Lectures on the modal μ-calculus

Yde Venema*

© YV 2023

Abstract

These notes give an introduction to the theory of the modal μ-calculus and other modal fixpoint logics.

*Institute for Logic, Language and Computation, University of Amsterdam, Science Park 107, NL-1098XG Amsterdam. E-mail: y.venema@uva.nl.

Contents

Introduction 0-1
1 Basic Modal Logic 1-1
1.1 Basics 1-1
1.2 Game semantics 1-5
1.3 Bisimulations and bisimilarity 1-7
1.4 Finite models and computational aspects 1-11
1.5 Modal logic and first-order logic 1-11
1.6 Complete derivation systems for modal logic 1-11
1.7 The cover modality 1-11
2 The modal μ-calculus: basics 2-1
2.1 Basic syntax 2-2
2.2 Game semantics 2-8
2.3 Examples 2-12
2.4 Bisimulation invariance and the bounded tree model property 2-14
2.5 Traces, the closure map and the closure game 2-18
2.6 Basic syntax: continued 2-23
2.7 Alternation depth 2-27
2.8 The cover modality and disjunctive formulas 2-31
3 Fixpoints 3-1
3.1 General fixpoint theory 3-2
3.2 Boolean algebras 3-3
3.3 Vectorial fixpoints 3-6
3.4 Algebraic semantics for the modal μ-calculus 3-8
3.5 Adequacy 3-12
4 Stream automata and logics for linear time 4-1
4.1 Deterministic stream automata 4-1
4.2 Acceptance conditions 4-3
4.3 Nondeterministic automata 4-9
4.4 Determinization of stream automata 4-12
4.5 Logic and automata 4-17
4.6 A coalgebraic perspective 4-17
5 Parity games 5-1
5.1 Board games 5-1
5.2 Winning conditions 5-3
5.3 Reachability Games 5-5
5.4 Positional Determinacy of Parity Games 5-6
5.5 Size issues and algorithmic aspects 5-9
5.6 Game equivalences 5-9
6 Parity formulas \& model checking 6-1
6.1 Parity formulas 6-1
6.2 Basics 6-4
6.3 From regular formulas to parity formulas 6-6
6.4 From parity formulas to regular formulas 6-13
6.5 Guarded transformation 6-17
7 Tableau games and derivation systems 7-1
7.1 The Tableau Game 7-1
7.2 Determinacy and adequacy 7-8
7.3 Decidability of the satisfiability problem 7-20
7.4 Disjunctive normal forms via streamlined tableaux 7-20
7.5 A cut-free proof system 7-20
7.6 Other derivation systems 7-20
8 A complete axiomatization 8-1
8.1 Kozen's axiom system and the refutation calculus 8-3
8.2 The refutation calculus for the cover modality 8-16
8.3 Tableaux for the coalgebraic modal μ-calculus 8-29
8.4 Thin refutations 8-37
8.5 Tableau consequence 8-57
8.6 Completeness 8-71
9 Modal automata 9-1
9.1 Introduction 9-1
9.2 Modal automata 9-2
9.3 Disjunctive modal automata 9-6
9.4 One-step logics and their automata 9-8
9.5 From formulas to automata and back 9-14
9.6 Simulation Theorem 9-18
10 Model theory of the modal μ-calculus 10-1
10.1 Small model property 10-1
10.2 Normal forms and decidability 10-6
10.3 Uniform interpolation and bisimulation quantifiers 10-8
11 Expressive completeness 11-1
11.1 Monadic second-order logic 11-1
11.2 Automata for monadic second-order logic 11-3
11.3 Expressive completeness modulo bisimilarity 11-8
A Mathematical preliminaries A-1
B Some remarks on proof theory B-1
C Some remarks on computational complexity C-1
References R-1

Introduction

The study of the modal μ-calculus can be motivated from various (not necessarily disjoint!) directions.

Process Theory In this area of theoretical computer science, one studies formalisms for describing and reasoning about labelled transition systems - these being mathematical structures that model processes. Such formalisms then have important applications in the specification and verification of software. For such purposes, the modal μ-calculus strikes a very good balance between computational efficiency and expressiveness. On the one hand, the presence of fixpoint operators make it possible to express most, if not all, of the properties that are of interest in the study of (ongoing) behavior. But on the other hand, the formalism is still simple enough to allow an (almost) polynomial model checking complexity and an exponential time satisfiability problem.

Modal Logic From the perspective of modal logic, the modal μ-calculus is a well-behaved extension of the basic formalism, with a great number of attractive logical properties. For instance, it is the bisimulation invariant fragment of second order logic, it enjoys uniform interpolation, and the set of its validities admits a transparent, finitary axiomatization, and has the finite model property. In short, the modal μ-calculus shares (or naturally generalizes) all the nice properties of ordinary modal logic.

Mathematics and Theoretical Computer Science More generally, the modal μ-calculus has a very interesting theory, with lots of connections with neighboring areas in mathematics and theoretical computer science. We mention automata theory (more specifically, the theory of finite automata operating on infinite objects), game theory, universal algebra and lattice theory, and the theory of universal coalgebra.

Open Problems Finally, there are still a number of interesting open problems concerning the modal μ-calculus. For instance, it is unknown whether the characterization of the modal μ-calculus as the bisimulation invariant fragment of monadic second order logic still holds if we restrict attention to finite structures, and in fact there are many open problems related to the expressiveness of the formalism. Also, the exact complexity of the model checking problem is not known. And to mention a third example: the completeness theory of modal fixpoint logics is still a largely undeveloped field.

Summarizing, the modal μ-calculus is a formalism with important applications in the field of process theory, with interesting metalogical properties, various nontrivial links with other areas in mathematics and theoretical computer science, and a number of intriguing open problems. Reason enough to study it in more detail.

1 Basic Modal Logic

As mentioned in the preface, we assume familiarity with the basic definitions concerning the syntax and semantics of modal logic. The purpose of this first chapter is to briefly recall notation and terminology. We focus on some aspects of modal logic that feature prominently in its extensions with fixpoint operators.

Convention 1.1 Throughout this text we let Prop be a countably infinite set of propositional variables, whose elements are usually denoted as p, q, r, x, y, z, \ldots, and we let D be a finite set of (atomic) actions, whose elements are usually denoted as d, e, c, \ldots. We will usually focus on a finite subset P of Prop, consisting of those propositional variables that occur freely in a particular formula. In practice we will often suppress explicit reference to Prop, P and D.

1.1 Basics

Structures

- Introduce LTSs as process graphs

Definition 1.2 A (labelled) transition system, LTS, or (Kripke) model of type (P, D) is a triple $\mathbb{S}=\langle S, V, R\rangle$ such that S is a set of objects called states or points, $V: \mathrm{P} \rightarrow \wp(S)$ is a valuation, and $R=\left\{R_{d} \subseteq S \times S \mid d \in \mathrm{D}\right\}$ is a family of binary accessibility relations. In case D is a singleton, we will simply write R for the unique accessibility relation in a model.

Elements of the set $R_{d}[s]:=\left\{t \in S \mid(s, t) \in R_{d}\right\}$ are called d-successors of s. A transition system is called image-finite or finitely branching if $R_{d}[s]$ is finite, for every $d \in \mathrm{D}$ and $s \in S$.

A pointed transition system or Kripke model is a pair (\mathbb{S}, s) consisting of a transition system \mathbb{S} and a designated state s in \mathbb{S}.

Remark 1.3 It will occasionally be convenient to work with an alternative, coalgebraic presentation of transition systems. Intuitively, it should be clear that instead of having a valuation $V: \mathrm{P} \rightarrow \wp(S)$, telling us at which states each proposition letter is true, we could just as well have a marking $\sigma_{V}: S \rightarrow \wp(\mathrm{P})$ informing us which proposition letters are true at each state. Also, a binary relation R on a set S can be represented as a map $R[\cdot]: S \rightarrow \wp(S)$ mapping a state s to the collection $R[s]$ of its successors. In this line, a family $R=\left\{R_{d} \subseteq S \times S \mid d \in \mathrm{D}\right\}$ of accessibility relations can be seen as a map $\sigma_{R}: S \rightarrow \wp(S)^{\mathrm{D}}$, where $\wp(S)^{\mathrm{D}}$ denotes the set of maps from D to $\wp(S)$.

Combining these two maps into one single function, we see that a transition system $\mathbb{S}=$ $\langle S, V, R\rangle$ of type (P, D) can be seen as a pair $\langle S, \sigma\rangle$, where $\sigma: S \rightarrow \wp(\mathrm{P}) \times \wp(S)^{\mathrm{D}}$ is the map given by $\sigma(s):=\left(\sigma_{V}(s), \sigma_{R}(s)\right)$.

For future reference we define the notion of a Kripke functor.
Definition 1.4 Fix a set P of proposition letters and a set D of atomic actions. Given a set S, let $\mathrm{K}_{\mathrm{D}, \mathrm{P}} S$ denote the set

$$
\mathrm{K}_{\mathrm{D}, \mathrm{P}} S:=\wp(\mathrm{P}) \times \wp(S)^{\mathrm{D}} .
$$

This operation will be called the Kripke functor associated with D and P.

A typical element of $\mathrm{K}_{\mathrm{D}, \mathrm{P}} S$ will be denoted as (π, X), with $\pi \subseteq \mathrm{P}$ and $X=\left\{X_{d} \mid d \in \mathrm{D}\right\}$ with $X_{d} \subseteq S$ for each $d \in \mathrm{D}$.

When we take this perspective we will sometimes refer to Kripke models as $\mathrm{K}_{\mathrm{D}, \mathrm{P} S}$ coalgebras or Kripke coalgebras.

Given this definition we may summarize Remark 1.3 by saying that any transition system can be presented as a pair $\mathbb{S}=\langle S, \sigma: S \rightarrow \mathrm{~K} S\rangle$ where K is the Kripke functor associated with \mathbb{S}. In practice, we will usually write K rather than $\mathrm{K}_{\mathrm{D}, \mathrm{P}}$.

Syntax

Working with fixpoint operators, we may benefit from a set-up in which the use of the negation symbol may only be applied to atomic formulas. The price that one has to pay for this is an enlarged arsenal of primitive symbols. In the context of modal logic we then arrive at the following definition.

Definition 1.5 The language ML_{D} of polymodal logic in D is defined as follows:

$$
\varphi::=p|\bar{p}| \perp|\top| \varphi \vee \varphi|\varphi \wedge \varphi| \diamond_{d} \varphi \mid \square_{d} \varphi
$$

where $p \in$ Prop, and $d \in \mathrm{D}$. Elements of ML_{D} are called (poly-)modal formulas, or briefly, formulas. In case the set D is a singleton, we speak of the language ML of basic modal logic or monomodal logic; in this case we will denote the modal operators by \diamond and \square, respectively.

Given a finite set P of propositional variables, we let $\mathrm{ML}_{\mathrm{D}}(\mathrm{P})$ denote the set of formulas in which only variables from P occur.

Often the sets P and D are implicitly understood, and suppressed in the notation. Generally it will suffice to treat examples, proofs, etc., from monomodal logic.

We will need some definitions and notations concerning atomic formulas.
Definition 1.6 Let P be a set of propositional variables. We define the sets Lit(P) and $\mathrm{At}(\mathrm{P})$ of, respectively, literals and atomic formulas over P as follows:

$$
\begin{aligned}
& \operatorname{Lit}(\mathrm{P}):=\{p, \bar{p} \mid p \in \mathrm{P}\} \\
& \operatorname{At}(\mathrm{P}):=\{\perp, \top\} \cup \operatorname{Lit}(\mathrm{P})
\end{aligned}
$$

We will generally use the symbol ℓ to denote an arbitrary literal.
Remark 1.7 The negation $\sim \varphi$ of a formula φ can inductively be defined as follows:

$$
\begin{array}{llll}
\sim \perp & :=\top & \sim \top & :=\perp \\
\sim p & :=\bar{p} & \sim \bar{p} & :=p \\
\sim(\varphi \vee \psi) & :=\sim \varphi \wedge \sim \psi & \sim(\varphi \wedge \psi) & :=\sim \varphi \vee \sim \psi \\
\sim \square_{d} \varphi & :=\diamond_{d} \sim \varphi & \sim \diamond_{d} \varphi & :=\square_{d} \sim \varphi
\end{array}
$$

On the basis of this, we can also define the other standard abbreviated connectives, such as \rightarrow and \leftrightarrow.

We assume that the reader is familiar with standard syntactic notions such as those of a subformula or the construction tree of a formula, and with standard syntactic operations such as substitution. Concerning the latter, we let $\varphi[\psi / p]$ denote the formula that we obtain by substituting all occurrences of p in φ by ψ.

Definition 1.8 We define the collection $S f(\xi)$ of subformulas of a modal formula ξ by the following induction on the complexity of ξ :

$$
\begin{array}{lll}
S f(\perp) & :=\{\perp\} & \\
S f(\top) & :=\{\top\} & \\
S f(p) & :=\{p\} & \\
S f(\bar{p}) & :=\{\bar{p}\} & \\
S f(\varphi \star \psi) & :=\{\varphi \star \psi\} \cup S f(\varphi) \cup S f(\psi) & \text { where } \star \in\{\vee, \wedge\} \\
S f(\cap \varphi) & :=\{\cap \varphi\} \cup \operatorname{Sf}(\varphi) & \text { where } \odot \in\left\{\diamond_{d}, \square_{d} \mid d \in \mathrm{D}\right\}
\end{array}
$$

We write $\varphi \leqslant \psi$ to denote that φ is a subformula of ψ. The size of a formula ξ is defined as the number of its subformulas, $|\xi|:=|S f(\xi)|$.

Semantics

The relational semantics of modal logic is well known. The basic idea is that the modal operators \diamond_{d} and \square_{d} are both interpreted using the accessibility relation R_{d}.

The notion of truth (or satisfaction) is defined as follows.
Definition 1.9 Let $\mathbb{S}=\langle S, \sigma\rangle$ be a transition system of type (P, D). Then the satisfaction relation \Vdash between states of \mathbb{S} and formulas of $\mathrm{ML}_{\mathrm{D}}(\mathrm{P})$ is defined by the following formula induction.

$$
\begin{array}{lll}
\mathbb{S}, s \Vdash p & \text { if } & s \in V(p), \\
\mathbb{S}, s \Vdash \bar{p} & \text { if } & s \notin V(p), \\
\mathbb{S}, s \Vdash \perp & & \text { never, } \\
\mathbb{S}, s \Vdash \top & & \text { always, } \\
\mathbb{S}, s \Vdash \varphi \vee \psi & \text { if } & \mathbb{S}, s \Vdash \varphi \text { or } \mathbb{S}, s \Vdash \psi, \\
\mathbb{S}, s \Vdash \varphi \wedge \psi & \text { if } & \mathbb{S}, s \Vdash \varphi \text { and } \mathbb{S}, s \Vdash \psi, \\
\mathbb{S}, s \Vdash \diamond_{d} \varphi & \text { if } & \mathbb{S}, t \Vdash \varphi \text { for some } t \in R_{d}[s], \\
\mathbb{S}, s \Vdash \diamond_{d} \varphi & \text { if } & \mathbb{S}, t \Vdash \varphi \text { for some } t \in R_{d}[s], \\
\mathbb{S}, s \Vdash \square_{d \varphi} & \text { if } & \mathbb{S}, t \Vdash \varphi \text { for all } t \in R_{d}[s] .
\end{array}
$$

We say that φ is true or holds at s if $\mathbb{S}, s \Vdash \varphi$, and we let the set

$$
\llbracket \varphi \rrbracket^{\mathbb{S}}:=\{s \in S \mid \mathbb{S}, s \Vdash \varphi\} .
$$

denote the meaning or extension of φ in \mathbb{S}.
Alternatively (but equivalently), one may define the semantics of modal formulas directly in terms of this meaning function $\llbracket \varphi \rrbracket^{\mathbb{S}}$. This approach has some advantages in the context of fixpoint operators, since it brings out the role of the powerset algebra $\wp(S)$ more clearly.

Remark 1.10 Fix an LTS \mathbb{S}, then define $\llbracket \varphi \rrbracket^{\mathbb{S}}$ by induction on the complexity of φ :

$$
\begin{array}{llll}
\llbracket p \rrbracket^{\mathbb{S}} & =V(p) & & \llbracket \bar{p} \rrbracket^{\mathbb{S}} \\
\llbracket \perp \mathbb{\rrbracket}^{\mathbb{S}} & =\varnothing & & \llbracket\rceil \rrbracket^{\mathbb{S}} \\
\llbracket \varphi \vee V(p) \\
\llbracket \varphi \vee \psi \rrbracket^{\mathbb{S}} & =\llbracket \varphi \rrbracket^{\mathbb{S}} \cup \llbracket \psi \rrbracket^{\mathbb{S}} & & \llbracket \varphi \wedge \psi \rrbracket^{\mathbb{S}}
\end{array}=\llbracket \varphi \rrbracket^{\mathbb{S}} \cap \llbracket \psi \rrbracket^{\mathbb{S}}
$$

Here the operations $\left\langle R_{d}\right\rangle$ and $\left[R_{d}\right]$ on $\wp(S)$ are defined by putting

$$
\begin{aligned}
& \left\langle R_{d}\right\rangle(X) \\
& {\left[R_{d}\right](X):=\left\{s \in S \mid R_{d}[s] \cap X \neq \varnothing\right\}} \\
& \left.: s \in S \mid R_{d}[s] \subseteq X\right\} .
\end{aligned}
$$

The satisfaction relation \Vdash may be recovered from this by putting $\mathbb{S}, s \Vdash \varphi$ iff $s \in \llbracket \varphi \rrbracket^{\mathbb{S}} . \triangleleft$
Definition 1.11 Let s and s^{\prime} be two states in the transition systems \mathbb{S} and \mathbb{S}^{\prime} of type (P, D), respectively. Then we say that s and s^{\prime} are modally equivalent, notation: $\mathbb{S}, s \equiv_{(\mathrm{P}, \mathrm{D})} \mathbb{S}^{\prime}, s^{\prime}$, if s and s^{\prime} satisfy the same modal formulas, that is, $\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}^{\prime}, s^{\prime} \Vdash \varphi$, for all modal formulas $\varphi \in \mathrm{ML}_{\mathrm{D}}(\mathrm{P})$.

Flows, trees and streams

In some parts of these notes deterministic transition systems feature prominently.
Definition 1.12 A transition system $\mathbb{S}=\langle S, V, R\rangle$ is called deterministic if each $R_{d}[s]$ is a singleton.

Note that our definition of determinism does not allow $R_{d}=\varnothing$ for any point s. We first consider the monomodal case.

Definition 1.13 Let P be a set of proposition letters. A deterministic monomodal Kripke model for this language is called a flow model for P , or a $\wp(\mathrm{P})$-flow. In case such a structure is of the form $\langle\omega, V, S u c c\rangle$, where Succ is the standard successor relation on the set ω of natural numbers, we call the structure a stream model for P , or a $\wp(\mathrm{P})$-stream.

In case the set D of actions is finite, we may just as well identify it with the set $k=$ $\{0, \ldots, k-1\}$, where k is the size of D . We usually restrict to the binary case, that is, $k=2$. Our main interest will be in Kripke models that are based on the binary tree, i.e., a tree in which every node has exactly two successors, a left and a right one.

Definition 1.14 With $2=\{0,1\}$, we let 2^{*} denote the set of finite strings of 0 s and 1 s . We let ε denote the empty string, while the left- and right successor of a node s are denoted by $s \cdot 0$ and $s \cdot 1$, respectively. Written as a relation, we put

$$
\operatorname{Succ}_{i}=\left\{(s, s \cdot i) \mid s \in 2^{*}\right\} .
$$

A binary tree over P , or a binary $\wp(\mathrm{P})$-tree is a Kripke model of the form $\left\langle 2^{*}, V, \operatorname{Succ}_{0}\right.$, Succ $\left._{1}\right\rangle$. \triangleleft

Remark 1.15 In the general case, the k-ary tree is the structure ($k^{*}, S u c c_{0}, \ldots, S u c c_{k-1}$), where k^{*} is the set of finite sequences of natural numbers smaller than k, and $S u c c_{i}$ is the i-th successor relation given by

$$
\operatorname{Succ}_{i}=\left\{(s, s \cdot i) \mid s \in k^{*}\right\} .
$$

A k-flow model is a Kripke model $\mathbb{S}=\langle S, V, R\rangle$ with k many deterministic accessibility relations, and a k-ary tree model is a k-flow model which is based on the k-ary tree. \triangleleft

In deterministic transition systems, the distinction between boxes and diamonds evaporates. It is then convenient to use a single symbol \bigcirc_{i} to denote either the box or the diamond.

Definition 1.16 The set $\mathrm{MFL}_{k}(\mathrm{P})$ of formulas of k-ary Modal Flow Logic in P is given as follows:

$$
\varphi::=p|\bar{p}| \perp|\top| \varphi \vee \varphi|\varphi \wedge \varphi| \bigcirc_{i} \varphi
$$

where $p \in \mathrm{P}$, and $i<k$. In case $k=1$ we will also speak of modal stream logic, notation: MSL(P).

1.2 Game semantics

We will now describe the semantics defined above in game-theoretic terms. That is, we will define the evaluation game $\mathcal{E}(\xi, \mathbb{S})$ associated with a (fixed) formula ξ and a (fixed) LTS \mathbb{S}. This game is an example of a board game. In a nutshell, board games are games in which the players move a token along the edge relation of some graph, so that a match of play of the game corresponds to a (finite or infinite) path through the graph. Furthermore, the winning conditions of a match are determined by the nature of this path. We will meet many examples of board games in these notes, and in Chapter 5 we will study them in more detail.

The evaluation game $\mathcal{E}(\xi, \mathbb{S})$ is played by two players: Éloise $(\exists$ or 0$)$ and Abélard (\forall or 1). Given a player σ, we always denote the opponent of σ by $\bar{\sigma}$. As mentioned, a match of the game consists of the two players moving a token from one position to another. Positions are of the form (φ, s), with φ a subformula of ξ, and s a state of \mathbb{S}.

It is useful to assign goals to both players: in an arbitrary position (φ, s), think of \exists trying to show that φ is true at s in \mathbb{S}, and of \forall of trying to convince her that φ is false at s.

Depending on the type of the position (more precisely, on the formula part of the position), one of the two players may move the token to a next position. For instance, in a position of the form $\left(\diamond_{d} \varphi, s\right)$, it is \exists 's turn to move, and she must choose an arbitrary d-successor t of s, thus making (φ, t) the next position. Intuitively, the idea is that in order to show that $\diamond \varphi$ is true at s, \exists has to come up with a successor of s where φ holds. Formally, we say that the set of (admissible) next positions that \exists may choose from is given as the set $\left\{(\varphi, t) \mid t \in R_{d}[s]\right\}$. In the case there is no successor of s to choose, she immediately loses the game. This is a convenient way to formulate the rules for winning and losing this game: if a position (φ, s) has no admissible next positions, the player whose turn it is to play at (φ, s) gets stuck and immediately loses the game.

This convention gives us a nice handle on positions of the form (p, s) where p is a proposition letter: we always assign to such a position an empty set of admissible moves, but we

Position	Player	Admissible moves
$\left(\varphi_{1} \vee \varphi_{2}, s\right)$	\exists	$\left\{\left(\varphi_{1}, s\right),\left(\varphi_{2}, s\right)\right\}$
$\left(\varphi_{1} \wedge \varphi_{2}, s\right)$	\forall	$\left\{\left(\varphi_{1}, s\right),\left(\varphi_{2}, s\right)\right\}$
$\left(\diamond_{d} \varphi, s\right)$	\exists	$\left\{(\varphi, t) \mid t \in R_{d}[s]\right\}$
$\left(\square_{d} \varphi, s\right)$	\forall	$\left\{(\varphi, t) \mid t \in R_{d}[s]\right\}$
(\perp, s)	\exists	\varnothing
(\top, s)	\forall	\varnothing
$(p, s), s \in V(p)$	\forall	\varnothing
$(p, s), s \notin V(p)$	\exists	\varnothing
$(\bar{p}, s), s \notin V(p)$	\forall	\varnothing
$(\bar{p}, s), s \in V(p)$	\exists	\varnothing

Table 1: Evaluation game for modal logic
make \exists responsible for (p, s) in case p is false at s, and \forall in case p is true at s. In this way, \exists immediately wins if p is true at s, and \forall if it is otherwise. The rules for the negative literals (\bar{p}) and the constants, \perp and \top, follow a similar pattern.

The full set of rules of the game is given in Table 1. Observe that all matches of this game are finite, since at each move of the game the active formula is reduced in size. (From the general perspective of board games, this means that we need not worry about winning conditions for matches of infinite length.) We may now summarize the game as follows.

Definition 1.17 Given a modal formula ξ and a transition system \mathbb{S}, the evaluation game $\mathcal{E}(\xi, \mathbb{S})$ is defined as the board game given by Table 1, with the set $S f(\xi) \times S$ providing the positions of the game; that is, a position is a pair consisting of a subformula of ξ and a point in \mathbb{S}. The instantiation of this game with starting point (ξ, s) is denoted as $\mathcal{E}(\xi, \mathbb{S}) @(\xi, s)$. \triangleleft

An instance of an evaluation game is a pair consisting of an evaluation game and a starting position of the game. Such an instance will also be called an initialized game, or sometimes, if no confusion is likely, simply a game.

A strategy for a player σ in an initialized game is a method that σ uses to select his moves during the play. Such a strategy is winning for σ if every match of the game (starting at the given position) is won by σ, provided σ plays according to this strategy. A position (φ, s) is winning for σ if σ has a winning strategy for the game initialized in that position. (Note that this definition applies to all positions, not only to the ones owned by σ.) The set of winning positions in $\mathcal{E}(\xi, \mathbb{S})$ for σ is denoted as $\operatorname{Win}_{\sigma}(\mathcal{E}(\xi, \mathbb{S}))$.

The main result concerning these games is that they provide an alternative, but equivalent, semantics for modal logic.

- Example to be added

Theorem 1.18 (Adequacy) Let ξ be a modal formula, and let \mathbb{S} be an LTS. Then for any state s in \mathbb{S} it holds that

$$
(\xi, s) \in \operatorname{Win}_{\exists}(\mathcal{E}(\xi, \mathbb{S})) \Longleftrightarrow \mathbb{S}, s \Vdash \xi
$$

The proof of this Theorem is left to the reader.

1.3 Bisimulations and bisimilarity

One of the most fundamental notions in the model theory of modal logic is that of a bisimulation between two transition systems.

- discuss bisimilarity as a notion of behavioral equivalence

Definition 1.19 Let \mathbb{S} and \mathbb{S}^{\prime} be two transition systems of the same type (P, D). Then a relation $Z \subseteq S \times S^{\prime}$ is a bisimulation of type (P, D) if the following hold, for every pair $\left(s, s^{\prime}\right) \in Z$.
(prop) $s \in V(p)$ iff $s^{\prime} \in V^{\prime}(p)$, for all $p \in \mathrm{P}$;
(forth) for all actions d, and for all $t \in R_{d}[s]$ there is a $t^{\prime} \in R_{d}^{\prime}\left[s^{\prime}\right]$ with $\left(t, t^{\prime}\right) \in Z$;
(back) for all actions d, and for all $t^{\prime} \in R_{d}^{\prime}\left[s^{\prime}\right]$ there is a $t \in R_{d}[s]$ with $\left(t, t^{\prime}\right) \in Z$.
Two states s and s^{\prime} are called bisimilar, notation: $\mathbb{S}, s \leftrightarrows_{\mathrm{P}, \mathrm{D}} \mathbb{S}^{\prime}, s^{\prime}$ if there is some bisimulation Z of type (P, D) with $\left(s, s^{\prime}\right) \in Z$. If no confusion is likely to arise, we generally drop

Bisimilarity and modal equivalence

In order to understand the importance of this notion for modal logic, the starting point should be the observation that the truth of modal formulas is invariant under bisimilarity. Recall that \equiv denotes the relation of modal equivalence.

Theorem 1.20 (Bisimulation Invariance) Let \mathbb{S} and \mathbb{S}^{\prime} be two transition systems of the same type. Then

$$
\mathbb{S}, s \leftrightarrow \mathbb{S}^{\prime}, s^{\prime} \Rightarrow \mathbb{S}, s \equiv \mathbb{S}^{\prime}, s^{\prime}
$$

for every pair of states s in \mathbb{S} and s^{\prime} in \mathbb{S}^{\prime}.
Proof. By a straightforward induction on the complexity of modal formulas one proves that bisimilar states satisfy the same formulas.

QED
But there is much more to say about the relation between modal logic and bisimilarity than Theorem 1.20. In particular, for some classes of models, one may prove a converse statement, which amounts to saying that the notions of bisimilarity and modal equivalence coincide. Such classes are said to have the Hennessy-Milner property. As an example we mention the class of finitely branching transition systems.

Theorem 1.21 (Hennessy-Milner Property) Let \mathbb{S} and \mathbb{S}^{\prime} be two finitely branching transition systems of the same type. Then

$$
\mathbb{S}, s \leftrightarrows \mathbb{S}^{\prime}, s^{\prime} \Longleftrightarrow \mathbb{S}, s \equiv \mathbb{S}^{\prime}, s^{\prime}
$$

for every pair of states s in \mathbb{S} and s^{\prime} in \mathbb{S}^{\prime}.

Proof. The direction from left to right follows from Theorem 1.20. In order to prove the opposite direction, one may show that the relation \equiv of modal equivalence itself is a bisimulation. Details are left to the reader.

