but the acceptance
condition is not a parity condition but a so-called ω-regular set over the carrier A] of A] (i.e.,
a subset of (A])ω that itself can be recognized by some finite stream automaton with a parity
acceptance condition). As we shall see, the move from A to A] involves a ‘change of basis’:
the states of A] will be taken from the set A] := ℘(A × A) of binary relations over A, and
the definition of the transition map Θ] of A] is based on various links between the one-step
languages we obtain by taking A and A] as sets of (formal) variables. In the second step
of the construction we then show how A], like any automaton with an ω-regular acceptance
condition, can be transformed into a standard modal automaton with a parity condition.

In fact, we shall prove a slightly more general version of Theorem 9.45, by abstracting
from the precise shape of the one-step languages 1ML and 1DML that form the codomain of the
transition function of modal and disjunctive modal automata, respectively. Our proof will
only use a certain distributive law that holds between 1ML(A) and 1DML(A), and for future
reference it will make sense to formulate our definitions and results for two arbitrary one-step
languages satisfying such a distributive law.

Convention 9.46 Throughout this section we we shall be dealing with two one-step lan-
guages L1 and L2, providing sets Li(A) of formulas for each set A of propositional variables.

Recall that, in line with the context of fixpoint logics that we are working in, we will
assume that, for any one-step logic L, the formulas in L(A) are all monotone. Recall as well
that in Definition 9.34 we introduced the notion of an L-automaton, and that in Table 20 we
summarize the rules of the acceptance game of such automata.

Our purpose will be to prove that, under some natural constraints on the relation between
two one-step languages L1 and L2, every L1-automaton can be simulated by an L2-automaton,
that is, transformed into an equivalent L2-automaton. In the case where L1 = 1ML and
L2 = 1DML, the simulating language 1DML corresponds to some fragment of 1ML, in which the
use of conjunctions is severely restricted. Here the construction of the simulating automaton
corresponds to finding a disjunctive normal form for the modal automata.

In order to formulate the condition on L1 and L2 under which we can prove a simulation
theorem, we need some preparatory work. Informally, let L∧(A) denote the version of the
language L that allows conjunctions of proposition letters from A to occur at positions where
L only allows the proposition letters from A themselves. As an example, recall that the
language 1DML(A) is built up from basic formulas ∇B, where B ⊆ A. Examples of formulas
in 1DML∧(A) are ∇{a ∧ b, b} and ⊥ ∨ ∇{a1 ∧ a2 ∧ a3,>}. Observe that these two formulas
do not belong to 1DML(A), and thus bear witness to the fact that the latter language forms a
proper subset of 1DML∧(A). On the other hand, it is easy to see that 1ML(A) = 1ML∧(A).

A convenient way of thinking about the formulas in L∧(A) is that they are substitution
instances of formulas in L(℘A) under a special substitution θA. Formally we define the
languare as follows.

Definition 9.47 For any set A and any language L, we define the language

L∧(A) := {ϕ[θA] | ϕ ∈ L(℘A)},

9-20 Modal Automata

where we let θA denote the substitution that replaces, for any subset B ⊆ A, the (formal)
variable B with the conjunction

∧
B. �

As an example, we obtain the formula 2a ∧ 2(a ∧ b) ∈ 1ML(A) from the formula 2{a} ∧
2{a, b} ∈ 1ML(P, ℘A) by substituting a =

∧
{a} for {a}, and a ∧ b =

∧
{a, b} for {a, b}.

Now we can define the key condition on two languages L1 and L2, making that L2-automata
can simulate L1-automata, as follows.

Definition 9.48 L2 is
∧

-distributive over L1 if, for each set A, and for every finite set Φ of
L1(A)-formulas we have ∧

Φ ≡ ψ[θA],

for some formula ψ ∈ L2(℘A). �

Informally, L2 is
∧

-distributive over L1 if every finite conjunction of L1(A)-formulas is
equivalent to some L∧2 (A)-formula. The terminology can be motivated as follows: L2 is

∧
-

distributive over L1 if every conjunction of L1-formulas is equivalent to an L2-formula of
conjunctions; that is, if conjunctions in L1 ‘distribute over L2-formulas’. As a key example
of
∧

-distributivity we have the following result, which can be proved along the same lines as
Proposition 1.36.

Proposition 9.49 1DML(A) is
∧

-distributive over 1ML(A).

The importance of the notion of
∧

-distributivity lies in the following Theorem, which
obviously generalises the simulation theorem for modal automata.

Theorem 9.50 (Simulation Theorem) Let L1 and L2 be two one-step languages such that
L2 is

∧
-distributive over L1. Then there is an effective construction sim transforming an

L1-automaton A into an equivalent L2-automaton sim(A).

We now turn to the definition of the L2-automaton A] that simulates an arbitrary but
fixed L1-automaton A. Note that our prime example concerns a simulation theorem where
the transition structure of the simulating automaton is of a significantly simpler nature than
that of the simulated one. The intuition underlying the definition of A] is that one A]-match
will correspond to a bundle of several A-matches in parallel, and that to win an A]-match, ∃
has to win each of these parallel A-matches. It is thus to be expected that we will obtain A]
via some kind of power construction on A.

For some more detail, suppose that ∃ is faced with a set {(a, s) | a ∈ Bs} of positions in
some A-acceptance game, for some subset Bs ⊆ A (and one single state s). She could try
to respond to all challenges posed by these positions in one go by coming up with a single
marking m : R[s] → ℘A such that (R[s],m)
1

∧
{Θ(a, cs) | a ∈ B}. Then for each such

successor t of s, we can see Bt = m(t) as the set of new challenges that she should take care
of at t in parallel. In this way, we may think of a match of the simulating automaton moving
in rounds, from one ‘macro-position’ (Bi, si) (corresponding to the set {(b, si) | b ∈ Bi}) to
another ‘macro-position’ (Bi+1, si+1) (corresponding to the set {(b, si+1) | b ∈ Bi+1}).

Lectures on the modal µ-calculus 9-21

This approach would suggest to take ℘A as the carrier set of A]. However, if we would
simply take the states of A] to be macro-states of A, i.e., subsets of A, we would get into
trouble when defining the acceptance condition of A, similar to the problems one encounters
when determinizing stream automata. The problem is that from a sequence B1B2B3 . . . of
subsets of A, representing an A]-match, we cannot recognize the set of parallel A-matches
that this sequence corresponds to. We can take an elegant way out of this problem by defining
the carrier set A] of A] to be the set of binary relations over A, and to link A]-sequences and
A-sequences via the notion of a trace through a sequence of binary relations.

Definition 9.51 Fix a set A. We let A] denote the set of binary relations over A, that is,

A] := ℘(A×A).

Given an infinite word ρ = R1R2R3 . . . over the set A], a trace through ρ is either a finite
A-word α = a0a1a2 . . . ak, or an A-stream α = a0a1a2 . . . , such that aiRi+1ai+1 for all i < k
(respectively, for all i < ω). Finite traces through finite A]-sequences are defined similarly. �

The key idea behind the definition of A] and the proof of its equivalence to A, is that with
each A(A],S)-match with basic positions

(R1, s1)(R2, s2)(R3, s3) . . .

and each trace a0a1a2 through R1R2R3 . . . we may associate an A(A, S)-match with basic
positions

(a1, s1)(a2, s2)(a3, s3) . . .

This explains the winning condition of the automaton A]: an A]-stream should be winning
for ∃ if all traces through it are winning according to the acceptance condition of A.

Definition 9.52 Relative to a parity condition Ω on A, call an infinite trace α ∈ Aω bad if
the maximum priority occurring infinitely often on α is an odd number. Let NBTΩ denote
the set of infinite A]-words that contain no bad traces relative to Ω. �

Note that the automaton A] will be equipped with this set NBTΩ as its acceptance
condition, and while we will be able to establish that A] is equivalent to A, NBTΩ clearly is
not a parity condition. This we will take care of in the second part of the construction.

Before giving the formal details, let us first provide some further intuitions behind the
definition of A]. Our starting point is that a state R of A] encodes the macro-state Ran(R) :=
{b ∈ A | (a, b) ∈ R for some a ∈ A}, that is, the range of R. This already suffices to motivate
the definition of the initial state of A]:

RI := {(aI , aI)}.

In order to introduce the definition of Θ] : (A]×℘P)→ L2(A]), consider a model S and a
position of the form (R, s) in the acceptance game G] = A(A],S). Take a state a ∈ Ran(R),
then at the position (a, s) in the game G = A(A,S), ∃ has to come up with a marking
ma,s : R[s] → ℘(A) such that (R[s],ma,s)
1 Θ(a, cs). Since the position (R, s) encodes

9-22 Modal Automata

the ‘macro-position’ {(a, s) | a ∈ Ran(R)}, we need to consider all of the formulas Θ(a, cs)
(with a ∈ Ran(R)) in parallel; this would suggest to consider the conjunction

∧
{Θ(a, cs) |

a ∈ Ran(R)}. However, in this conjunction we are no longer able to retrieve the ‘origin’ of
a propositional variable b ∈ A. For this reason we use the following trick. We consider any
pair (a, b) ∈ A × A as a new propositional variable, representing the variable b tagged with
the ‘origin’ a.

Definition 9.53 Given a language L and a variable a, let τa be the substitution replacing
any variable b ∈ A with the variable (a, b) ∈ A × A. In words, we say that τa tags each
variable b with a. Given a state a of A and a color c ∈ ℘P, let Θ?(a, c) ∈ L1(A × A) be the
formula

Θ?(a, c) := Θ(a, c)[τa],

that is, each b ∈ A occurring in Θ(a) is replaced with (a, b). �

As an example, if Θ(a, c) = 3a ∧2b, then Θ?(a, c) = 3(a, a) ∧2(a, b).

Using this trick we can think of a state R ∈ A] unfolding into the formula
∧
{Θ?(a, cs) |

a ∈ Ran(R)} ∈ L1(A × A). Observe that any variable in this formula that is in the scope of
a modality, must be of the form (a, b) ∈ A × A, thus encoding a ‘direct meaning’ b together
with its ‘origin’ a. Also note that any binary relation Q ∈ A] now represents a set of (formal)
variables, and so it makes sense to consider for instance the conjunction

∧
Q.

The following proposition is immediate by the definitions.

Proposition 9.54 Let L1 and L2 be two languages such that L2 is
∧

-distributive over L1, and
let A be some set. Then for every finite set Φ of formulas in L1(A × A) there is a formula
ψ ∈ L2(A]) such that ∧

Φ ≡ ψ[θA×A], (92)

where θA×A is the substitution replacing every relation Q ⊆ A×A with the conjunction
∧
Q.

We are now ready for the formal definition of the automaton A].

Definition 9.55 Let L1 and L2 be two languages such that L2 is
∧

-distributive over L1, and
let A = 〈A,Θ,Ω, aI〉 be an L1-automaton. A] is given as the L2-automaton

A] := 〈A],Θ],NBTΩ, RI〉.

Here A] = ℘(A × A) is the set of binary relations on A, the initial state RI is the relation
RI := {(aI , aI)}. The transition function Θ] is given by fixing, for Θ](R, c), a formula
ψ ∈ L2(A]) satisfying ∧

{Θ?(a, c) | a ∈ Ran(R)} ≡ ψ[θA×A], (93)

Finally, the acceptance condition NBTΩ ⊆ (A])ω is as given in Definition 9.52. �

The main technical result of this section concerns the following equivalence.

Lectures on the modal µ-calculus 9-23

Proposition 9.56 Let L1 and L2 be two languages such that L2 is
∧

-distributive over L1, and
let A be an L1-automaton. Then A is equivalent to A].

A key proposition, relating the various formulas, languages and substitutions that feature
in the simulation construction, is the following.

Proposition 9.57 Let A be an L1-automaton and let D be some set. Suppose that for each
a ∈ A a marking ma : D → ℘A is given. For R ∈ A], let mR : D → ℘(A × A) and

m]
R : D → ℘(A]) be the markings given by

mR(d) := {(a, b) | a ∈ Ran(R) & b ∈ ma(d)}
m]
R(d) := {mR(d)}.

Then the following are equivalent, for any c ∈ ℘P:

1. (D,ma)
1 Θ(a, c) for each a ∈ Ran(R);

2. (D,mR)
1
∧
{Θ?(a, c) | a ∈ Ran(R)};

3. (D,m]
R)
1 Θ](R, c).

We leave the (straightforward) proof of this Proposition as an exercise to the reader.

Proof of Proposition 9.56. Fix an arbitrary pointed model (S, s0), then it suffices to
prove that

A accepts (S, s0) iff A] accepts (S, s0). (94)

For the direction from left to right, define a position (R, s) to be safe if for all a ∈ Ran(R),
(a, s) is winning for ∃ in the acceptance game G = A(A, S)@(aI , s0). Now define the following
strategy for ∃ in G] = A(A],S)@(RI , s0):

• If (R, s) is safe, then ∃ uses Proposition 9.57 to transform the set of moves {ma,s | a ∈
Ran(R)}, given by her winning strategy in G, into a marking m]

R,s : R[s]→ ℘A].

• If (R, s) is not safe, then ∃ plays in a random way.

It is not very hard to prove the following three claims on this strategy.

Claim 1 If (R, s) is safe then the moves suggested by the above strategy are legitimate.

Claim 2 If (R, s) is safe then all pairs (Q, t) such that Q ∈ m]
R,s(t) are safe.

Claim 3 Consider an infinite G]-match, guided by the above strategy for ∃, with basic po-
sitions (RI , s0)(R1, s1)(R2, s2) . . ., and let aIaIa1a2 . . . be a trace through RIR1R2 . . . Then
there is an infinite G-match, guided by ∃’s winning strategy, of which the basic positions are
(aI , s0)(a1, s1)(a2, s2) . . .

On the basis of these three claims, it easily follows that the given strategy is winning for ∃
from any safe position. In particular, it follows from the assumption that (aI , s0) ∈Win∃(G)
that (RI , s0) is safe, and hence winning for ∃ in G]. This shows that A] accepts (S, s0), as
required.

The proof of the opposite direction (‘⇐’) of (94) is somewhat similar, and left as an
exercise. qed

9-24 Modal Automata

Regular automata

In the previous subsection we defined a nondeterministic automaton A] and proved it to be
equivalent to the given automaton A = 〈A,Θ,Ω, aI〉. The only shortcoming of the automaton
A] is that its acceptance condition NBTΩ ⊆ (A])ω is not given by a parity function. We will
now see that this problem can easily be overcome since NBTΩ has the form of an ω-regular
language over the alphabet A], that is, it is recognized by some stream automaton.

Definition 9.58 An automaton A = 〈A,Θ,Acc, aI〉 is called ω-regular if Acc ⊆ Aω is an ω-
regular language, i.e., if Acc is the stream language recognized by some deterministic stream
automaton with a parity (or Muller) acceptance condition. �

Here we shall prove that, given an regular automaton A of which the acceptance condition
is given by some deterministic parity stream automaton Z, we can effectively construct a parity
automaton A�Z that is equivalent to A. First, however, we show that, indeed, A] is a regular
automaton, by constructing a stream automaton recognizing the ω-language NBTΩ.

Proposition 9.59 Let A be some finite set, and let Ω : A → ω be a parity function on A.
Then the set NBTΩ is an ω-regular language over the alphabet A].

Proof. First we define a nondeterministic A]-stream parity automaton B which accepts
exactly those infinite A]-streams that do contain a bad trace. Given the properties of parity
stream automata it is fairly straightforward to continue from here. First, take a deterministic
equivalent B′ of B; such an automaton exists by Theorem 4.27. And second, since B′ is
deterministic, it is easy to perform complementation on it, that is, define an automaton C that
accepts exactly those A]-streams that are rejected by B′. In short: Lω(C) = (A])ω \Lω(B′) =
(A])ω \ Lω(B). Clearly then Lω(C) = NBTΩ.

For the definition of B, take an object bI 6∈ A, and define B := A∪{bI}. Let ∆ : B×A] →
℘(B) be given by putting

∆(b, R) :=

{
Ran(R) if b = bI ,
R[b] if b ∈ A,

and define Ω+1 by putting Ω+1(a) := Ω(a) + 1 for a ∈ A, and Ω+1(bI) := 0. Then B is the
automaton 〈B,∆,Ω+1, bI〉.

It is immediate from the definitions that bI
R−→ a iff a ∈ Ran(R), that is, if there is some

a′ ∈ A such that a′Ra. From this and the definition of ∆ it follows that

bI
R1−→ a1

R2−→ a2
R3−→ . . .

is a run of B iff there is some a0 ∈ A such that a0a1a2 . . . is a trace through R1R2 . . . Then
the definition of Ω+1 ensures that B indeed accepts those A]-streams that contain a bad trace.
qed

It follows from Proposition 9.59 that the automaton A] defined in the previous section is a
regular automaton. Hence we have proved the main result of this section if we can show that

Lectures on the modal µ-calculus 9-25

every disjunctive regular automaton can be replaced by a disjunctive modal automaton with
a parity acceptance condition. This is what we will focus on now. In fact, we will effectively
transform a nondeterministic, regular automaton A (of which the acceptance condition is
given as the stream language recognized by some stream automaton Z) into an equivalent
parity automaton A� Z.

Definition 9.60 Let Z = 〈Z, ζ,Ω, aI〉 be a deterministic parity A-stream automaton, and let
A = 〈A,Θ,Acc, aI〉 be a disjunctive modal automaton. Then A� Z is the disjunctive modal
automaton given as

A� Z = 〈A× Z,Θζ ,Ψ, (aI , zI)〉,

where Θζ :
(
(A× Z)× ℘P

)
→ 1DML(A× Z) is given by

Θζ
(
(a, z), c

)
:= Θ(a, c)[(b, ζ(z, a))/b | b ∈ A],

and

Ψ
(
a, z) := Ω(z).

defines Ψ : A× Z → ω. �

Intuitively, the automaton A� Z behaves like A, with the stream automaton Z following
and directly processing the path through A taken during a match of the acceptance game.
More precisely, when the automaton A moves from state a to b, the corresponding moves of
A � Z are from any position (a, z) to (b, ζ(z, a)), where ζ(z, a) is the state obtained from z
by processing the ‘letter’ a. Formally, this is established by the transition structure Θζ of
the automaton A� Z as follows: Θζ

(
(a, z), c

)
is obtained from Θ(a, c) by substituting every

occurrence of a b ∈ A by the (‘formal’) variable (b, ζ(z, a)) ∈ A× Z.

Theorem 9.61 Let Z = 〈Z, ζ,Ω, zI〉 be a deterministic parity stream automaton, and let
A = 〈A,Θ,Acc, aI〉 be a disjunctive modal automaton such that Acc = Lω(Z). Then A and
A� Z are equivalent.

I Proof of Theorem 9.61 to be supplied

Finally, for the proof of the Simulation Theorem we need to combine various results
obtained in this Chapter.

Proof of Theorem 9.50. It follows from the Propositions 9.49, 9.56 and 9.59 that every
modal automaton can be simulated by a disjunctive, regular automaton. Then the Simulation
Theorem follows by combining this observation with Theorem 9.61. qed

Notes

I TBS

9-26 Modal Automata

Exercises

Exercise 9.1 Show that the ‘slow’ acceptance discussed in Remark 9.10 is equivalent to the
standard acceptance game of Definition 9.5.

Exercise 9.2 Give a direct, game-theoretic argument proving Theorem 9.12. That is, show
that modal automata are bisimulation invariant.

Exercise 9.3 Show the equivalence of the two notions of disjunctive modal automata as
discussed in Remark 9.14. That is, give a construction that transforms an arbitrary disjunctive
modal automaton into a 1DMLr-automaton.

Exercise 9.4 Let A be a disjunctive modal automaton, and let (S, r) be a finite pointed
Kripke model. Show that S, r
 A iff there is a finite pointed model (S′, r′) such that
S, r ↔ (S′, r′) and S′, r′
s A.

Exercise 9.5 Show that the one-step languages 1FO and 1FOE are closed under taking boolean
duals.

Exercise 9.6 Prove Proposition 9.38

Exercise 9.7 Prove Proposition 9.57.

Exercise 9.8 Prove equivalence (94) in the proof of Proposition 9.56.

10 Model theory of the modal µ-calculus

In this Chapter we will see how to apply the automata-theoretic tools developed in the
previous chapter to prove some model-theoretic results about the modal µ-calculus.

I overview of chapter to be supplied

10.1 Small model property

As our first result we will prove a small model property for the modal µ-calculus, by showing
that if a modal automaton accepts some pointed Kripke model, it accepts one of which the
size is bounded by the size of the automaton. Recall that, given a modal automaton A we
refer to the class of pointed Kripke models that are accepted by A as the query of A, notation:
Q(A), and that classes of this form are called recognizable.

Theorem 10.1 Let A be a modal automaton. Then Q(A) 6= ∅ iff A accepts a finite pointed
model of size at most exponential in the state-size of A.

Because of the Simulation Theorem it suffices to prove Theorem 10.1 for disjunctive modal
automata. Our proof will be based on an alternative perspective of these devices, revealing
their close resemblance the Kripke models that they operate on.

Kripke automata

The key observation in our proof is that the semantics of the cover modality and the notion of a
bisimulation are defined in a very similar fashion, both involving the coalgebraic presentation
of Kripke models, and the notion of relation lifting.

Fix a set P of proposition letters. Recall from Remark 1.3 and Definition 1.4 that we can
represent a Kripke model6 (S,R, V) as a pair

S = (S, σ : S → KS),

where K is the Kripke functor given by putting, for an arbitrary set S:

KS := ℘(P)× ℘(S).

In Definition 1.29 we introduced two notions of relation lifting. Given a binary relation
Z ⊆ S × S′, we define the relation ℘Z ⊆ ℘S × ℘S′ as follows:

℘Z := {(X,X ′) | for all x ∈ X there is an x′ ∈ X ′ with (x, x′) ∈ Z
& for all x′ ∈ X ′ there is an x ∈ X with (x, x′) ∈ Z}.

Similarly, define, associated with the Kripke functor K, the relation KZ ⊆ KS×KS′ as follows:

KZ := {((π,X), (π′, X ′)) | π = π′ and (X,X ′) ∈ ℘Z}.
6We restrict to the monomodal case in this section.

10-2 Model Theory

Position Player Admissible moves

(a, s) ∈ A× S - {(α(a), σ(s))}
(β, τ) ∈ KA× KS ∃ {Z ∈ ℘(A× S) | (β, τ) ∈ KZ}
Z ∈ ℘(A× S) ∀ Z = {(b, t) | (b, t) ∈ Z}

Table 22: Bisimilarity game for Kripke models

To make our point we now introduce a new class of automata, consisting of so-called
Kripke automata, and show that these are in fact equivalent to the disjunctive automata
defined earlier on.

As our starting point we consider, for two Kripke models A = 〈A,α〉 and S = 〈S, σ〉, the
bisimilarity game B(A, S) of Definition 1.26. Using the above notion of relation lifting, the
rules of this game can be reformulated as in Table 22. Recall that the winning conditions of
the bisimilarity game are such that all infinite games are won by ∃.

The main conceptual step is to think of A as a ‘proto-automaton’ that we use to classify
S rather than as of a Kripke model that we are comparing with S. In order to turn A into a
proper Kripke automaton, four technical modifications have to be made:

(1) A small change is that we require A (i.e., its carrier set A) to be finite.
(2) Second, and equally undramatic, we add an initial state to the structure of A.
(3) Third, whereas the winner of an infinite match of a bisimulation game is always ∃, the

winner of an infinite acceptance match will be determined by an explicit acceptance condition
on Aω — a parity condition, in our case.

(4) The fourth and foremost modification is that we introduce nondeterminism to the
transition structure of A. That is, Kripke automata will harbour many ‘realizations’ of
Kripke models — and in each round of the acceptance game, it is ∃’s task to pick an actual
local realization of the current state of A.

Definition 10.2 Given a set P of proposition letters, a Kripke automaton for P is a quadruple
A = 〈A,∆,Ω, aI〉 such that the transition function ∆ is given as a map ∆ : A→ ℘(KA). The
acceptance game A(A,S) associated with a Kripke automaton A = 〈A,∆,Ω, aI〉 and a Kripke
structure S is given by Table 23. A pointed Kripke model (S, s) is accepted by A if the position

Position Player Admissible moves Priority

(a, s) ∈ A× S ∃ {(γ, σ(s)) ∈ KA× KS | γ ∈ ∆(a)} Ω(a)

(γ, τ) ∈ KA× KS ∃ {Z ⊆ A× S | (γ, τ) ∈ KZ} 0
Z ∈ ℘(A× S) ∀ Z 0

Table 23: Acceptance game for Kripke automata

(aI , s) is a winning position for ∃ in the acceptance game. �

For an informal description of the acceptance game A(A, S), note that each round consists
of exactly three moves, with interaction pattern ∃∃∀. At a basic position (a, s), the ‘K-
unfolding’ σ(s) ∈ KS of s is fixed, but ∃ chooses the unfolding of a to be an arbitrary element

Lectures on the modal µ-calculus 10-3

γ of ∆(a). After this move, the play arrives at a position of the form (γ, s) ∈ KA × S. The
players now proceed as in the bisimilarity game for Kripke models. First ∃ chooses a ‘local
bisimulation’ linking γ and σ(s), that is, a relation Z ⊆ A × S such that (γ, σ(s)) ∈ KZ.
Spelled out, this means that ∃ can only choose such a relation Z if γ is of the form (c,B) ∈
℘(P)×℘(A) with c = σV (s), and that Z has to satisfy the back and forth conditions, stating
that for all b ∈ B there is t ∈ R[s] with bZt, and vice versa. The round ends with ∀ choosing
an element (b, t) from Z, thus providing the next basic position of the match.