QED
This theorem can be read as indication of the expressiveness of modal logic: any difference in behaviour between two states in finitely branching transition systems can in fact be witnessed by a concrete modal formula. As another witness to this expressivity, in section 1.5 we will see that modal logic is sufficiently rich to express all bisimulation-invariant first-order properties. Obviously, this result also adds considerable strength to the link between modal logic and bisimilarity.

As a corollary of the bisimulation invariance theorem, modal logic has the tree model property, that is, every satisfiable modal formula is satisfiable on a structure that has the shape of a tree.

Definition 1.22 A transition system \mathbb{S} of type (P, D) is called tree-like if the structure $\left\langle S, \bigcup_{d \in \mathrm{D}} R_{d}\right\rangle$ is a tree.

The key step in the proof of the tree model property of modal logic is the observation that every transition system can be 'unravelled' into a bisimilar tree-like model. The basic idea of such an unravelling is the new states encode (part of) the history of the old states. Technically, the new states are the paths through the old system.

Definition 1.23 Let $\mathbb{S}=\langle S, V, R\rangle$ be a transition system of type (P, D). A (finite) path through \mathbb{S} is a nonempty sequence of the form $\left(s_{0}, d_{1}, s_{1}, d_{2}, \ldots, s_{n}\right)$ such that $R_{d_{i}} s_{i-1} s_{i}$ for all i with $0<i \leq n$. The set of paths through \mathbb{S} is denoted as $\operatorname{Paths}(\mathbb{S})$; we use the notation Paths $_{s}(\mathbb{S})$ for the set of paths starting at s.

The unravelling of \mathbb{S} around a state s is the transition system $\overrightarrow{\mathbb{S}}_{s}$ which is coalgebraically defined as the structure $\left\langle\operatorname{Paths}_{s}(\mathbb{S}), \vec{\sigma}\right\rangle$, where the coalgebra map $\vec{\sigma}=\left(\vec{\sigma}_{V},\left(\vec{\sigma}_{d} \mid d \in \mathrm{D}\right)\right)$ is given by putting

$$
\begin{aligned}
\vec{\sigma}_{V}\left(s_{0}, d_{1}, s_{1}, d_{2}, \ldots, s_{n}\right) & :=\sigma_{V}\left(s_{n}\right) \\
\vec{\sigma}_{d}\left(s_{0}, d_{1}, s_{1}, d_{2}, \ldots, s_{n}\right) & :=\left\{\left(s_{0}, d_{1}, s_{1}, \ldots, s_{n}, d, t\right) \in \operatorname{Path}_{s}(\mathbb{S}) \mid R_{d} s_{n} t\right\} .
\end{aligned}
$$

Finally, the unravelling of a pointed transition system (\mathbb{S}, s) is the pointed structure $\left(\overrightarrow{\mathbb{S}}_{s}, s\right)$, where (with some abuse of notation) we let s denote the path of length zero that starts and finishes at s.

Clearly, unravellings are tree-like structures, and any pointed transition system is bisimilar to its unravelling. But then the following theorem is immediate by Theorem 1.20.

Theorem 1.24 (Tree Model Property) Let φ be a satisfiable modal formula. Then φ is satisfiable at the root of a tree-like model.

Bisimilarity game

We may also give a game-theoretic characterization of the notion of bisimilarity. We first give an informal description of the game that we will employ. A match of the bisimilarity game between two Kripke models \mathbb{S} and \mathbb{S}^{\prime} is played by two players, \exists and \forall. As in the evaluation game, these players move a token around from one position of the game to the next one. In the game there are two kinds of positions: pairs of the form $\left(s, s^{\prime}\right) \in S \times S^{\prime}$ are called basic positions and belong to \exists. The other positions are of the form $Z \subseteq S \times S^{\prime}$ and belong to \forall.

The idea of the game is that at a position $\left(s, s^{\prime}\right), \exists$ claims that s and s^{\prime} are bisimilar, and to substantiate this claim she proposes a local bisimulation $Z \subseteq S \times S^{\prime}$ (see below) for s and s^{\prime}. This relation Z can be seen as providing a set of witnesses for \exists 's claim that s and s^{\prime} are bisimilar. Implicitly, \exists 's claim at a position $Z \subseteq S \times S^{\prime}$ is that all pairs in Z are bisimilar, so \forall can pick an arbitrary pair $\left(t, t^{\prime}\right) \in Z$ and challenge \exists to show that these t and t^{\prime} are bisimilar.

Definition 1.25 Let \mathbb{S} and \mathbb{S}^{\prime} be two transition systems of the same type (P, D). Then a relation $Z \subseteq S \times S^{\prime}$ is a local bisimulation for two points $s \in S$ and $s^{\prime} \in S^{\prime}$, if it satisfies the properties (prop), (back) and (forth) of Definition 1.19 for this specific s and s^{\prime} : (prop) $s \in V(p)$ iff $s^{\prime} \in V^{\prime}(p)$, for all $p \in \mathrm{P}$;
(forth) for all actions d, and for all $t \in R_{d}[s]$ there is a $t^{\prime} \in R_{d}^{\prime}\left[s^{\prime}\right]$ with $\left(t, t^{\prime}\right) \in Z$;
(back) for all actions d, and for all $t^{\prime} \in R_{d}^{\prime}\left[s^{\prime}\right]$ there is a $t \in R_{d}[s]$ with $\left(t, t^{\prime}\right) \in Z$. $\quad \triangleleft$
Note that a local bisimulation for s and s^{\prime} need only relate successors of s to successors of s^{\prime}. In particular, the pair $\left(s, s^{\prime}\right)$ itself will generally not belong to such a relation. It is easy to see that a relation Z between two Kripke models is a bisimulation iff Z is a local bisimulation for every pair $\left(s, s^{\prime}\right) \in Z$.

If a player gets stuck in a match of the bisimilarity game, then the opponent wins the match. For instance, if s and s^{\prime} disagree about some proposition letter, then there is no local bisimulation for s and s^{\prime}, and so the corresponding position $\left(s, s^{\prime}\right)$ is an immediate loss for \exists. Or, if neither s nor s^{\prime} has successors, and agree on the truth of all proposition letters, then \exists could choose the empty relation as a local bisimulation, so that \forall would lose the match at his next move.

A new option arises if neither player gets stuck: this game may also have matches that last forever. Nevertheless, we can still declare a winner for such matches, and the agreement is that \exists is the winner of any infinite match. Formally, we put the following.

Definition 1.26 The bisimilarity game $\mathcal{B}\left(\mathbb{S}, \mathbb{S}^{\prime}\right)$ between two Kripke models \mathbb{S} and \mathbb{S}^{\prime} is the board game given by Table 2, with the winning condition that finite matches are lost by the player who got stuck, while all infinite matches are won by \exists.

A position $\left(s, s^{\prime}\right)$ is winning for σ if σ has a winning strategy for the game initialized in that position. The set of these positions is denoted as $\operatorname{Win}_{\sigma}\left(\mathcal{B}\left(\mathbb{S}, \mathbb{S}^{\prime}\right)\right)$.

Also observe that a bisimulation is a relation which is a local bisimulation for each of its members. The following theorem states that the collection of basic winning positions for \exists forms the largest bisimulation between \mathbb{S} and \mathbb{S}^{\prime}.

Position	Player	Admissible moves
$\left(s, s^{\prime}\right) \in S \times S^{\prime}$	\exists	$\left\{Z \in \wp\left(S \times S^{\prime}\right) \mid Z\right.$ is a local bisimulation for s and $\left.s^{\prime}\right\}$
$Z \in \wp\left(S \times S^{\prime}\right)$	\forall	$Z=\left\{\left(t, t^{\prime}\right) \mid\left(t, t^{\prime}\right) \in Z\right\}$

Table 2: Bisimilarity game for Kripke models

Theorem 1.27 Let (\mathbb{S}, s) and $\left(\mathbb{S}^{\prime}, s^{\prime}\right)$ be two pointed Kripke models. Then $\mathbb{S}, s \overleftrightarrow{\mathbb{S}^{\prime}}, s^{\prime}$ iff $\left(s, s^{\prime}\right) \in \operatorname{Win}_{\exists}\left(\mathcal{B}\left(\mathbb{S}, \mathbb{S}^{\prime}\right)\right)$.

Proof. For the direction from left to right: suppose that Z is a bisimulation between \mathbb{S} and \mathbb{S}^{\prime} linking s and s^{\prime}. Suppose that \exists, starting from position $\left(s, s^{\prime}\right)$, always chooses the relation Z itself as the local bisimulation. A straightforward verification, by induction on the length of the match, shows that this strategy always provides her with a legitimate move, and that it keeps her alive forever. This proves that it is a winning strategy.

For the converse direction, it suffices to show that the relation $\left\{\left(t, t^{\prime}\right) \in S \times S^{\prime} \mid\left(t, t^{\prime}\right) \in\right.$ $\left.\operatorname{Win}_{\exists}\left(\mathcal{B}\left(\mathbb{S}, \mathbb{S}^{\prime}\right)\right)\right\}$ itself is in fact a bisimulation. We leave the details for the reader. QED

Remark 1.28 The bisimilarity game should not be confused with the bisimulation game.

Bisimulations via relation lifting

Together, the back- and forth clause of the definition of a bisimulation express that the pair of respective successor sets of two bisimilar states must belong to the so-called Egli-Milner lifting $\bar{\wp} Z$ of the bisimulation Z. In fact, the notion of a bisimulation can be completely defined in terms of relation lifting.

Definition 1.29 Given a relation $Z \subseteq A \times A^{\prime}$, define the relation $\bar{\wp} Z \subseteq \wp A \times \wp A^{\prime}$ as follows:

$$
\begin{aligned}
\bar{\wp} Z:=\left\{\left(X, X^{\prime}\right) \mid\right. & \text { for all } x \in X \text { there is an } x^{\prime} \in X^{\prime} \text { with }\left(x, x^{\prime}\right) \in Z \\
\& & \text { for all } \left.x^{\prime} \in X^{\prime} \text { there is an } x \in X \text { with }\left(x, x^{\prime}\right) \in Z\right\} .
\end{aligned}
$$

Similarly, define, for a Kripke functor $\mathrm{K}=\mathrm{K}_{\mathrm{D}, \mathrm{P}}$, the relation $\overline{\mathrm{K}} Z \subseteq \mathrm{~K} A \times \mathrm{K} A^{\prime}$ as follows:

$$
\overline{\mathrm{K}} Z:=\left\{\left((\pi, X),\left(\pi^{\prime}, X^{\prime}\right)\right) \mid \pi=\pi^{\prime} \text { and }\left(X_{d}, X_{d}^{\prime}\right) \in \bar{\wp} Z \text { for each } d \in \mathrm{D}\right\} .
$$

The relations $\bar{\wp} Z$ and $\overline{\mathrm{K}} Z$ are called the liftings of Z with respect to \wp and K , respectively. We say that $Z \subseteq A \times A^{\prime}$ is full on $B \in \wp A$ and $B^{\prime} \in \wp A^{\prime}$ if $\left(B, B^{\prime}\right) \in \bar{\wp} Z$.

It is completely straightforward to check that a nonempty relation Z linking two transition systems \mathbb{S} and \mathbb{S}^{\prime} is a local bisimulation for two states s and s^{\prime} iff $\left(\sigma(s), \sigma^{\prime}\left(s^{\prime}\right)\right) \in \overline{\mathrm{K}} Z$. In particular, \exists 's move in the bisimilarity game at a position $\left(s, s^{\prime}\right)$ consists of choosing a binary relation Z such that $\left(\sigma(s), \sigma^{\prime}\left(s^{\prime}\right)\right) \in \overline{\mathrm{K}} Z$. The following characterization of bisimulations is also an immediate consequence.

Proposition 1.30 Let \mathbb{S} and \mathbb{S}^{\prime} be two Kripke coalgebras for some Kripke functor K , and let $Z \subseteq S \times S^{\prime}$ be some relation. Then

$$
\begin{equation*}
Z \text { is a bisimulation iff }\left(\sigma(s), \sigma^{\prime}\left(s^{\prime}\right)\right) \in \overline{\mathrm{K}} Z \text { for all }\left(s, s^{\prime}\right) \in Z . \tag{1}
\end{equation*}
$$

1.4 Finite models and computational aspects

- complexity of model checking
- filtration \& polysize model property
- complexity of satisfiability
- complexity of global consequence

1.5 Modal logic and first-order logic

- modal logic is the bisimulation invariant fragment of first-order logic

1.6 Complete derivation systems for modal logic

1.7 The cover modality

As we will see now, there is an interesting alternative for the standard formulation of basic modal logic in terms of boxes and diamonds. This alternative set-up is based on a connective which turns a set of formulas into a formula. We first restrict attention to the monomodal case.

Definition 1.31 Let Φ be a finite set of formulas. Then $\nabla \Phi$ is a formula, which holds at a state s in a Kripke model if every formula in Φ holds at some successor of s, while at the same time, every successor of s makes some formula in Φ true. The operator ∇ is called the cover modality.

It is not so hard to see that the cover modality can be defined in the standard modal language:

$$
\begin{equation*}
\nabla \Phi \equiv \square \bigvee \Phi \wedge \bigwedge \diamond \Phi \tag{2}
\end{equation*}
$$

where $\diamond \Phi$ denotes the set $\{\diamond \varphi \mid \varphi \in \Phi\}$. Things start to get interesting once we realize that both the ordinary diamond \diamond and the ordinary box \square can be expressed in terms of the cover modality (and the disjunction):

$$
\begin{align*}
\diamond \varphi & \equiv \nabla\{\varphi, \top\} \\
\square \varphi & \equiv \nabla \varnothing \vee \nabla\{\varphi\} . \tag{3}
\end{align*}
$$

Here, as always, we use the convention that $\bigvee \varnothing=\perp$ and $\wedge \varnothing=\top$.
Remark 1.32 Observe that this definition involves the $\forall \exists \& \forall \exists$ pattern that we know from the definition of a bisimulation. The fundamental concept is the notion of relation lifting $\bar{\wp}$ defined in the previous section. In other words, the semantics of the cover modality can be
expressed in terms of relation lifting. To be more precise, observe that we may think of the forcing or satisfaction relation \Vdash simply as a binary relation between states and formulas. Then we find that

$$
\mathbb{S}, s \Vdash \nabla \Phi \text { iff }\left(\sigma_{R}(s), \Phi\right) \in \bar{\wp}(\Vdash) \text {. }
$$

for any pointed Kripke model (\mathbb{S}, s) and any finite set Φ of formulas.
Remark 1.33 In the special case where $\Phi=\varnothing$ we find that $\mathbb{S}, s \Vdash \nabla \varnothing$ iff $R[s]=\varnothing$, that is, s has no successors. Using this it is easy to see that $T=\nabla\{T\} \vee \nabla \varnothing$.

Given that ∇ and $\{\diamond, \square\}$ are mutually expressible, we obtain an expressively equivalent language ML_{∇} if we replace \square and \diamond with the cover modality. As we will see further on it will be convenient for us to use a format for this language in which not only the cover modality, but also the disjunction and conjunction connectives take finite sets of formulas as their argument. That is, rather then working with disjunction and conjunction as binary connectives, we will work with their finitary versions. This perspective also allows us to omit the constants \perp and T from the basic syntax, since we may consider them as abbreviations: $\perp:=\bigvee \varnothing$ and $\top:=\wedge \varnothing$.

Definition 1.34 The formulas of the language ML_{∇} are given by the following grammar:

$$
\varphi::=p|\bar{p}| \bigvee \Phi|\bigwedge \Phi| \nabla \Phi
$$

where p is a propositional variable, and $\Phi \subseteq \mathrm{ML}^{\mathrm{M}}$.
Proposition 1.35 The languages ML and $\mathrm{ML} \nabla$ are equally expressive.
Proof. Immediate by (2) and (3).
QED
The real importance of the cover modality is that it allows us to almost completely eliminate the Boolean conjunction. This remarkable fact is based on the following modal distributive law. Recall from Definition 1.29 that a relation $Z \subseteq A \times A^{\prime}$ is full on A and A^{\prime} if $\left(A, A^{\prime}\right) \in \bar{\wp} Z$, or in other words: $A \subseteq \operatorname{Dom}(Z)$ and $A^{\prime} \subseteq \operatorname{Ran}(Z)$.

Proposition 1.36 (Binary Modal Distributive Law) Let Φ and Φ^{\prime} be two sets of formulas. Then the following two formulas are equivalent:

$$
\begin{equation*}
\nabla \Phi \wedge \nabla \Phi^{\prime} \equiv \bigvee\left\{\nabla \Gamma_{Z} \mid Z \text { is full on } \Phi \text { and } \Phi^{\prime}\right\} \tag{4}
\end{equation*}
$$

where, given a relation $Z \subseteq \Phi \times \Phi^{\prime}$, we define

$$
\Gamma_{Z}:=\left\{\varphi \wedge \varphi^{\prime} \mid\left(\varphi, \varphi^{\prime}\right) \in Z\right\} .
$$

Proof. For the direction from left to right, suppose that $\mathbb{S}, s \Vdash \nabla \Phi \wedge \nabla \Phi^{\prime}$. Let $Z \subseteq \Phi \times \Phi^{\prime}$ consist of those pairs $\left(\varphi, \varphi^{\prime}\right)$ such that the conjunction $\varphi \wedge \varphi^{\prime}$ is true at some successor t of s. It is then straightforward to verify that Z is full on Φ and Φ^{\prime}, and that $\mathbb{S}, s \Vdash \nabla \Gamma_{Z}$.

The converse direction follows fairly directly from the definitions.
QED

As a corollary of Proposition 1.36 we can restrict the use of conjunction in modal logic to that of a special conjunction connective • which may only be applied to a pair consisting of a set of literals and a ∇-formula (or, a certain set of ∇-formulas in the polymodal case). The intended reading of the bullet operator is as follows:

$$
\alpha \bullet \Phi \equiv(\bigwedge \alpha) \wedge \nabla \Phi .
$$

Definition 1.37 Fix a finite set P of proposition letters. Then the set DML(P) of disjunctive monomodal formulas in P is given by the following grammar:

$$
\varphi::=\top|\bigvee \Phi| \alpha \bullet \nabla \Phi,
$$

where α is a finite set of literals over P and Φ is a finite set of formulas in $\operatorname{DML}(\mathrm{P})$.

Note that the proposition letters in P and their negations themselves do not qualify as disjunctive formulas. However, these formulas are easily seen to be equivalent to disjunctive formulas: for instance, we have $\ell \equiv\{\ell\} \bullet\{T\} \vee\{\ell\} \bullet \varnothing$, for any literal ℓ.

Remark 1.38 In the above definition we do not need to list the formula \perp explicitly as a disjunctive formula, since we can still see it as an abbreviation: $\perp:=\bigvee \varnothing$. This is different for the formula T, however. Since we no longer have \bigwedge as a connective, we cannot use it to define T. For this reason we have added T as a primitive constant.

The following theorem states that every modal formula can be rewritten into an equivalent disjunctive normal form.

Theorem 1.39 Let P be a set of proposition letters. Then there are effective ways to transform an arbitrary formula in $\mathrm{ML}(\mathrm{P})$ into an equivalent formula in $\mathrm{DML}(\mathrm{P})$, and vice versa. As a corollary, the languages $\mathrm{ML}(\mathrm{P})$ and $\mathrm{DML}(\mathrm{P})$ are expressively equivalent.

We leave the proof of this result as an exercise to the reader.

Remark 1.40 In the polymodal case we adapt the definition as follows. Let $\Phi=\left\{\Phi_{d} \mid d \in\right.$ $\mathrm{D}\}$ be a D-indexed family of formula sets. Then we write $\nabla_{\mathrm{D}} \Phi:=\bigwedge_{d \in \mathrm{D}} \nabla_{d} \Phi_{d}$, where ∇_{d} is the cover modality associated with the action d. The following grammar defines the set $\mathrm{DML}_{\mathrm{D}}(\mathrm{P})$ of disjunctive polymodal formulas in D and P

$$
\varphi::=\top|\bigvee \Phi| \alpha \bullet \nabla_{\mathrm{D}} \Phi,
$$

where $\alpha \subseteq_{\omega} \operatorname{Lit}(\mathrm{P})$ and Φ is an D-indexed family of finite sets of $\mathrm{DML}_{\mathrm{D}}(\mathrm{P})$-formulas. One may then formulate and prove a polymodal version of Theorem 1.39, relating MLD and DML ${ }_{D} . \triangleleft$

Notes

Modal logic has a long history in philosophy and mathematics, for an overview we refer to Blackburn, de Rijke and Venema [4]. The use of modal formalisms as specification languages in process theory goes back at least to the 1970s, with Pratt [25] and Pnueli [24] being two influential early papers.

The notion of bisimulation, which plays an important role in modal logic and process theory alike, was first introduced in a modal logic context by van Benthem [3], who proved that modal logic is the bisimulation invariant fragment of first-order logic. The notion was later, but independently, introduced in a process theory setting by Park [23]. At the time of writing we do not know who first took a game-theoretical perspective on the semantics of modal logic. The cover modality ∇ was introduced independently by Moss [19] and Janin \& Walukiewicz [12].

Readers who want to study modal logic in more detail are referred to Blackburn, de Rijke and Venema [4] or Chagrov \& Zakharyaschev [7].

Exercises

Exercise 1.1 Prove Theorem 1.18.
Exercise 1.2 Prove that the Hennessy-Milner theorem (Theorem 1.21) also holds if only one of the two structures is finitely branching.

Exercise 1.3 (bisimilarity game) Consider the following version $\mathcal{B}_{\omega}\left(\mathbb{S}, \mathbb{S}^{\prime}\right)$ of the bisimilarity game between two transition systems \mathbb{S} and \mathbb{S}^{\prime}. Positions of this game are of the form either $\left(s, s^{\prime}, \forall, \alpha\right),\left(s, s^{\prime}, \exists, \alpha\right)$ or (Z, α), with $s \in S, s^{\prime} \in S^{\prime}, Z \subseteq S \times S^{\prime}$ and α either a natural number or ω. The admissible moves for \exists and \forall are displayed in the following table:

Position	Player	Admissible moves
$\left(s, s^{\prime}, \forall, \alpha\right)$	\forall	$\left\{\left(s, s^{\prime}, \exists, \beta\right) \mid \beta<\alpha\right\}$
$\left(s, s^{\prime}, \exists, \alpha\right)$	\exists	$\left\{(Z, \alpha) \mid Z\right.$ is a local bisimulation for s and $\left.s^{\prime}\right\}$
(Z, α)	\forall	$\left\{\left(s, s^{\prime}, \forall, \alpha\right) \mid\left(s, s^{\prime}\right) \in Z\right\}$

Note that all matches of this game have finite length.
We write $\mathbb{S}, s \overleftrightarrow{\unlhd}_{\alpha} \mathbb{S}^{\prime}, s^{\prime}$ to denote that \exists has a winning strategy in the game $\mathcal{B}_{\omega}\left(\mathbb{S}, \mathbb{S}^{\prime}\right)$ starting at position $\left(s, s^{\prime}, \forall, \alpha\right)$. It is not hard to see that $\mathbb{S}, s \unlhd_{\omega} \mathbb{S}^{\prime}, s^{\prime}$ iff $\mathbb{S}, s \unlhd_{k} \mathbb{S}^{\prime}, s^{\prime}$ for all $k<\omega$.
(a) Give concrete examples such that $\mathbb{S}, s \overleftrightarrow{\omega}_{\omega} \mathbb{S}^{\prime}, s^{\prime}$ but not $\mathbb{S}, s \overleftrightarrow{\mathbb{S}^{\prime}}, s^{\prime}$.
(Hint: think of two modally equivalent but not bisimilar states.)
(b) Let $k \geq 0$ be a natural number. Prove that, for all \mathbb{S}, s and $\mathbb{S}^{\prime}, s^{\prime}$:

$$
\mathbb{S}, s \overleftrightarrow{E}_{k} \mathbb{S}^{\prime}, s^{\prime} \Rightarrow \mathbb{S}, s \equiv_{k} \mathbb{S}^{\prime}, s^{\prime} .
$$

Here \equiv_{k} denotes the modal equivalence relation with respect to formulas of modal depth at most k. Here we use a slightly nonstandard notion of modal depth, defined as follows: $d(\perp), d(\top):=0, d(p), d(\bar{p}):=1$ for $p \in \mathrm{P}, d(\varphi \wedge \psi), d(\varphi \vee \psi):=\max (d(\varphi), d(\psi))$, and $d(\diamond \varphi), d(\square \varphi):=1+d(\varphi)$.
(c) Let \mathbb{S} and \mathbb{S}^{\prime} be finitely branching transition systems. Prove directly (i.e., without using part (b)) that (i) \Rightarrow (ii), for all $s \in S$ and $s^{\prime} \in S^{\prime}$:
(i) $\mathbb{S}, s \overleftrightarrow{แ}_{\omega} \mathbb{S}^{\prime}, s^{\prime}$
(ii) $\mathbb{S}, s \overleftrightarrow{\mathbb{S}^{\prime}}, s^{\prime}$.
(d)* Does the implication in (c) hold in the case that only one of the two transition systems is finitely branching?

Exercise 1.4 Let Φ and Θ be finite sets of formulas. Prove that

$$
\nabla(\Phi \cup\{\bigvee \Theta\}) \equiv \bigvee\left\{\nabla\left(\Phi \cup \Theta^{\prime}\right) \mid \varnothing \neq \Theta^{\prime} \subseteq \Theta\right\}
$$

Exercise 1.5 Prove Theorem 1.39.

2 The modal μ-calculus: basics

This chapter is a first introduction to the modal μ-calculus. We define the language, discuss some syntactic issues, and then proceed to its game-theoretic semantics. As a first result, we prove that the modal μ-calculus is bisimulation invariant, and has a strong, 'bounded' version of the tree model property. We then provide some basic information concerning the main complexity measures of μ-calculus formulas: size and alternation depth.

To introduce the formalism, we start with a simple example.
Example 2.1 Consider the formula $\left\langle d^{*}\right\rangle p$ from propositional dynamic logic. By definition, this formula holds at those points in an LTS \mathbb{S} from which there is a finite R_{d}-path, of unspecified length, leading to a state where p is true.

We leave it for the reader to prove that

$$
\mathbb{S}, s \Vdash\left\langle d^{*}\right\rangle p \leftrightarrow\left(p \vee\langle d\rangle\left\langle d^{*}\right\rangle p\right)
$$

for any pointed transition system (\mathbb{S}, s) (here we write $\langle d\rangle$ rather than $\left.\diamond_{d}\right)$. Informally, one might say that $\left\langle d^{*}\right\rangle p$ is a fixed point of the formula $p \vee\langle d\rangle x$, or a solution of the 'equation'

$$
\begin{equation*}
x \equiv p \vee\langle d\rangle x \tag{5}
\end{equation*}
$$

One may show, however, that $\left\langle d^{*}\right\rangle p$ is not the only fixpoint of (5). If we let ∞_{d} denote a formula that is true at those states of a transition system from which an infinite d-path emanates, then the formula $\left\langle d^{*}\right\rangle p \vee \infty_{d}$ is another fixed point of (5).

In fact, one may prove that the two mentioned fixpoints are the smallest and largest possible solutions of (5), respectively.

As we will see in this chapter, the modal μ-calculus allows one to explicitly refer to such smallest and largest solutions. For instance, as we will see further on, the smallest and largest solution of the 'equation' (5) will be written as $\mu x \cdot p \vee\langle d\rangle x$ and $\nu x \cdot p \vee\langle d\rangle x$, respectively. Generally, the basic idea underlying the modal μ-calculus is to enrich the language of basic modal logic with two explicit fixpoint operators, μ and ν, respectively. Syntacticlly, these operators behave like quantifiers in first-order logic, in the sense that the application of a fixpoint operator μx to a formula φ binds all (free) occurrences of the proposition letter x in φ. The word 'fixpoint' indicates that semantically, the formulas $\mu x \varphi$ and $\nu x \varphi$ are both 'solutions' to the 'equation' $x \equiv \varphi(x)$, in the sense that, writing \equiv for semantic equivalence, we have both

$$
\begin{align*}
\mu x \varphi & \equiv \varphi[\mu x \varphi / x] \tag{6}\\
\text { and } \quad \nu x \varphi & \equiv \varphi[\nu x \varphi / x],
\end{align*}
$$

where $[\mu x . \varphi / x]$ denotes the operation of substituting $\mu x \varphi$ for every free occurrence of x. In other words, both $\mu x \varphi$ and $\nu x \varphi$ are equivalent to their respective unfoldings, $\varphi[\mu x \varphi / x]$ and $\varphi[\nu x \varphi / x]$.

To arrive at this semantics of modal fixpoint formulas one can take two roads. In Chapter 3 we will introduce the algebraic semantics of $\mu x \varphi$ and $\nu x \varphi$ in an LTS \mathbb{S}, in terms of the least and greatest fixpoint, respectively, of some algebraically defined meaning function. For this
purpose, we will consider the formula φ as an operation on the power set of (the state space of) \mathbb{S}, and we have to prove that this operation indeed has a least and a greatest fixpoint. As we will see, this formal definition of the semantics of the modal μ-calculus may be mathematically transparent, but it is of little help when it comes to unravelling and understanding the actual meaning of individual formulas. In practice, it is much easier to work with the evaluation games that we will introduce in this chapter.

This framework builds on the game-theoretical semantics for ordinary modal logic as described in Subsection 1.2, extending it with features for the fixpoint operators and for the bound variables of fixpoint formulas (such as x in the formula $\mu x . p \vee \diamond x$). The key difference lies in the fact that when a match of an evaluation game reaches a position of the form (x, s), with x a bound variable, then an equation such as (5) is used to unfold the variable x into its associated formula (in the example, the formula $p \vee \diamond x$).