We will now show that Kripke automata are nothing but disjunctive automata in disguise,
and vice versa.

Definition 10.3 First let A = 〈A,∆,Ω, aI〉 be some Kripke automaton. We define its modal
companion AM as the disjunctive modal automaton AM := 〈A,∆M ,Ω, aI〉, where ∆M :
A× ℘(P)→ 1DML(A) is given by putting

∆M (a, c) :=
∨
{∇B | (c,B) ∈ ∆(a)}.

Conversely, let D = 〈D,Θ,Ω, dI〉 be a disjunctive modal automaton. Without loss of
generality we may assume that the domain of Θ consists of formulas in the restricted format
of Remark 9.14, that is, for every pair (a, c) ∈ A×℘(P) there is a (possibly empty) index set
Ia,c such that

Θ(a, c) =
∨
{∇Bi | i ∈ Ia,c}.

We now define the transition map ∆Θ by putting

∆Θ(a) := {(c,Bi) ∈ KA | c ∈ ℘(P), i ∈ Ia,c},

and define DK := 〈D,∆Θ,Ω, dI〉 and call this structure the Kripke companion of D. �

Remark 10.4 For a better understanding of the equivalence between disjunctive modal au-
tomata and Kripke models, it may be useful to take the following perspective. Given sets P
(of proposition letters) and A of states, it is not hard to see that the collection of possible
transition functions of disjunctive modal automata (in the restricted format of Remark 9.14
corresponds to the set

TD :=
(
A× ℘(P)

)
→ ℘(℘(A)),

while the set of possible transition maps of Kripke automata is given as the collection

TK := A→ ℘
(
℘(P)× ℘(A)

)
.

Now recall that by ‘currying’ there is a bijective correspondence
(†) (X × Y)→ Z ∼= X → (Y → Z)
for any triple of sets X,Y and Z. Furthermore, for any set X there is a well-known bijective
correspondence between the powerset ℘(X) of X and the collection of functions from X to
the two-element set 2 := {0, 1}:
(‡) ℘(X) ∼= X → 2.

10-4 Model Theory

Using these observations it is straightforward to verify the following bijective correspon-
dences between the sets TD and TK :(

A× ℘(P)
)
→ ℘℘(A)

∼= (‡)
(
A× ℘(P)

)
→
(
℘(A)→ 2)

)
∼= (†)

(
A× ℘(P)× ℘(A)

)
→ 2

∼= (†) A→
((
℘(P)× ℘(A)

)
→ 2

)
∼= (‡) A→ ℘

(
℘(P)× ℘(A)

)
In fact, the translations given in Definition 10.3 can be obtained by computing the bijections
between TD and TK , on the basis of those in (†) and (‡). �

Proposition 10.5 (i) Let A = 〈A,∆,Ω, aI〉 be a Kripke automaton. Then A ≡ AM .

(ii) Let D = 〈D,Θ,Ω, dI〉 be a disjunctive modal automaton. Then D ≡ DK .

Proof. The proof of this proposition is straightforward. If we merge the two moves of ∃ in
each round of the acceptance game for Kripke automata into one, we may in fact show that,
for any Kripke model S, the acceptance games A(AM , S) and A(A, S) are isomorphic, and
similarly for the acceptance games A(DK , S) and A(D, S). qed

Small model property for Kripke automata

We will now prove the small model property for Kripke automata. This framework allows us
to prove a result that is quite a bit stronger than just a small model theorem: we may show
that, if A is a Kripke automaton recognizing a non-empty query, then QA contains a Kripke
model that ‘lives inside’ or inhabits A.

Definition 10.6 Let A = 〈A,Θ,Ω, aI〉 be a Kripke automaton. If S is a subset of A, and
σ : S → KS is such that σ(s) ∈ ∆(s) for all s ∈ S, then we say that the Kripke model
S = 〈S, σ〉 inhabits A. When we use this terminology for a pointed Kripke model (S, s), we
require in addition that s = aI . �

The key tool in our proof of the small model property will be the following satisfiability
game that we may associate with a Kripke automaton. Intuitively the reader may think of
this game as the simultaneous projection on A of all acceptance games of A, as should become
clear from the proof of Theorem 10.8 below.

Definition 10.7 Let A = 〈A,∆,Ω, aI〉 be a Kripke automaton. Then the satisfiability game
S(A) is given by Table 24. The winning condition for infinite matches is defined using the
priority map for game positions (see the table) as a parity condition. �

One last remark before we formulate and prove the main technical result of this section:
the proof of this theorem involves a crucial application of the Positional Determinacy of parity
games.

Lectures on the modal µ-calculus 10-5

Position Player Admissible moves Priority

a ∈ A ∃ ∆(a) Ω(a)
(c,B) ∈ KA ∀ B 0

Table 24: Satisfiability game for Kripke automata

Theorem 10.8 The following are equivalent, for any Kripke automaton A = 〈A,Θ,Ω, aI〉:
1) Q(A) 6= ∅;
2) aI ∈Win∃(S(A));
3) A accepts a pointed model inhabiting A.

Proof. 1 ⇒ 2 Suppose that A accepts some pointed model (S, s0). Then by definition, ∃
has a winning strategy in the acceptance game A(A, S)@(aI , s0). This strategy will be the
basis of her winning strategy in the satisfiability game of A.

Concretely, in S(A)@aI , ∃ will maintain the following condition. Put a0 = aI , and let

a0(c1, B1)a1(c2, B2) . . . ak,

be an initial segment of an S(A)-match (with (ci+1, Bi+1) ∈ Θ(ai) being the move of ∃ at
position ai, and ai+1 ∈ Bi+1 the next move of ∀). Then ∃ sees this match as the projection
of a parallel match of A(A,S)@(aI , s0) where she plays her winning strategy:

(a0, s0) ((c1, B1), s0) Z1 (a1, s1) . . . (ak, sk) ((ck+1, Bk+1), sk) Zk+1 . . .
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
a0 (c1, B1) − a1 . . . ak (ck+1, Bk+1) − . . .

The existence of such a parallel match is easily proved by an inductive argument, of which
the base case is immediate by the shape (aI versus (aI , s0)) of the initial game positions.
Inductively assume that at stage k, the matches of S(A) and A(A,S) have arrived at the
positions ak and (ak, sk) respectively. We will show that there is a way to continue both
matches for one round in such a way that the next basic positions are of the form b and (b, t),
respectively, for some b ∈ A and t ∈ S, with the continuation in the acceptance game being
guided by ∃’s winning strategy.

Suppose that ∃’s winning strategy in the acceptance game tells her to choose position
((c,B), σ(sk)), followed by the relation Z. Then at position ak of S(A), we define her strategy
to be such that she picks (c,B). Now suppose that in the match of S(A), ∀ chooses some
element b ∈ B as the next position. It follows by the assumption that ∃’s strategy is winning,
that (c,B) ∈ Θ(ak), c = σV (sk) and (B,R[sk]) ∈ ℘(Z). Hence there must be an element
t ∈ R[sk] such that (b, t) ∈ Z; in the acceptance game, she may look at a continuation of the
match where ∀ picks the pair (b, t). In other words, we have proved that ∃ can maintain the
parallel match for one more round.

Using this strategy in the satisfiability game will then guarantee her to win the match,
since the associated sequence of A-states is the same for both matches, and in the A(A, S)-
match ∃ plays according to a strategy that was assumed to be winning.

10-6 Model Theory

2 ⇒ 3 Assume that ∃ has a winning strategy in the satisfiability game starting from the
initial state aI of A. Let S := Win∃(S(A)) be the set of positions in A that are winning
for ∃. The key point of the satisfiability game for Kripke automata is that S(A) is a parity
game, and so we may without loss of generality assume that this strategy is positional, see
Theorem 5.22. In other words, we may represent it as a map σ : S → KA. We invite the
reader to check that σ(a) ∈ KS for all a ∈ S. Now define S be the Kripke model 〈S, σ〉. The
map σ : S → KS then induces a binary relation R ⊆ S × S and a valuation V : P → ℘(S),
viz., the unique R and V such that σ(s) = (R[s], σV (s)). We claim that A accepts (S, aI).

To see why this is the case, we will prove that (aI , aI) is a winning position in the accep-
tance game A(A, S). The winning strategy that we may equip ∃ with in this game is in fact
very simple:

• at position (a, s), pick (σ(a), σ(s)) as the next position if a = s ∈ Win∃(S(A)), and
choose a random element otherwise;

• at position ((c,B), (c′, B′)), pick the relation {(b, b) | b ∈ B ∩B′}.

It can be proved that any match of the acceptance game in which ∃ uses this strategy, can be
‘projected’ onto a match of the satisfiability game in which she plays her winning strategy:

(aI , aI) (σ(aI), σ(aI)) {(b, b) | b ∈ R[aI]} (a1, a1) (σ(a1), σ(a1)) . . . (an, an) . . .
⇓ ⇓ ⇓ ⇓ ⇓ ⇓
aI σ(aI) − a1 σ(a1) . . . an . . .

Given the winning conditions of A(A,S) and S(A) it is then immediate that the given strategy
indeed guarantees that ∃ wins any match starting at position (aI , aI).

3 ⇒ 1 This implication is a direct consequence of the definitions. qed

10.2 Normal forms and decidability

In this section we will see two more corollaries of the results in the previous chapter.

Disjunctive normal form

As a first consequence, we now see that every formula of the modal µ-calculus can be brought
into so-called disjunctive normal form. For the definition of the connectives used below we
refer to Definition 1.37.

Definition 10.9 Given sets P of proposition letters, the set of disjunctive modal µ-calculus
formulas over P is given by the following grammar:

ϕ ::= x | ⊥ | > | ϕ ∨ ϕ | π • ∇Φ | µx.ϕ | νx.ϕ

Here π ∈ CL(P) denotes a conjunction of literals over P, and Φ a finite collection of disjunctive
formulas, and x is a variable not in P.

We let µMLD(P) denote the sentences of this language, that is, the disjunctive formulas ϕ
such that FV (ϕ) ⊆ P. �

Lectures on the modal µ-calculus 10-7

These formula are called disjunctive because the only admissible conjunctions are the
special ones of the form π •∇Φ, where π is a propositional formula (in fact, a conjunction of
literals).

Theorem 10.10 There is an effective algorithm that rewrites a modal fixpoint formula ξ ∈
µML(P) into an equivalent disjunctive formula ξd of closure size at most exponential in |ξ|.

I proof (based on the results of the previous chapters) to be supplied.

I size issues to be addressed!

Decidability

I Intro

Theorem 10.11 There is an algorithm that decides in linear time (measured in dag-size)
whether a given disjunctive formula ξ is satisfiable or not.

Proof. It is easy to see that the proof of this proposition is a direct consequence of the
following observations:

1. > is satisfiable;

2. ⊥ is not satisfiable;

3. ϕ1 ∨ ϕ2 is satisfiable iff ϕ1 or ϕ2 are satisfiable;

4. π • ∇Φ is satisfiable iff both π and each ϕ ∈ Φ is satisfiable;

5. if µx.ϕ is disjunctive, then it is satisfiable iff ϕ[⊥/x] is satisfiable;

6. if νx.ϕ is disjunctive, then it is satisfiable iff ϕ[>/x] is satisfiable.

The proof of these claims is left as an exercise for the reader. qed

Decidability of the satisfiability problem for modal fixpoint formulas is then an immediate
consequence of the previous two results.

Corollary 10.12 There is an algorithm that decides in elementary time whether a given
modal fixpoint formula ξ is satisfiable or not.

I Corollary 10.12 does not provide the best complexity bound for the satisfiability

problem for the µ-calculus, which can in fact be solved in (singly) exponential

time.

10-8 Model Theory

10.3 Uniform interpolation and bisimulation quantifiers

In this section we will prove that the modal µ-calculus enjoys the property of uniform inter-
polation by proving that we can express the so-called bisimulation quantifiers in the language.

Definition 10.13 Given two modal fixpoint formulas ϕ and ψ, we say that ψ is a (local)
consequence of ϕ, notation: ϕ |= ψ, if S, s
 ϕ implies S, s
 ψ, for every pointed Kripke
model (S, s). �

A formalism has the (Craig) interpolation property if we can find an interpolant for every
pair of formulas ϕ and ψ such that ϕ |= ψ. This interpolant is a formula θ such that ϕ |= θ
and θ |= ψ; but most importantly, the requirement on θ is that it may only use proposition
letters that occur both in ϕ and ψ, or more precisely: FV (θ) ⊆ FV (ϕ) ∩ FV (ψ).