As a consequence, the flavour of these games is remarkably different from the evaluation games we met before. Recall that in evaluation matches for basic modal formulas, the formula is broken down, step by step, until we can declare a winner of the match. From this it follows that the length of such a match is bounded by the length of the formula. Evaluation matches for fixpoint formulas, on the other hand, can last forever, if some fixpoint variables are unfolded infinitely often. Hence, the game-theoretic semantics for fixpoint logics takes us to the area of infinite games. In this Chapter we keep our treatment of infinite games informal, in Chapter 5 the reader can find precise definitions of all notions that we introduce here.

2.1 Basic syntax

Formulas

As announced already in the previous chapter, in the case of fixpoint formulas we will usually work with formulas in positive normal form in which the only admissible occurrences of the negation symbol is in front of atomic formulas.

Definition 2.2 Given a set D of atomic actions, we define llection $\mu \mathrm{ML}_{\mathrm{D}}$ of (poly-)modal fixpoint formulas as follows:

$$
\varphi::=\top|\perp| p|\bar{p}|(\varphi \wedge \varphi)|(\varphi \vee \varphi)| \diamond_{d \varphi}\left|\square_{d} \varphi\right| \mu x \varphi \mid \nu x \varphi
$$

where p and x are propositional variables, and $d \in \mathrm{D}$. There is a restriction on the formation of the formulas $\mu x \varphi$ and $\nu x \varphi$, namely, that the formula φ is positive in x. That is, all occurrences of x in φ are positive, or, phrasing it yet differently, no occurrence of x in φ may be in the form of the negative literal \bar{x}.

In case the set D of atomic actions is a singleton, we will simply speak of the modal μ-calculus, notation: $\mu \mathrm{ML}$.

The syntactic combinations μx and νx are called the least and greatest fixpoint operators, respectively. We use the symbols η and λ to denote either μ or ν, and we define $\bar{\mu}:=\nu$ and $\bar{\nu}:=\mu$.

A formula of the form $\eta x \varphi$ is called a fixpoint formula, and, more specifically, a μ-formula if $\eta=\mu$ and a ν-formula if $\eta=\nu$. Furthermore, conjunctions and disjunctions will sometimes
be called boolean $\mu \mathrm{ML}$-formulas, and formulas of the form $\diamond_{d} \varphi$ or \square_{d} will sometimes be called modal.

Convention 2.3 In order to increase readability by reducing the number of brackets, we adopt some standard scope conventions. We let the unary modal connectives, \diamond and \square, bind stronger than the binary propositional connectives \wedge, \vee and \rightarrow, and use associativity to the left for the connectives \wedge and \vee. As an example, we will abbreviate the formula ($\diamond p \wedge q$) as $\diamond p \wedge q$.

Furthermore, we use 'dot notation' to indicate that the fixpoint operators preceding the dot have maximal scope. For instance, $\mu p . \diamond p \wedge q$ denotes the formula $\mu p(\diamond p \wedge q)$, and not the formula $((\mu p \diamond p) \wedge q)$. As a final example, $\mu x . \bar{p} \vee \square x \vee y \vee \nu y \cdot q \wedge \square(x \vee y)$ stands for $\mu x(((\bar{p} \vee \square x) \vee y) \vee \nu y(q \wedge \square(x \vee y)))$.

Remark 2.4 An alternative definition of the language of the modal μ-calculus makes a distinction between propositional variables and proposition letters. Formulas are now defined as follows:

$$
\varphi::=\top|\perp| p|\bar{p}| x|(\varphi \wedge \varphi)|(\varphi \vee \varphi)\left|\diamond_{d} \varphi\right| \square_{d} \varphi|\mu x \varphi| \nu x \varphi
$$

where p is a proposition letter, x a propositional variable, and d is an atomic action. In this framework, only propositional variables can be bound.

Length and syntax tree of a formula

There are various ways to measure a μ-calculus formula. The most basic measure of a formula is its length, which basically corresponds to its number of symbols.

Definition 2.5 Given a μ-calculus formula ξ, we define its length $|\xi|^{\ell}$ inductively as follows:

$$
\begin{array}{lll}
|\varphi|^{\ell} & :=1 & \text { if } \varphi \text { is atomic } \\
\left|\varphi_{0} \circledast \varphi_{1}\right|^{\ell} & :=1+\left|\varphi_{0}\right|^{\ell}+\left|\varphi_{1}\right|^{\ell} & \text { where } \circledast \in\{\wedge, \vee\} \\
|\circlearrowleft \varphi|^{\ell} & :=1+|\varphi|^{\ell} & \text { where } \circlearrowleft \in\{\diamond, \square\} \\
|\eta x . \varphi|^{\ell} & :=1+|\varphi|^{\ell} & \text { where } \eta \in\{\mu, \nu\}
\end{array}
$$

We assume that the reader is familiar with the concept of the syntax tree or construction tree \mathbb{T}_{ξ} of a formula ξ. We will not give a formal definition of this structure, but confine ourselves to an example: in Figure 2.1 we display the syntax tree of the μ-calculus formula $\mu x .(\bar{p} \vee \diamond x) \vee \nu y .(q \wedge \square(x \vee y))$. Note that the length of a formula corresponds to the number of nodes of its syntax tree, and that an occurrence of a certain symbol in a formula may be associated with some node in the formula's syntax tree that is labelled with that symbol; occurrences of literals correspond to leaves of the tree.

Figure 1: A syntax tree

Subformulas and free/bound variables

The concepts of subformula and proper subformula are extended from basic modal logic to the modal μ-calculus in the obvious way.

Definition 2.6 We define the set $S f_{0}(\xi)$ of direct subformulas of a formula $\xi \in \mu \mathrm{ML}$ via the following case distinction:

$$
\begin{array}{lll}
S f_{0}(\xi) & :=\varnothing & \text { if } \xi \in \operatorname{At}(\mathrm{P}) \\
S f_{0}\left(\xi_{0} \circledast \xi_{1}\right) & :=\left\{\xi_{0}, \xi_{1}\right\} & \text { where } \circledast \in\{\wedge, \vee\} \\
S f_{0}\left(\triangle \xi_{0}\right) & :=\left\{\xi_{0}\right\} & \text { where } \oslash \in\{\diamond, \square\} \\
S f_{0}\left(\eta x . \xi_{0}\right) & :=\left\{\xi_{0}\right\} & \text { where } \eta \in\{\mu, \nu\},
\end{array}
$$

and we write $\varphi \triangleleft_{0} \xi$ if $\varphi \in S f_{0}(\xi)$.
For any formula $\xi \in \mu \mathrm{ML}, \operatorname{Sf}(\xi)$ is the least set of formulas which contains ξ and is closed under taking direct subformulas. Elements of the set $S f(\xi)$ are called subformulas of ξ, and we write $\varphi 太 \xi(\varphi \triangleleft \psi)$ if φ is a subformula (proper subformula, respectively) of ξ.

The (subformula) dag of a formula ξ is defined as the directed acyclic graph $\left(S f(\xi), \triangleright_{0}\right)$, where \triangleright_{0} is the converse of the direct subformula relation \triangleleft_{0}.

- Give an example comparing the syntax tree of a formula to its subformula dag.

Syntactically, the fixpoint operators are very similar to the quantifiers of first-order logic in the way they bind variables.

Definition 2.7 Fix a formula φ. The sets $F V(\varphi)$ and $B V(\varphi)$ of free and bound variables of φ are defined by the following induction on φ :

$$
\begin{array}{llll}
F V(\perp) & :=\varnothing & B V(\perp) & :=\varnothing \\
F V(\top) & :=\varnothing & B V(\top) & :=\varnothing \\
F V(p) & :=\{p\} & B V(p) & :=\varnothing \\
F V(\bar{p}) & :=\{p\} & B V(\bar{p}) & :=\varnothing \\
F V(\varphi \vee \psi) & :=F V(\varphi) \cup F V(\psi) & B V(\varphi \vee \psi) & :=B V(\varphi) \cup B V(\psi) \\
F V(\varphi \wedge \psi) & :=F V(\varphi) \cup F V(\psi) & B V(\varphi \wedge \psi) & :=B V(\varphi) \cup B V(\psi) \\
F V\left(\diamond_{d \varphi)}\right) & :=F V(\varphi) & B V\left(\diamond_{d \varphi)}\right. & :=B V(\varphi) \\
F V\left(\square_{d} \varphi\right) & :=F V(\varphi) & B V\left(\square_{d} \varphi\right) & :=B V(\varphi) \\
F V(\eta x \cdot \varphi) & :=F V(\varphi) \backslash\{x\} & B V(\eta x \cdot \varphi) & :=B V(\varphi) \cup\{x\}
\end{array}
$$

For a finite set of propositional variables P , we let $\mu \mathrm{ML}_{\mathrm{D}}(\mathrm{P})$ denote the set of $\mu \mathrm{ML}_{\mathrm{D}}$-formulas φ of which all free variables belong to P .

Formulas like $x \vee \mu x$. ($p \vee x) \wedge \square \nu x . \diamond x)$ may be well formed, but in practice they are very hard to read and to work with. In the sequel we will often work with formulas in which every bound variable uniquely determines a subformula where it is bound, and almost exclusively with formulas in which no variable has both free and bound occurrences in φ.

Definition 2.8 A formula $\varphi \in \mu \mathrm{ML}_{\mathrm{D}}$ is tidy if $F V(\varphi) \cap B V(\varphi)=\varnothing$, and clean if in addition with every bound variable x of φ we may associate a unique subformula of the form $\eta x . \delta$. In the latter case we let $\varphi_{x}=\eta_{x} x . \delta_{x}$ denote this unique subformula.

Convention 2.9 As a notational convention, we will use the letters p, q, r, \ldots and x, y, z, \ldots to denote, respectively, the free and the bound propositional variables of a $\mu \mathrm{ML}_{\mathrm{D}}$-formula. This convention can be no more than a guideline, since the division between bound and free variables may not be the same for a formula and its subformulas. For instance, the variable x is bound in $\mu x . p \vee \diamond x$, but free in its subformula $p \vee \diamond x$.

Remark 2.10 In the alternative definition of the language of the modal μ-calculus as discussed in Remark 2.4, just like in first-order logic one makes a difference between open formulas (which may contain free variables) and sentences (which may not). Observe that the sentences correspond to the tidy formulas in our framework. For instance, $\mu x(p \vee \diamond x)$ is a sentence, $\mu x(y \vee \diamond x)$ is an open formula, and $\mu p(x \vee \diamond p)$ is not a well-formed formula (assuming that p is a proposition letter, and x is a variable).

Substitution \& unfolding

The syntactic operation of substitution is ubiquitous in any account of the modal μ-calculus, first of all because it features in the basic operation of unfolding a fixpoint formula. As usual in the context of a formal language featuring operators that bind variables, the precise definition of a substitution operation needs some care. In particular, we need to protect the substitution operation from variable capture.

Example 2.11 To give a concrete example, suppose that we would naively define a substitution operation ψ / x by defining $\varphi[\psi / x]$ to be the formula we obtain from the formula φ by replacing every free occurrences of x with the formula ψ. Now consider the formula $\varphi(q)=\mu p . q \vee \diamond p$ expressing the reachability of a q-state in finitely many steps. If we substitute p for q in φ, we would expect the resulting formula to express the reachability of a p-state in finitely many steps, but the formula we obtain is $\varphi[p / q]=\mu p . p \vee \diamond p$, which says something rather different (in fact, it happens to be equivalent to \perp). Even worse, the substitution $[\bar{p} / q]$ would produce a syntactic string $\varphi[\bar{p} / q]=\mu p \cdot \bar{p} \vee \diamond p$ which is not even a well-formed formula. \triangleleft

To avoid such anomalies, for the time being we shall only consider substitutions ξ / x applied to formulas where ξ is free for x.

Definition 2.12 Let ξ and x be respectively a modal μ-calculus formula and a propositional variable. We define what it means for ξ to be free for x in a formula φ by the following induction on the complexity of φ :

- if φ is an atomic formula then ξ is free for x in φ, unless $\varphi=\bar{x}^{1}$;
- ξ is free for x in $\varphi_{0} \circledast \varphi_{1}$ if it is free for x in both φ_{0} and φ_{1};
- ξ is free for x in $\triangle \psi$ if it is free for x in ψ;
- ξ is free for x in $\eta y \psi$ if $x \notin F V(\eta y \psi)$ or if $y \notin F V(\xi)$ and ξ is free for x in ψ.

Informally, ξ is free for x in φ if φ is positive in x and no free variable in ξ gets bound, after substitution, by a fixpoint operator in φ. A special case of this, that we shall encounter frequently, is the following.

Proposition 2.13 Let φ, ξ and x be respectively two modal μ-calculus formulas and a propositional variable, such that $F V(\xi) \cap B V(\varphi) \subseteq\{x\}$. Then ξ is free for x in φ.

Definition 2.14 Let $\left\{\xi_{z} \mid z \in Z\right\}$ be a set of modal μ-calculus formulas, indexed by a set of variables Z, let $\varphi \in \mu \mathrm{ML}$ be positive in each $z \in Z$, and assume that each ξ_{z} is free for z in φ. We inductively define the simultaneous substitution $\left[\xi_{z} / z \mid z \in Z\right]$ as the following operation on $\mu \mathrm{ML}$:

$$
\begin{aligned}
& \varphi\left[\xi_{z} / z \mid z \in Z\right] \quad:= \begin{cases}\xi_{z} & \text { if } \varphi=z \in Z \\
\varphi & \text { if } \varphi \text { is atomic but } \varphi \notin Z\end{cases} \\
& (\bigcirc \psi)\left[\xi_{z} / z \mid z \in Z\right] \quad:=\bigcirc \psi\left[\xi_{z} / z \mid z \in Z\right] \\
& \left(\varphi_{0} \circledast \varphi_{1}\right)\left[\xi_{z} / z \mid z \in Z\right]:=\varphi_{0}\left[\xi_{z} / z \mid z \in Z\right] \circledast \varphi_{1}\left[\xi_{z} / z \mid z \in Z\right] \\
& (\eta x . \psi)\left[\xi_{z} / z \mid z \in Z\right] \quad:=\eta x \cdot \psi\left[\xi_{z} / z \mid z \in Z \backslash\{x\}\right]
\end{aligned}
$$

[^0]In case Z is a singleton, say $Z=\{z\}$, we will simply write $\varphi\left[\xi_{z} / z\right]$, or $\varphi(\xi)$ if z is understood. \triangleleft

- Add some examples

Remark 2.15 In case ψ is not free for some $z \in Z$ in ξ, we take a standard approach using alphabetical variants. Roughly, two formulas are alphabetical variants if we can obtain one from the other by renaming bound variables. We then define a correct version of the substitution $\xi\left[\psi_{z} / z \mid z \in Z\right]$ as follows: first we take some canonically chosen alphabetical variant ξ^{\prime} of ξ such that each ψ_{z} is free for z in ξ^{\prime}, and then we set

$$
\xi\left[\psi_{z} / z \mid z \in Z\right]:=\xi^{\prime}\left[\psi_{z} / z \mid z \in Z\right] .
$$

However, in almost all situations that we will encounter we will only need perform substitutions that are 'safe' in the sense that the substituted formula is free for the variable it replaces. This means that generally we may avoid taking alphabetical variants. Situations where this is not the case will be explicitly marked. The reason for taking such care is that the operation of taking alphabetical variants is not completely harmless when it comes to size issues. We will come back to this matter in more detail later.

The following proposition is a well known observation in areas where syntax is used that features variable binding. Note however that our version below is a bit subtler than usual since we do not allow the renaming of bound variables.

Proposition 2.16 Let φ, χ and ρ be μ-calculus formulas, and let x and y be distinct variables such that x is free in φ but not in ρ. Furthermore, assume that χ is free for x in φ and that ρ is free for y in $\varphi[\chi / x]$. Then ρ is free for y in both φ and $\chi, \chi[\rho / y]$ is free for x in $\varphi[\rho / y]$, and we have

$$
\begin{equation*}
\varphi[\chi / x][\rho / y]=\varphi[\rho / y][(\chi[\rho / y]) / x] . \tag{7}
\end{equation*}
$$

Proof. The proposition can be proved by a straightforward but rather tedious induction on the complexity of φ. We omit details.

QED

Unfolding

The reason that the modal μ-calculus, and related formalisms, are called fixpoint logics is that, for $\eta=\mu / \nu$, the meaning of the formula $\eta x . \chi$ in a model \mathbb{S} is given as the least/greatest fixpoint of the semantic map expressing the dependence of the meaning of χ on (the meaning of) the variable x. As a consequence, the following equivalence lies at the heart of semantics of $\mu \mathrm{ML}$:

$$
\begin{equation*}
\eta x \cdot \chi \equiv \chi[\eta x \cdot \chi / x] \tag{8}
\end{equation*}
$$

In words: every formula is equivalent to its unfolding.
Definition 2.17 Given a formula $\eta x \cdot \chi \in \mu \mathrm{ML}$, we call the formula $\operatorname{unf}(\xi):=\chi[\eta x \cdot \chi / x]$ its unfolding.

Remark 2.18 Unfolding is the central operation in taking the closure of a formula that we are about to define. Unfortunately, the collection of clean formulas is not closed under unfolding (unless we take alphabetical variants). Consider for instance the formula $\varphi(p)=\nu q . \diamond q \wedge p$, then we see that the formula $\mu p . \varphi$ is clean, but its unfolding $\varphi[\mu p . \varphi / p]=\nu q . \diamond q \wedge \mu p \nu q . \diamond q \wedge p$ is not. Furthermore, our earlier observation that the naive version of substitution may produce 'formulas' that are not well-formed applies here as well. For instance, with χ denoting the formula $\bar{p} \wedge \nu p . \square(x \vee p)$, naively unfolding the (untidy) formula $\mu x \cdot \chi$ would produce the ungrammatical $\bar{p} \wedge \nu p . \square((\mu x . \bar{p} \wedge \nu p . \square(x \vee p)) \vee p)$.

Fortunately, the condition of tidyness guarantees that we may calculate unfoldings without moving to alphabetical variants, since we can prove that the formula $\eta x . \chi$ is free for x in χ, whenever $\eta x . \chi$ is tidy. In addition, tidyness is preserved under taking unfoldings.

Proposition 2.19 Let $\eta x . \chi \in \mu \mathrm{ML}$ be a tidy formula. Then

1) $\eta x \cdot \chi$ is free for x in χ;
2) $\chi[\eta x \cdot \chi / x]$ is tidy as well.

Proof. For part 1), take a variable $y \in F V(\eta x \cdot \chi)$. Then obviously y is distinct from x, while $y \notin B V(\eta x . \chi)$ by tidyness. Clearly then we find $y \notin B V(\chi)$; in other words, χ has no subformula of the form $\lambda y . \psi$. Hence it trivially follows that $\eta x . \chi$ is free for x in χ.

Part 2) is immediate by the following identities:

$$
\begin{array}{rll}
F V(\chi[\eta x \cdot \chi / x]) & =(F V(\chi) \backslash\{x\}) \cup F V(\eta x \cdot \chi) & =F V(\eta x \cdot \chi) \\
B V(\chi[\eta x \cdot \chi / x]) & =B V(\chi) \cup B V(\eta x \cdot \chi) & =B V(\eta x \cdot \chi)
\end{array}
$$

which can easily be proved.
QED

Dependency order

An important role in the theory of the modal μ-calculus is played by a certain order \leq_{ξ} on the bound variables of a formula ξ, with $x \leq y$ indicating that y is 'more significant' than x, in the sense that the meaning of x / δ_{x} is (in principle) dependent on the meaning of y / δ_{y}. The key situation where this happens is when y occurs freely in δ_{x}. Observe that this can only be the case if $\delta_{x} \preccurlyeq \delta_{y}$, so that the relation ' y occurs freely in δ_{x} ' does not have any cycles, and thus naturally induces a partial order.

Definition 2.20 Given a clean formula ξ, we define a dependency or subordination order \leq_{ξ} on the set $B V(\xi)$, saying that y ranks higher than x if $x \leq_{\xi} y$. The relation \leq_{ξ} is defined as the least partial order containing all pairs (x, y) such that $y \preccurlyeq \delta_{x} \preccurlyeq \delta_{y}$.

2.2 Game semantics

For a definition of the evaluation game of the modal μ-calculus, fix a clean formula ξ and an LTS \mathbb{S}. Basically, the game $\mathcal{E}(\xi, \mathbb{S})$ for ξ a fixpoint formula is defined in the same way as for plain modal logic formulas.

Definition 2.21 Given a clean modal μ-calculus formula ξ and a transition system \mathbb{S}, we define the evaluation game or model checking game $\mathcal{E}(\xi, \mathbb{S})$ as a board game with players \exists and \forall moving a token around positions of the form $(\varphi, s) \in S f(\xi) \times S$. The rules, determining the admissible moves from a given position, together with the player who is supposed to make this move, are given in Table 3.

As before, $\mathcal{E}(\xi, \mathbb{S}) @(\xi, s)$ denotes the instantiation of this game where the starting position is fixed as (ξ, s).

One might expect that the main difference with the evaluation game for basic modal formulas would involve the new formula constructors of the μ-calculus: the fixpoint operators. Perhaps surprisingly, we can deal with the fixpoint operators themselves in the most straightforward way possible, viz., by simply stripping them. That is, the successor of a position of the form ($\eta x . \delta, s$) is simply obtained as the pair (δ, s). (In section 2.5 we present an alternative version in which the formula $\eta x \delta$ is replaced with its unfolding). Since this next position is thus uniquely determined, the position $(\eta x . \delta, s)$ will not be assigned to either of the players.

The crucial difference lies in the treatment of the bound variables of a fixpoint formula ξ. Previously, all positions of the form (p, s) would be final positions of the game, immediately determining the winner of the match, and this is still the case here if p is a free variable. However, at a position (x, s) with x bound, the fixpoint variable x gets unfolded; this means that the new position is given as $\left(\delta_{x}, s\right)$, where $\eta_{x} x . \delta_{x}$ is the unique subformula of ξ where x is bound. Note that for this to be well defined, we need ξ to be clean. The disjointness of $F V(\xi)$ and $B V(\xi)$ ensures that it is always clear whether a variable is to be unfolded or not, and the fact that bound variables are bound by unique occurrences of fixpoint operators guarantees that δ_{x} is uniquely determined. Finally, since in this case the next position is also completely determined by the current one, positions of the form (x, s) with x bound are assigned to neither of the players.

Position	Player	Admissible moves
$\left(\varphi_{1} \vee \varphi_{2}, s\right)$	\exists	$\left\{\left(\varphi_{1}, s\right),\left(\varphi_{2}, s\right)\right\}$
$\left(\varphi_{1} \wedge \varphi_{2}, s\right)$	\forall	$\left\{\left(\varphi_{1}, s\right),\left(\varphi_{2}, s\right)\right\}$
$\left(\diamond_{d} \varphi, s\right)$	\exists	$\left\{(\varphi, t) \mid t \in \sigma_{d}(s)\right\}$
$\left(\square_{d} \varphi, s\right)$	\forall	$\left\{(\varphi, t) \mid t \in \sigma_{d}(s)\right\}$
(\perp, s)	\exists	\varnothing
(\top, s)	\forall	\varnothing
(p, s), with $p \in F V(\xi)$ and $s \in V(p)$	\forall	\varnothing
(p, s), with $p \in F V(\xi)$ and $s \notin V(p)$	\exists	\varnothing
(\bar{p}, s), with $p \in F V(\xi)$ and $s \in V(p)$	\exists	\varnothing
(\bar{p}, s), with $p \in F V(\xi)$ and $s \notin V(p)$	\forall	\varnothing
$\left(\eta_{x} x . \delta_{x}, s\right)$	-	$\left\{\left(\delta_{x}, s\right)\right\}$
(x, s), with $x \in B V(\xi)$	-	$\left\{\left(\delta_{x}, s\right)\right\}$

Table 3: Evaluation game for modal fixpoint logic

Example 2.22 Let $\mathbb{S}=\langle S, R, V\rangle$ be the Kripke model based on the set $S=\{0,1,2\}$, with $R=\{(0,1),(1,1),(1,2),(2,2)\}$, and V given by $V(p)=\{2\}$. Now let ξ be the formula $\eta x . p \vee \square x$, and consider the game $\mathcal{E}(\xi, \mathbb{S})$ initialized at $(\xi, 0)$.

The second position of any match of this game will be $(p \vee \square x, 0)$ belonging to \exists. Assuming that she wants to win, she chooses the disjunct $\square x$ since otherwise p being false at 0 would mean an immediate loss for her. Now the position ($\square x, 0)$ belongs to \forall and he will make the only move allowed to him, choosing $(x, 1)$ as the next position. Here an automatic move is made, unfolding the variable x, and thus changing the position to ($p \vee \square x, 1$). And as before, \exists will choose the right disjunct: $(\square x, 1)$.

At $(\square x, 1), \forall$ does have a choice. Choosing $(x, 2)$, however, would mean that \exists wins the match since p being true at 2 enables her to finally choose the first disjunct of the formula $p \vee \square x$. So \forall chooses ($x, 1$), a position already visited by the match before.

This means that these strategies force the match to be infinite, with the variable x unfolding infinitely often at positions of the form $(x, 1)$, and the match taking the following form:

$$
(\xi, 0)(p \vee \square x, 0)(\square x, 0)(x, 1)(p \vee \square x, 1)(\square x, 1)(x, 1)(p \vee \square x, 1) \ldots
$$

So who is declared to be the winner of this match? This is where the difference between the two fixpoint operators shows up. In case $\eta=\mu$, the above infinite match is lost by \exists since the fixpoint variable that is unfolded infinitely often is a μ-variable, and μ-variables are to be unfolded only finitely often. In case $\eta=\nu$, the variable unfolded infinitely often is a ν-variable, and this is unproblematic: \exists wins the match.

The above example shows the principle of unfolding at work. Its effect is that matches may now be of infinite length since formulas are no longer deconstructed at every move of the game. Nevertheless, as we will see, it will still be very useful to declare a winner of such an infinite game. Here we arrive at one of the key ideas underlying the semantics of fixpoint formulas, which in a slogan can be formulated as follows:
ν means unfolding, μ means finite unfolding.
Giving a more detailed interpretation to this slogan, in case of a unique variable that is unfolded infinitely often during a match π, we will declare \exists to be the winner of π if this variable is a ν-variable, and \forall in case we are dealing with a μ-variable. But what happens in case that various variables are unfolded infinitely often? As we shall see, in these cases there is always a unique such variable that ranks higher than any other such variable.

Definition 2.23 Let ξ be a clean $\mu \mathrm{ML}_{\mathrm{D}}$-formula, and \mathbb{S} a labelled transition system. A match of the game $\mathcal{E}(\xi, \mathbb{S})$ is a (finite or infinite) sequence of positions

$$
\pi=\left(\varphi_{i}, s_{i}\right)_{i<\kappa}
$$

(where κ is either a natural number or ω) which is in accordance with the rules of the evaluation game - that is, π is a path through the game graph given by the admissibility relation of Table 3. A full match is either an infinite match, or a finite match in which the
player responsible for the last position got stuck. In practice we will always refer to full matches simply as matches. A match that is not full is called partial.

Given an infinite match π, we let $U n f^{\infty}(\pi) \subseteq B V(\xi)$ denote the set of variables that are unfolded infinitely often during π.

Proposition 2.24 Let ξ be a clean $\mu \mathrm{ML}_{\mathrm{D}}$-formula, and \mathbb{S} a labelled transition system. Then for any infinite match π of the game $\mathcal{E}(\xi, \mathbb{S})$, the set $\operatorname{Unf}^{\infty}(\pi)$ has a highest ranking member, in terms of the dependency order of Definition 2.20.

Proof. Since π is an infinite match, the set $U:=U n f^{\infty}(\pi)$ is not empty. Let y be an element of U which is maximal (with respect to the ranking order \leq_{ξ}) - such an element exists since U is finite. We claim that

$$
\begin{equation*}
\text { from some moment on, } \pi \text { only features subformulas of } \delta_{y} \text {. } \tag{9}
\end{equation*}
$$

To prove this, note that since y is \leq_{ξ}-maximal in U, there must be a position in π such that y is unfolded to δ_{y}, while no variable $z>_{\xi} y$ is unfolded at any later position in π. But then a straightforward induction shows that all formulas featuring at later positions must be subformulas of δ_{y} : the key observation here is that if $z \geqq \delta_{y}$ unfolds to δ_{z}, and by assumption $z \not_{\xi} y$, then it must be the case that $\delta_{z} \preccurlyeq \delta_{y}$.

As a corollary of (9), we claim that

$$
\begin{equation*}
y \text { is in fact the maximum of } U \text { (with respect to } \leq_{\xi} \text {). } \tag{10}
\end{equation*}
$$

To see this, suppose for contradiction that there is a variable $x \in U$ which is not below y. It follows from (9) that $\delta_{x} \leqslant \delta_{y}$, and without loss of generality we may assume x to be such that δ_{x} is a maximal subformula of δ_{y} such that $x \mathbb{Z}_{\xi} y$ (in the sense that $z \leq_{\xi} y$ for all $z \in U$ with $\delta_{x} \triangleleft \delta_{z}$.) In particular then we have $y \notin F V\left(\delta_{x}\right)$. But since y is unfolded infinitely often, there must be a variable $z \in F V\left(\delta_{x}\right)$ which allows π to 'leave' δ_{x} infinitely often; this means that $z \in U, \delta_{x} \Vdash \delta_{z}$ but $\delta_{z} \notin \delta_{x}$. From this it is immediate that $x \leq_{\xi} z$, while from $z \in U$ and (9) we obtain $\delta_{z} \& \delta_{y}$. It now follows from our maximality assumption on x that $z \leq_{\xi} y$. But then by transitivity of \leq_{ξ} we find that $x \leq_{\xi} y$ indeed. In other words, we have arrived at the desired contradiction.