I why this is an important property

Uniform interpolation is a very strong version of interpolation in which the interpolant θ
does not depend on the particular shape of one of the formulas, but only on its vocabulary
(set of free variables). More precisely, we define the following.

Definition 10.14 Let ϕ be a modal fixpoint formula, and P ⊆ FV (ϕ) be a set of variables.
Then a (right) uniform interpolant of ϕ with respect to P is a formula θ with FV (θ) ⊆ P,
such that

ϕ |= ψ iff θ |= ψ. (95)

for all formulas ψ with FV (ψ) ∩ FV (ϕ) ⊆ P. �

In words, (95) states that θ has exactly the same consequences as ϕ, at least, if we restrict
to formulas ψ such that all free variables shared by ϕ and ψ belong to P.

Remark 10.15 To justify the terminology ‘uniform interpolant’, take some formula ψ with
FV (ψ) ∩ FV (ϕ) ⊆ P. We claim that

ϕ |= ψ implies ϕ |= θ and θ |= ψ (96)

for any uniform interpolant θ of ϕ with respect to P.
To see this, suppose that ϕ |= ψ, and let θ be a uniform interpolant of ϕ with respect to P.

Then we have θ |= ψ by (95), so it remains to show that ϕ |= θ. But this follows immediately
from the fact that by definition we have FV (θ) ∩ FV (ϕ) ⊆ P, so that we may apply (95) to
θ itself (and use that, obviously, θ |= θ). �

Remark 10.16 Dually, we could have introduced the notion of a left uniform interpolant
for ψ, instead of a right interpolant for ϕ. A left interpolant for ψ, with respect to a set
P ⊆ FV (ψ) of proposition letters, is a formula χ with FV (χ) ⊆ P, and such that ϕ |= ψ iff
ϕ |= χ. But since negation is definable in the modal µ-calculus as an operation ∼ : µML(P)→
µML(P) and so we have ϕ |= ψ iff ∼ψ |= ∼ϕ, it is not hard to see that if θ is a (right) uniform
interpolant for ψ, then its negation ∼θ is a left interpolant for ψ. In other words, since our
language is closed under classical negation, requiring that every formula has a right uniform
interpolant is equivalent to requiring that every formula has a left uniform interpolant. �

Lectures on the modal µ-calculus 10-9

The following theorem states that uniform interpolants exist in the modal µ-calculus.

Theorem 10.17 (Uniform Interpolation) Let ϕ be a modal fixpoint formula, and let P
be a set of variables such that P ⊆ FV (ϕ). Then ϕ has a uniform interpolant with repect to
P.

The proof consists of showing that the modal µ-calculus can express the so-called bisim-
ulation quantifiers.

Definition 10.18 Given a proposition letter q, the bisimulation quantifier ∃̃q is an operator
with the following semantics:

S, s
 ∃̃q.ϕ iff S′, s′
 ϕ, for some pointed model S′, s′ ↔R\q S, s, (97)

where S is some Kripke model over a set R of proposition letters, and ↔R\q is the bisimilarity
relation ‘up to q’, that is, we only require the condition (prop) of Definition 1.19 to hold for
proposition letters p ∈ R \ q. �

The bisimulation quantifier ∃̃q is a second-order existential quantifier, but nonstandard in
the sense that it does not quantify over subsets of the actual model S, but rather over subsets
of possibly distinct (but bisimilar-up-to-q) models. For instance, if s is a state in S with one
single successor, then obviously the formula ∃̃q(3q∧3q) would be false if we had to interpret
q as a subset of S. However, taking a bisimilar pointed model (S′, s′) such that s′ has two
successors, we can easily interpret q as a subset of S′ such that the formula 3q ∧3q becomes
true at s′. Similarly, the formula ∃̃q(q ∧2q) holds at any point in any Kripke model.

The main result underlying the proof of Theorem 10.17 is that the bisimulation quantifiers
are definable in the modal µ-calculus. The following notation will be convenient.

Convention 10.19 Where P is a set of proposition letters, and q is a proposition letter
(which may or may not belong to P), we write P \ q rather than P \ {q}.

Theorem 10.20 For any set P of proposition letters, and any proposition letter q, there is
a map

∃̃q : µMLD(P)→ µMLD(P \ q)

such that for any formula ϕ ∈ µMLD(P), we have FV (∃̃q.ϕ) = FV (ϕ) \ q, and the semantics
of ∃̃q.ϕ satisfies (97), for any Kripke model over a set of proposition letters R ⊇ P.

The proof of Theorem 10.20 crucially involves disjunctive modal automata. Before going
into the details, there is a technicality that we need to get out of the way.

Remark 10.21 Let A = 〈A,Θ,Ω, aI〉 be a modal automaton over some set P of proposition
letters, and let S = (S,R, V) be a Kripke model over some, possibly larger, set R. Then
strictly speaking the acceptance game A(A,S) is not well-defined since the domain of the
transition map Θ is of the form Dom(Θ) = A × ℘(P), while the range of the colouring map

10-10 Model Theory

σV of S is the set Ran(σV) = ℘(R). But clearly we can take care of this mismatch by working
with the map ΘR : A× ℘(R)→ 1ML(A) given by

ΘR(a, c) := Θ(a, c ∩ P).

In the sequel we will largely ignore this issue. �

We now turn to the details of the proof of Theorem 10.20. Because of the existence of truth-
preserving translations between formulas and automata, it suffices to provide a construction on
modal automata that instantiates the bisimulation quantifier, and because of the Simulation
Theorem it suffices to define this construction for disjunctive modal automata.

Definition 10.22 Let P be a set of proposition letters and let q be a proposition letter
(possibly but not necessarily in P). Let A = 〈A,Θ,Ω, aI〉 be a disjunctive modal automaton
over the set P. We abbreviate C := ℘(P) and C− := ℘(P \ {q}).

Now we define the modal automaton ∃̃q.A as the structure ∃̃q.A := 〈A,Θ±q,Ω, aI〉, where

Θ±q(a, c) := Θ(a, c \ {q}) ∨Θ(a, c ∪ {q})

defines the transition map Θ±q : A× C− → 1DML(A). �

The main technical result that we will prove is the following. Recall from Definition 9.16
that we write S, sI
s A in case ∃ has a functional strategy in the game A(A,S)@(aI , sI).

Proposition 10.23 Let A be a disjunctive modal P-automaton, and let S be a Kripke model
over some set R ⊇ P. Then the following are equivalent, for any state sI ∈ S:
1) S, sI
s ∃̃q.A;
2) S[q 7→ Q], sI
s A, for some subset Q ⊆ S.

Proof. We only consider the case where R = P, leaving it for the reader to extend the result
to the more general case (cf. Remark 10.21). Fix a disjunctive P-automaton A = 〈A,Θ,Ω, aI〉
and an R-model S = (S,R, V); to simplify notation we will write ct := σV (t), for an arbitrary
point t ∈ S. Similarly, we will write c − q := c \ {q} and c + q := c ∪ {q} for an arbitrary
colour c ∈ ℘(P). Furthermore, we will use the one-step presentation of the acceptance game,
as in Table 20.

For the direction 1) ⇒ 2) of the Proposition, assume that S, sI
s ∃̃q.A. In other words,
∃ has a functional positional strategy f which is winning in the game A(∃̃q.A, S)@(aI , sI).
Abbreviate A := A(∃̃q.A,S).

Let U ⊆ S be the set of points t in S such that, for some state a ∈ A, the position (a, t)
is f -reachable in A@(aI , sI). It follows from functionality of f that for every t ∈ U there is
a unique such state in A; we will denote this state as at. Furthermore, since f is a winning
strategy in A@(aI , sI), every position of the form (at, t) is winning for ∃, and so by legitimacy
of f , the marking mt : R[t]→ ℘(A) picked by f at this position is such that

(R[t],mt)

1 Θ±q(at, ct). (98)

Lectures on the modal µ-calculus 10-11

Given that Θ±q(at, ct) = Θ(at, ct − q)∨Θ(at, ct + q), this observation provides the set Q ⊆ S
that we are looking for:

Q := {t ∈ U | (R[t],mt)

1 Θ(at, ct + q)}.

We claim that S[q 7→ Q], sI
s A, and to show this, we define the following positional strategy
fQ for ∃ in AQ := A(A, S[q 7→ Q]). At a position (a, t) ∈ A× S, ∃ will play as follows:

• in case t ∈ U and a = at, she picks the marking mt;

• in all other cases she picks a random marking.

We first show that for each t ∈ U and a = at this strategy provides a legitimate move in
AQ, that is,

(R[t],mt)

1 Θ(at, σV [q 7→Q](t)). (99)

To see this, make the following case distinction:

• If (R[t],mt)
1 Θ(at, ct + q) then by definition of Q we find t ∈ Q. This means that
σV [q 7→Q](t) = σV (t) ∪ {q} = ct + q. In other words, (99) holds indeed.

• If, on the other hand, (R[t],mt) 6
1 Θ(at, ct + q) then by definition of Q we find t 6∈ Q.
Furthermore, by (98) and the definition of Θ±q it must be the case that (R[t],mt)
1

Θ(at, ct − q). But since t 6∈ Q we have σV [q 7→Q](t) = σV (t) \ {q} = ct − q, so that again
we obtain (99).

It remains to show that fQ is functional, and winning for ∃ in AQ@(aI , sI), but this is
in fact easy. The point is that at any position of the form (at, t) the strategies f and fQ
prescribe the same move, viz., mt, and that at the position mt the moves of ∀ in A and AQ
are the same. From this it follows that every position for ∃ that is reachable in an fQ-guided
match of AQ@(aI , sI) is of the form (at, t) (with t ∈ U), and so by our previous claim about
the legitimacy of fQ at such positions, fQ is a surviving strategy. Now consider an fQ-guided
full match of AQ@(aI , sI); this very same match is also an f -guided match of A, and hence
won by ∃ — after all we assumed that f is a winning strategy for ∃ in A(aI , sI)@(aI , sI),
and the winning conditions in AQ and A are the same. In other words, every fQ-guided full
match of AQ@(aI , sI) is won by ∃. Finally, since f is a functional strategy, so is fQ. This
finishes the proof that 1) ⇒ 2).

The proof of the opposite implication, 2) ⇒ 1), is similar; we omit the details. qed

From this, Theorem 10.20 is almost immediate.

Proof of Theorem 10.20. Let P and q be a set of proposition letters and a proposition
letter, respectively, let A be a disjunctive modal automaton over P, and let (S, r) be a pointed
model over a set R of proposition letters such that P ⊆ R. It suffices to show that

S, r
 ∃̃q.A iff S′, r′
 A, for some (S′, r′) with S, r ↔R\q S′, r′. (100)

10-12 Model Theory

But since A is disjunctive, it is easy to see that ∃̃q.A is disjunctive as well, and so it follows
from Theorem 9.18 that

S, r
 ∃̃q.A iff S′, r′
s ∃̃q.A, for some (S′, r′) with S, r ↔R\q S′, r′. (101)

Combining this with Proposition 10.23 we find

S, r
 ∃̃q.A iff S′[q 7→ Q], r′
s A, for some (S′, r′) with S, r ↔R\q S′, r′ and some Q ⊆ S′.
(102)

Now it is obvious that S′[q 7→ Q], r′ ↔R\q S′, r′. But then (100) is immediate. qed

Finishing this section, we show how to derive the uniform interpolation property from the
definability of the bisimulation quantifiers.

Proof of Theorem 10.17. Fix the formula ϕ and the set P, and let q1, . . . , qn enumerate
the free variables of ϕ that are not in P, that is, {q1, . . . , qn} = FV (ϕ) \ P. We claim that
the formula ∃̃q1 · · · ∃̃qn.ϕ is the required (right) uniform interpolant of ϕ with respect to P.

To prove this, take an arbitrary formula ψ such that FV (ψ) ∩ FV (ϕ) ⊆ P. Clearly this
implies that no qi is a free variable of ψ. We first show that

ϕ |= ∃̃q1 · · · ∃̃qn.ϕ.

To see this, let (S, s) be some pointed Kripke model (over some set R ⊇ FV (ϕ)) such that
S, s
 ϕ. Since we obviously have that S, s ↔R\q S, s for any proposition letter q, it easily

follows that ϕ |= ∃̃q1 · · · ∃̃qn.ϕ. This takes care of the right-to-left direction from (95).
For the opposite direction of (95), assume that ϕ |= ψ, and let (S, s) be a pointed Kripke

model such that S, s
 ∃̃q1 · · · ∃̃qn.ϕ. It follows that there is a sequence (Si, si)0≤i≤n of
pointed models such that (S, s) = (S0, s0), Sn, sn
 ϕ, and Si, si ↔R\qi+1

Si+1, si+1 for all i
with 0 ≤ i < n. Then by assumption it follows from Sn, sn
 ϕ that Sn, sn
 ψ. But since
none of the proposition letters qi is free in ψ, step by step applying the bisimulation invariance
of the modal µ-calculus we may show that each pointed model Si, si satisfies ψ. In particular,
we find that S, s
 ψ, as required. qed

Notes

The decidability of the satisfiability problem of the modal µ-calculus was first proved by Kozen
and Parikh [17] via a reduction to SnS. Emerson & Jutla [10] established the exptime-
completeness of this problem. The finite model property was proved by Kozen [16].

Uniform interpolation of the modal µ-calculus was proved by D’Agostino & Hollenberg [8],
who established some other model-theoretic results as well.

Exercises

Exercise 10.1 Let γ be some disjunctive fixed point formula.

(a) Show that µx.γ is satisfiable iff γ[⊥/x] is satisfiable.

Lectures on the modal µ-calculus 10-13

(b) Show that νx.γ is satisfiable iff γ[>/x] is satisfiable.

(c) Do the above statements hold for arbitrary fixed point formulas as well?

Exercise 10.2 Prove the left-to-right direction of (110) in Proposition 11.28.

Exercise 10.3 Is disjunctivity of the automaton A needed in the proof of Proposition 10.23?

Exercise 10.4 (PDL + bisimulation quantifier) Consider a setting with finitely many
atomic actions. Let PDL+∃̃ be the extension of propositional dynamic logic with (explicit)
bisimulation quantifiers. Show that there is a (truth-preserving) translation from the modal
µ-calculus to PDL+∃̃.

11 Expressive completeness

In this chapter we compare the expressive power of the modal µ-calculus to that of monadic
second-order logic. The key result that we will prove is that the modal µ-calculus has the
same expressive power as the bisimulation invariant fragment of monadic second-order logic,
in brief:

µML ≡ MSO/↔. (103)

In fact, Theorem 11.21, the actual result that we are going to prove is a bit stronger than
(103).

Our proof will be automata-theoretic in nature: after discussing two different (but equiv-
alent) versions of monadic second-order logic in section 11.1, we show in section 11.2 that on
tree models, MSO has the same expressive power as the class Aut(1FOE) of automata over
the one-step logic 1FOE. Since the modal µ-calculus corresponds to the class Aut(1FO), we
will prove (103) in section 11.3 via a comparison of the one-step languages 1FOE and 1FO.

11.1 Monadic second-order logic

Second-order logic is the extension of first-order logic where quantification is allowed, not only
over individuals, but also over relations on the domain. In monadic second-order logic, this
second-order quantification is restricted to unary relations, that is, subsets of the domain.
The syntax of monadic second-order logic is usually defined as the extension of that of first-
order logic by second-order quantifiers of the form ∃p/∀p, where p is a monadic predicate
symbol.

Definition 11.1 Given a set D of atomic actions, a set IVar of individual variables and a set
Prop of set variables, we define the language MSO2

D as follows:

ϕ ::= x
.

= y | Rdxy | p(x) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃p.ϕ

Here x and y are variables from IVar, p is a variable from P, and d ∈ D is an atomic action.

We let MSO2
D(X,P) denote the set of MSO2

D-formulas ϕ of which all individual free variables
are from X and all free set variables are from P. In case X is a singleton {x}, we write
MSO2

D(x,P) rather than MSO2
D({x},P) �

This semantics of this language is completely standard, with ∃x denoting first-order quan-
tification (that is, quantification over individual states), and ∃p denoting monadic second-
order quantification (that is, quantification over sets of states).

It turns out, however, that for a nice inductive translation of MSO to automata, it is more
convenient to use a slightly nonstandard version of MSO that is single-sorted in that it only
admits second-order variables, not first-order ones. Quantification over individuals can then
be simulated by quantification over singleton sets. In addition, to facilitate the comparison
with modal languages, which are interpreted in pointed Kripke models, we need to install a
feature in the language that allows access to the designated or actual world of the Kripke
model.

11-2 Expressive Completeness

Definition 11.2 Given a set D of atomic actions, we define the language of monadic second-
order logic MSOD as follows:

ϕ ::= p v q | Rdpq | ⇓p | ¬ϕ | ϕ ∨ ϕ | ∃p.ϕ,

where p and q are propositional variables from P. We let MSOD(P) denote the set of MSOD-
formulas of which the free variables are from P. �

Definition 11.3 Given a Kripke model S = 〈S, V,R〉, and a designated point s ∈ S, we
define the semantics of MSO as follows:

S, s |= p v q if V (p) ⊆ V (q)
S, s |= Rdpq if for all t ∈ V (p) there is a u ∈ V (q) with Rdtu
S, s |= ⇓p if V (p) = {s}
S, s |= ¬ϕ if S, s 6|= ϕ
S, s |= ϕ ∨ ψ if S, s |= ϕ or S, s |= ψ
S, s |= ∃p.ϕ if S[p 7→ X], s |= ϕ for some X ⊆ S.

An MSO-formula ϕ is bisimulation invariant if S, s↔ S′, s′ implies that S, s |= ϕ⇔ S′, s |= ϕ.
�

Remark 11.4 In fact, one may think of the formalism as a first-order logic of which the
intended models are power structures of the form 〈℘(S),⊆, ~R, {s}〉, where Rd(Y, Z) iff for all
y ∈ Y there is a z ∈ Z such that Rdyz.) �

It is not too hard to see that the two languages are in fact equivalent.

Theorem 11.5 There are effective procedures transforming a formula in MSO2(x,P) into an
equivalent MSO(P)-formula, and vice versa:

MSO2 ≡ MSO.

To start with, there is a straightforward, inductively defined translation (·)′ : MSOD(P)→
MSO2

D(x,P) such that
S, s |= ϕ iff S |= ϕ′[s],

for all formulas ϕ ∈ MSOD(P) and all pointed Kripke models S. The only interesting clause in
the inductive definition of this translation concerns the ⇓-connective, for which we set

(⇓p)′ := ∀y(p(y)↔ y
.

= x).

For the opposite direction, the key observation is that MSO can interpret MSO2 by encoding
individual variables as set variables denoting singletons. To understand how this works, we
need to have a closer look at the semantics. Formulas of the language MSO2 are interpreted over
Kripke models S with an assignment, that is, a map α : IVar→ S interpreting the individual
variables as elements of S. But then we can encode such an MSO2-model S = (S,R, V) with
assignment α, as the MSO-model Sα := (M,R, V α) over Prop∪ IVar, where V α(p) := V (p) if p
is a set variabe, and V α(x) := {α(x)} if x is an individual variable.

Lectures on the modal µ-calculus 11-3

Proposition 11.6 There is a translation (·)t : MSO2
D(X,P)→ MSOD(P] X) such that

S |= ϕ[α] iff Sα |= ϕt (104)

for all ϕ ∈ MSO2
D(X,P), all Kripke models S = (S,R, V) and all assignments α : X→ S.

As a corollary, for all ϕ ∈ MSO2
D(x,P) and all pointed Kripke models (S, s) we obtain

S |= ϕ[s] iff S, s |= ∀x.(⇓x→ ϕt). (105)

Proof. The translation crucially involves the MSO-formulas empty(p) and sing(p) given by

empty(p) := ∀q (p v q)
sing(p) := ∀q

(
q v p→ (empty(q) ∨ p v q)

)
.

It is not hard to prove that these formulas hold in S iff, respectively, V (p) is empty and V (p)
is a singleton.

With these formulas defined, we can now inductively fix the translation as follows:

(p(x))t := x v p
(Rdxy)t := Rdxy
(x

.
= y)t := x v y ∧ y v x

(¬ϕt := ¬ϕt
(ϕ0 ∨ ϕ1)t := ϕt0 ∨ ϕt1
(∃x.ϕ)t := ∃x.(sing(x) ∧ ϕt)
(∃p.ϕ)t := ∃p.ϕt

It is a routine exercise to verify (104), so we leave the details for the reader. Similarly, the
proof of (105) is immediate by (104) and the definitions of the semantics of ⇓. qed

Note that the translation (·)t given in the proof of Proposition 11.6 does not involve the
connective ⇓. The only use of ⇓ in this setting is to mark the designated node of a pointed
Kripke model.

11.2 Automata for monadic second-order logic

The aim of this section is to provide an automata-theoretic perspective on monadic second-
order logic. That is, we will provide a construction transforming an arbitrary MSO-formula ϕ
into an automaton Bϕ that is equivalent to ϕ, at least, if we confine attention to tree models.
In fact, we will encounter various kinds of automata, all corresponding to MSO-formulas, and
all taking some fragment of monadic first-order logic as the co-domain of their transition map,
as in Definition 9.26 and Definition 9.27.

Recall that the set MFOE(A) of monadic first-order formulas over A is given by the following
grammar:

α ::= > | ⊥ | a(x) | ¬a(x) | x .
= y | x 6 .= y | α ∨ α | α ∧ α | ∃x.α | ∀x.α

where a ∈ A and x, y are first-order (individual) variables, and that MFO(A) is the set of
MFOE(A)-formulas without occurrences of identity formulas (or their negations). Recall as

11-4 Expressive Completeness

Position Player Admissible moves

(a, s) ∈ A× S ∃ {U : A→ ℘(R(s)) | (R(s), U) |= Θ(a, σV (s))}
U : A→ ℘(S) ∀ {(b, t) | t ∈ U(b)}

Table 25: Acceptance game for MSO-automata

well that 1FOE(A) and 1FO(A) are the one-step languages consisting of the sentences of,
respectively, MFOE(A) and MFO(A), where each monadic predicate a ∈ A occurs only positively.
It will be convenient in this section to present one-step models using valuations rather than
markings; that is, a one-step model will be denoted as a pair (Y, V) consisting of some set Y
and an A-valuation V : A→ ℘(Y).

Definition 11.7 An MSO-automaton over a set P of proposition letters is nothing but a
1FOE-automaton over P, that is, a quadruple A = 〈A,Θ,Ω, aI〉, where A, aI and Ω are as
usual, and Θ is a map Θ : A× ℘(P)→ 1FOE(A).

The acceptance game of such an automaton with respect to a Kripke model S is given in
Table 11.2. The winning conditions for both finite and infinite matches are as usual. �

In words, the acceptance game proceeds as follows. At a basic position (a, s), ∃ chooses a
valuation U interpreting each ‘predicate’ a ∈ A as a subset U(a) of the set R(s) of successors
of s. In this choice, she is bound by the condition that the sentence Θ(a, σV (s)) must be true
in the resulting A-structure (R(s), U). Once chosen, this map U itself determines the next
position of the match. As a position, U belongs to player ∀, and all he has to do is to choose
a pair (b, t) such that t ∈ U(b). This pair (b, t) is then the next basic position of the match.

The link with modal automata is given by Proposition 9.31, stating that, seen as one-step
languages, 1FO is equivalent to 1ML. From this we obtain the equivalence in expressive power
of the automata classes Aut(1FO) and Aut(1ML), which in its turn entails the following.

Theorem 11.8 There are effective procedures transforming a µ-calculus formula into an
equivalent MSO-automaton in Aut(1FO), and vice versa:

µML ≡ Aut(1FO).

The main result of this section states a very similar result for MSO and arbitrary MSO-
automata, if we confine our attention to tree models:

Theorem 11.9 There are effective procedures transforming an MSO-formula ξ into an MSO-
automaton A, and vice versa, such that the corresponding formula ξ and automaton A are
equivalent on the class of tree models:

MSO ≡ Aut(1FOE) (on tree models).

Note that on arbitrary models, monadic second-order logic can express properties that
cannot be captured by MSO-automata. For instance, it is easy to write an MSO-formula

Lectures on the modal µ-calculus 11-5

stating that the designated point of a Kripke model lies on a cycle, but there is no MSO-
automaton that recognizes exactly the class of pointed Kripke models with this property.

We will prove the two directions in the statement of Theorem 11.9 separately. Leaving
the transformation of automata to monadic second-order formulas to the end of the section,
we first concentrate on the opposite direction.

Proposition 11.10 There is an effective procedure transforming a formula ϕ ∈ MSO(P) into
an MSO-automaton Bϕ over P that is equivalent to ϕ over the class of tree models. That is:

S, r |= ϕ iff Bϕ accepts (S, r). (106)

for any tree model S with root r.

We will prove Proposition 11.10 by induction on the complexity of MSO-formulas. The
proposition below takes care of the atomic case.

Proposition 11.11 Let ϕ be one of the atomic MSO-formulas: Rpq, p v q, or ⇓p. Then
there is an MSO-automaton Bϕ that is equivalent to ϕ on tree models.