This shows that (10) holds indeed, and from this the Proposition is immediate. QED
Given this result, there is now a natural formulation of the winning conditions for infinite matches of evaluation games.

Definition 2.25 Let ξ be a clean $\mu \mathrm{ML}_{\mathrm{D}}$-formula. The winning conditions of the game $\mathcal{E}(\xi, \mathbb{S})$ are given in Table 4.

We can now formulate the game-theoretic semantics of the modal μ-calculus as follows.
Definition 2.26 Let ξ be a clean formula of the modal μ-calculus, and let \mathbb{S} be a transition system of the appropriate type. Then we say that ξ is (game-theoretically) satisfied at s, notation: $\mathbb{S}, s \Vdash_{g} \xi$ if $(\xi, s) \in \operatorname{Win}_{\exists}(\mathcal{E}(\xi, \mathbb{S}))$.

	\exists wins π	\forall wins π
π is finite	\forall got stuck	\exists got stuck
π is infinite	$\max \left(U n f^{\infty}(\pi)\right)$ is a ν-variable	$\max \left(U n f^{\infty}(\pi)\right)$ is a μ-variable

Table 4: Winning conditions of $\mathcal{E}(\xi, \mathbb{S})$

Remark 2.27 As mentioned we have kept this introduction to evaluation games for fixpoint formulas rather informal, referring to Chapter 5 for a more rigorous discussion of infinite games. Nevertheless, we want to mention already here that evaluation games, on the ground of being so-called parity games, have two very useful properties that make them attractive to work with. To start with, every evaluation game is determined in the sense that every position is winning for exactly one of the two players. And second, one may show that winning strategies for either player of an evaluation game, can always be assumed to be positional, that is, do not depend on moves made earlier in the match, but only on the current position. Combining this, evaluation games enjoy positional determinacy; that is, every position (φ, s) is winning for exactly one of the two players, and each player $\Pi \in\{\exists, \forall\}$ has a positional strategy f_{Π} which is winning for the game $\mathcal{E}(\xi, \mathbb{S}) @(\varphi, s)$ for every position (φ, s) that is winning for Π.

Remark 2.28 Observe that we have defined the game-theoretic semantics for clean formula only. In the next section we define an alternative version of the evaluation game which works for arbitrary tidy formulas.

It is certainly possible to extend this definition to arbitrary fixpoint formulas; a straightforward approach would be to involve the construction tree of a non-clean formula ξ, and redefine a position of the evaluation game $\mathcal{E}(\xi, \mathbb{S})$ to be a pair, consisting of a node in this construction tree and a point in the Kripke structure. Alternatively, one may work with a clean alphabetical variant of the formula ξ; once we have given the algebraic semantics for arbitrary formulas, it is not hard to show that in that semantics, alphabetic variants are equivalent.

2.3 Examples

Example 2.29 As a first example, consider the formulas $\eta x . p \vee x$, and fix a Kripke model \mathbb{S}. Observe that any match of the evaluation game $\mathcal{E}(\eta x . p \vee x, \mathbb{S})$ starting at position $(\eta x . p \vee x, s)$ immediately proceeds to position $(p \vee x, s)$, after which \exists can make a choice. In case η is the least fixpoint operator, $\eta=\mu$, we claim that

$$
\mathbb{S}, s \Vdash_{g} \mu x . p \vee x \text { iff } s \in V(p)
$$

For the direction from right to left, assume that $s \in V(p)$. Now, if \exists chooses the disjunct p at the position $(s, p \vee x)$, she wins the match because \forall will get stuck at (s, p). Hence $s \in \operatorname{Win}_{\exists}(\mathcal{E}(\mu x . p \vee x, \mathbb{S}))$.

On the other hand, if $s \notin V(p)$, then \exists will lose if she chooses the disjunct p at position $(s, p \vee x)$. So she must choose the disjunct x which then unfolds to $p \vee x$ so that \exists is back
at the position ($s, p \vee x$). Thus if \exists does not want to get stuck, her only way to survive is to keep playing the position (s, x), thus causing the match to be infinite. But such a match is won by \forall since the only variable that gets unfolded infinitely often is a μ-variable. Hence in this case we see that $s \notin \mathrm{Win}_{\exists}(\mathcal{E}(\nu x . p \vee x, \mathbb{S}))$.

If on the other hand we consider the case where $\eta=\nu$, then \exists can win any match:

$$
\mathbb{S}, s \Vdash_{g} \nu x . p \vee x .
$$

It is easy to see that now, the strategy of always choosing the disjunct x at a position of the form $(s, p \vee x)$ is winning. For, it forces all games to be infinite, and since the only fixpoint variable that gets ever unfolded here is a ν-variable, all infinite matches are won by \exists.

Concluding, we see that $\mu x . p \vee x$ is equivalent to the formula p, and $\nu x . p \vee x$, to the formula T.

Example 2.30 Now we turn to the formulas $\mu x . \diamond x$ and $\nu x . \diamond x$. First consider how a match for any of these formulas proceeds. The first two positions of such a match will be of the form $(\eta x . \diamond x, s)(\diamond x, s)$, at which point it is \exists 's turn to make a move. Now she either is stuck (in case the state s has no successor) or else the next two positions are $(x, t)(\diamond x, t)$ for some successor t of s, chosen by \exists. Continuing this analysis, we see that there are two possibilities for a match of the game $\mathcal{E}(\eta x . \diamond x, \mathbb{S})$:

1. the match is an infinite sequence of positions

$$
\left(\eta x . \diamond x, s_{0}\right)\left(\diamond x, s_{0}\right)\left(x, s_{1}\right)\left(\diamond x, s_{1}\right)\left(x, s_{2}\right) \ldots
$$

corresponding to an infinite path $s_{0} R s_{1} R s_{2} R \ldots$ through \mathbb{S}.
2. the match is a finite sequence of positions

$$
\left(\eta x . \diamond x, s_{0}\right)\left(\diamond x, s_{0}\right)\left(x, s_{1}\right)\left(\diamond x, s_{1}\right) \ldots\left(\diamond x, s_{k}\right)
$$

corresponding to a finite path $s_{0} R s_{1} R \ldots s_{k}$ through \mathbb{S}, where s_{k} has no successors.
Note too that in either case it is only \exists who has turns, and that her strategy corresponds to choosing a path through \mathbb{S}. From this it is easy to derive that

- $\mu x . \diamond x$ is equivalent to the formula \perp,
- $\mathbb{S}, s \Vdash_{g} \nu x$. $\diamond x$ iff there is an infinite path starting at s.
- Until operator

The examples that we have considered so far involved only a single fixpoint operator. We now look at an example containing both a least and a greatest fixpoint operator.

Example 2.31 Let ξ be the following formula:

$$
\xi=\nu x \cdot \mu y \cdot \underbrace{(p \wedge \diamond x)}_{\alpha_{p}} \vee \underbrace{(\bar{p} \wedge \diamond y)}_{\alpha_{\bar{p}}}
$$

Then we claim that for any LTS \mathbb{S}, and any state s in \mathbb{S} :

$$
\begin{equation*}
\mathbb{S}, s \Vdash_{g} \xi \text { iff there is some path from } s \text { on which } p \text { is true infinitely often. } \tag{11}
\end{equation*}
$$

To see this, first suppose that there is a path $\pi=s_{0} s_{1} s_{2} \ldots$ as described in the right hand side of (11) and suppose that \exists plays according to the following strategy:
(a) at a position $\left(\alpha_{p} \vee \alpha_{\bar{p}}, t\right)$, choose $\left(\alpha_{p}, t\right)$ if $\mathbb{S}, t \Vdash_{g} p$ and choose $\left(\alpha_{\bar{p}}, t\right)$ otherwise;
(b) at a position $(\diamond \varphi, t)$, distinguish cases:

- if the match so far has followed the path, with $t=s_{k}$, choose $\left(\varphi, s_{k+1}\right)$;
- otherwise, choose an arbitrary successor (if possible).

We claim that this is a winning strategy for \exists in the evaluation game initialized at (ξ, s). Indeed, since \exists always chooses the propositionally safe disjunct of $\alpha_{p} \vee \alpha_{\bar{p}}$, she forces \forall, when faced with a position of the form $\left(\alpha_{ \pm p}, t\right)=\left(\pm p \wedge \diamond_{z}, t\right)$ to always choose the diamond conjunct $\diamond z$, or lose immediately. In this way she guarantees to always get to positions of the form $\left(\diamond z, s_{i}\right)$, and thus she can force the match to last infinitely long, following the infinite path π. But why does she actually win this match? The point is that, whenever she chooses α_{p}, three positions later, x will be unfolded, and likewise with $\alpha_{\bar{p}}$ and y. Thus, p being true infinitely often on π means that the ν-variable x gets unfolded infinitely often. And so, even though the μ-variable y might get unfolded infinitely often as well, she wins the match since x ranks higher than y anyway.

For the other direction, assume that $\mathbb{S}, s \Vdash_{g} \xi$ so that \exists has a winning strategy in the game $\mathcal{E}(\xi, \mathbb{S})$ initialized at (ξ, s). It should be clear that any winning strategy must follow (a) above. So whenever \forall faces a position ($p \wedge \diamond z, t$), p will be true, and likewise with positions ($\bar{p} \wedge \diamond z, t)$. Now consider a match in which \forall plays propositionally sound, that is, always chooses the diamond conjunct of these positions. This match must be infinite since both players will stay alive forever: \forall because he can always choose a diamond conjunct, and \exists because we assumed her strategy to be winning. But a second consequence of \exists playing a winning strategy, is that it cannot happen that y is unfolded infinitely often, while x is not. So x is unfolded infinitely often, and as before, x only gets unfolded right after the match passed a world where p is true. Thus the path chosen by \exists must contain infinitely many states where p holds.

2.4 Bisimulation invariance and the bounded tree model property

Given the game-theoretic characterization of the semantics, it is rather straightforward to prove that formulas of the modal μ-calculus are bisimulation invariant. From this it is immediate that the modal μ-calculus has the tree model property. But in fact, we can use the game semantics to do better than this, proving that every satisfiable modal fixpoint formula is satisfied in a tree of which the branching degree is bounded by the size of the formula.

Theorem 2.32 (Bisimulation Invariance) Let ξ be a modal fixpoint formula with $F V(\xi) \subseteq$ P , and let \mathbb{S} and \mathbb{S}^{\prime} be two labelled transition systems with points s and s^{\prime}, respectively. If $\mathbb{S}, s \unlhd_{\mathrm{P}} \mathbb{S}^{\prime}, s^{\prime}$, then

$$
\mathbb{S}, s \Vdash_{g} \xi \text { iff } \mathbb{S}^{\prime}, s^{\prime} \Vdash_{g} \xi .
$$

Proof. Assume that $s \overleftrightarrow{\mathrm{P}}_{\mathrm{P}} s^{\prime}$ and that $\mathbb{S}, s \Vdash_{g} \xi$, with $F V(\xi) \subseteq \mathrm{P}$. We will show that $\mathbb{S}^{\prime}, s^{\prime} \Vdash_{g} \xi$. By definition we may assume that \exists has a winning strategy f in the evaluation game $\mathcal{E}:=\mathcal{E}(\xi, \mathbb{S})$ initialized at (ξ, s); that is, given an f-guided partial \mathcal{E}-match π ending in a position for \exists, we let $f(\pi)$ denote the next position as determined by f.

We need to provide her with a winning strategy in the game $\mathcal{E}^{\prime}:=\mathcal{E}\left(\xi, \mathbb{S}^{\prime}\right) @\left(\xi, s^{\prime}\right)$. She obtains her strategy f^{\prime} in \mathcal{E}^{\prime} from playing a shadow match of \mathcal{E}, using the bisimilarity relation to guide her choices.

To see how this works, let's simply start with comparing the initial position $\left(\xi, s^{\prime}\right)$ of \mathcal{E}^{\prime} with its counterpart (ξ, s) of \mathcal{E}. (From now on we will write $s \overleftrightarrow{\unlhd} s^{\prime}$ instead of $s \not \overleftrightarrow{\mathrm{P}}^{\prime} s^{\prime}$).

- In case ξ is a literal, it is easy to see that both (ξ, s) and $\left(\xi, s^{\prime}\right)$ are final positions. Also, since f is assumed to be winning, ξ must be true at s, and so it must hold at s^{\prime} as well. Hence, \exists wins the match.

If ξ is not a literal, we distinguish cases.

- First suppose that $\xi=\xi_{1} \vee \xi_{2}$. If f tells \exists to choose disjunct ξ_{i} at (ξ, s), then she chooses the same disjunct ξ_{i} at position $\left(\xi, s^{\prime}\right)$. If $\xi=\xi_{1} \wedge \xi_{2}$, it is \forall who moves. Suppose in \mathcal{E}^{\prime} he chooses ξ_{i}, making $\left(\xi_{i}, s^{\prime}\right)$ the next position. We now consider in \mathcal{E} the same move of \forall, so that the next position in the shadow match is $\left(\xi_{i}, s\right)$.
- A third possibility is that $\xi=\diamond \psi$. In order to make her move at $\left(\xi, s^{\prime}\right)$, \exists first looks at (ξ, s). Since f is a winning strategy, it indeed picks a successor t of s. Then because $s \overleftrightarrow{\geqq} s^{\prime}$, there is a successor t^{\prime} of s^{\prime} such that $t \overleftrightarrow{\leftrightarrow} t^{\prime}$. This t^{\prime} is \exists 's move in \mathcal{E}^{\prime}, so that (ψ, t) and (ψ, t^{\prime}) are the next positions in \mathcal{E} and \mathcal{E}^{\prime}, respectively.
- If $\xi=\square \psi$, we are dealing again with positions for \forall. Suppose in \mathcal{E}^{\prime} he chooses the successor t^{\prime} of s^{\prime}, so that the next position is $\left(\psi, t^{\prime}\right)$. (In case s^{\prime} has no successors, \forall immediately loses, so that there is nothing left to prove.) Now again we turn to the shadow match; by bisimilarity of s and s^{\prime} there is a successor t of s such that $t \overleftrightarrow{t} t^{\prime}$. So we may assume that \forall moves the game token of \mathcal{E} to position (ψ, t).
- Finally, if $\xi=\eta x \delta_{x}$ then the next positions in \mathcal{E} and \mathcal{E}^{\prime} are, respectively, (δ_{x}, s) and $\left(\delta_{x}, s^{\prime}\right)$.

The crucial observation is that if \exists does not win immediately, then at least she can guarantee that the next positions in \mathcal{E} and \mathcal{E}^{\prime} are of the form (φ, u) and $\left(\varphi, u^{\prime}\right)$ respectively, with $u \overleftrightarrow{\leftrightarrow} u^{\prime}$, and such that the move in \mathcal{E} is consistent with f. We may in fact show that she can maintain this condition throughout the match, and it is not hard to see that she can construct a winning strategy based on this.

Making this proof sketch a bit more precise, we introduce some terminology (anticipating the formal treatment of games in Chapter 5). Generally we identify matches of a game with certain sequences of positions in that game, and we say that a match $\pi=p_{0} p_{1} \ldots p_{n}$ is guided by a strategy f for player $\Pi \in\{\exists, \forall\}$ if for every $i<n$ such that position p_{i} belongs to Π, the next position p_{i+1} is indeed the position dictated by the strategy f. In the context of this particular proof we say that an \mathcal{E}^{\prime}-match $\pi^{\prime}=\left(\varphi_{0}^{\prime}, s_{0}^{\prime}\right)\left(\varphi_{1}^{\prime}, s_{1}^{\prime}\right) \ldots\left(\varphi_{n}^{\prime}, s_{n}^{\prime}\right)$ is linked to an
\mathcal{E}-match $\pi=\left(\varphi_{0}, s_{0}\right)\left(\varphi_{1}, s_{1}\right) \ldots\left(\varphi_{n}, s_{n}\right)$ (of the same length), if $\varphi_{i}^{\prime}=\varphi_{i}$ and $\mathbb{S}^{\prime}, s_{i}^{\prime} \overleftrightarrow{\mathbb{S}}, s_{i}$ for all i with $0 \leq i \leq n$. The key claim in the proof states that, for a \mathcal{E}^{\prime}-match π^{\prime}, if \exists has established such a bisimilarity link with an \mathcal{E}-match that is f-guided, then she will either win the \mathcal{E}^{\prime}-game immediately, or else she can maintain the link during one further round of the game.

Claim 1 Let π^{\prime} be a finite \mathcal{E}^{\prime}-match, and assume that π^{\prime} is linked to some f-guided \mathcal{E}-match π. Then one of the following two cases apply.

1) both $\operatorname{last}\left(\pi^{\prime}\right)$ and $\operatorname{last}(\pi)$ are positions for \exists, and \exists can continue π^{\prime} with a legitimate move (φ, t^{\prime}) such that $\pi^{\prime} \cdot\left(\varphi, t^{\prime}\right)$ is bisimilarity-linked to $\pi \cdot(\varphi, t)$, where (φ, t) is the move dicated by f in π.
2) both $\operatorname{last}\left(\pi^{\prime}\right)$ and $\operatorname{last}(\pi)$ are positions for \forall, and for every move $\left(\varphi^{\prime}, t\right)$ for \forall in π^{\prime} there is a legitimate move (φ, t) for \forall in π such that $\pi^{\prime} \cdot\left(\varphi, t^{\prime}\right)$ is bisimilarity-linked to $\pi \cdot(\varphi, t)$.

The proof of this Claim proceeds via an obvious adaptation of the case-by-case argument just given for the initial positions of \mathcal{E}^{\prime} and \mathcal{E}. Omitting the details, we move on to show that based on Claim $1, \exists$ has a winning strategy in \mathcal{E}^{\prime}.

By a straightforward inductive argument we may provide \exists with a strategy f^{\prime} in \mathcal{E}^{\prime}, and show how to maintain, simultaneously, for every f^{\prime}-guided match π, an f-guided \mathcal{E} match which is linked to π^{\prime}. For the base case of this induction, simply observe that by the assumption that $\mathbb{S}, s \leftrightarrow \mathbb{S}^{\prime}, s^{\prime}$, the initial positions of \mathcal{E}^{\prime} and \mathcal{E} constitute linked (trivial) matches. For the inductive case we consider an f^{\prime}-guided \mathcal{E}^{\prime}-match π^{\prime}, and inductively assume that there is a bisimilarity-linked f-guided \mathcal{E}-match π. Now distinguish cases:

- If $\operatorname{last}\left(\pi^{\prime}\right)$ is a position for \exists, we use item 1) of Claim 1 to define her move $\left(\varphi, t^{\prime}\right)$; it follows that $\pi^{\prime} \cdot\left(\varphi, t^{\prime}\right)$ and $\pi \cdot(\varphi, t)$ are bisimilarity-linked (where (φ, t) is the move dicated by f in π).
- On the other hand, in case last $\left(\pi^{\prime}\right)$ is a position for \forall, assume that he makes some move, say, $\left(\psi, t^{\prime}\right)$; now we use item 2) of the claim to define a continuation $\pi \cdot(\psi, t)$ of π that is bisimilarity-linked to $\pi^{\prime} \cdot\left(\psi, t^{\prime}\right)$.

To see why the strategy f^{\prime} of \exists is winning for her, consider a full (i.e., finished) f^{\prime}-guided match π^{\prime}, and distinguish cases. If π^{\prime} is finite, this means that one of the players must be stuck, and we have to show that this player must be \forall. But we just showed that there must be an f-guided match π which is bisimilarity-linked to π^{\prime}. It follows from the definiton of linked matches that the final positions of π^{\prime} and π must be, respectively, of the form (φ, t^{\prime}) and (φ, t) for some formula φ and states t^{\prime}, t such that $\mathbb{S}^{\prime}, t^{\prime} \overleftrightarrow{\mathbb{S}, t}$. From this it is not hard to derive that the same player who got stuck in π^{\prime} also got stuck in π; and since π is guided by \exists 's supposedly winning strategy f, this player must be \forall indeed.

If π^{\prime} is infinite, say $\pi^{\prime}=\left(\varphi_{i}, s_{i}^{\prime}\right)_{i<\omega}$, the shadow \mathcal{E}-match maintained by \exists is infinite as well. More precisely, the inductive argument given above reveals the existence of an infinite, f-guided \mathcal{E}-match $\pi=\left(\varphi_{i}, s_{i}\right)_{i<\omega}$ such that $\mathbb{S}^{\prime}, s_{i}^{\prime} \leftrightarrows \mathbb{S}, s_{i}$ for all $i<\omega$. The key observation, however, is that the two sequences of formulas, in the \mathcal{E}^{\prime}-match π^{\prime} and its \mathcal{E}-shadow π, respectively, are exactly the same. This means that also in the infinite case the winner of π^{\prime} is the winner of π, and since π is f-guided, this winner must be \exists.

QED

As an immediate corollary, we obtain the tree model property for the modal μ-calculus.
Theorem 2.33 (Tree Model Property) Let ξ be a modal fixpoint formula. If ξ is satisfiable, then it is satisfiable at the root of a tree model.

Proof. For simplicity, we confine ourselves to the basic modal language. Suppose that ξ is satisfiable at state s of the Kripke model \mathbb{S}. Then by bisimulation invariance, ξ is satisfiable at the root of the unravelling $\overrightarrow{\mathbb{S}}_{s}$ of \mathbb{S} around s, cf. Definition 1.23. This unravelling clearly is a tree model.

QED
For the next theorem, recall that the size of a formula is simply defined as the number of its subformulas.

Theorem 2.34 (Bounded Tree Model Property) Let ξ be a modal fixpoint formula. If ξ is satisfiable, then it is satisfiable at the root of a tree, of which the branching degree is bounded by the size $|\xi|$ of the formula.

Proof. Suppose that ξ is satisfiable. By the Bisimulation Invariance Theorem it follows that ξ is satisfiable at the root r of some tree model $\mathbb{T}=\langle T, R, V\rangle$. So \exists has a winning strategy f in the game $\mathcal{E} @(\xi, r)$, where we abbreviate $\mathcal{E}:=\mathcal{E}(\xi, \mathbb{T})$. By the Positional Determinacy of the evaluation game, we may assume that this strategy is positional - this will simplify our argument a bit. We may thus represent this strategy as a map f that, among other things, maps positions of the form $(\diamond \varphi, s)$ to positions of the form (φ, t) with Rst.

We will prune the tree \mathbb{T}, keeping only the nodes that \exists needs in order to win the match. Formally, define subsets $\left(T_{n}\right)_{n \in \omega}$ as follows:

$$
\begin{array}{ll}
T_{0} & :=\{r\}, \\
T_{n+1} & :=T_{n} \cup\left\{s \mid(\varphi, s)=f(\diamond \varphi, t) \text { for some } t \in T_{n} \text { and } \diamond \varphi \bowtie \xi\right\}, \\
T_{\omega} & :=\bigcup_{n \in \omega} T_{n} .
\end{array}
$$

Let \mathbb{T}_{ω} be the subtree of \mathbb{T} based on T_{ω}. (Note that \mathbb{T}_{ω} is in general not a generated submodel of \mathbb{T} : not all successors of nodes in \mathbb{T}_{ω} need to belong to \mathbb{T}_{ω}.) From the construction it is obvious that the branching degree of \mathbb{T}_{ω} is bounded by the size of ξ, because ξ has at most $|\xi|$ diamond subformulas.

We claim that $\mathbb{T}_{\omega}, r \Vdash_{g} \xi$. To see why this is so, let $\mathcal{E}^{\prime}:=\mathcal{E}\left(\xi, \mathbb{T}_{\omega}\right)$ be the evaluation game played on the pruned tree. It suffices to show that the strategy f^{\prime}, defined as the restriction of f to positions of the game \mathcal{E}^{\prime}, is winning for \exists in the game starting at (ξ, r). Consider an arbitrary \mathcal{E}^{\prime}-match $\pi=(\xi, r)\left(\varphi_{1}, t_{1}\right) \ldots$ which is consistent with f^{\prime}. The key observation of the proof is that π is also a match of $\mathcal{E} @(\xi, r)$, that is consistent with f. To see this, simply observe that all moves of \forall in π could have been made in the game on \mathbb{T} as well, whereas by construction, all f^{\prime} moves of \exists in \mathcal{E}^{\prime} are f moves in \mathcal{E}.

Now by assumption, f is a winning strategy for \exists in \mathcal{E}, so she wins π in \mathcal{E}. But then π is winning as such, i.e., no matter whether we see it as a match in \mathcal{E} or in \mathcal{E}^{\prime}. In other words, π is also winning as an \mathcal{E}^{\prime}-match. And since π was an arbitrary \mathcal{E}^{\prime}-match starting at (ξ, r), this shows that f^{\prime} is a winning strategy, as required.

2.5 Traces, the closure map and the closure game

In this section we define an alternative version of the evaluation game for μ-calculus formulas, in which the equivalence

$$
\eta x \chi \equiv \chi[\eta x \chi / x]
$$

is exploited more directly than in the subformula game that we defined in section 2.2 . The idea in the closure game is that, at a position ($\eta x \chi, s$) the fixpoint formula will simply be unfolded, yielding the pair ($\chi[\eta x \chi / x], s)$ as the (unique) next position. That is, the admissible moves in the closure game are given in Table 5.

Position	Player	Admissible moves
$(\varphi \vee \psi, s)$	\exists	$\{(\varphi, s),(\psi, s)\}$
$(\varphi \wedge \psi, s)$	\forall	$\{(\varphi, s),(\psi, s)\}$
$(\diamond \varphi, s)$	\exists	$\{(\varphi, t) \mid s R t\}$
$(\square \varphi, s)$	\forall	$\{(\varphi, t) \mid s R t\}$
$(p, s) \quad$ with $p \in F V(\xi)$ and $s \in V(p)$	\forall	\varnothing
$(p, s) \quad$ with $p \in F V(\xi)$ and $s \notin V(p)$	\exists	\varnothing
$(\bar{p}, s) \quad$ with $p \in F V(\xi)$ and $s \in V(p)$	\exists	\varnothing
$(\bar{p}, s) \quad$ with $p \in F V(\xi)$ and $s \notin V(p)$	\forall	\varnothing
$(\eta x \cdot \varphi, s)$	-	$\{(\varphi[\eta x \varphi / x], s)\}$

Table 5: Positions and admissible moves in the closure evaluation game $\mathcal{E}^{c}(\xi, \mathbb{S})$
In order to turn this table into a proper game, we need to introduce appropriate winning conditions for the two players. For this purpose we introduce some terminology and notation, and we make some observations. We start with the notion of a trace.

Traces and the closure game

Definition 2.35 Let \rightarrow_{C} be the binary relation between tidy μ-calculus formulas given by the following exhaustive list:

1) $\left(\varphi_{0} \circledast \varphi_{1}\right) \rightarrow_{C} \varphi_{i}$, for any $\varphi_{0}, \varphi_{1} \in \mu \mathrm{ML}, \circledast \in\{\wedge, \vee\}$ and $i \in\{0,1\}$;
2) $\triangle \varphi \rightarrow_{C} \varphi$, for any $\varphi \in \mu \mathrm{ML}$ and $\odot \in\{\diamond, \square\}$);
3) $\eta x . \varphi \rightarrow_{C} \varphi[\eta x . \varphi / x]$, for any $\eta x . \varphi \in \mu \mathrm{ML}$, with $\eta \in\{\mu, \nu\}$.

We call a \rightarrow_{C}-path $\psi_{0} \rightarrow_{C} \psi_{1} \rightarrow_{C} \cdots \rightarrow_{C} \psi_{n}$ a (finite) trace; similarly, an infinite trace is a sequence $\left(\psi_{i}\right)_{i<\omega}$ such that $\psi_{i} \rightarrow_{C} \psi_{i+1}$ for all $i<\omega$.

Intuitively a trace is a sequence that corresponds to the formula part of a possible match of the closure game. The closure of a formula consists of the formulas that can be encountered in such a match.

Definition 2.36 We define the relation \rightarrow_{C} as the reflexive and transitive closure of \rightarrow_{C}, and define the closure of a tidy formula ψ as the set

$$
C l(\psi):=\left\{\varphi \mid \psi \rightarrow_{C} \varphi\right\} .
$$

Given a set of formulas Ψ, we put $C l(\Psi):=\bigcup_{\psi \in \Psi} C l(\psi)$, and we call Ψ closed if $\Psi=C l(\Psi)$. Formulas in the set $C l(\psi)$ are said to be derived from ψ. The closure graph of ψ is the directed graph $\mathbb{C}_{\xi}:=\left(C l(\xi), \rightarrow_{C}\right)$.

In words, $C l(\xi)$ is the smallest set which contains ξ and is closed under direct boolean and modal subformulas, and under unfoldings of fixpoint formulas. In terms of traces: a formula χ belongs to the closure of a formula ξ iff there is a trace from ξ to χ. Furthermore, a trace starting at ξ is nothing but a path in the closure graph starting at ξ.

Remark 2.37 The final example of Remark 2.18 shows that the closure of a non-tidy formula may not even be defined - unless we work with alphabetical variants. We will come back to this point later.

The following example will be instructive for understanding the concept of closure, and its relation with subformulas.