Proof. We restrict attention to the formula Rpq, leaving the other cases as an exercise for
the reader. The automaton BRpq is defined as the structure ({a0, a1},Θ,Ω, a0), where Θ is
given by putting:

Θ(a0, c) :=

{
∃y
(
a1(y) ∧ ∀z (z 6= y → a0(z))

)
if p ∈ c

∀z a0(z) otherwise

Θ(a1, c) :=


⊥ if q 6∈ c
∃y
(
a1(y) ∧ ∀z (z 6= y → a0(z))

)
if q ∈ c and p ∈ c

∀z a0(z) otherwise

Furthermore, Ω is defined via Ω(ai) := 0 for each ai — as a consequence, ∃ wins all infinite
games. We leave it for the reader to verify that this automaton is of the right shape, and that
it is indeed equivalent to the formula Rpq on tree models. qed

For the inductive step of the argument, there are three cases to consider, corresponding
to, respectively, the connectives ∨ and ¬, and the (second-order) existential quantification.
It turns out that the first two cases are relatively easy to handle, cf. Proposition 9.38. To
take care of the existential quantification however, we need to work with nondeterminis-
tic automata, in which every formula Θ(a, c) has been brought into a certain normal form.
Fortunately, we can prove a simulation theorem for MSO-automata, implying that we may
transform any MSO-automaton into an equivalent nondeterministic one. We need some def-
initions on these normal forms of 1FOE-formulas.

Definition 11.12 Fix a set A of propositional variables. We introduce some abbreviations
for MFOE-formulas:

diff(y1, . . . , yn) :=
∧
{yi 6= yj | 1 ≤ i < j ≤ n},

11-6 Expressive Completeness

and, for a set B ⊆ A:

τB(x) :=
∧
a∈B

a(x).

Now define the following MFOE-sentences:

χ=
B,C

:= ∃y1 · · · yn
(
diff(y) ∧

∧
i τBi(yi) ∧ ∀z (diff(y, z)→

∨
j τCj (z))

)
χB,C := ∃y1 · · · yn

(∧
i τBi(yi) ∧ ∀z

∨
j τCj (z)

)
where B = B1, . . . , Bn and C = C1, . . . , Cm are two sequences of subsets of A.

Sentences of the form χ=(B,C) are said to be in basic form, and in special basic form
in case each Bi and Cj is a singleton. The sets of these formulas are denoted as BF(A) and
SBF(A), respectively. �

In words, the formula diff(y1, . . . , yn) expresses that the variables y1, . . . , yn refer to n
distinct objects of the domain. The formula τB(x) can be seen to state that x realises the
type B, that is: it satisfies all predicates a in B. The formula χ=

B,C
expresses the existence of

n distinct objects realising the B-types, with all other objects realising one of the C-types.
This formula is (equivalent to) the formula ∀z

∨
j τCj (z) in the special case where n = 0,

and, in case m = 0 as well, to the formula ∀z⊥ (which holds in the empty model only). As
a simplified version of χ=

B,C
, the sentence χB,C states that all types in B are witnessed by

some object, while every object satisfies some C-type. Note that for the latter reason, χB,C
is generally not a semantics consequence of χ=

B,C
. Finally, observe that χ=

B,C
and χB,C are

positive sentences, and hence, one-step formulas in 1FOE and 1FO, respectively.
Using these normal forms, we can now define the notion of a nondeterministic MSO-

automaton.

Definition 11.13 An MSO-automaton A = 〈A,Θ,Ω, aI〉 is called nondeterministic if Ran(Θ) ⊆
Dis(SBF(A)), that is, every formula Θ(a, c) is a disjunction of special basic formulas. �

Nondeterministic automata are of interest because they admit functional strategies — in
tree models, that is. As in Definition 9.16, we call a strategy f for ∃ in the acceptance game
A(A,S)@(aI , r) functional if for every s ∈ S there is at most one a ∈ A such that the position
(a, s) is reachable in an f -guided match of A(A, S)@(aI , r). In case ∃ has a functional strategy
which is in addition winning, we write S, r
s A. The following proposition states that on
tree models, we may always assume that winning strategies are functional.

Proposition 11.14 Let A be a nondeterministic MSO-automaton, and let S be a tree-based
Kripke model with root r. Then S, r
 A iff S, r
s A.

As a corollary, nondeterministic MSO-automata are closed under existential second-order
quantification.

Corollary 11.15 Let D = 〈D,∆,Ω, dI〉 be a nondeterministic MSO-automaton over the set
P∪{p}. Then there is a nondeterministic automaton D∃p over P, such that for all tree models
(S, r):

D∃p accepts (S, r) iff D accepts (S[p 7→ T], r) for some T ⊆ S. (107)

Lectures on the modal µ-calculus 11-7

Proof. Define the automaton D∃p := 〈D,∆∃p,Ω, dI〉, with alphabet C = ℘(P), by putting

∆∃p(a, c) := ∆(a, c) ∨∆(a, c ∪ {p}).

Clearly then D∃p is a nondeterministic MSO-automaton, so it remains to prove that D∃p
satisfies (107). But since we may assume winning strategies to be functional, this proof is a
variation on a proof given earlier, viz., that of Proposition 10.23. qed

But if nondeterministic MSO-automata admit existential second-order quantification, in
order to transfer this closure property to the class of arbitrary automata, all we need is the
following Simulation Theorem which states in particular that every MSO-automaton has a
nondeterministic equivalent.

Theorem 11.16 (Simulation Theorem) There are effective constructions transforming
an automaton of any of the kinds below to an equivalent automaton of any other kind:

1) Aut(1FOE),
2) Aut(Dis(BF(A)),
3) Aut(Dis(SBF(A)).

To prove the implication from 1) to 2) of this result, we need a model-theoretic result on
monadic first-order logic, that will be of use later on as well.

Proposition 11.17 There is an effective procedure transforming an arbitrary positive sen-
tence in MFOE(A) to an equivalent disjunction of sentences in basic form.

The proof of this result, which we omit for the time being, is a fairly straightforward
exercise in the theory of Ehrenfeucht-Fräıssé games.

Proof of Theorem 11.16. The implications from 3) to 2) and from 2) to 1) are trivial con-
sequences of the definitions. The implication from 1) to 2) is immediate by Proposition 11.17.

The hardest part of the proof concerns the remaining implication, from 2) to 3). This,
however, is an instance of the general simulation theorem that we proved in section 9.6. We
only need to verify that the language Dis(SBF), seen as a one-step language, is

∧
-distributive

over Dis(BF), and therefore, over 1FOE, but we leave this as an exercise for the reader. qed

With this Simulation Theorem we have all the results that are needed for the inductive
translation of second-order formulas to MSO-automata.

Proof of Proposition 11.10. As mentioned, the proposition is proved by induction on the
complexity of ϕ ∈ MSO. The atomic case of the induction is covered by Proposition 11.11.
For the induction step, the case where ϕ = ∃p.ψ is taken care of by Theorem 11.16 and
Corollary 11.15. The remaining cases, where respectively ϕ = ¬ψ and ϕ = ϕ0 ∨ ϕ1, are left
as exercises for the reader. qed

Proposition 11.10 takes care of one direction of Theorem 11.9; for the opposite direction
we need to find an equivalent formula ξA ∈ MSO for each MSO-automaton A.

11-8 Expressive Completeness

Proposition 11.18 There is an effective procedure transforming an MSO-automaton A into
a formula ξA ∈ MSO2(P) that is equivalent to ϕ over the class of tree models. That is:

A accepts (S, r) iff S, r |= ξA. (108)

for any tree model S with root r.

Proof. For the time being we confine ourselves to a proof sketch. The basic idea is to encode
the operational semantics of an MSO-automaton in monadic second-order logic; this works for
nondeterministic automata over tree models, since we can express the working of a functional
strategy.

To give a bit more detail, fix an MSO-automaton A. We first transform A into an equiv-
alent nondeterministic automaton D = (D,Θ,Ω, dI); this is possible by Theorem 11.16. It
then suffices to write down a monadic second-order formula ξ(x) in MSO2(x) such that, for an
arbitrary tree model S with root r:

S |= ξ[r] iff ∃ has a functional positional winning strategy in A(A, S)@(aI , r).

Let S = (S,R, V) be a an arbitrary tree model with root r and let D = {a1, . . . , an}. Here
we think of the ai as second-order variables that will be quantified over existentially, in
order to express the existence of a functional positional strategy. Take an arbitrary valuation
U : D → ℘(S). It is easy to write down an MSO2(x)-formula ϕ(a, x) which holds of the resulting
model S ⊕ U iff |U(ai)| ≤ 1 for each i, so that we may think of the associated marking mU

as a potential functional strategy of ∃ in the acceptance game A(A, S). Writing as for the
unique state such that as ∈ mU , we may then use the one-step formula Θ(a, σV (s)) as a basis
for a first-order formula which expresses that this potential strategy induced by U actually
provides a legitimate move for ∃ at position (as, s). Finally, note that any infinite match of
A(A,S)@(aI , r) corresponds to a branch of S (that is, an infinite path starting at r); using a
second-order variable b to range over such branches, it is then fairly straightforward to write
down a formula stating that the highest parity occurring infinitely often on any match of an
mU -guided match is even. qed

11.3 Expressive completeness modulo bisimilarity

A central result in the theory of basic modal logic states that modal logic corresponds to the
bisimulation invariant fragment of first-order logic. In this section we will prove an extension of
this result stating that the modal µ-calculus is the bisimulation invariant fragment of monadic
second-order logic. While it is not difficult to show that every µML-formula is equivalent to
a bisimulation-invariant formula in MSO, it is the converse correspondence where the true
importance of the result lies. We may see it as an expressive completeness result, stating that
the modal µ-calculus is sufficiently strong to express every bisimulation-invariant formula in
monadic second-order logic. Note that in a context such as process theory, where we consider
bisimilar pointed Kripke models as different representations of the same process, bisimulation-
invariant properties are in fact the only relevant ones. In such a situation, we may read the
bisimulation-invariance result as saying that modal fixpoint logic has the same expressive
power as monadic second-order logic, when it comes to expressing relevant properties.

Lectures on the modal µ-calculus 11-9

I Add examples of what can be expressed in MSO, and not in µML:
- every point has exactly two d-successors

- the actual state does not lie on a cycle

We first show that there is truth-preserving translation mapping every formula of the
modal µ-calculus to an equivalent monadic second-order formula. Recall from Remark 11.4
that MSO2

D(x,P) is the standard (two-sorted) version of monadic second-order logic.

Definition 11.19 For any individual variable x we define, by induction on the complexity
of a formula ϕ ∈ µMLD, a translation STx : µMLD(P)→ MSO2

D(x,P).

STx(p) := p(x)
STx(¬ϕ) := ¬STx(ϕ)
STx(3dϕ) := ∃y(Rdxy ∧ STy(ϕ))
STx(3ϕ) := ∃y(Rxy ∧ STy(ϕ))

STx(µp.ϕ) := ∃p.
(
p(x) ∧ ∀y.

(
p(y)↔ ∀q.(PRE(ϕ, q)→ q(y))

))
,

where PRE(ϕ, q) abbreviates the formula ∀y.(STy(ϕ)[q/p]→ q(y)). �

Theorem 11.20 For any formula ϕ ∈ µML we have ϕ ≡ STx(ϕ), in the sense that

S, s
 ϕ iff S |= STx(ϕ)[s]

for every pointed Kripke model (S, s).

Proof. The proof of this theorem can be proved by a straightforward induction on the
complexity of µML-formulas.

For the inductive clause of the least fixpoint operator µ, consider the formula µx.ϕ. We
leave it for the reader to verify (using the inductive hypothesis) that the formula PRE(ϕ, q)
expresses that q is a pre-fixpoint of ϕ, and that the formula ∀y.

(
p(y)↔ ∀q.(PRE(ϕ, q)→ q(y))

)
expresses that p is the intersection of all pre-fixpoints of ϕ. qed

In the other direction, the actual result that we will prove is somewhat stronger than mere
expressive completeness.

Theorem 11.21 There is an effectively defined translation (·)∗ : MSO → µML such that a
formula ϕ ∈ MSO is invariant under bisimulations iff it is equivalent to ϕ∗.

We will prove this result by automata-theoretic means. Recall that in the previous section
we obtained the following characterisations of the languages MSO and µML:

MSO ∼ Aut(1FOE) (on trees)
µML ∼ Aut(1FO).

The translation (·)∗ : MSO → µML mentioned in Theorem 11.21 will be based on a construc-
tion transforming 1FOE-automata into 1FO-automata, whereas this construction in its turn is
based on a translation (·)∗ at the one-step level. For the details, we need to develop some

11-10 Expressive Completeness

rudimentary model theory at the level of monadic first-order logic, in this case linking the
one-step languages MFOE and MFO.

Recall from Definition 9.26 that 1FOE(A) and 1FO(A) denote the sets of A-positive sentence
in the languages MFOE(A) and MFO(A) of monadic first-order logic with and without identity,
respectively. Our translation (·)∗ involves the basic forms of Definition 11.13. Based on
Proposition 11.17, we can provide the required translation from 1FOE to 1FO.