Example 2.38 Consider the following formulas:

$$
\begin{aligned}
\xi_{1} & := & \mu x_{1} \nu x_{2} \mu x_{3} \cdot\left(\left(\left(x_{1} \vee x_{2}\right) \vee x_{3}\right) \wedge \square\left(\left(x_{1} \vee x_{2}\right) \vee x_{3}\right)\right) \\
\xi_{2} & := & \nu x_{2} \mu x_{3} \cdot\left(\left(\left(\xi_{1} \vee x_{2}\right) \vee x_{3}\right) \wedge \square\left(\left(\xi_{1} \vee x_{2}\right) \vee x_{3}\right)\right) \\
\xi_{3} & := & \left.\mu x_{3} \cdot\left(\left(\left(\xi_{1} \vee \xi_{2}\right) \vee x_{3}\right) \wedge \square\left(\left(\xi_{1} \vee \xi_{2}\right) \vee x_{3}\right)\right)\right) \\
\xi_{4} & := & \left.\left(\left(\left(\xi_{1} \vee \xi_{2}\right) \vee \xi_{3}\right) \wedge \square\left(\left(\xi_{1} \vee \xi_{2}\right) \vee \xi_{3}\right)\right)\right) \\
\alpha & := & \left(\xi_{1} \vee \xi_{2}\right) \vee \xi_{3} \\
\beta & := & \xi_{1} \vee \xi_{2},
\end{aligned}
$$

and let Φ be the set $\Phi:=\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \square \alpha, \alpha, \beta\right\}$.
For $i=1,2,3$, the formula ξ_{i+1} is the unfolding of the formula ξ_{i}. Thus we find $\operatorname{Cl}\left(\xi_{1}\right)=\Phi$; in fact, we have $C l(\varphi)=\Phi$ for every formula $\varphi \in \Phi$. In Figure 2 we depict the closure graph of ξ_{1}.

Figure 2: A closure graph

Observe that the formulas $\xi_{1}, \xi_{2}, \xi_{3}$ and ξ_{4} are equivalent to one another, and hence also to α. Note too that the formula ξ_{1} is the only clean formula in Φ, and that ξ is a subformula of every formula in $\mathrm{Cl}\left(\xi_{1}\right)$.

The closure of ξ consists of the formulas that one may encounter in a match of the closure game $\mathcal{E}^{c}(\xi, \mathbb{S})$, and, as a consequence of this, we will take $C l(\xi) \times S$ as the set of positions in this game. As we will see now, the key observation for defining the winning conditions of this game is that every infinite trace can be identified as either a μ-trace or a ν-trace. This is in some sense the analogon of Proposition 2.24.

Proposition 2.39 1) Let τ be a finite trace. Then there is a unique formula on τ which is a subformula of every formula on τ.
2) Let τ be a infinite trace. Then there is a unique formula which appears infinitely often on τ, and is a subformula of cofinitely many formulas on τ. This formula is always a fixpoint formula.

Proof.

- Proof to be supplied.

QED
Definition 2.40 Let τ be an infinite trace. The formula $\eta x \varphi$ which appear infinitely often on τ and is a subformula of all formulas on τ is called the most significant formula of τ, notation: $\operatorname{msf}(\tau)$. Depending on the nature of η we call τ either a μ-trace or a ν-trace.

This concept enables us to complete the definition of the closure game.
Definition 2.41 Let $\mathbb{S}=(S, R, V)$ be a Kripke model and let ξ be a tidy formula in $\mu \mathrm{ML}$. We define the evaluation game $\mathcal{E}^{c}(\xi, \mathbb{S})$ as the game (G, E, Ω) of which the board consists of the set $C l(\xi) \times S$, and the game graph (i.e., the partitioning of $C l(\xi) \times S$ into positions for the two players, together with the set $E(z)$ of admissible moves at each position), is given in Table 5.

The winner of an infinite match $\pi=\left(\xi_{n}, s_{n}\right)_{n<\omega}$ is \exists if its left projection $\pi_{L}:=\left(\xi_{n}\right)_{n<\omega}$ is a ν-trace, and \forall if it is a ν-trace.

The closure map

The closure operation is one of the most fundamental tools in the theory of the modal μ calculus, and in this subsection we discuss some of its properties, the most important being Proposition 2.45 stating that the closure of a finite set is always finite.

We first gather some basic observations. To start with, while Example 2.38 clearly shows that the unfolding of a clean formula will generally not be clean, tidyness is preserved.

Proposition 2.42 Let $\xi \in \mu \mathrm{ML}$ be a tidy formula, and let φ be derived from ξ. Then

1) $B V(\varphi) \subseteq B V(\xi)$ and $F V(\varphi) \subseteq F V(\xi)$;
2) φ is tidy;
3) if ψ is free for x in ξ then it is also free for x in φ.

Proof. The proofs of the first two items proceed by a straightforward induction on the trace $\xi \rightarrow_{C} \varphi$. For instance, for the preservation of tidyness it suffices to prove that χ is tidy if $\triangle \chi$ is so (where $\bigcirc \in\{\diamond, \square\}$), that χ_{0} and χ_{1} are tidy if $\chi_{0} \circledast \chi_{1}$ is so (where $\circledast \in\{\wedge, \vee\}$), and that the unfolding of a tidy formula is tidy again. The proofs of the first two claims are easy, and the third claim was stated in Proposition 2.19.

- For part (3)) ...

QED
Second, the following proposition states that $C l$ is indeed a closure operation. We leave the proof of this proposition as an exercise for the reader.

Proposition 2.43 Cl is a closure operation on the collection of tidy formulas:

1) $\Phi \subseteq C l(\Phi)$;
2) $C l$ is monotone: $\Phi \subseteq \Psi$ implies $C l(\Phi) \subseteq C l(\Psi)$;
3) $C l(C l(\Phi)) \subseteq C l(\Phi)$.

The proposition below will prove to be very useful. It details how the closure map interacts with various connectives and formula constructors of the μ-calculus.

Proposition 2.44 Let ξ be a tidy formula. Then the following hold.

1) Let $\ell \sharp \xi$ be a literal occurring in ξ, and assume that $\ell \in F V(\xi)$ in case ℓ is a proposition letter. Then $\ell \in C l(\xi)$.
2) If $\xi=\triangle \chi$, then ξ is tidy and $C l(\xi)=\{\odot \chi\} \cup C l(\chi)$, where $\bigcirc \in\{\diamond, \square\}$.
3) If $\xi=\chi_{0} \circledast \chi_{1}$ then both χ_{i} are tidy and $C l(\xi)=\left\{\chi_{0} \circledast \chi_{1}\right\} \cup C l\left(\chi_{0}\right) \cup C l\left(\chi_{1}\right)$, where $\circledast \in\{\wedge, \vee\}$.
4) If $\xi=\chi[\psi / x], \chi$ is tidy, $x \in F V(\chi)$ and ψ is free for x in χ, then ψ is tidy and

$$
C l(\xi)=\{\varphi[\psi / x] \mid \varphi \in C l(\chi)\} \cup C l(\psi) .
$$

5) Let $\xi=\eta x \cdot \chi$, where $\eta \in\{\mu, \nu\}$; assume that $x \in F V(\chi)$, and let x^{*} be some fresh variable. Then $\chi\left[x^{*} / x\right]$ is tidy and

$$
\begin{equation*}
C l(\xi)=\left\{\varphi\left[\eta x \cdot \chi / x^{*}\right] \mid \varphi \in C l\left(\chi\left[x^{*} / x\right]\right)\right\} . \tag{12}
\end{equation*}
$$

Before we turn to the proof of Proposition 2.44, we briefly comment on the formulation of part 5). Note that if ξ is of the form $\xi=\eta x \chi$, then χ is not necessarily tidy, so that $C l(\chi)$ may not be defined. For this reason we use a fresh propositional variable x^{*}. However, in case χ is tidy, (12) simplifies to

$$
\begin{equation*}
C l(\xi)=\{\varphi[\eta x \cdot \chi / x] \mid \varphi \in C l(\chi)\} . \tag{13}
\end{equation*}
$$

Proof. We prove the first and fourth claim of the proposition, leaving the other parts to the reader. The second and third claim are easy to prove, and part 5) is a fairly direct consequence of part 4).

For the first item, define the height of ℓ in ξ as the length of the shortest chain of the form $\varphi_{0} \triangleleft_{0} \varphi_{1} \triangleleft_{0} \cdots \triangleleft_{0} \varphi_{n}$ such that $\varphi_{0}=\ell, \varphi_{n}=\xi$, and, in case ℓ is a propositional variable p, no formula φ_{i} is of the form $\eta p \psi$. It is then straightforward to prove that $\ell \in C l(\xi)$ by induction on the height of ℓ in ξ. We leave the details for the reader.

For the proof of 4), assume that $x \in F V(\chi)$ and that ψ is free for x in χ. By Proposition 2.42(3), the formula ψ is free for x in every $\varphi \in C l(\chi)$. To prove the inclusion \subseteq it suffices to show that the set $\{\varphi[\psi / x] \mid \varphi \in C l(\chi)\} \cup C l(\psi)\}$ has the required closure properties. This is easily verified, and so we omit the details.

For the opposite inclusion, we first show that

$$
\begin{equation*}
\varphi[\psi / x] \in C l(\chi[\psi / x]), \text { for all } \varphi \in C l(\chi), \tag{14}
\end{equation*}
$$

and we prove this by induction on the trace from ξ to χ. It is immediate by the definitions that $\chi[\psi / x] \in C l(\chi[\psi / x])$, which takes care of the base case of this induction.

In the inductive step we distinguish three cases. First, assume that $\varphi \in C l(\chi)$ because the formula $\triangle \varphi \in C l(\chi)$, with $\triangle \in\{\diamond, \square\}$. Then by the inductive hypothesis we find $\triangle \varphi[\psi / x]=$ $(\Omega \varphi)[\psi / x] \in C l(\chi[\psi / x])$; but then we may immediately conclude that $\varphi[\psi / x] \in C l(\chi[\psi / x])$ as well. The second case, where we assume that $\varphi \in C l(\chi)$ because there is some formula $\varphi \circledast \varphi^{\prime}$ or $\varphi^{\prime} \circledast \varphi$ in $C l(\chi)$ (with $\circledast \in\{\wedge, \vee\}$), is dealt with in a similar way.

In the third case, we assume that $\varphi \in C l(\chi)$ is of the form $\varphi=\rho[\lambda y . \rho / y]$, with $\lambda \in\{\mu, \nu\}$ and $\lambda y . \rho \in C l(\chi)$. Then inductively we may assume that $(\lambda y . \rho)[\psi / x] \in C l(\chi[\psi / x])$. Now we make a case distinction: if $x=y$ we find that $(\lambda y . \rho)[\psi / x]=\lambda y . \rho$, while at the same time we have $\varphi[\psi / x]=\rho[\lambda y . \rho / y][\psi / x]=\rho[\lambda y . \rho / y]$, so that it follows by the closure properties that $\varphi[\psi / x] \in C l(\chi)$ indeed. If, on the other hand, x and y are distinct variables, then we find $(\lambda y . \rho)[\psi / x]=\lambda y . \rho[\psi / x]$, and so it follows by the closure properties that the formula $(\rho[\psi / x])[\lambda y . \rho[\psi / x] / y]$ belongs to $C l(\chi[\psi / x])$. But since ψ is free for x in χ, the variable y is not free in ψ, and so a straightforward calculation shows that $(\rho[\psi / x])[\lambda y \cdot \rho[\psi / x] / y]=$ $\rho[\lambda y . \rho / y][\psi / x]=\varphi[\psi / x]$, and so we find that $\varphi[\psi / x] \in C l(\chi[\psi / x])$ in this case as well. This proves (14).

To see why this implies part 4) of the proposition, it remains to show that $C l(\psi) \subseteq C l(\xi)$. But from $x \in F V(\chi)$ we infer $x \in C l(\chi)$ by part 1), and from this we obtain that $\psi=$ $x[\psi / x] \in C l(\xi)$. This suffices by Proposition 2.43.

QED
As an almost immediate corollary of Proposition 2.54 we find that the closure set of a μ-calculus formula is always finite.

Proposition 2.45 Let $\xi \in \mu \mathrm{ML}$ be some formula. Then the set $C l(\xi)$ is finite.
Proof. We prove the proposition by induction on the length of a formula, as defined in Definition 2.5. More precisely, we claim that

$$
\begin{equation*}
|C l(\xi)| \leq|\xi|^{\ell} \tag{15}
\end{equation*}
$$

for every tidy formula $\xi \in \mu \mathrm{ML}$.
In case ξ is a formula of length 1 it must be atomic, so (15) is obvious. For the inductive case we consider a formula ξ with $|\xi|^{\ell}>1$; such a formula cannot be atomic, and so it must
be a boolean, modal or fixpoint formula. We now make a case distinction, only considering the cases where ξ is a conjunction or a μ-formula.

First let ξ be of the form $\xi=\xi_{0} \wedge \xi_{1}$. By Proposition 2.44(3) we obtain $|C l(\xi)| \leq$ $\left|C l\left(\xi_{0}\right)\right|+\left|C l\left(\xi_{1}\right)\right|$, and the induction hypothesis yields $\left|C l\left(\xi_{i}\right)\right| \leq\left|\xi_{i}\right|^{\ell}$. Thus we find $|C l(\xi)| \leq$ $\left|\xi_{0}\right|^{\ell}+\left|\xi_{1}\right|^{\ell}<|\xi|^{\ell}$.

If ξ is of the form $\xi=\mu x \chi$ we further distinguish cases. If x is not free in χ we have $\chi[\xi / x]=\chi$ and so $C l(\xi)=\{\xi\} \cup C l(\chi)$. Thus, using the induction hypothesis on χ, we obtain $|C l(\xi)| \leq 1+|C l(\chi)| \leq 1+|\chi|^{\ell}=|\xi|^{\ell}$, as required. On the other hand, if x does occur freely in χ, by Proposition 2.44(5) we find $|C l(\xi)| \leq\left|C l\left(\chi\left[x^{*} / x\right]\right)\right|$. But since $\chi\left[x^{*} / x\right]$ has the same length as χ we may use the induction hypothesis for it; this gives $\left|C l\left(\chi\left[x^{*} / x\right]\right)\right| \leq$ $\left|\chi\left[x^{*} / x\right]\right|^{\ell}=|\chi|^{\ell}$. Combining these observations we find that $|C l(\xi)| \leq|\chi|^{\ell}=|\xi|^{\ell}-1$ which obviously suffices to prove (15).

QED
Remark 2.46 Note that we can give a much sharper upper bound to the size of a formula's closure set than (15) which bounds this size by the length of the formula. In fact, we will see further on that the number of formulas that can be derived from a formula may be exponentially smaller than its number of subformulas, and that the first number is a more suitable size measure than the latter.

2.6 Basic syntax: continued

- In this section we discuss some further basic syntactic concepts
o size
o alternation depth
o guardedness
o free subformulas
o expansion map

The size of a formula

Turning to computational aspects of the modal μ-calculus, we will see that two measures of a formulas feature prominently when we are interested in the complexity of algorithms for, e.g., model checking of a formula on a model, or satisfiability checking of a formula: its size and its alternation depth. Both notions are in fact quite subtle in that they admit several non-equivalent definitions.

When it comes to size, there are at least three definitions that look reasonable, at first sight: in principle one could define the size of a formula as its length, its subformula-size, or its closure-size.

- For reasons that will be discussed later on, we opt for the third option: closure size.

Definition 2.47 The size $|\xi|$ of a tidy formula ξ is given by

$$
|\xi|:=|C l(\xi)|,
$$

i.e., it is defined as the number of formulas that are derived from ξ.

The subformula-size of a clean formula ξ is defined as follows:

$$
|\xi|^{d}:=|S f(\xi)|,
$$

i.e., $|\xi|^{d}$ is given as the number of subformulas of ξ.

- Discuss the various options.
- Each definition corresponds to a certain way of representing a formula as a graph-based structure: the length of a formula corresponds to the number of nodes in its syntax tree, its subformula-size to the number of ondes in its subformula dag, and its closure-size to the size of its closure graph.
- Note that while the notion of length applies to all formulas, this is different for the other two measures.
- It is well-known that the subformula-size of a formula can be exponentially smaller than its length, further on we will see that, perhaps counterintuitively, the closure-size of a formula can be exponentially smaller than its subformula size.

Alternation

- For the time being alternation is covered in a separate section.

Guardedness

We finish our sequence of basic syntactic definitions with the notion of guardedness, which will become important later on.

Definition 2.48 A variable x is guarded in a $\mu \mathrm{ML}_{\mathrm{D}}$-formula φ if every occurrence of x in φ is in the scope of a modal operator. A formula $\xi \in \mu \mathrm{ML}_{\mathrm{D}}$ is guarded if for every subformula of ξ of the form $\eta x . \delta, x$ is guarded in δ.

In the next chapter we will prove that every formula can be effectively rewritten into an equivalent, clean and guarded formula.

Free subformulas

We now have a closer look at the relation between the sets $S f(\xi)$ and $C l(\xi)$. Our first observation concerns the question, which subformulas of a formula also belong to its closure. This brings us to the notion of a free subformula.

Definition 2.49 Let φ and ψ be μ-calculus formulas. We say that φ is a free subformula of ψ, notation: $\varphi \Vdash_{f} \psi$, if $\psi=\psi^{\prime}[\varphi / x]$ for some formula ψ^{\prime} such that $x \in F V\left(\psi^{\prime}\right)$ and φ is free for x in ψ^{\prime}.

Note that in particular all literals occurring in ψ are free subformulas of ψ. The following characterisation is useful. Recall that we write $\varphi \rightarrow_{C} \psi$ if $\psi \in C l(\varphi)$, or equivalently, if there is a trace (possibly of length zero) from φ to ψ.

Proposition 2.50 Let φ and ψ be μ-calculus formulas. If ψ is tidy, then the following are equivalent:

1) $\varphi \Vdash_{f} \psi$;
2) $\varphi \leqslant \psi$ and $F V(\varphi) \cap B V(\psi)=\varnothing$;
3) $\varphi \geqq \psi$ and $\psi \rightarrow C \varphi$.

Proof. We will prove the equivalence of the statements 1) - 3) to a fourth statement, viz.:
4) there is a \triangleleft_{0}-chain $\varphi=\chi_{0} \triangleleft_{0} \chi_{1} \triangleleft_{0} \cdots \triangleleft_{0} \chi_{n}=\psi$, such that no χ_{i} has the form $\chi_{i}=\eta y . \rho_{i}$ with $y \in F V(\varphi)$.

For the implication 1) $\Rightarrow 4$), assume that $\varphi \leqslant_{f} \psi$, then by definition ψ is of the form $\psi^{\prime}[\varphi / x]$ where $x \in F V\left(\psi^{\prime}\right)$ and φ is free for x in ψ^{\prime}. But if $x \in F V(\psi)$, then it is easy to see that there is a \triangleleft_{0}-chain $x=\chi_{0}^{\prime} \triangleleft_{0} \chi_{1}^{\prime} \triangleleft_{0} \cdots \triangleleft_{0} \chi_{n}^{\prime}=\psi^{\prime}$ such that no χ_{i}^{\prime} is of the form $\chi_{i}^{\prime}=\left\langle x . \rho^{\prime}\right.$. Assume for contradiction that one of the formulas χ_{i}^{\prime} is of the form $\chi_{i}=\eta y . \rho_{i}$ where $y \in F V(\varphi)$. Since φ is free for x in ψ^{\prime} this would mean that there is a formula of the form $\left\langle x \cdot \chi\right.$ with $\eta y . \rho_{i} \Vdash\left\langle x . \chi \boxtimes \psi^{\prime}\right.$. However, the only candidates for this would be the formulas χ_{j}^{\prime} with $j>i$, and we just saw that these are not of the shape $\left\langle x . \rho^{\prime}\right.$. This provides the desired contradiction.

For the opposite implication 4) $\Rightarrow 1$), assume that there is a \triangleleft_{0}-chain $\varphi=\chi_{0} \triangleleft_{0} \chi_{1} \triangleleft_{0} \cdots \triangleleft_{0}$ $\chi_{n}=\psi$ as in the formulation of 4$)$. One may then show by a straightforward induction that $\varphi \Vdash_{f} \chi_{i}$, for all $i \geq 0$.

For the implication 2) $\Rightarrow 4$), assume that $\varphi \unlhd \psi$ and $F V(\varphi) \cap B V(\psi)=\varnothing$. It follows from $\varphi \boxtimes \psi$ that there is a \triangleleft_{0}-chain $\varphi=\chi_{0} \triangleleft_{0} \chi_{1} \triangleleft_{0} \cdots \triangleleft_{0} \chi_{n}=\psi$. Now suppose for contradiction that one of the formulas χ_{i} would be of the form $\chi_{i}=\eta y . \rho_{i}$ with $y \in F V(\varphi)$. Then we would find $y \in F V(\varphi) \cap B V(\psi)$, contradicting the assumption that $F V(\varphi) \cap B V(\psi)=\varnothing$.

In order to prove the implication 4$) \Rightarrow 3$), it suffices to show, for any n, that if $\left(\chi_{i}\right)_{0 \leq i \leq n}$ is an \triangleleft_{0}-chain of length $n+1$ such that no χ_{i} has the form $\chi_{i}=\eta y$. ρ_{i} with $y \in F V\left(\chi_{0}\right)$, then $\chi_{n} \rightarrow_{C} \chi_{0}$. We will prove this claim by induction on n. Clearly the case where $n=0$ is trivial.

For the inductive step we consider a chain

$$
\chi_{0} \triangleleft_{0} \chi_{1} \triangleleft_{0} \cdots \triangleleft_{0} \chi_{n} \triangleleft_{0} \chi_{n+1}
$$

such that no χ_{i} has the form $\chi_{i}=\eta y . \rho_{i}$ with $y \in F V\left(\chi_{0}\right)$, and we make a case distinction as to the nature of χ_{n+1}. Clearly χ_{n+1} cannot be an atomic formula.

If χ_{n+1} is of the form $\rho_{0} \circledast \rho_{1}$ with $\circledast \in\{\Lambda, \vee\}$, then since $\chi_{n} \triangleleft_{0} \chi_{n+1}$, the first formula must be of the form $\chi_{n}=\rho_{i}$ with $i \in\{0,1\}$. But since it follows by the induction hypothesis that $\chi_{n} \rightarrow_{C} \chi_{0}$, we obtain from $\chi_{n+1} \rightarrow_{C} \chi_{n}$ that $\chi_{n+1} \rightarrow_{C} \chi_{0}$ as required. The case where χ_{n+1} is of the form $\oslash \rho$ with $\circlearrowleft \in\{\diamond, \square\}$ is handled similarly.

This leaves the case where $\chi_{n+1}=\lambda y . \rho$ is a fixpoint formula. Then since $\chi_{n} \triangleleft_{0} \chi_{n+1}$ it must be the case that $\chi_{n}=\rho$. Furthermore, it follows from the assumption in 4) that $y \notin F V\left(\chi_{0}\right)$. From this it is not so hard to see that

$$
\chi_{0} \triangleleft_{0} \chi_{1}\left[\chi_{n+1} / y\right] \triangleleft_{0} \cdots \triangleleft_{0} \chi_{n}\left[\chi_{n+1} / y\right]
$$

is a \triangleleft_{0}-chain to which the induction hypothesis applies. It follows that $\chi_{n}\left[\chi_{n+1} / y\right] \rightarrow_{C} \chi_{0}$. From this and the observation that $\chi_{n+1} \rightarrow_{C} \chi_{n}\left[\chi_{n+1} / y\right]$ we find that $\chi_{n+1} \rightarrow_{C} \chi_{0}$ indeed. This finishes the proof of the implication 4$) \Rightarrow 3$).

Finally, it follows from Proposition 2.42(1) that $\psi \rightarrow_{C} \varphi$ implies $F V(\varphi) \cap B V(\psi) \subseteq$ $F V(\psi) \cap F V(\psi)=\varnothing$. From this the implication 3) $\Rightarrow 2$) is immediate. QED

As a nice application of the notion of a free subformula, the following proposition states that under some mild conditions, the substitution operation $[\xi / x]$ is in fact injective. We leave the proof of this proposition as an exercise to the reader.
Proposition 2.51 Let φ_{0}, φ_{1} and ξ be formulas such that ξ is free for x in both φ_{0} and φ_{1}, and not a free subformula of either φ_{i}. Then

$$
\begin{equation*}
\varphi_{0}[\xi / x]=\varphi_{1}[\xi / x] \text { implies } \varphi_{0}=\varphi_{1} . \tag{16}
\end{equation*}
$$

The expansion map

The most important observation here concerns the existence of a surjective map from $S f(\xi)$ to $C l(\xi)$, at least for a clean formula ξ. Recall that, given a clean formula ξ, we define the dependency order $<_{\xi}$ on the bound variables of ξ as the least strict partial order such that $x<_{\xi} y$ if $\delta_{x} \triangleleft \delta_{y}$ and $y \preccurlyeq \delta_{x}$.

Definition 2.52 Writing $B V(\xi)=\left\{x_{1}, \ldots, x_{n}\right\}$, where we may assume that $i<j$ if $x_{i}<_{\xi} x_{j}$, we define the expansion $\exp _{\xi}(\varphi)$ of a subformula φ of ξ as:

$$
\exp _{\xi}(\varphi):=\varphi\left[\eta_{x_{1}} x_{1} \cdot \delta_{x_{1}} / x_{1}\right] \ldots\left[\eta_{x_{n}} x_{n} \cdot \delta_{x_{n}} / x_{n}\right]
$$

That is, we substitute first x_{1} by $\eta_{x_{1}} x_{1} \cdot \delta_{x_{1}}$ in φ; in the resulting formula, we substitute x_{2} by $\eta_{x_{2}} x_{2} \cdot \delta_{x_{2}}$, etc. If no confusion is likely we write $\exp (\varphi)$ instead of $\exp _{\xi}(\varphi)$. A proposition letter p is active in φ if p occurs in δ_{y} for some $y>_{\xi} x$, or equivalently, if p occurs in $\exp _{\xi}(\varphi)$. \triangleleft

Without proof we mention the following result.
Proposition 2.53 Let $\xi \in \mu \mathrm{ML}$ be a clean formula and \mathbb{S} a pointed Kripke structure. Then for all subformulas φ ξ and all states s in \mathbb{S} we have

$$
(\varphi, s) \in \operatorname{Win}_{\exists}(\mathcal{E}(\xi, \mathbb{S})) \text { iff } \mathbb{S}, s \Vdash_{g} \exp _{\xi}(\varphi)
$$

The proposition below states that, for a clean formula $x i$, the expansiom map is a surjection from its set of subformulas of ξ to its closure. As an immediate corollary we obtain that the size of $C l(\xi)$ is bounded by that of $S f(\xi)$.

Proposition 2.54 Let ξ be a clean $\mu \mathrm{ML}-$ formula. Then

$$
\begin{equation*}
C l(\xi)=\left\{\exp _{\xi}(\varphi) \mid \varphi \preccurlyeq \xi\right\} . \tag{17}
\end{equation*}
$$

Proof. For the time being we confine ourselves to a brief sketch. For the inclusion \subseteq it suffices to show that the set $\left\{\exp _{\xi}(\varphi) \mid \varphi \bowtie \xi\right\}$ has the relevant closure properties. This is a fairly routine proof. For the opposite inclusion it suffices to prove that $\exp _{\xi}(\varphi) \in C l(\xi)$, for every $\varphi \in S f(\xi)$, which can be done by a straightforward induction.

QED

2.7 Alternation depth

After size, the most important complexity measure of modal μ-calculus formulas concerns the degree of nesting of least- and greatest fixpoint operators in the syntax tree (or dag) of the formula. Intuitively, the alternation depth of a formula ξ will be defined as the length of a maximal chain of nested, alternating fixpoint operators. As in the case of size, there is more than one reasonable way to make this intuition precise

As a first example, consider the formula

$$
\xi_{1}=\mu x \cdot(\nu y \cdot p \wedge \square y) \vee \diamond x,
$$

expressing the reachability of some state from which only p-states will be reachable. Clearly this formula features a ν-operator in the scope of a μ-operator, and in the most straightforward approach one might indeed take this as nesting, and define the (simple) alternation depth of the formula ξ_{1} as 2. However, a closer inspection of the formula ξ_{1} reveals that, since the variable x does not occur in the subformula $\nu y . p \wedge \square y$, the latter subformula does not really depend on x. This is different in the following example:

$$
\xi_{2}=\nu x \cdot \mu y \cdot(p \wedge \diamond x) \vee \diamond y,
$$

stating the existence of a path on which p is true infinitely often. Here the variable x does occur in the subformula μy. $(p \wedge \diamond x) \vee \diamond y$; that is, ξ_{2} contains a 'real' ν / μ-chain of fixpoint operators. In the definition of alternation depth $a d$ that we shall adopt, we will see that $a d\left(\xi_{2}\right)=2$ but $\operatorname{ad}\left(\xi_{1}\right)=1$.

The formal definition of alternation depth involves inductively defined formula collections Θ_{n}^{η}, where $\eta \in\{\mu, \nu\}$ and n is a natural number. Intuitively, the class Θ_{n}^{η} consists of those μ-calculus formulas where n bounds the length of any alternating nesting of fixpoint operators of which the most significant formula is an η-formula. We will make this intuition more precise further on.