Definition 11.22 Fix a setA of propositional variables. For an arbitrary sentence χ=(B,C) ∈
BF(A) we define (

χ=(B,C)
)∗

:= χ(B,C),

and we extend this translation to the set Dis(BF(A)), simply by putting(∨
iαi)

∗ :=
∨
iα
∗
i .

By Proposition 11.17 we may extend this definition to a map (·)∗ : 1FOE(A)→ 1FO(A). �

Observe that the translation is in fact very simple: we obtain
(
χ=(B,C)

)∗
from χ=(B,C)

simply by forgetting about the identity formulas occurring in the latter formula.
To exhibit the model-theoretic relation between the formulas α and α∗, we need one

further definition.

Definition 11.23 Let f : D′ � D be a surjective map from one set D′ to another set D,
and let A be some set of variables. Given a valuation V : A → ℘D, we define the valuation
Vf : A→ ℘D′, by putting, for a ∈ A:

Vf (a) := {s′ ∈ D′ | f(s′) ∈ V (a)},

and, conversely, given a valuation U : A→ ℘D′, we let

Uf (a) := {fs′ ∈ D | s′ ∈ U(a)}

define a valuation on D. �

The only fact that we need about these translations and valuations is the following Propo-
sition. We will use this result to transform the winning strategy of ∃ in one acceptance game
to a winning strategy for her in a related acceptance game.

Proposition 11.24 Let α ∈ 1FOE(A) be some one-step formula, and let D be some set. We
let π denote the left projection map π : D × ω → D.
1) For any A-valuation V on D we have

D,V |= α∗ iff D × ω, Vπ |= α. (109)

2) As a corollary, for any A-valuation U on D × ω we have

D × ω,U |= α only if D,Uπ |= α∗.

Lectures on the modal µ-calculus 11-11

Proof. We leave the case where D is the empty set as an exercise for the reader, and focus
on the case where D 6= ∅.

For part 1) of the Proposition, let α,D and π be as in its formulation. We will prove the
equivalence (109).

For the left-to-right direction of (109), assume that 〈D,V 〉 |= χ(B,C). Let d1, . . . , dn
be elements in D satisfying the existential part of χ(B,C), that is, for each i we find di ∈⋂
b∈Bi V (b). From the universal part of the formula it follows that for each d ∈ D there

is a subset Cd ⊆ A such that d ∈
⋂
c∈Cd V (c). Now we move to D × ω; it is easy to see

that its elements (d1, 1), . . . , (dn, n) provide a sequence of n distinct elements that satisfy
(di, i) ∈

⋂
b∈Bi Vπ(b) for each i. In addition, every element (d, n) distinct from the ones in the

mentioned tuple will satisfy (d, n) ∈
⋂
c∈Cd Vπ(c). From these observations it is immediate

that 〈D × ω, Vπ〉 |= χ=(B,C).
For the opposite direction of (109), assume that 〈D×ω, Vπ〉 |= χ=(B,C). Let (d1, k1),. . . ,

(dn, kn) be the sequence of distinct elements of D × ω witnessing the existential part of
χ=(B,C) in D′. Then clearly, d1, . . . , dn witness the existential part of χ(B,C) in 〈D,V 〉.
In order to show that 〈D,V 〉 also satisfies the universal part ∀z

∨
j τCj (z) of χ, consider

an arbitrary element d ∈ D. Take any m ∈ ω \ {k1, . . . , kn}, then (d,m) is distinct from
each (di, ki). It follows that for some j we have (d,m) ∈

⋂
c∈Cj Vπ(c), and so we obtain

d ∈
⋂
c∈Cj V (c). Since d was arbitrary this shows that indeed 〈D,V 〉 |= ∀z

∨
j τCj (z). So we

have proved that 〈D,V 〉 |= χ(B,C).

For part 2), assume that D × ω,U |= α∗. It is straightforward to verify that U(a) ⊆
(Uπ)π(a), for all a ∈ A. Hence by monotonicity of α with respect to the proposition letters
in A, it follows that D × ω, (Uπ)π |= α∗. But then we find D,Uπ |= α∗ by part 1) of the
proposition. qed

Automata

Any translation between one-step formulas naturally induces a transformation of automata.
In the current setting we obtain the following.

Definition 11.25 Given an automaton A = 〈A,Θ,Ω, aI〉 in Aut(1FOE), we define the map
Θ∗ : (A× ℘(P))→ 1FO(A) by putting

Θ∗(a) := (Θ(a))∗,

and we let A∗ denote the automaton A∗ := 〈A,Θ∗,Ω, aI〉. �

We have now arrived at the main technical result of this section. It involves the notion of
the ω-unravelling Eω(S, s) of a model S around a point s. This construction7 generalizes that
of the unravelling of a model (Definition 1.23).

Definition 11.26 Let κ be a countable cardinal with 1 ≤ κ ≤ ω, and let (S, s) be a pointed
Kripke model of type (P,D). A κ-path through S is a finite (non-empty) sequence of the form

7In a later version of the notes, this construction will be defined in Chapter 1.

11-12 Expressive Completeness

s0d1k1s1 · · · sn−1dnknsn, where si ∈ S, di ∈ D and ki < κ for each i, and such that Rdi+1
sisi+1

for each i < n. The set of such paths is denoted as Pathsκ(S); we use the notation Pathsκs (S)
for the set of paths starting at s. Given such a sequence ρ, we let last(ρ) ∈ S denote its last
item.

The κ-expansion of S around s is the transition system Eκ(S, s) = 〈Pathsκs (S), σκ〉, where

σκV (s0 · · · dnknsn) := σV (sn),

σκd (s0 · · · dnknsn) := {(s0 · · · dnknsndkt) ∈ Pathss(S) | Rdsnt, 0 < k < κ}.

defines the coalgebra map σκ = (σV , (σd | d ∈ D)). �

It is not hard to check that the unravelling of a model (Definition 1.23) can be identified
with its 1-expansion. It is straightforward to verify the following proposition.

Proposition 11.27 For any countable cardinal κ with 1 ≤ κ ≤ ω, the function last, mapping
a sequence to its last item, is a surjective bounded morphism from Eκ(S, s) to S mapping the
single-item sequence s to its single state s.

Proposition 11.28 Let A be an automaton in Aut(1FOE), then for any pointed Kripke model
(S, s) we have that

S, s
 A∗ iff Eω(S, s), s
 A. (110)

Proof. Let A = 〈A,Θ,Ω, aI〉 and (S, s) be as in the formulation of the Theorem. Let f
denote the (surjective) bounded morphism from Eω(S, s) to S, and recall that by definition f
is the function last mapping an ω-path to its final element. We will only prove the right-to-left
direction of (110), leaving the (slightly easier) opposite direction as an exercise to the reader.

So assume that Eω(S, s), s
 A. Then ∃ has a (positional) winning strategy h in the
acceptance game Aω := A(A,Eω(S, s))@(a0, s0), where we write a0 := aI and s0 := s. We
need to provide her with a winning strategy h′ in the acceptance game A := A(A∗, S)@(a0, s0),
and we will define h′ by induction on the length of a partial A-match Σ = (ai, si)0≤i≤n. Via a
simultaneous induction we define a partial Aω-match Σ′ = (ai, s

′
i)0≤i≤n which will be guided

by ∃’s winning strategy h and satisfies f(s′i) = si, for all i.
For the inductive step of these definitions, consider a partial A-match Σ = (ai, si)0≤i≤n.

Without loss of generality we may assume that Σ itself is guided by h′, and inductively we
may assume the existence of an h-guided shadow match Σ′ = (ai, s

′
i)0≤i≤n of Aω such that

f(s′i) = si, for all i. In order to extend the definition of h′, so that it defines a move for ∃ in
the partial match Σ, obviously we consider this partial shadow match. Let U : A→ ℘σωR(s′)
be the A-valuation picked by ∃’s winning strategy h in the match Σ′. If we compare the
collections σR(s) and σωR(s′) of successors of s and s′ respectively, it is obvious that f restricts
to a surjection from σωR(s′) to σR(s). Hence we may take the valuation

Uf : A→ ℘σR(s),

induced by U as in Definition 11.23, as the move given by the strategy h in the partial match
Σ.

Lectures on the modal µ-calculus 11-13

To see that this move is legitimate, we need to show that

σR, U
f |= Θ∗(an, σV (sn)), (111)

that is, the one-step formula Θ∗(an, σV (sn) holds in the A-structure (σR, U
f). It will be

convenient to think of σωR(s′) as the set σR(s) × ω, and of f as the projection map π :
σR(s)× ω → σR(s). Then (111) is immediate by Proposition 11.242) and the fact that

σωR, U |= Θ(an, σV (sn)), (112)

simply because the valuation U is the legitimate move provided by ∃’s winning strategy h.
Clearly then, the valuation Uf is a legitimate move for ∃.

In order to finish the inductive definition, we need to show how to extend, for any response
(b, t) of ∀ to ∃’s move Uf , the shadow match Σ′ with a position (b, t′) such that ft′ = t. But
this is straightforward: if (b, t) is a legitimate move for ∀ in A at position U , then we have
t ∈ Uf (b), and so by definition there is a state t′ ∈ σωR(s′) such that ft′ = t and t′ ∈ U(b).
Clearly then the continuation Σ′ · (b, t′) of Σ′ satisfies the requirements.

We will now show that the just defined strategy h′ is in fact winning for ∃ in A. For this
purpose, consider a full A-match Σ which is guided by h′.

First consider the case where Σ is finite. It is not hard to prove, using the existence of
the h-guided shadow match Σ′, that the player who got stuck in Σ is ∀.

Having taken care of the finite matches, we now consider the case where Σ = (ai, si)0≤i<ω
is infinite. It is not difficult to see that in this case there is an h-guided infinite shadow match
Σ′ = (ai, s

′
i)0≤i<ω of Aω, such that fs′i = si for all i < ω. But since h was assumed to be a

winning strategy for ∃ in Aω, Σ′ is actually won by her. But since the priority maps of A and
A∗ are exactly the same, from this it is immediate that ∃ is also the winner the A-match Σ.
qed

Proof of main result

As we shall see now, the expressive completeness of the modal µ-calculus is an almost imme-
diate corollary of Proposition 11.28, given our earlier automata-theoretic characterizations of
MSO and the modal µ-calculus.

Proof of Theorem 11.21. Let ϕ ∈ MSO be a monadic second-order formula, and let Bϕ ∈
Aut(1FOE) be the automaton as given in Theorem 11.9. Then by Theorem 11.8 there is a
formula ϕ∗ ∈ µML that is equivalent to the translation (Bϕ)∗ of Bϕ. Clearly then ϕ∗ has been
effectively obtained from ϕ.

We will show that ϕ is invariant under bisimulations iff it is equivalent to the formula
ϕ∗. The direction from right to left is immediate since formulas of the modal µ-calculus are
bisimulation invariant.

For the opposite direction, observe that by Proposition 11.28 and the definition on ϕ∗, for
an arbitrary pointed Kripke model (S, s) we have

S, s
 ϕ∗ iff Eω(S, s), s
 ϕ. (113)

11-14 Expressive Completeness

Now assume that ϕ is bisimulation invariant, then we have that

S, s
 ϕ iff Eω(S, s), s
 ϕ. (114)

Combining these two observations, we see that S, s
 ϕ∗ iff S, s
 ϕ. But since (S, s) was
arbitrary, this means that ϕ and ϕ∗ are equivalent, as required. qed

Notes

The result that the modal µ-calculus is the bisimulation-invariant fragment of monadic second-
order logic is due to Janin & Walukiewicz [13].

Exercises

Exercise 11.1 Let (D,V) and (D′, V ′) be two one-step models over the same set A of
monadic predicates. Then (D,V) is a quotient of (D′, V ′) if there is a surjection f : D′ → D
such that V ′ = Vf . An MFOE-sentence α is invariant under taking quotients if we we have
that (D,V) |= α iff (D′, V ′) |= α, whenever (D,V) is a quotient of (D′, V ′).

Let α be an MFOE-sentence. Prove that α is invariant under taking quotients iff α ≡ α∗.
Conclude that 1FO is the ‘quotient-invariant fragment’ of 1FOE.

A Mathematical preliminaries

Sets and functions We use standard notation for set-theoretic operations such as union,
intersection, product, etc. The power set of a set S is denoted as ℘(S) or ℘S, and we sometimes
denote the relative complement operation as ∼SX := S \X. The size or cardinality of a set
S is denoted as |S|.

Let f : A → B be a function from A to B. Given a set X ⊆ A, we let f [X] := {f(a) ∈
B | a ∈ X} denote the image of X under f , and given Y ⊆ B, f−1[Y] := {a ∈ A | f(a) ∈ Y }
denotes the preimage of Y . In case f is a bijection, we let f−1 denote its inverse. The
composition of two functions f : A→ B and g : B → A is denoted as g ◦ f or gf , and the set
of functions from A to B will be denoted as either BA or A→ B.