For the next definition, recall our notation $\bar{\mu}=\nu, \bar{\nu}=\mu$.
Definition 2.55 By natural induction we define classes $\Theta_{n}^{\mu}, \Theta_{n}^{\nu}$ of μ-calculus formulas. With $\eta, \lambda \in\{\mu, \nu\}$ arbitrary, we set:

1. all atomic formulas belong to Θ_{0}^{η};
2. if $\varphi_{0}, \varphi_{1} \in \Theta_{n}^{\eta}$, then $\varphi_{0} \vee \varphi_{1}, \varphi_{0} \wedge \varphi_{1}, \diamond \varphi_{0}, \square \varphi_{0} \in \Theta_{n}^{\eta}$;
3. if $\varphi \in \Theta_{n}^{\eta}$ then $\bar{\eta} x . \varphi \in \Theta_{n}^{\eta}$;
4. if $\varphi(x), \psi \in \Theta_{n}^{\eta}$, then $\varphi[\psi / x] \in \Theta_{n}^{\eta}$, provided that ψ is free for x in φ;
5. all formulas in Θ_{n}^{λ} belong to Θ_{n+1}^{η}.

The alternation depth $a d(\xi)$ of a formula ξ is defined as the least n such that $\xi \in \Theta_{n}^{\mu} \cap \Theta_{n}^{\nu}$.
A formula is alternation free if it has alternation depth at most 1.
Roughly, we obtain Θ_{0}^{μ} by closing the set of basic modal formulas under the boolean and modal operators, and the greatest fixpoint operator; and similarly for Θ_{0}^{ν}. Inductively, we obtain Θ_{n+1}^{η} by closing the set $\Theta_{n}^{\bar{\eta}}$ under the boolean and modal operations, substitution, and the $\bar{\eta}$-operator.

Remark 2.56 Make connection with Σ / Π - notation (CHECK):
。 $\Sigma_{0}, \Pi_{0}:=\Theta_{0}^{\mu} \cap \Theta_{0}^{\nu}$

- $\Sigma_{n+1}:=\Theta_{n}^{\nu}, \Pi_{n+1}:=\Theta_{n}^{\mu}$.

Example 2.57 Observe that the basic modal (i.e., fixpoint-free) formulas are exactly the ones with alternation depth zero. Formulas that use μ-operators or ν-operators, but not both, have alternation depth 1 . For example, observe that $\mu x . p \vee x$ belongs to Θ_{0}^{ν} but not to Θ_{0}^{μ} : none of the clauses in Definition 2.55 is applicable. On the other hand, using clause (5) it is easy to see that $\mu x \cdot p \vee x \in \Theta_{1}^{\nu} \cap \Theta_{1}^{\mu}$, from which it is immediate that $a d(\mu x \cdot p \vee x)=1$.

Consider the formula $\xi_{1}=\mu x$. $(\nu y . p \wedge \square y) \wedge \diamond x$. Taking a fresh variable q, we find $\mu x . q \wedge \diamond x \in \Theta_{0}^{\nu} \subseteq \Theta_{1}^{\nu}$ and $\nu y . p \wedge \square y \in \Theta_{0}^{\mu} \subseteq \Theta_{1}^{\nu}$, so that by the substitution rule we have $\xi_{1}=(\mu x . q \wedge \diamond x)[\nu y . p \wedge \square y / q] \in \Theta_{1}^{\nu}$. Similarly we may show that $\xi_{1} \in \Theta_{1}^{\mu}$, so that ξ_{1} has alternation depth 1.

The formula $\xi_{2}=\nu x . \mu y .(p \wedge \diamond x) \vee \diamond y$ is of higher complexity. It is clear that the formula $\mu y .(p \wedge \diamond x) \vee \diamond y$ belongs to Θ_{0}^{ν} but not to Θ_{0}^{μ}. From this it follows that ξ_{2} belongs to Θ_{1}^{μ} but there is no way to place it in Θ_{1}^{ν}. Hence we find that $a d\left(\xi_{2}\right)=2$.

As a third example, consider the formula

$$
\xi_{3}=\mu x . \nu y .(\square y \wedge \mu z .(\diamond x \vee z)) .
$$

This formula looks like a $\mu / \nu / \mu$-formula, in the sense that it contains a nested fixpoint chain $\mu x / \nu y / \mu z$. However, the variable y does not occur in the subformula $\mu z .(\diamond x \vee z)$, and so the variable z is not dependent on y. Consequently we may in fact consider ξ_{3} as a μ / ν-formula. Formally, we observe that $\mu z . \diamond x \vee z \in \Theta_{0}^{\nu} \subseteq \Theta_{1}^{\nu}$ and $\nu z . \square y \wedge p \in \Theta_{0}^{\mu} \subseteq \Theta_{1}^{\nu}$; from this it follows by the substitution rule that the formula νy. $(\square y \wedge \mu z .(\diamond x \vee z))$ belongs to the set Θ_{1}^{ν} as well; from this it easily follows that $\xi_{3} \in \Theta_{1}^{\nu}$. It is not hard to show that $\xi_{3} \notin \Theta_{1}^{\mu}$, so that we find $a d\left(\xi_{3}\right)=2$.

In the propositions below we make some observations on the sets Θ_{n}^{η} and on the notion of alternation depth. First we show that each class Θ_{n}^{μ} is closed under subformulas and derived formulas.

Proposition 2.58 Let Let ξ and φ be μ-calculus formulas.

1) If $\varphi \geqq \xi$ and $\xi \in \Theta_{n}^{\eta}$ then $\varphi \in \Theta_{n}^{\eta}$.
2) If $\xi \rightarrow_{C} \varphi$ and $\xi \in \Theta_{n}^{\eta}$ then $\varphi \in \Theta_{n}^{\eta}$.

Proof. We prove the statement in part 1) by induction on the derivation of $\xi \in \Theta_{n}^{\eta}$. In the base case of this induction we have that $n=0$ and ξ is an atomic formula. But then obviously all subformulas of ξ are atomic as well and thus belong to Θ_{n}^{η}.

In the induction step of the proof it holds that $n>0$; we make a case distinction as to the applicable clause of Definition 2.55.

In case $\xi \in \Theta_{n}^{\eta}$ because of clause (2) in Definition 2.55, we make a further case distinction as to the syntactic shape of ξ. First assume that ξ is a conjunction, say, $\xi=\xi_{0} \wedge \xi_{1}$, with $\xi_{0}, \xi_{1} \in \Theta_{n}^{\eta}$. Now consider an arbitrary subformula φ of ξ; it is not hard to see that either
$\varphi=\xi$ or $\varphi \preccurlyeq \xi_{i}$ for some $i \in\{0,1\}$. In the first case we are done, by assumption that $\xi \in \Theta_{n}^{\eta}$; in the second case, we find $\varphi \in \Theta_{n}^{\eta}$ as an immediate consequence of the induction hypothesis. The cases where ξ is a disjunction, or a formula of the form $\square \psi$ or $\diamond \psi$ are treated in a similar way.

If $\xi \in \Theta_{n}^{\eta}$ because of clause (3) of the definition, then ξ must be of the form $\xi=\eta x \cdot \chi$, with $\chi \in \Theta_{n}^{\eta}$. We proceed in a way similar to the previous case: any subformula $\varphi \preccurlyeq \xi$ is either equal to ξ (in which case we are done by assumption), or a subformula of χ, in which we are done by one application of the induction hypothesis.

In the case of clause (4), assume that ξ is of the form $\chi[\psi / x]$, where ψ is free for x in χ, and χ and ψ are in Θ_{n}^{η}. Then by the induction hypothesis all subformulas of χ and ψ belong to Θ_{n}^{η} as well. Now consider an arbitrary subformula φ of ξ; it is easy to see that either $\varphi \boxtimes \chi, \varphi \sharp \psi$ or else φ is of the form $\varphi=\varphi^{\prime}[\psi / x]$ where $\varphi^{\prime} \geqq \chi$. In either case it is straightforward to prove that $\varphi \in \Theta_{n}^{\eta}$, as required.

Finally, in case ξ is in Θ_{n}^{η} because of clause (5), it belongs to Θ_{n-1}^{λ} for some $\lambda \in\{\mu, \nu\}$. Then by induction hypothesis all subformulas of ξ belong to Θ_{n-1}^{λ}. We may then apply the same clause (5) to see that any such φ also belongs to the set Θ_{n}^{η}.

To prove part 2), it suffices to show that the class Θ_{n}^{η} is closed under unfoldings, since by part 1) we already know it to be closed under subformulas. So assume that $\lambda x \cdot \chi \in \Theta_{n}^{\eta}$ for some n and $\lambda \in\{\mu, \nu\}$. Because $\chi \leqslant \eta x . \chi$ it follows from part 1) that $\chi \in \Theta_{n}^{\lambda}$. But then we may apply clause (4) from Definition 2.55 and conclude that $\chi[\eta \cdot \chi / x] \in \Theta_{n}^{\lambda}$.

QED
As an immediate corollary of Proposition 2.58 we find the following.

Proposition 2.59 Let ξ and χ be μ-calculus formulas. Then

1) if $\chi \in S f(\xi)$ then $a d(\chi) \leq a d(\xi)$;
2) if $\chi \in C l(\xi)$ then $\operatorname{ad}(\chi) \leq a d(\xi)$.

In the case of a clean formula there is a simple characterisation of alternation depth, making precise the intuition about alternating chains, in terms of the formula's dependency order on the bound variables.

Definition 2.60 Let $\xi \in \mu \mathrm{ML}$ be a clean formula. A dependency chain in ξ of length d is a sequence $\bar{x}=x_{1} \cdots x_{d}$ such that $x_{1}<_{\xi} x_{2} \cdots<_{\xi} x_{d}$; such a chain is alternating if x_{i} and x_{i+1} have different parity, for every $i<d$. For $\eta \in\{\mu, \nu\}$, we call an alternating dependency chain $x_{1} \cdots x_{d}$ an η-chain if x_{d} is an η-variable, and we let $d_{\eta}(\xi)$ denote the length of the longest η-chain in ξ; we write $d_{\eta}(\xi)=0$ if ξ has no such chains.

Proposition 2.61 Let ξ be a clean formula. Then for any $k \in \omega$ and $\eta \in\{\mu, \nu\}$ we have

$$
\begin{equation*}
\xi \in \Theta_{k}^{\eta} \text { iff } d_{\eta}(\xi) \leq k \tag{18}
\end{equation*}
$$

As a corollary, the alternation depth of ξ is equal to the length of its longest alternating dependency chain.

One of the key insights in the proof of this Proposition is that, with ψ free for x in φ, any dependency chain in $\varphi[\psi / x]$ originates entirely from either φ or ψ. Recall from Definition 8.2 that we write $\bar{\mu}=\nu$ and $\bar{\nu}=\mu$.

Proof. We prove the implication from left to right in (18) by induction on the derivation that $\xi \in \Theta_{k}^{\eta}$. In the base step of this induction (corresponding to clause (1) in the definition of alternation depth) ξ is atomic, so that we immediately find $d_{\eta}(\xi)=0$ as required.

In the induction step of the proof, we make a case distinction as to the last applied clause in the derivation of $\xi \in \Theta_{k}^{\eta}$, and we leave the (easy) cases, where this clause was either (2) or (3), for the reader.

Suppose then that $\xi \in \Theta_{k}^{\eta}$ on the basis of clause (4). In this case we find that $\xi=\xi^{\prime}[\psi / z]$ for some formulas ξ^{\prime}, ψ such that ψ is free for z in ξ^{\prime} and $\xi^{\prime}, \psi \in \Theta_{k}^{\eta}$. By the 'key insight' mentioned right after the formulation of the Proposition, any η-chain in the formula ξ is a η-chain in either ξ^{\prime} or ψ. But then by the induction hypothesis it follows that the length of any such chain must be bounded by k.

Finally, consider the case where $\xi \in \Theta_{k}^{\eta}$ on the basis of clause (5). We make a further case distinction. If $\xi \in \Theta_{k-1}^{\eta}$, then by the induction hypothesis we may conclude that $d_{\eta}(\xi) \leq k-1$, and from this it is immediate that $d_{\eta}(\xi) \leq k$. If, on the other hand, $\xi \in \Theta_{k-1}^{\bar{\eta}}$ then the induction hypothesis yields $d_{\bar{\eta}}(\xi) \leq k-1$. But since $d_{\eta}(\xi) \leq d_{\bar{\eta}}(\xi)+1$ we obtain $d_{\eta}(\xi) \leq k$ indeed.

The opposite, right-to-left, implication in (18) is proved by induction on k. In the base step of this induction we have $d_{\eta}(\xi)=0$, which means that ξ has no η-variables; from this it is easy to derive that $\xi \in \Theta_{0}^{\eta}$.

For the induction step, we assume as our induction hypothesis that (18) holds for $k \in \omega$, and we set out to prove the same statement for $k+1$ and an arbitrary $\eta \in\{\mu, \nu\}$:

$$
\begin{equation*}
\text { if } d_{\eta}(\xi) \leq k+1 \text { then } \xi \in \Theta_{k+1}^{\eta} \tag{19}
\end{equation*}
$$

We will prove (19) by an 'inner' induction on the length of ξ. The base step of this inner induction is easy to deal with: if $|\xi|=1$ then ξ must be atomic so that certainly $\xi \in \Theta_{k+1}^{\eta}$.

In the induction step we are considering a formula ξ with $|\xi|>1$. Assume that $d_{\eta}(\xi) \leq$ $k+1$. We make a case distinction as to the shape of ξ. The only case of interest is where ξ is a fixpoint formula, say, $\xi=\eta x \cdot \chi$ or $\xi=\bar{\eta} x . \chi$. If $\xi=\bar{\eta} x . \chi$, then obviously we have $d_{\eta}(\xi)=\delta_{\eta}(\chi)$, so by the inner induction hypothesis we find $\chi \in \Theta_{k+1}^{\eta}$. From this we immediately derive that $\xi=\bar{\eta} x \cdot \chi \in \Theta_{k+1}^{\eta}$ as well.

Alternatively, if $\xi=\eta x$. χ, we split further into cases: If χ has an $\bar{\eta}$-chain $y_{1} \cdots y_{k+1}$ of length $k+1$, then obviously we have $x \notin F V\left(\delta_{k+1}\right)$ (where we write δ_{k+1} instead of $\delta_{y_{k+1}}$), for otherwise we would get $x>_{\xi} y_{k+1}$, so that we could add x to the $\bar{\eta}$-chain $y_{1} \cdots y_{k+1}$ and obtain an η-chain $y_{1} \cdots y_{k+1} x$ of length $k+2$. But if $x \notin F V\left(\delta_{k+1}\right)$ we may take some fresh variable z and write $\xi=\xi^{\prime}\left[\bar{\eta} y_{k+1} . \delta_{k+1} / z\right]$ for some formula ξ^{\prime} where the formula $\bar{\eta} y_{k+1} \cdot \delta_{k+1}$ is free for z. By our inner induction hypothesis we find that both ξ^{\prime} and $\eta y_{k+1} \cdot \delta_{k+1}$ belong to Θ_{k+1}^{η}. But then by clause (4) of Definition 2.55 the formula ξ also belongs to the set Θ_{k+1}^{η}.

If, on the other hand, χ has no $\bar{\eta}$-chain of length $k+1$, then we clearly have $d_{\bar{\eta}}(\chi) \leq k$. Using the outer induction hypothesis we infer $\chi \in \Theta_{k}^{\bar{\eta}}$, and so by clause (3) of Definition 2.55 we also find $\xi=\eta x \cdot \chi \in \Theta_{k}^{\bar{\eta}}$. Finally then, clause (5) gives $\xi \in \Theta_{k+1}^{\eta}$.

QED

One may prove a similar (but somewhat more involved) characterisation in the wider setting of tidy formulas, as we will see further on.

2.8 The cover modality and disjunctive formulas

In the theory of the modal μ-calculus, a fundamental role is played by the so-called disjunctive formulas. These are built using the cover modality discussed in Section 1.7, and, as discussed there in the setting of basic modal logic, characterised by a severely restricted use of conjunctions.

- For the time being we confine attention to the monomodal case

We first introduce the full language of the nabla-based version of the modal μ-calculus. This is simply the extension of the language ML_{∇} with fixpoint operators. Recall that in this language we work with the finitary versions of conjunction and disjunction.

Definition 2.62 The formulas of the language $\mu \mathrm{ML}_{\nabla}$ are given by the following grammar:

$$
\varphi::=p|\bar{p}| \bigvee \Phi|\bigwedge \Phi| \nabla \Phi|\mu x \varphi| \nu x \varphi
$$

where p and x are propositional variables, $\Phi \subseteq_{\omega} \mu \mathrm{ML} \nabla$, and the formation of the formulas $\eta x \varphi$ is subject to the proviso that there are no occurrences of the literal \bar{x} in φ.

As in the basic (fixpoint-free) case, the only conjunctions that we allow in a disjunctive formula are of the form $\alpha \bullet \Phi$, which stands for the conjunction $(\bigwedge \alpha) \wedge \nabla \Phi$. Note as well that in the definition of disjunctive formulas it is convenient to make an a priori distinction between free and bound variables; roughly, the idea is that the free variables can only occur (positively or negatively) among the proposition letters that occur to the left of the bullet conjunctions, while the bound variables can occur anywhere else but not there.

Definition 2.63 Let P be a finite set of propositional variables. To define the set $\mu \mathrm{DML}(\mathrm{P})$ of (monomodal) disjunctive formulas in P we start with the formulas given by the following grammar:

$$
\varphi::=x|\bigvee \Phi| \alpha \bullet \Phi|\mu x \varphi| \nu x \varphi
$$

where x is a propositional variable not in P, Φ is a finite set of formulas from this grammar, α is a finite set of literals over P , and the formulas $\mu x \varphi$ and $\nu x \varphi$ can only be formed if is φ guarded in x. The set $\mu \mathrm{DML}(\mathrm{P})$ consists of all formulas ξ that meet this pattern and satisfy the condition that $F V(\xi) \subseteq \mathrm{P}$.

We let $\mu \mathrm{DML}$ be the set of formulas that are disjunctive in some set P .

- Note that disjunctive formulas are tidy and guarded.

In practice we will often pretend that atomic formulas, and in fact all propositional formulas, are disjunctive. This is justified by the following example.

Example 2.64 As in the basic case, the constant \perp can be seen as an abbreviation of the disjunctive formula $\bigvee \varnothing$. Different from the basic case, however, we can do without the constant T as a primitive constant either, since the presence of the greatest fixpoint operator enables us to write

$$
\top \equiv \nu x(\varnothing \bullet \varnothing \vee \varnothing \bullet\{x\}) .
$$

Literals do not qualify as disjunctive formulas, but any literal ℓ is equivalent to a disjunctive formula as well:

$$
\ell \equiv\{\ell\} \bullet\{T\} \vee\{\ell\} \bullet \varnothing .
$$

For this reason we may in practice pretend that atomic formulas, and in fact all propositional formulas, are disjunctive.

Another example of a disjunctive formulas is $\mu x(\{p, \bar{q}\} \bullet\{x, \nu y(\{p\} \bullet\{x \vee y\})\})$, but not its subformula $\{p, \bar{q}\} \bullet\{x, \nu y(\{p\} \bullet\{x \vee y\})\}$ (since in the latter formula x is free, and hence, it may not occur in the set to the right of either of the bullet conjunctions). Further examples of non-disjunctive formulas are $\mu x x$ (unguarded) and $\mu x(\{\bar{p}, \bar{q}\} \bullet\{x, \nu y(\{p, x\} \bullet\{x, \top\})\})$ (here the subformula $\{p, x\} \bullet\{x, \top\}$ is not admissible since x, being a bound variable, may not occur in the set to the left of the bullet conjunction).

Turning to the semantics of disjunctive formulas, below we introduce the evaluation game for this language. For this definition we recall that a relation $Z \subseteq S \times S^{\prime}$ is $f u l l$ on some pair $\left(U, U^{\prime}\right) \in \wp(S) \times \wp\left(S^{\prime}\right)$ if $U \subseteq \operatorname{Dom}(Z)$ and $U^{\prime} \subseteq \operatorname{Ran}(Z)$, or, in other words, if every $u \in U$ is related by Z to some $u^{\prime} \in U^{\prime}$, and vice versa.

Position	Player	Admissible moves
$(\bigvee \Phi, s)$	\exists	$\{(\varphi, s) \mid \varphi \in \Phi\}$
$(\alpha \bullet \Phi, s)$	\forall	$\{(\bigwedge \alpha, s),(\nabla \Phi, s)\}$
$(\bigwedge \alpha, s)$ with $s \Vdash \bigwedge \alpha$	\forall	\varnothing
$(\bigwedge \alpha, s)$ with $s \Vdash \bigwedge \alpha$	\exists	\varnothing
$(\nabla \Phi, s)$	\exists	$\{Z \subseteq \Phi \times R[s] \mid Z$ is full on Φ and $R[s]\}$
$Z \subseteq \mu \mathrm{DML}(\mathrm{P}) \times S$	\forall	Z
$\left(\eta_{x} x \cdot \delta_{x}, s\right)$	-	$\left\{\left(\delta_{x}, s\right)\right\}$
(x, s), with $x \in B V(\xi)$	-	$\left\{\left(\delta_{x}, s\right)\right\}$

Table 6: Evaluation game for disjunctive formulas (subformula version)

Definition 2.65 The positions and admissible moves of the evaluation game for clean disjunctive formulas are given in Table 6. The winning conditions are as in the evaluation games for arbitrary $\mu \mathrm{ML}$-formulas.

Most of the moves of the evaluation game speak for themselves (given the interpretation of $\alpha \bullet \Phi$ as $(\bigwedge \alpha) \wedge \nabla \Phi)$. A minor deviation from the earlier evaluation games is that here we break off a match immedidately if we reach a position of the form ($\bigwedge \alpha, s$) where α is a set of literals, rather than breaking down the conjunction in subsequent moves.

What makes the evaluation game for disjunctive formulas special is the kind of move that \exists makes at a position of the form $(\nabla \Phi, s)$: here she picks a relation $Z \subseteq \mu \mathrm{DML}(\mathrm{P}) \times S$ of witnesses (with the requirement that Z is full on Φ and $R[s]$). Such a binary relation Z thus forms a new type of position, which is not a formula-state pair, but rather, a set of such pairs. These relational positions all belong to \forall, and his task at a position Z is simply to pick a witness from Z, that is, a pair (ψ, t) in Z. Of course this is in accordance with the semantic meaning of the cover modality.

In the following definition and propositions we isolate the key game-theoretic property of disjunctive formulas. Recall that, for a given strategy f in some evaluation game $\mathcal{E}(\xi, \mathbb{S})$ starting at position (ξ, s), we call a position $(\varphi, t) f$-reachable if there is some f-guided match in which the position (φ, t) is reached. We say that the state t is f-reachable if there is some formula φ such that the position (φ, t) is f-reachable.

Definition 2.66 Let ξ be a disjunctive formula, and let (\mathbb{S}, s) be a pointed model.
A strategy f for \exists in the evaluation game $\mathcal{E}(\xi, \mathbb{S}) @(\xi, s)$ is called separating if at every f-reachable position of the form $(\nabla \Phi, s), f$ picks a relation $Z \subseteq \Phi \times R[s]$ such that for every $t \in R[s]$ there is exactly one $\varphi \in \Phi$ such that $(\varphi, t) \in Z$.

A strategy f for \exists in $\mathcal{E}(\xi, \mathbb{S}) @(\xi, s)$ is thin if for every $t \in S$, if t is f-reachable, then there is at most one formula φ of the form $\alpha \bullet \Phi$ such that (φ, t) is f-reachable.

If f is a separating strategy which is winning for \exists in $\mathcal{E}(\xi, \mathbb{S}) @(\xi, s)$ then we say that ξ is strongly satisfied in \mathbb{S} at s, notation: $\mathbb{S}, s \Vdash_{s} \xi$.

The name 'separating' is chosen for obvious reasons: if, at position $(\nabla \Phi, s), \exists$ picks a functional relation Z, she effectively separates the elements of Φ from one another, in the sense that there are no two witnesses $(\varphi, t),\left(\varphi^{\prime}, t\right)$ in Z with $\varphi \neq \varphi^{\prime}$. It is easy to see that separating winning strategies on tree models are thin.

Proposition 2.67 Let ξ be a disjunctive formula, and let (\mathbb{S}, s) be a tree model. If f is a separating winning strategy for \exists in $\mathcal{E}(\xi, \mathbb{S}) @(\xi, s)$ then f is thin.

Strong satisfaction is a very strong kind of satisfaction indeed, and in later chapters we will use it as a key model-theoretic tool. The thinness of separating strategies on tree models will turn out to be an extremely useful property. The fundamental model-theoretic property of disjunctive formulas is that without loss of generality we may always assume that winning strategies are separating, provided that we allow ourselves to move to a bisimilar model.

- The proof of this theorem hinges on the semantics of the cover modality.

Theorem 2.68 Let ξ be a disjunctive formula, and let (\mathbb{S}, s) be a pointed model. Then the following are equivalent:

1) $\mathbb{S}, r \Vdash \xi$
2) $\mathbb{S}^{\prime}, r^{\prime} \Vdash_{s} \xi$ for some pointed tree model such that $\mathbb{S}, r \overleftrightarrow{\mathbb{S}} \mathbb{S}^{\prime}, r^{\prime}$.

Proof. (Sketch) We may focus on the direction from left to right, since the opposite direction is an immediate consequence of bisimulation invariance. So assume that $\mathbb{S}, s \Vdash \xi$, where ξ
is disjunctive, and let f be a winning strategy for \exists in the evaluation game \mathcal{E} starting from position (ξ, s). Without loss of generality we may assume that f is positional. Let k be the maximal size of a set Φ such that $\nabla \Phi$ is a subformula of ξ.

- (Define notion of subformula, ensure that $\Lambda \alpha$ and $\nabla \Phi$ are direct subformulas of $\alpha \bullet \Phi$.

We leave it for the reader to construct a tree model \mathbb{S}^{\prime} with root r^{\prime}, together with a bounded morphism $g: \mathbb{S}^{\prime} \rightarrow \mathbb{S}$ such that every non-root node s^{\prime} of \mathbb{S}^{\prime} has at least k many siblings t^{\prime} such that $g\left(t^{\prime}\right)=g\left(s^{\prime}\right)$.

Our goal will be to supply \exists, in the evaluation game of ξ on $\left(\mathbb{S}^{\prime}, r^{\prime}\right)$, with a separating winning strategy f^{\prime} which is closely linked to f. The key claim in our proof will be the observation that the gain in branching degree enables her to separate the elements of any set Φ, in case the formula ($\nabla \Phi, s$) is encountered during the play.

Claim 1 Let $s \in S$ and $s^{\prime} \in S^{\prime}$ be such that $g\left(s^{\prime}\right)=s$. Let $\nabla \Phi$ be a subset of ξ, and let $Z \subseteq \Phi \times R[s]$ be full on Φ and $R[s]$. Then there is a separating relation $Z^{\prime} \subseteq \Phi \times R^{\prime}\left[s^{\prime}\right]$ such that Z^{\prime} is full on Φ and $R^{\prime}\left[s^{\prime}\right]$ and $\left(\varphi, g\left(t^{\prime}\right)\right) \in Z$ whenever $\left(\varphi, t^{\prime}\right) \in Z^{\prime}$.

Proof of Claim Given a successor $t \in R[s]$, we define $\Phi_{t}:=\{\varphi \in \Phi \mid(\varphi, t) \in Z\}$; that is, Φ_{t} consists of all formulas that \exists connects to t with her choice of the relation Z. Furthermore let $A_{t}:=R\left[s^{\prime}\right] \cap g^{-1}(t)$ consist of all successors of s^{\prime} that g maps to t; then our assumption on g states that $k \leq\left|A_{t}\right|$.
Clearly then we have $\left|\Phi_{t}\right| \leq|\Phi| \leq k \leq\left|A_{t}\right|$, so that we may assume the existence of a surjection

$$
\zeta_{t}: A_{t} \rightarrow \Phi_{t}
$$

and since the sets A_{t} partition the set $R^{\prime}\left[s^{\prime}\right]$, we may easily combine the maps ζ_{t} into a single map

$$
\zeta: R^{\prime}\left[s^{\prime}\right] \rightarrow \Phi,
$$

simply by putting $\zeta\left(t^{\prime}\right):=\zeta_{g\left(t^{\prime}\right)}\left(t^{\prime}\right)$. It is then straightforward to verify that the relation Z^{\prime} given by

$$
Z^{\prime}:=\left\{\left(t^{\prime}, \zeta\left(t^{\prime}\right) \mid t^{\prime} \in R^{\prime}\left[s^{\prime}\right]\right\}\right.
$$

satisfies the requirements of the Claim.
On the basis of this claim we will be able to provide \exists with a winning strategy in the evaluation game in $\mathcal{E}^{\prime}:=\mathcal{E}\left(\xi, \mathbb{S}^{\prime}\right)$.

Claim $2 \exists$ has a strategy f^{\prime} in \mathcal{E}^{\prime} which guarantees that every f^{\prime}-guided play $\pi=\left(\varphi_{1}, s_{1}^{\prime}\right) \cdots\left(\varphi_{n}, s_{n}^{\prime}\right)$ starting at position $\left(\varphi_{1}, s_{1}^{\prime}\right)=\left(\xi, r^{\prime}\right)$ is such that the sequence $\pi^{g}=\left(\varphi_{1}, g\left(s_{1}^{\prime}\right)\right) \cdots\left(\varphi_{n}, g\left(s_{n}^{\prime}\right)\right)$ is an f-guided match of \mathcal{E} starting at position (ξ, r).

Proof of Claim Since we assumed that \exists 's strategy f in \mathcal{E} is positional, we will in fact also be able to provide her with a positional strategy in \mathcal{E}^{\prime}. The definition of f^{\prime} is straightforward:

- At a position of the form $\left(\varphi_{0} \vee \varphi_{1}, s^{\prime}\right)$, check whether the position $\left(\varphi_{0} \vee \varphi_{1}, g\left(s^{\prime}\right)\right)$ is winning for \exists in \mathcal{E}. If so, in \mathcal{E}^{\prime} at position $\left(\varphi_{0} \vee \varphi_{1}, g\left(s^{\prime}\right)\right)$, f^{\prime} picks the same disjunct as f does at the position $\left(\varphi_{0} \vee \varphi_{1}, g\left(s^{\prime}\right)\right)$. If not, f^{\prime} picks φ_{i} randomly.
- At a position of the form $\left(\nabla \Phi, s^{\prime}\right)$, check whether the position $\left(\nabla \Phi, g\left(s^{\prime}\right)\right)$ is winning for \exists in \mathcal{E}. If so, suppose that $Z \subseteq \Phi \times R\left[g\left(s^{\prime}\right)\right]$ is the relation picked by f; then \exists picks some arbitrary but fixed relation $Z^{\prime} \subseteq \Phi \times R^{\prime}\left[s^{\prime}\right]$ as given by Claim 1. If not, f picks some random legitimate relation Z^{\prime} (unless she gets stuck).

The statement of the Claim can then be proved by a straightforward induction on the length n of the f^{\prime}-guided play π, with the note that (for the well-definedness and legitimacy of f^{\prime}) we also need to show that the last position $\left(\varphi_{n}, s_{n}^{\prime}\right)$ of π is such that $\left(\varphi_{n}, g\left(s_{n}^{\prime}\right)\right)$ is winning for f in \mathcal{E}.

Now assume that in $\mathcal{E}^{\prime}, \exists$ plays some arbitrary but fixed strategy f^{\prime} as given by Claim 2. It easily follows from the same claim (and the assumption that f is winning for her in \mathcal{E}) that playing f^{\prime} she will never get stuck. This means that she wins every finite f^{\prime}-guided \mathcal{E}^{\prime}-match.

To see that f^{\prime} is winning for her in \mathcal{E}^{\prime}, consider an arbitary infinite f^{\prime}-guided match $\pi=\left(\varphi_{n}, s_{n}^{\prime}\right)_{n<\omega}$ starting at $\left(\varphi_{0}, s_{0}^{\prime}\right)=\left(\xi, r^{\prime}\right)$. It follows from Claim 2 that the sequence $\pi^{g}=\left(\varphi_{n}, g\left(s_{n}^{\prime}\right)\right)_{n<\omega}$ is an f-guided \mathcal{E}-match, and thus, won by \exists. But then clearly π, which features exactly the same infinite sequence of formulas as π^{g}, is also winning for her.

Finally it is immediate from its definition and Claim 1 that f^{\prime} is separating.
QED
Since the cover modality can be expressed in terms of the box and diamond operators, it is obvious that $\mu \mathrm{DML}$ can be thought of as a fragment of the full language of the μ-calculus. One of the fundamental theorems in the theory of the modal μ-calculus is that $\mu \mathrm{DML}$ has the same expressive power as the full language. This equivalence is in fact effective, as stated by the next theorem.

Theorem 2.69 There are effective procedures transforming an arbitrary formula $\varphi \in \mu \mathrm{ML}$ into an equivalent disjunctive formula, and vice versa. As a corollary, the languages $\mu \mathrm{ML}$, $\mu \mathrm{ML} \nabla$ and $\mu \mathrm{DML}$ all have the same expressive power.

The proof of Theorem 2.68 will be given in a later chapter.

Notes

The modal μ-calculus was introduced by D. Kozen [15]. Its game-theoretical semantics goes back to at least Emerson \& Jutla [11] (who use alternating automata as an intermediate step). As far as we are aware, the bisimulation invariance theorem, with the associated tree model property, is a folklore result. The bounded tree model property is due to Kozen \& Parikh [17].

There are various ways to make the notion of alternation depth precise; we work with the most widely used definition, which originates with Niwiński [22].

- More notes to be supplied.

Exercises

Exercise 2.1 Express in words the meaning of the following μ-calculus formula:

$$
\nu x . \mu y .(p \wedge \square x) \vee(\bar{p} \wedge \square y)
$$

Exercise 2.2 (defining modal μ-formulas) Give a modal μ-formula $\varphi(p, q)$ such that for all transition systems \mathbb{S}, and all states s_{0} in \mathbb{S} :

$$
\begin{array}{lrl}
\mathbb{S}, s_{0} \Vdash_{g} \varphi(p, q) \quad \text { iff } \quad & \text { there is a path } s_{0} R s_{1} \ldots R s_{n}(n \geq 0) \text { such that } \mathbb{S}, s_{n} \Vdash_{g} p \\
& \text { and } \mathbb{S}, s_{i} \Vdash_{g} q \text { for all } i \text { with } 0 \leq i<n .
\end{array}
$$

Exercise 2.3 (characterizing winning strategies)

A board is a structure $\mathbb{B}=\left\langle B_{0}, B_{1}, E\right\rangle$ such that $B_{0} \cap B_{1}=\varnothing$ and $E \subseteq B^{2}$, where $B=B_{0} \uplus B_{1}$ is a set of objects called positions. A match on \mathbb{B} consists of the players 0 and 1 moving a token from one position to another, following the edge relation E. Player i is supposed to move the token when it is situated on a position in B_{i}. Suppose in addition that B is also partitioned into green and red positions, $B=G \uplus R$.

We will use a modal language to describe this structure, with the modalities being interpreted by the edge relation E, the proposition letter p_{0} and r referring to the positions belonging to player 0 , and the red positions, respectively. That is, $V\left(p_{0}\right)=B_{0}$ and $V(r)=R$.
(a) Consider the game where player 0 wins as soon as the token reaches a green position. (That is, all infinite matches are won by player 1 . Player 0 wins if player 1 gets stuck, or if the token reaches a green position; player 1 wins a finite match if player 0 gets stuck.) Show that the formula $\varphi_{a}=\mu x . \bar{r} \vee\left(p_{0} \wedge \diamond x\right) \vee\left(\bar{p}_{0} \wedge \square x\right)$ characterizes the winning positions for player 0 in this game, in the sense that for any position $b \in B$, we have

$$
\mathbb{B}, V, b \vdash_{g} \varphi \text { iff player } 0 \text { has a w.s. in the game starting at position } b \text {. }
$$

(b) Now consider the game where player 0 wins if she manages to reach a green position infinitely often. (More precisely, infinite matches are won by 0 iff a green position is reached infinitely often; finite matches are lost by a player is he/she gets stuck.) Give a formula φ_{b} that characterizes the winning positions in this game.

Exercise 2.4 (characterizing fairness) Let $\mathrm{D}=\{a, b\}$ be the set of atomic actions, and consider the following formula ξ, with subformulas as indicated:

$$
\xi=\nu x \cdot \mu y \cdot \nu z \cdot \overbrace{\underbrace{\square_{a} x}_{\alpha_{1}} \wedge \underbrace{\left(\square_{a} \perp \vee \square_{b} y\right)}_{\alpha_{2}} \wedge \underbrace{\square_{b} z}_{\alpha_{3}}}^{\delta}
$$

Fix an LTS $\mathbb{S}=\left(S, R_{a}, R_{b}, V\right)$. We say that the transition a is enabled at state s of \mathbb{S} if $\mathbb{S}, s \Vdash_{g} \diamond_{a} \top$.

Show that ξ expresses some kind of fairness condition, i.e., the absence of a path starting at s on which a is enabled infinitely often, but executed only finitely often. More precisely, prove that $\mathbb{S}, s \Vdash_{g} \xi$ iff there is no path of the form $s_{0} \xrightarrow{d_{0}} s_{1} \xrightarrow{d_{7}} s_{2} \cdots$ such that $s=s_{0}$, $d_{i} \in\{a, b\}$ for all i, a is enabled at s_{i} for infinitely many i, but $d_{i}=a$ for only finitely many i.

Exercise 2.5 (filtration) Recall that, given a finite, closed set of formulas Σ and a model $\mathbb{S}=(S, R, V)$, we say that a model $\mathbb{S}^{\prime}=\left(S^{\prime}, R^{\prime}, V^{\prime}\right)$ is a filtration of \mathbb{S} through Σ if there is a surjective map $f: S \rightarrow S^{\prime}$ such that:
a) for all proposition letters $p \in \Sigma: u \in V(p)$ iff $f(u) \in V^{\prime}(p)$.
b) $u R v$ implies $f(u) R^{\prime} f(v)$
c) if $\diamond \varphi \in \Sigma$ and $f(u) R^{\prime} f(v)$, then $\mathbb{S}, v \Vdash_{g} \varphi$ implies $\mathbb{S}, u \Vdash_{g} \diamond \varphi$
d) $f(u)=f(v)$ if and only if u and v satisfy precisely the same formulas in Σ.

Say that a formula ξ of the μ-calculus admits filtration if, for every model \mathbb{S}, there is a finite set of formulas Σ containing ξ, and a filtration \mathbb{S}^{\prime} of \mathbb{S} through Σ such that $\mathbb{S}^{\prime}, f(s) \Vdash_{g} \varphi$ iff $\mathbb{S}, s \Vdash_{g} \varphi$, for each s in \mathbb{S} and each $\varphi \in \Sigma$.

Prove that the formula $\mu x . \square x$ does not admit filtration.
Exercise 2.6 We write $\varphi \models \psi$ to denote that ψ is a local consequence of φ, that is, if for all pointed Kripke models (\mathbb{S}, s) it holds that $\mathbb{S}, s \Vdash_{g} \varphi$ implies $\mathbb{S}, s \Vdash_{g} \psi$.
(a) Show that $\mu x . \nu y . \alpha(x, y) \models \nu y . \mu x . \alpha(x, y)$, for all formulas α.
(b) Show that $\mu x \cdot \mu y \cdot \alpha(x, y) \equiv \mu y \cdot \mu x \cdot \alpha(x, y)$, for all formulas α.
(c) Show that $\mu x .(x \vee \gamma(x)) \wedge \delta(x) \models \mu x \cdot \gamma(x) \wedge \delta(x)$, for all formulas γ, δ.

Exercise 2.7 (boolean μ-calculus) Show that the least and greatest fixpoint operators do not add expressive power to classical propositional logic, or, in other words, that the modalityfree fragment of the modal μ-calculus is expressively equivalent to classical propositional logic. (Hint: use Exercise 2.6(c).)

Exercise 2.8 (co-induction) Let φ, ψ be any two clean formulas of the modal μ-calculus such that ψ is free for x in φ; it will also be convenient to assume that ψ is not a subformula of φ. Show by a game semantic argument that the following so-called 'co-induction principle' holds for greatest fixpoints: if $\psi \models \varphi[\psi / x]$, then $\psi \models \nu x . \varphi$ also. Here we write ' \vDash ' for the local consequence relation, as in Exercise 2.6.

Exercise 2.9 (injectivity of substitution) Prove Proposition 2.51.

3 Fixpoints

The game-theoretic semantics of the modal μ-calculus introduced in the previous chapter has some attractive characteristics. It is intuitive, relatively easy to understand, and, as we shall see further on, it can be used to prove some important properties of the formalism. However, it has some drawbacks as well. For instance, the evaluation games of the previous chapter have only been defined for formulas that are either clean or tidy. The game semantics can be extended to arbitrary formulas but this will make the game somewhat more involved, in particular if we want to define evaluation games for formulas that are not in negation normal form.

Furthermore, the game-theoretical semantics is not compositional; that is, the meaning of a formula is not defined in terms of the meanings of its subformulas. These shortcomings vanish in the algebraic semantics that we are about to introduce. In order to define this term, we first consider an example.

Example 3.1 Recall that in Example 2.1, we informally introduced the formula $\mu x . p \vee \diamond_{d} x$ as the smallest fixpoint or solution of the 'equation' $x \equiv p \vee \diamond_{d} x$.

To make this intuition more precise, we have to look at the formula $\delta=p \vee \diamond_{d} x$ as an operation. The idea is that the value (that is, the extension) of this formula is a function of the value of x, provided that we keep the value of p constant. Varying the value of x boils down to considering ' x-variants' of the valuation V of $\mathbb{S}=\langle S, R, V\rangle$. Let, for $X \subseteq S$, $V[x \mapsto X]$ denote the valuation that is exactly like V apart from mapping x to X, and let $\mathbb{S}[x \mapsto X]$ denote the x-variant $\langle S, R, V[x \mapsto X]\rangle$ of \mathbb{S}. Then $\llbracket \delta \rrbracket^{\mathbb{S}[x \mapsto X]}$ denotes the extension of δ in this x-variant. It follows from this that the formula δ induces the following function $\delta_{x}^{\mathbb{S}}$ on the power set of S :

$$
\delta_{x}^{\mathbb{S}}(X):=\llbracket \delta \rrbracket^{\mathbb{S}[x \mapsto X]} .
$$

In our example we have

$$
\delta_{x}^{\mathbb{S}}(X)=V(p) \cup\langle R\rangle(X) .
$$

Now we can make precise why $\mu x . p \vee \diamond_{d} x$ is a fixpoint formula: its extension, the set $\llbracket \mu x . p \vee$ $\diamond_{d} x \rrbracket$, is a fixpoint of the map $\delta_{x}^{\mathbb{S}}$:

$$
\llbracket \mu x \cdot p \vee \diamond_{d} x \rrbracket=V(p) \cup\langle R\rangle\left(\llbracket \mu x \cdot p \vee \diamond_{d} x \rrbracket\right) .
$$

In fact, as we shall see in this chapter, the formulas $\mu x . p \vee \diamond_{d} x$ and $\nu x . p \vee \diamond_{d} x$ are such that their extensions are the least and greatest fixpoints of the map $\delta_{x}^{\mathbb{S}}$, respectively.

It is worthwhile to discuss the theory of fixpoint operators at a more general level than that of modal logic. Before we turn to the definition of the algebraic semantics of the modal μ-calculus, we first discuss the general fixpoint theory of monotone operations on complete lattices.

3.1 General fixpoint theory

Basics

In this chapter we assume some familiarity ${ }^{2}$ with partial orders and lattices (see Appendix A).
Definition 3.2 Let \mathbb{P} and \mathbb{P}^{\prime} be two partial orders and let $f: P \rightarrow P^{\prime}$ be some map. Then f is called monotone or order preserving if $f(x) \leq^{\prime} f(y)$ whenever $x \leq y$, and antitone or order reversing if $f(x) \geq^{\prime} f(y)$ whenever $x \leq y$.

Definition 3.3 Let $\mathbb{P}=\langle P, \leq\rangle$ be a partial order, and let $f: P \rightarrow P$ be some map. Then an element $p \in P$ is called a prefixpoint of f if $f(p) \leq p$, a postfixpoint of f if $p \leq f(p)$, and a fixpoint if $f(p)=p$. The sets of prefixpoints, postfixpoints, and fixpoints of f are denoted respectively as $\operatorname{PRE}(f), \operatorname{POS}(f)$ and $\operatorname{FIX}(f)$.

In case the set of fixpoints of f has a least (respectively greatest) member, this element is denoted as LFP.f (GFP.f, respectively). These least and greatest fixpoints may also be called extremal fixpoints.

The following theorem is a celebrated result in fixpoint theory.
Theorem 3.4 (Knaster-Tarski) Let $\mathbb{C}=\langle C, \bigvee, \wedge\rangle$ be a complete lattice, and let $f: C \rightarrow C$ be monotone. Then f has both a least and a greatest fixpoint, and these are given as

$$
\begin{align*}
\operatorname{LFP} . f & =\bigwedge \operatorname{PRE}(f), \tag{20}\\
\operatorname{GFP} . f & =\bigvee \operatorname{POS}(f) \tag{21}
\end{align*}
$$

Proof. We will only prove the result for the least fixpoint, the proof for the greatest fixpoint is completely analogous.

Define $q:=\bigwedge \operatorname{PRE}(f)$, then we have that $q \leq x$ for all prefixpoints x of f. From this it follows by monotonicity that $f(q) \leq f(x)$ for all $x \in \operatorname{PRE}(f)$, and hence by definition of prefixpoints, $f(q) \leq x$ for all $x \in \operatorname{PRE}(f)$. In other words, $f(q)$ is a lower bound of the set $\operatorname{PRE}(f)$. Hence, by definition of q as the greatest such lower bound, we find $f(q) \leq q$, that is, q itself is a prefixpoint of f.

It now suffices to prove that $q \leq f(q)$, and for this we may show that $f(q)$ is a prefixpoint of f as well, since q is by definition a lower bound of the set of prefixpoints. But in fact, we may show that $f(y)$ is a prefixpoint of f for every prefixpoint y of f - by monotonicity of f it immediately follows from $f(y) \leq y$ that $f(f(y)) \leq f(y)$.

QED
Another way to obtain least and greatest fixpoints is to approximate them from below and above, respectively.

Definition 3.5 Let $\mathbb{C}=\langle C, \bigvee, \wedge\rangle$ be a complete lattice, and let $f: C \rightarrow C$ be some map. Then by ordinal induction we define the following maps on C :

$$
\begin{aligned}
f_{\mu}^{0}(c) & :=c, \\
f_{\mu}^{\alpha+1}(c) & :=f\left(f_{\mu}^{\alpha}(c)\right) \\
f_{\mu}^{\lambda}(c) & :=\bigvee_{\alpha<\lambda} f_{\mu}^{\alpha}(c)
\end{aligned}
$$

$$
\begin{aligned}
f_{\nu}^{0}(c) & :=c, \\
f_{\nu}^{\alpha+1}(c) & :=f\left(f_{\nu}^{\alpha}(c)\right), \\
f_{\nu}^{\lambda}(c) & :=\bigwedge_{\alpha<\lambda} f_{\nu}^{\alpha}(c),
\end{aligned}
$$

[^1]where λ denotes an arbitrary limit ordinal.
Proposition 3.6 Let $\mathbb{C}=\langle C, \bigvee, \wedge\rangle$ be a complete lattice, and let $f: C \rightarrow C$ be monotone. Then f is inductive, that is, $f_{\mu}^{\alpha}(\perp) \leq f_{\mu}^{\beta}(\perp)$ for all ordinals α and β such that $\alpha<\beta$.

Proof. We leave this proof as an exercise to the reader.
QED
Given a set C, we let $|C|$ denote its cardinality or size.
Corollary 3.7 Let $\mathbb{C}=\langle C, \bigvee, \wedge\rangle$ be a complete lattice, and let $f: C \rightarrow C$ be monotone. Then there is some α of size at most $|C|$ such that LFP. $f=f_{\mu}^{\alpha}(\perp)$.

Proof. By Proposition 3.6, f is inductive, that is, $f_{\mu}^{\alpha}(\perp) \leq f_{\mu}^{\beta}(\perp)$ for all ordinals α and β such that $\alpha<\beta$. It follows from elementary set theory that there must be two ordinals α, β of size at most $|C|$ such that $f_{\mu}^{\alpha}(\perp)=f_{\mu}^{\beta}(\perp)$. From the definition of the approximations it then follows that there must be an ordinal α such that $f_{\mu}^{\alpha}(\perp)=f_{\mu}^{\alpha+1}(\perp)$, or, equivalently, $f_{\mu}^{\alpha}(\perp)$ is a fixpoint of f. To show that it is the smallest fixpoint, one may prove that $f_{\mu}^{\beta}(\perp) \leq$ LFP. f for every ordinal β. This follows from a straightforward ordinal induction. QED

Definition 3.8 Let $\mathbb{C}=\langle C, \bigvee, \wedge\rangle$ be a complete lattice, and let $f: C \rightarrow C$ be monotone. The least ordinal α such that $f_{\mu}^{\alpha}(\perp)=f_{\mu}^{\alpha+1}(\perp)$ is called the unfolding ordinal of f.

3.2 Boolean algebras

In the special case that the complete lattice is in fact a (complete) boolean algebra, there is more to be said.

Dual maps

In the case of monotone maps on complete boolean algebras, the least and greatest fixed points become interdefinable, using the notion of (boolean) duals of maps.

Definition 3.9 A complete boolean algebra is a structure $\mathbb{B}=\langle B, \bigvee, \wedge,-\rangle$ such that $\langle B, \bigvee, \wedge\rangle$ is a complete lattice and $\langle B, \vee, \wedge,-, \perp, \top\rangle$ is a boolean algebra, where \vee and \wedge are the binary versions of \bigvee and \wedge, respectively, and $\perp:=\bigvee \varnothing, \top:=\Lambda \varnothing$.

In a boolean algebra \mathbb{B}, the complementation operation $-: B \rightarrow B$ is an antitone (orderreversing) map such that $x \wedge-x=\perp$ and $x \vee-x=\top$ for all $x \in B$. If \mathbb{B} is complete it holds that $-\bigvee X=\bigwedge\{-x \mid x \in X\}$ and $-\bigwedge X=\bigvee\{-x \mid x \in X\}$.

Definition 3.10 Let $\mathbb{B}=\langle B, \bigvee, \wedge,-\rangle$ be a complete boolean algebra. Given a map $f: B \rightarrow$ B, the function $f^{\partial}: B \rightarrow B$ given by

$$
f^{\partial}(b):=-f(-b)
$$

is called the (boolean) dual of f.

Proposition 3.11 Let $\mathbb{B}=\langle B, \bigvee, \wedge,-\rangle$ be a complete boolean algebra, and let $g: B \rightarrow B$ be monotone. Then g^{∂} is monotone as well, $\left(g^{\partial}\right)^{\partial}=g$, and

$$
\begin{aligned}
\text { LFP. } \cdot g^{\partial} & =-\mathrm{GFP} \cdot g, \\
\operatorname{GFP} \cdot g^{\partial} & =-\mathrm{LFP} \cdot g .
\end{aligned}
$$

Proof. We only prove that LFP. $g^{\partial}=-$ GFP. g, leaving the other parts of the proof as exercises to the reader.

First, note that by monotonicity of g^{∂}, the Knaster-Tarski theorem gives that

$$
\operatorname{LFP} \cdot g^{\partial}=\bigwedge \operatorname{PRE}\left(g^{\partial}\right)
$$

But as a consequence of the definitions, we have that

$$
b \in \operatorname{PRE}\left(g^{\partial}\right) \Longleftrightarrow-b \in \operatorname{POS}(g)
$$

From this it follows that

$$
\begin{aligned}
\text { LFP. } g^{\partial} & =\bigwedge\{b \mid-b \in \operatorname{POS}(g)\} \\
& =\bigwedge\{-a \mid a \in \operatorname{POS}(g)\} \\
& =-\bigvee \operatorname{POS}(g) \\
& =- \text { GFP. } g
\end{aligned}
$$

which finishes the proof of the Theorem.
QED
Further on we will see that Proposition 3.11 allows us to define negation as an abbreviated operator in the modal μ-calculus.

Games

In case the boolean algebra in question is in fact a power set algebra, a nice game-theoretic characterization of least and greatest fixpoint operators can be given.

Definition 3.12 Let S be some set and let $F: \wp(S) \rightarrow \wp(S)$ be a monotone operation. Consider the unfolding games $\mathcal{U}^{\mu}(F)$ and $\mathcal{U}^{\nu}(F)$. The positions and admissible moves of these two graph games are the same, see Table 7.

Position	Player	Admissible moves
$s \in S$	\exists	$\{A \in \wp(S) \mid s \in F(A)\}$
$A \in \wp(S)$	\forall	A

Table 7: Unfolding games for $F: \wp(S) \rightarrow \wp(S)$
The winning conditions of finite matches are standard (the player that got stuck loses the match). The difference between $\mathcal{U}^{\mu}(F)$ and $\mathcal{U}^{\nu}(F)$ shows up in the winning conditions of infinite matches: \exists wins the infinite matches of $\mathcal{U}^{\nu}(F)$, but \forall those of $\mathcal{U}^{\mu}(F)$.

Observe that the positions in a match of the unfolding game alternate between 'state positions' s, where \exists needs to pick a subset $A \subseteq S$ such that s belongs to $F(A)$, and 'subset positions' A, of which \forall has to pick an element.

Example 3.13 In fact, we have already seen an example of the unfolding game \mathcal{U}^{ν} in the bisimilarity game of Definition 1.26. Given two Kripke models \mathbb{S} and \mathbb{S}^{\prime}, consider the map $F: \wp\left(S \times S^{\prime}\right)$ given by

$$
F(Z):=\left\{\left(s, s^{\prime}\right) \in S \times S^{\prime} \mid Z \text { is a local bisimulation for } s \text { and } s^{\prime}\right\}
$$

then it is straightforward to verify that $\mathcal{B}\left(\mathbb{S}, \mathbb{S}^{\prime}\right)$ is nothing but the unfolding game $\mathcal{U}^{\nu}(F)$. \triangleleft
The following proposition substantiates the slogan that ' ν means unfolding, μ means finite unfolding'.

Theorem 3.14 Let S be some set and let $F: \wp(S) \rightarrow \wp(S)$ be a monotone operation. Then

1. GFP. $F=\left\{s \in S \mid s \in \operatorname{Win}_{\exists}\left(\mathcal{U}^{\nu}(F)\right)\right\}$,
2. LFP. $F=\left\{s \in S \mid s \in \operatorname{Win}_{\exists}\left(\mathcal{U}^{\mu}(F)\right)\right\}$,

Proof. For the inclusion \supseteq of part 1 , it suffices to prove that $W:=S \cap \operatorname{Win}_{\exists}\left(\mathcal{U}^{\nu}(F)\right)$ is a postfixpoint of F :

$$
\begin{equation*}
W \subseteq F(W) \tag{22}
\end{equation*}
$$

Let s be an arbitrary point in W, and suppose that \exists 's winning strategy tells her to choose $A \subseteq S$ at position s. Then no matter what element $s_{1} \in A$ is picked by \forall, \exists can continue the match and win. Hence, all elements of A are winning positions for \exists. But from $A \subseteq W$ it follows that $F(A) \subseteq F(W)$, and by the legitimacy of \exists 's move A at s it holds that $s \in F(A)$. We conclude that $s \in F(W)$, which proves (22).

For the converse inclusion \subseteq of part 1 of the proposition, take an arbitrary point $s \in$ GFP.F. We need to provide \exists with a winning strategy in the unfolding game $\mathcal{U}^{\nu}(F)$ starting at s. This strategy is actually as simple as can be: \exists should always play GFP.F. Since GFP. $F=F($ GFP. F), this strategy prescribes legitimate moves for \exists at every point in GFP.F. And, if she sticks to this strategy, \exists will stay alive forever and thus win the match, no matter what \forall 's responses are.

For the second part of the theorem, let W denote the set $W:=S \cap \operatorname{Win}_{\exists}\left(\mathcal{U}^{\mu}(F)\right)$ of states in S that are winning positions for \exists in $\mathcal{U}^{\mu}(F)$. We first prove the inclusion $W \subseteq$ LFP.F. Clearly it suffices to show that all points outside the set LFP.F are winning positions for \forall.

Consider a point $s \notin$ LFP. F. If $s \notin F(A)$ for any $A \subseteq S$ then \exists is stuck, hence loses immediately, and we are done. Otherwise, suppose that \exists starts a match of $\mathcal{U}^{\mu}(F)$ by playing some set $B \subseteq S$ with $s \in F(B)$. We claim that B is not a subset of LFP.F, since otherwise we would have $F(B) \subseteq F($ LFP. $F) \subseteq$ LFP. F; which would contradict the fact that $s \notin$ LFP. F. But if $B \nsubseteq$ LFP. F then \forall may continue the match by choosing a point $s_{1} \in B \backslash$ LFP. F. Now \forall can use the same strategy from s_{1} as he used from s, and so on. This strategy guarantees that either \exists gets stuck after finitely many rounds (in case \forall manages to pick an s_{n} for which
there is no A such that $\left.s_{n} \in F\left(A_{n}\right)\right)$, or else the match will last forever. In both cases \forall wins the match.

For the opposite inclusion \subseteq of part 2 , it suffices to show that W is a prefixpoint of F, that is, $F(W) \subseteq W$. For that purpose, let $s \in S$ be such that $s \in F(W)$. In order to show that $s \in W$ we need to provide \exists with a winning strategy in $\mathcal{U}^{\mu}(F)$, starting at s. But this is straightforward: since $s \in F(W)$, the set W itself is a legitimate move for \exists at position s. Then, after \forall picks some element $t \in W$, she can simply continue with her strategy in $\mathcal{U}^{\mu}(F)$ that is winning when starting at position t.

QED

3.3 Vectorial fixpoints

Suppose that we are given a finite family $\left\{\mathbb{C}_{1}, \ldots, \mathbb{C}_{n}\right\}$ of complete lattices, and put $\mathbb{C}=$ $\prod_{1 \leq i \leq n} \mathbb{C}_{i}$. Given a finite family of monotone maps f_{1}, \ldots, f_{n} with $f_{i}: C \rightarrow C_{i}$, we may define the map $f: C \rightarrow C$ given by $f(c):=\left(f_{1}(c), \ldots, f_{n}(c)\right)$. Monotonicity of f is an easy consequence of the monotonicity of the maps f_{i} separately, and so by completeness of \mathbb{C}, f has a least and a greatest fixpoint. In this context we will also use vector notation, for instance writing

$$
\mu\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right)
$$

for LFP. f. An obvious question is whether one may express these multi-dimensional fixpoints in terms of one-dimensional fixpoints of maps that one may associate with f_{1}, \ldots, f_{n}.