It is well-known that there is a bijective correspondence, often called ‘currying’:

(A×B)→ C ∼= A→ (B → C),

which associates, with a function f : A × B → C, the map that, for each a ∈ A, yields the
function fa : B → C given by fa(b) := f(a, b).

Relations Given a relation R ⊆ A×B, we introduce the following notation. Dom(R) and
Ran(R) denote the domain and range of R, respectively. R−1 denotes the converse of R. For
R ⊆ S×S, R∗ denotes the reflexive-transitive closure of R, and R+ the transitive closure. For
X ⊆ A, we put R[X] := {b ∈ B | (a, b) ∈ R for some a ∈ X}; in case X = {s} is a singleton,
we write R[s] instead of R[{s}]. For Y ⊆ B, we will write 〈R〉Y rather than R−1[Y], while
[R]Y denotes the set {a ∈ A | b ∈ Y whenever (a, b) ∈ R}. Note that [R]Y = A \ 〈R〉(B \ Y).
A relation R on S is acyclic if there are no elements s such that R+ss.

An equivalence relation on a set A is a binary relation that is reflexive, symmetric and
transitive. The equivalence class or cell of an element a ∈ A relative to an equivalence relation
is the set of all elements in A that are linked to a by the relation.

A preorder is a structure (P,v) such that v is a reflexive and transitive relation on P ;
given such a relation we will write < for the asymmetric version of v (given by u < v iff u v v
but not v v u) and ≡ for the equivalence relation induced by v (given by u ≡ v iff u v v and
v v u). Cells (that is, equivalence classes) of such a relation will often be called clusters. A
preorder is directed if for any two points u and v there is a w such that u v w and v v w. A
partial order is a preorder v which is antisymmetric, i.e., such that p v q and q v p imply
p = q. Observe that in a poset we have that p < q iff p v q and p 6= q.

Sequences, lists and streams Given a set C, we define C∗ as the set of finite lists, words
or sequences over C. We will write ε for the empty sequence, and define C+ := C∗ \ {ε}
as the set of nonempty words. An infinite word, or stream over C is a map γ : ω → C
mapping natural numbers to elements of C; the set of these maps is denoted by Cω. We
write Σ∞ := Σ∗ ∪ Σω for the set of all sequences over Σ. The concatenation of a (finite)
word u and a (finite or infinite) word v is denoted as u · v or uv. Where κ ∈ ω ∪ {ω}, and
(πi)0≤i<κ is a sequence of finite sequences, we denote its concatenation as

⊙
0≤i<κ πi (with

the understanding that this denotes the empty sequence ε in case κ = 0).

A-2 Mathematical preliminaries

We use v for the initial segment relation between sequences, and < for the proper (i.e.,
irreflexive) version of this relation. For a nonempty sequence π, first(π) denotes the first
element of π. In the case that π is finite and nonempty we write last(π) for the last element
of π. Given a stream γ = c0c1 . . . and two natural numbers i < j, we let γ[i, j) denote the
finite word cici+1 . . . cj−1.

Graphs and trees A (directed) graph is a pair G = 〈G,E〉 consisting of a set G of nodes or
vertices and a binary edge relation E on G. A finite path through such a graph is a nonempty
sequence (si)0≤i≤n = s0 · · · sn in G∗ such that Esisi+1 for all i < n. Similarly, an infinite path
is a sequence (si)0≤i<ω = s0s1 · · · in Gω such that Esisi+1 for all i < ω. A (proper) cycle is
a path s0 · · · sn such that n > 0, s0 = sn and s0, . . . , sn−1 are all distinct. A graph is acyclic
if it has no cycles.

A tree is a graph T = (T,R) which contains a node r, called a root of T, such that
every element t ∈ T is reachable by a unique path from r. (In particular, this means that
T is acyclic, and that the root is unique.) Where s and t are nodes in some tree (T,R), if
(s, t) ∈ R we say that t is a child of s and that s is the parent of t. If (s, t) ∈ R+ we call
s an ancestor of t, and t a descendant of s. Distinct nodes with the same parent are called
siblings.

Fact A.1 (König’s Lemma) Let G be a finitely branching, acyclic tree. If G is infinite,
then it has an infinite path.

Order and lattices A partial order is a structure P = 〈P,≤〉 such that ≤ is a reflexive,
transitive and antisymmetric relation on P . Given a partial order P, an element p ∈ P is an
upper bound (lower bound, respectively) of a set X ⊆ P if p ≥ x for all x ∈ X (p ≤ x for all
x ∈ X, respectively). If the set of upper bounds of X has a minimum, this element is called
the least upper bound, supremum, or join of X, notation:

∨
X. Dually, the greatest lower

bound, infimum, or meet of X, if existing, is denoted as
∧
X. Generally, given a statement

S about ordered sets, we obtain its dual statement by replacing each occurrence of ≤ with ≥
and vice versa. The following principle often reduces our work load by half;

Order Duality Principle If a statement holds for all ordered sets, then so does its dual state-
ment.

A partial order P is called a lattice if every two-element subset of P has both an infimum
and a supremum; in this case, the notation is as follows: p ∧ q :=

∧
{p, q}, p ∨ q :=

∨
{p, q}.

Such a lattice is bounded if it has a minimum ⊥ and a maximum >. A partial order P is
called a complete lattice if every subset of P has both an infimum and a supremum. In this
case we abbreviate ⊥ :=

∨
∅ and > :=

∧
∅; these are the smallest and largest elements of

C, respectively. A complete lattice will usually be denoted as a structure C = 〈C,
∨
,
∧
〉. Key

examples of complete lattices are full power set algebras: given a set S, it is easy to show
that the structure 〈℘(S),

⋃
,
⋂
〉 is a complete lattice.

Given a family {Pi | i ∈ I} of partial orders, we define the product order
∏
i∈I Pi as the

structure 〈
∏
i∈I Pi,≤〉 where

∏
i∈I Pi denotes the cartesian product of the family {Pi | i ∈ I},

Lectures on the modal µ-calculus A-3

and ≤ is given by π ≤ π′ iff π(i) ≤i π′(i) for all i ∈ I. It is not difficult to see that the
product of a family of (complete) lattices is again a (complete) lattice, with meets and joins
given coordinatewise. For instance, given a family {Ci | i ∈ I} of complete lattices, and a
subset Γ ⊆

∏
i∈I Ci, it is easy to see that Γ has a least upper bound

∨
Γ given by(∨

Γ
)
(i) =

∨
{γ(i) | γ ∈ Γ},

where the join on the right hand side is taken in Ci.

Ordinals A set S is transitive if S ⊆ ℘(S); that is, if every element of S is a subset of S,
or, equivalently, if S′′ ∈ S′ ∈ S implies that S′′ ∈ S. An ordinal is a transitive set of which
all elements are also transitive. From this definition it immediately follows that any element
of an ordinal is again an ordinal. We let O denote the class of all ordinals, and use lower case
Greek symbols (α, β, γ, . . . , λ, . . .) to refer to individual ordinals.

The smallest, finite, ordinals are

0 := ∅
1 := {0} (= {∅})
2 := {0, 1} (= {∅, {∅}})
3 := {0, 1, 2} (= {∅, {∅}, {∅, {∅}}})
...

In general, the successor α + 1 of an ordinal α is the set α ∪ {α}; it is easy to check that
α + 1 is again an ordinal. Ordinals that are not the successor of an ordinal are called limit
ordinals. Thus the smallest limit ordinal is 0; the next one is the first infinite ordinal

ω := {0, 1, 2, 3, . . .}.

But it does not stop here: the successor of ω is the ordinal ω+1, etc. It is important to realize
that there are in fact too many ordinals to form a set: O is a proper class. As a consequence,
whenever we are dealing with a function f : O → A from O into some set A, we can conclude
that there exist distinct ordinals α 6= β with f(α) = f(β). (Such a function f will also be a
class, not a set.)

We define an ordering relation < on ordinals by:

α < β if α ∈ β.

From this definition it follows that α = {β in O | β < α} for every ordinal α. The relation
< is obviously transitive (if we permit ourselves to apply such notions to relations that are
classes, not sets). It follows from the axioms of ZFC that < is in fact linear (that is, for any
two ordinals α and β, either α < β, or α = β, or β < α) and well-founded (that is, every
non-empty set of ordinals has a smallest element).

The fact that < is well-founded allows us to generalize the principle of induction on the
natural numbers to the transfinite case.

A-4 Mathematical preliminaries

Transfinite Induction Principle In order to prove that all ordinals have a certain property, it
suffices to show that the property is true of an arbitrary ordinal α whenever it is true
of all ordinals β < α.

A proof by transfinite induction typically contains two cases: one for successor ordinals and
one for limit ordinals (the base case of the induction is then a special case of a limit ordi-
nal). Analogous to the transfinite inductive proof principle there is a Transfinite Recursion
Principle according to which we can construct an ordinal-indexed sequence of objects.

References

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical
Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, chapter C.5, pages 739–
782. North-Holland Publishing Co., Amsterdam, 1977.

[2] A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2001.

[3] J. van Benthem. Modal Correspondence Theory. PhD thesis, Mathematisch Instituut & Instituut
voor Grondslagenonderzoek, University of Amsterdam, 1976.

[4] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Number 53 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2001.

[5] F. Bruse, O. Friedmann, and M. Lange. On guarded transformation in the modal µ-calculus.
Logic Journal of the IGPL, 23(2):194–216, 2015.

[6] J.R. Büchi. On a decision method in restricted second order arithmetic. In E. Nagel, editor,
Proceedings of the International Congress on Logic, Methodology and the Philosophy of Science,
pages 1–11. Stanford University Press, 1962.

[7] A. Chagrov and M. Zakharyaschev. Modal Logic, volume 35 of Oxford Logic Guides. Oxford
University Press, 1997.

[8] G. D’Agostino and M. Hollenberg. Logical questions concerning the µ-calculus. Journal of
Symbolic Logic, 65:310–332, 2000.

[9] S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science: Finite-State Sys-
tems. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2016.

[10] E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of programs (extended
abstract). In Proceedings of the 29th Symposium on the Foundations of Computer Science, pages
328–337. IEEE Computer Society Press, 1988.

[11] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (extended abstract).
In Proceedings of the 32nd Symposium on the Foundations of Computer Science, pages 368–377.
IEEE Computer Society Press, 1991.

[12] D. Janin and I. Walukiewicz. Automata for the modal µ-calculus and related results. In Pro-
ceedings of the Twentieth International Symposium on Mathematical Foundations of Computer
Science, MFCS’95, volume 969 of LNCS, pages 552–562. Springer, 1995.

[13] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional µ-calculus
w.r.t. monadic second-order logic. In Proceedings of the Seventh International Conference on
Concurrency Theory, CONCUR ’96, volume 1119 of LNCS, pages 263–277, 1996.

[14] B. Knaster. Un théorème sur les fonctions des ensembles. Annales de la Societé Polonaise de
Mathematique, 6:133–134, 1928.

[15] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27:333–354,
1983.

[16] D. Kozen. A finite model theorem for the propositional µ-calculus. Studia Logica, 47:233–241,
1988.

[17] D. Kozen and R. Parikh. A decision procedure for the propositional µ-calculus. In Proceedings of
the Workshop on Logics of Programs 1983, LNCS, pages 313–325, 1983.

R-2 References

[18] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521–530, 1966.

[19] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999. (Erratum
published Ann.P.Appl.Log. 99:241–259, 1999).

[20] A.W. Mostowski. Regular expressions for infinite trees and a standard form of automata. In
A. Skowron, editor, Computation Theory, LNCS, pages 157–168. Springer-Verlag, 1984.

[21] D.E. Muller. Infinite sequences and finite machines. In Proceedings of the 4th IEEE Symposium
on Switching Circuit Theory and Logical Design, pages 3–16, 1963.

[22] D. Niwiński. On fixed point clones. In L. Kott, editor, Proceedings of the 13th International
Colloquium on Automata, Languages and Programming (ICALP 13), volume 226 of LNCS, pages
464–473, 1986.

[23] D. Park. Concurrency and automata on infinite sequences. In Proceedings 5th GI Conference,
pages 167–183. Springer, 1981.

[24] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. Foundations of Computer Science,
pages 46–57, 1977.

[25] V.R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th IEEE Symposium on
Computer Science, pages 109–121, 1976.

[26] S. Safra. On the complexity of ω-automata. In Proceedings of the 29th Symposium on the
Foundations of Computer Science, pages 319–327. IEEE Computer Society Press, 1988.

[27] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathe-
matics, 5:285–309, 1955.

[28] T. Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bulletin of the Belgian
Mathematical Society, 8:359–391, 2001.

[29] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200:135–183, 1998.