The answer to this question is positive, and the basic observation facilitating the computation of multi-dimensional fixpoints is the following so-called Bekič principle.

Proposition 3.15 Let \mathbb{D}_{1} and \mathbb{D}_{2} be two complete lattices, and let $f_{i}: D_{1} \times D_{2} \rightarrow D_{i}$ for $i=1,2$ be monotone maps. Then

$$
\eta\binom{x}{y} \cdot\binom{f_{1}(x, y)}{f_{2}(x, y)}=\binom{\eta x \cdot f_{1}\left(x, \eta y \cdot f_{2}(x, y)\right)}{\eta y \cdot f_{2}\left(\eta x \cdot f_{1}(x, y), y\right)}
$$

where η uniformly denotes either μ or ν.
Proof. Define $\mathbb{D}:=\mathbb{D}_{1} \times \mathbb{D}_{2}$, and let $f: D \rightarrow D$ be given by putting $f(d):=\left(f_{1}(d), f_{2}(d)\right)$. Then f is clearly monotone, and so it has both a least and a greatest fixpoint.

By the order duality principle it suffices to consider the case $\eta=\mu$ of least fixed points only. Suppose that $\left(a_{1}, a_{2}\right)$ is the least fixpoint of f, and let b_{1} and b_{2} be given by

$$
\left\{\begin{aligned}
b_{1} & :=\mu x \cdot f_{1}\left(x, \mu y \cdot f_{2}(x, y)\right) \\
b_{2} & :=\mu y \cdot f_{2}\left(\mu x \cdot f_{1}(x, y), y\right)
\end{aligned}\right.
$$

Then we need to show that $a_{1}=b_{1}$ and $a_{2}=b_{2}$.
By definition of (a_{1}, a_{2}) we have

$$
\left\{\begin{array}{l}
a_{1}=f_{1}\left(a_{1}, a_{2}\right) \\
a_{2}=f_{2}\left(a_{1}, a_{2}\right)
\end{array}\right.
$$

whence we obtain

$$
\begin{cases}\mu x \cdot f_{1}\left(x, a_{2}\right) & \leq a_{1} \\ \mu y \cdot f_{2}\left(a_{1}, y\right) & \leq a_{2},\end{cases}
$$

From this we obtain by monotonicity that

$$
f_{2}\left(\mu x . f_{1}\left(x, a_{2}\right), a_{2}\right) \leq f_{2}\left(a_{1}, a_{2}\right)=a_{2},
$$

so that we find $b_{2} \leq a_{2}$ by definition of b_{2}. Likewise we may show that $b_{1} \leq a_{1}$.
Conversely, by definition of b_{1} and b_{2} we have

$$
\binom{b_{1}}{b_{2}}=\binom{f_{1}\left(b_{1}, \mu y \cdot f_{2}\left(b_{1}, y\right)\right)}{f_{2}\left(\mu x \cdot f_{1}\left(x, b_{2}\right), b_{2}\right)} .
$$

Then with $c_{2}:=\mu y \cdot f_{2}\left(b_{1}, y\right)$, we have $b_{1}=f_{1}\left(b_{1}, c_{2}\right)$. Also, by definition of c_{2} as a fixpoint, $c_{2}=f_{2}\left(b_{1}, c_{2}\right)$. Putting these two identities together, we find that

$$
\binom{b_{1}}{c_{2}}=\binom{f_{1}\left(b_{1}, c_{2}\right)}{f_{2}\left(b_{1}, c_{2}\right)}=f\binom{b_{1}}{c_{2}} .
$$

Hence by definition of (a_{1}, a_{2}), we find that $a_{1} \leq b_{1}$ (and that $a_{2} \leq c_{2}$, but that is of less interest now). Analogously, we may show that $a_{2} \leq b_{2}$.

QED
Proposition 3.15 allows us to compute the least and greatest fixpoints of any monotone map f on a finite product of complete lattices in terms of the least and greatest fixpoints of operations on the factors of the product, through a elimination method that is reminiscent of Gaussian elimination in linear algebra.

To see how it works, suppose that we are dealing with lattices $\mathbb{C}_{1}, \ldots, \mathbb{C}_{n+1}, \mathbb{C}$ and maps $f_{1}, \ldots, f_{n+1}, f$, just as described above, and that we want to compute $\eta \vec{x} . f$, that is, find the elements a_{1}, \ldots, a_{n+1} such that

$$
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n+1}
\end{array}\right)=\eta\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n+1}
\end{array}\right) \cdot\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
f_{2}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
\vdots \\
f_{n+1}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
\end{array}\right)
$$

We may define

$$
g_{n+1}\left(x_{1}, \ldots, x_{n}\right):=\eta x_{n+1} \cdot f_{n+1}\left(x_{1}, \ldots, x_{n+1}\right),
$$

and then use Proposition 3.15, with $\mathbb{D}_{1}=\mathbb{C}_{1} \times \cdots \times \mathbb{C}_{n}$, and $\mathbb{D}_{2}=\mathbb{C}_{n+1}$, to obtain

$$
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\eta\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}, g_{n+1}\left(x_{1}, \ldots, x_{n}\right)\right) \\
f_{2}\left(x_{1}, \ldots, x_{n}, g_{n+1}\left(x_{1}, \ldots, x_{n}\right)\right) \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}, g_{n+1}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{array}\right)
$$

We may then inductively assume to have obtained the tuple $\left(a_{1}, \ldots, a_{n}\right)$. Finally, we may compute $a_{n+1}:=g_{n+1}\left(a_{1}, \ldots, a_{n}\right)$.

Observe that in case $\mathbb{C}_{i}=\mathbb{C}_{j}$ for all i, j and the operations f_{i} are all term definable in some formal fixpoint language, then each of the components a_{i} of the extremal fixpoints of f can also be expressed in this language.

3.4 Algebraic semantics for the modal μ-calculus

Basic definitions

In order to define the algebraic semantics of the modal μ-calculus, we need to consider formulas as operations on the power set of the (state space of a) transitions system, and we have to prove that such operations indeed have least and greatest fixpoints. In order to make this precise, we need some preliminary definitions.

Definition 3.16 Given an LTS $\mathbb{S}=\langle S, V, R\rangle$ and subset $X \subseteq S$, define the valuation $V[x \mapsto$ $X]$ by putting

$$
V[x \mapsto X](y):= \begin{cases}V(y) & \text { if } y \neq x \\ X & \text { if } y=x\end{cases}
$$

Then, the LTS $\mathbb{S}[x \mapsto X]$ is given as the structure $\langle S, V[x \mapsto X], R\rangle$.
Now inductively assume that $\llbracket \varphi \rrbracket^{\mathbb{S}}$ has been defined for all LTSs. Given a labelled transition system \mathbb{S} and a propositional variable $x \in \mathrm{P}$, each formula φ induces a map $\varphi_{x}^{\mathbb{S}}: \wp(S) \rightarrow \wp(S)$ defined by

$$
\varphi_{x}^{\mathbb{S}}(X):=\llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto X]}
$$

Example 3.17 a) Where $\varphi_{a}=p \vee x$ we have $\left(\varphi_{a}\right)_{x}^{\mathbb{S}}(X)=\llbracket p \vee x \rrbracket^{\mathbb{S}[x \mapsto X]}=V(p) \cup X$.
b) Where $\varphi_{b}=\bar{x}$ we have $\left(\varphi_{b}\right)_{x}^{\mathbb{S}}(X)=\llbracket \bar{x} \rrbracket^{\mathbb{S}[x \mapsto X]}=S \backslash X$.
c) Where $\varphi_{c}=p \vee \diamond_{d} x$ we find $\left(\varphi_{c}\right)_{x}^{\mathbb{S}}(X)=\llbracket p \vee \diamond_{d} x \rrbracket^{\mathbb{S}[x \mapsto X]}=V(p) \cup\left\langle R_{d}\right\rangle X$.
d) Where $\varphi_{d}=\diamond_{d} \bar{x}$ we find $\left(\varphi_{d}\right)_{x}^{\mathbb{S}}(X)=\llbracket \diamond_{d} \bar{x} \rrbracket^{\mathbb{S}[x \mapsto X]}=\left\langle R_{d}\right\rangle(S \backslash X)$.

Remark 3.18 Clearly, relative to a model \mathbb{S}, X is a fixpoint of $\varphi_{x}^{\mathbb{S}}$ iff $X=\varphi_{x}^{\mathbb{S}}(X)$; a prefixpoint iff $\varphi_{x}^{\mathbb{S}}(X) \subseteq X$ and a postfixpoint iff $X \subseteq \varphi_{x}^{\mathbb{S}}(X)$.

Writing $\mathbb{S} \Vdash \varphi$ for $S=\llbracket \varphi \rrbracket^{\mathbb{S}}$, an alternative but equivalent way of formulating this is to say that in \mathbb{S}, X is a prefixpoint of a formula $\varphi(x)$ iff $\mathbb{S}[x \mapsto X] \Vdash \varphi \rightarrow x$, a postfixpoint iff $\mathbb{S}[x \mapsto X] \Vdash x \rightarrow \varphi$, and a fixpoint iff $\mathbb{S}[x \mapsto X] \Vdash x \leftrightarrow \varphi$.

Example 3.19 Consider the formulas of Example 3.17.
a) The sets $V(p)$ and S are fixpoints of φ_{a}, as is in fact any X with $V(p) \subseteq X \subseteq S$.
b) Since we do not consider structures with empty domain, the formula \bar{x} has no fixpoints at all. (Otherwise X would be identical to its own complement relative to some nonempty set S.)
c) Two fixpoints of φ_{c} were already given in Example 2.1.
d) Consider any model $\mathbb{Z}=\langle Z, S, V\rangle$ based on the set Z of integers, where $S=\{(z, z+1) \mid$ $z \in Z\}$ is the successor relation. Then the only two fixpoints of φ_{d} are the sets of even and odd numbers, respectively.

In particular, it is not the case that every formula has a least fixpoint. If we can guarantee that the induced function $\varphi_{x}^{\mathbb{S}}$ of φ is monotone, however, then the Knaster-Tarski theorem (Theorem 3.4) provides both least and greatest fixpoints of $\varphi_{x}^{\mathbb{S}}$. Precisely for this reason, in the definition of fixpoint formulas, we imposed the condition in the clauses for $\eta x . \varphi$, that x may only occur positively in φ. As we will see, this condition on x guarantees monotonicity of the function $\varphi_{x}^{\mathbb{S}}$.

Definition 3.20 Given a $\mu \mathrm{ML}_{\mathrm{D}}$-formula φ and a labelled transition system $\mathbb{S}=\langle S, V, R\rangle$, we define the meaning $\llbracket \varphi \rrbracket^{\mathbb{S}}$ of φ in \mathbb{S}, together with the map $\varphi_{x}^{\mathbb{S}}: \wp(S) \rightarrow \wp(S)$ by the following simultaneous formula induction:

$$
\begin{aligned}
& \llbracket \perp \rrbracket^{\mathbb{S}}=\varnothing \quad \llbracket \top \rrbracket^{\mathbb{S}}=S \\
& \llbracket p \rrbracket^{\mathbb{S}} \quad=V(p) \quad \llbracket \bar{p} \rrbracket^{\mathbb{S}} \quad=S \backslash V(p) \\
& \llbracket \varphi \vee \psi \rrbracket^{\mathbb{S}}=\llbracket \varphi \rrbracket^{\mathbb{S}} \cup \llbracket \psi \rrbracket^{\mathbb{S}} \quad \llbracket \varphi \wedge \psi \rrbracket^{\mathbb{S}}=\llbracket \varphi \rrbracket^{\mathbb{S}} \cap \llbracket \psi \rrbracket^{\mathbb{S}} \\
& \left.\llbracket \diamond_{d} \varphi \rrbracket^{\mathbb{S}}=\left\langle R_{d}\right\rangle \llbracket \varphi \rrbracket^{\mathbb{S}} \quad \llbracket \square_{d} \varphi \rrbracket^{\mathbb{S}}=\left[R_{d}\right] \llbracket \varphi\right]^{\mathbb{S}} \\
& \llbracket \mu x . \varphi \rrbracket^{\mathbb{S}}=\bigcap \operatorname{PRE}\left(\varphi_{x}^{\mathbb{S}}\right) \quad \llbracket \nu x . \varphi \rrbracket^{\mathbb{S}}=\bigcup \operatorname{POS}\left(\varphi_{x}^{\mathbb{S}}\right)
\end{aligned}
$$

The map $\varphi_{x}^{\mathbb{S}}$, for $x \in$ Prop, is given by $\varphi_{x}^{\mathbb{S}}(X)=\llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto X]}$.
Theorem 3.21 Let φ be an $\mu \mathrm{ML}_{\mathrm{D}}$-formula, in which x occurs only positively, and let \mathbb{S} be a labelled transition system. Then $\llbracket \mu x . \varphi \rrbracket^{\mathbb{S}}=\mathrm{LFP} . \varphi_{x}^{\mathbb{S}}$, and $\llbracket \nu x . \varphi \rrbracket^{\mathbb{S}}=\mathrm{GFP} . \varphi_{x}^{\mathbb{S}}$.

Proof. This is an immediate consequence of the Knaster-Tarski theorem, provided we can prove that $\varphi_{x}^{\mathbb{S}}$ is monotone in x if all occurrences of x in φ are positive. We leave the details of this proof to the reader (see Exercise 3.2).

QED

Negation in the modal μ-calculus

It follows from the definitions that the set $\mu \mathrm{ML}_{\mathrm{D}}$ is closed under taking negations. Informally, let $\sim \varphi$ be the result of simultaneously replacing all occurrences of \top with \perp, of p with \bar{p} and vice versa (for free variables p), of \wedge with \vee, of \square_{d} with \diamond_{d}, of μx with νx, and vice versa, while leaving occurrences of bound variables unchanged. As an example, $\sim(\mu x . p \vee \diamond x)=\nu x \cdot \bar{p} \wedge \square x$. Formally, it is easiest to define $\sim \varphi$ via the boolean dual of φ.

Definition 3.22 Given a modal fixpoint formula φ, we define its boolean dual φ^{∂} inductively as follows:

$$
\begin{array}{llll}
\perp^{\partial} & :=\top & \top^{\partial} & :=\perp \\
p^{\partial} & :=p & (\bar{p})^{\partial} & :=\bar{p} \\
(\varphi \vee \psi)^{\partial} & :=\varphi^{\partial} \wedge \psi^{\partial} & (\varphi \wedge \psi)^{\partial} & :=\varphi^{\partial} \vee \psi^{\partial} \\
\left(\diamond_{d \varphi}\right)^{\partial} & :=\square_{d} \varphi^{\partial} & \left(\square_{d \varphi)^{\partial}}\right. & :=\diamond_{d \varphi^{\partial}} \\
(\mu x . \varphi)^{\partial} & :=\nu x . \varphi^{\partial} & (\nu x . \varphi)^{\partial} & :=\mu x . \varphi^{\partial}
\end{array}
$$

Based on this definition, we define the formula $\sim \varphi$ as the formula $\varphi^{\partial}[p \rightleftharpoons \bar{p} \mid p \in F V(\varphi)]$ that we obtain from φ^{∂} by replacing all occurrences of p with \bar{p}, and vice versa, for all free proposition letters $p \in F V(\varphi)$.

Example 3.23 Here are two examples:

$$
\begin{array}{llll}
\varphi & :=\mu x \cdot p \vee \diamond(x \wedge \bar{q}) & \psi & :=\nu p \mu x . p \vee \diamond(x \wedge \bar{q}) \\
\varphi^{\partial} & :=\nu x \cdot p \wedge \square(x \vee \bar{q}) & \psi^{\partial}:=\mu p \nu x \cdot p \wedge \square(x \vee \bar{q}) \\
\sim \varphi & :=\nu x \cdot \bar{p} \wedge \square(x \vee q) & \sim \psi & \sim=\mu p \nu x . p \wedge \square(x \vee q)
\end{array}
$$

Note the difference between $\sim \varphi$ and $\sim \psi$ with respective to the propositional variable p, which is free in φ but bound in ψ.

The following proposition states that the operation \sim functions as a standard boolean negation. We let $\sim_{S} X:=S \backslash X$ denote the complement of X in S.

Proposition 3.24 Let φ be a modal fixpoint formula. Then $\sim \varphi$ corresponds to the negation of φ, that is,

$$
\begin{equation*}
\llbracket \sim \varphi \rrbracket^{\mathbb{S}}=\sim_{S} \llbracket \varphi \rrbracket^{\mathbb{S}} \tag{23}
\end{equation*}
$$

for every labelled transition system \mathbb{S}.
Proof. We first show, by induction on φ, that φ^{∂} corresponds to the boolean dual of φ. For this purpose, given a labelled transition system $\mathbb{S}=(S, R, V)$, we let \mathbb{S}^{\sim} denote the complemented model, that is, the structure $\left(S, R, V^{\sim}\right)$, where $V^{\sim}(p):=\sim_{S} V(p)$. Then we claim that

$$
\begin{equation*}
\llbracket \varphi^{\partial} \rrbracket^{\mathbb{S}}=\sim_{S} \llbracket \varphi \rrbracket^{\mathbb{S}^{\sim}} \tag{24}
\end{equation*}
$$

and we prove this statement by induction on the complexity of φ. Leaving all other cases as exercises for the reader, we concentrate on the inductive case where φ is of the form $\mu x . \psi$. In this case the left hand side of (24) evaluates to

$$
\begin{array}{rlr}
\llbracket(\mu x \cdot \psi)^{\partial} \rrbracket^{\mathbb{S}} & =\llbracket \nu x \cdot \psi^{\partial} \rrbracket^{\mathbb{S}} & \left(\text { Definition }(\mu x \cdot \psi)^{\partial}\right) \\
& =\operatorname{GFP} \cdot\left(\psi^{\partial}\right)_{x}^{\mathbb{S}} & (\text { Theorem 3.21) } \tag{Theorem3.21}
\end{array}
$$

while for the right hand side we find

$$
\begin{align*}
\sim_{S} \llbracket \mu x . \psi \rrbracket^{\mathbb{S} \sim} & =\sim_{S} \text { LFP. } \cdot \psi_{x}^{\mathbb{S} \sim} \tag{Theorem3.21}\\
& =\operatorname{GFP} .\left(\psi_{x}^{\mathbb{S} \sim}\right)^{\partial} \tag{Proposition3.11}
\end{align*}
$$

In other words, to prove (24) it suffices to show that

$$
\begin{equation*}
\left(\psi^{\partial}\right)_{x}^{\mathbb{S}}=\left(\psi_{x}^{\mathbb{S}}\right)^{\partial} . \tag{25}
\end{equation*}
$$

To this aim, take an arbitrary subset U of S. Applying the map on the left hand side of (25) to U, we find

$$
\left(\psi^{\partial}\right)_{x}^{\mathbb{S}}(U)=\llbracket \psi^{\partial} \rrbracket^{\mathbb{S}[x \mapsto U]}
$$

while the map on the right hand side yields

$$
\left(\psi_{x}^{\mathbb{S} \sim}\right)^{\partial}(U)=\sim_{S} \psi_{x}^{\mathbb{S} \sim}\left(\sim_{S} U\right)=\sim_{S} \llbracket \psi \rrbracket^{\left.\mathbb{S}^{\sim}\left[x \mapsto \sim_{S} U\right]\right)}=\sim_{S} \llbracket \psi \rrbracket^{(\mathbb{S}[x \mapsto U])^{\sim}},
$$

so that by the inductive hypothesis we find that $\left(\psi^{\partial}\right)_{x}^{\mathbb{S}}(U)=\left(\psi_{x}^{\mathbb{S}^{\sim}}\right)^{\partial}(U)$, as required to prove (25), and thus (24).

In other words, we have shown that the formula φ^{∂} indeed behaves as the boolean dual of φ. To see that, likewise, the formula $\sim \varphi$ behaves as the negation of φ, we now show how to derive (23) from (24). First observe that for any formula χ we have

$$
\begin{equation*}
\llbracket \chi\left[p \rightleftharpoons \bar{p} \mid p \in F V(\chi) \rrbracket \rrbracket^{\mathbb{S}}=\llbracket \chi \rrbracket^{\mathbb{S}^{\sim}}\right. \tag{26}
\end{equation*}
$$

But then, taking φ^{∂} for χ, we find that

$$
\llbracket \sim \varphi \rrbracket^{\mathbb{S}}=\llbracket \varphi^{\partial}\left[p \rightleftharpoons \bar{p} \mid p \in F V(\varphi) \rrbracket \rrbracket^{\mathbb{S}}=\llbracket \varphi^{\partial} \rrbracket^{\mathbb{S}^{\sim}}=\sim_{S} \llbracket \varphi \rrbracket^{\left(\mathbb{S}^{\sim}\right)^{\sim}}=\sim_{S} \llbracket \varphi \rrbracket^{\mathbb{S}}\right.
$$

where the first equality holds by the definition of $\sim \varphi$, the second by (26), the third equality is (24), and the fourth equality follows from the trivial observation that $\left(\mathbb{S}^{\sim}\right)^{\sim}=\mathbb{S}$. QED

Remark 3.25 It follows from the Proposition above that we could indeed have based the language of the modal μ-calculus on a smaller alphabet of primitive symbols. Given a set \mathbf{D} of atomic actions, we could have defined the set of modal fixpoint formulas using the following induction:

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \varphi| \diamond_{d} \varphi \mid \mu x . \varphi
$$

where p and x are propositional variables, $d \in \mathrm{D}$, and in $\mu x . \varphi$, all free occurrences of x must be positive (that is, under an even number of negation symbols). Here we define $F V(\neg \varphi)=$ $F V(\varphi)$ and $B V(\neg \varphi)=B V(\varphi)$.

In this set-up, the constant \top and the connectives \wedge and \square_{d} are defined using the standard abbreviations, while for the greatest fixpoint operator we may put

$$
\nu x . \varphi:=\neg \mu x . \neg \varphi(\neg x) .
$$

Note the triple use of the negation symbol here, which can be explained by Proposition 3.11 and the observation that we may think of $\neg \varphi(\neg x)$ as the formulas φ^{∂}.

Other immediate consequences

Earlier on we defined the notions of clean and guarded formulas.
Proposition 3.26 Every fixpoint formula is equivalent to a clean formula, and hence, to a tidy one.

Proof. We leave this proof as an exercise for the reader.
QED
Proposition 3.27 Every fixpoint formula is equivalent to a guarded formula.
Proof.(Sketch) We prove this proposition by formula induction. Clearly the only nontrivial case to consider concerns the fixpoint operators. Consider a formula of the form $\eta x . \delta(x)$, where $\delta(x)$ is guarded and clean, and suppose that x has an unguarded occurrence in δ.

First consider an unguarded occurrence of x in $\delta(x)$ inside a fixpoint subformula, say, of the form $\theta y \cdot \gamma(x, y)$. By induction hypothesis, all occurrences of y in $\gamma(x, y)$ are guarded. Obtain the formula $\bar{\delta}$ from δ by replacing the subformula $\theta y \cdot \gamma(x, y)$ with $\gamma(x, \theta y \cdot \gamma(x, y))$. Then clearly $\bar{\delta}$ is equivalent to δ, and all of the unguarded occurrences of x in $\bar{\delta}$ are outside of the scope of the fixpoint operator θ.

Continuing like this we obtain a formula $\eta x \cdot \bar{\delta}(x)$ which is equivalent to $\eta x \cdot \delta(x)$, and in which none of the unguarded occurrences of x lies inside the scope of a fixpoint operator. That leaves \wedge and \vee as the only operation symbols in the scope of which we may find unguarded occurrences of x.

From now on we only consider the case where $\eta=\mu$, leaving the very similar case where $\eta=\nu$ as an exercise. Clearly, using the laws of classical propositional logic, we may bring the formula $\bar{\delta}$ into conjunctive normal form

$$
\begin{equation*}
\left(x \vee \alpha_{1}(x)\right) \wedge \cdots \wedge\left(x \vee \alpha_{n}(x)\right) \wedge \beta(x), \tag{27}
\end{equation*}
$$

where all occurrences of x in $\alpha_{1}, \ldots, \alpha_{n}$ and β are guarded. (Note that we may have $\beta=\mathrm{T}$, or $\alpha_{i}=\perp$ for some i.)

Clearly (27) is equivalent to the formula

$$
\delta^{\prime}(x):=(x \vee \alpha(x)) \wedge \beta(x),
$$

where $\alpha=\alpha_{1} \wedge \cdots \wedge \alpha_{n}$. Thus we are done if we can show that

$$
\begin{equation*}
\mu x \cdot \delta^{\prime}(x) \equiv \mu x \cdot \alpha(x) \wedge \beta(x) \tag{28}
\end{equation*}
$$

Since $\alpha \wedge \beta$ implies δ^{\prime}, it is easy to see (and left for the reader to prove) that $\mu x . \alpha \wedge \beta$ implies $\mu x \cdot \delta^{\prime}$. For the converse, it suffices to show that $\varphi:=\mu x . \alpha(x) \wedge \beta(x)$ is a prefixpoint of $\delta^{\prime}(x)$. But it is not hard to derive from $\varphi \equiv \alpha(\varphi) \wedge \beta(\varphi)$ that

$$
\delta^{\prime}(\varphi)=(\varphi \vee \alpha(\varphi)) \wedge \beta(\varphi) \equiv((\alpha(\varphi) \wedge \beta(\varphi)) \vee \alpha(\varphi)) \wedge \beta(\varphi) \equiv \alpha(\varphi) \wedge \beta(\varphi) \equiv \varphi
$$

which shows that φ is in fact a fixpoint, and hence certainly a prefixpoint, of $\delta^{\prime}(x)$. QED
Combining the proofs of the previous two propositions one easily shows the following.
Proposition 3.28 Every fixpoint formula is equivalent to a clean, guarded formula, and hence, to a tidy, guarded one.

Remark 3.29 The equivalences of the above propositions are in fact effective in the sense that there are algorithms for computing an equivalent clean and/or guarded equivalent to an arbitrary formula in $\mu \mathrm{ML}$. It is an interesting question what the complexity of these algorithms is, and what the minimum size of the equivalent formulas is. We will return to this issue later on, but already mention here that there are formulas that are exponentially smaller than any of their clean equivalents. The analogous question for guarded transformations, i.e., constructions that provide guarded equivalents to an arbitrary formula, is open.

3.5 Adequacy

In this section we prove the equivalence of the two semantic approaches towards the modal μ calculus. Since the algebraic semantics is usually taken to be the more fundamental notion, we refer to this result as the Adequacy Theorem stating, informally, that games are an adequate way of working with the algebraic semantics.

- For the time being we only consider the subformula game.

Theorem 3.30 (Adequacy) Let ξ be a clean $\mu \mathrm{ML}_{\mathrm{D}}$-formula. Then for all labelled transition systems \mathbb{S} and all states s in \mathbb{S} :

$$
\begin{equation*}
s \in \llbracket \xi \rrbracket^{\mathbb{S}} \Longleftrightarrow(\xi, s) \in \operatorname{Win}_{\exists}(\mathcal{E}(\xi, \mathbb{S})) . \tag{29}
\end{equation*}
$$

Proof. The theorem is proved by induction on the complexity of ξ. We only discuss the inductive steps where ξ is of the form $\eta x . \delta$ (with η denoting either μ or ν), leaving the other cases as exercises to the reader.

Preparatory observations Our proof for these inductive cases will involve three games: the unfolding game for $\delta_{x}^{\mathbb{S}}$, and the evaluation games for ξ and δ, respectively. It is based on two key observations: One concerns the nature of the unfolding game for $\delta_{x}^{\mathbb{S}}$ and its role in the semantics for $\eta x . \delta$; the other observation concerns the similarity between the evaluation games for ξ and for δ.

1. Starting with the first observation, note that by definition of the algebraic semantics of the fixpoint operators, the set $\llbracket \eta x . \delta \rrbracket^{\mathbb{S}}$ is the least/greatest fixed point of the map $\delta_{x}^{\mathbb{S}}: \wp(S) \rightarrow \wp(S)$, and that by our earlier Theorem 3.14 on unfolding games, we have

$$
\begin{equation*}
\llbracket \eta x . \delta \rrbracket^{\mathbb{S}}=\operatorname{Win}_{\exists}\left(\mathcal{U}^{\eta}\left(\delta_{x}^{\mathbb{S}}\right)\right) \cap S . \tag{30}
\end{equation*}
$$

Hence, in order to prove (29), it suffices to show that, for any state s_{0} :

$$
\begin{equation*}
s_{0} \in \operatorname{Win}_{\exists}\left(\mathcal{U}^{\eta}\left(\delta_{x}^{\mathbb{S}}\right)\right) \Longleftrightarrow\left(\xi, s_{0}\right) \in \operatorname{Win}_{\exists}(\mathcal{E}(\xi, \mathbb{S})) . \tag{31}
\end{equation*}
$$

In other words, the crucial tasks in the proof of this inductive step concern the transformation of a winning strategy for \exists in the unfolding game $\mathcal{U}^{\eta}\left(\delta_{x}^{\mathbb{S}}\right) @ s_{0}$ to a winning strategy for her in the evaluation game $\mathcal{E}(\xi, \mathbb{S}) @\left(\xi, s_{0}\right)$, and vice versa.
Given the importance of the unfolding game for $\delta_{x}^{\mathbb{S}}$ then, let us look at it in a bit more detail. Note that a round of this game, starting at position $s \in S$, consists of \exists picking a subset $A \subseteq S$ that is subject to the constraint that $s \in \delta_{x}^{\mathbb{S}}(A)=\llbracket \delta \rrbracket^{\mathbb{S}[x \mapsto A]}$. But here the inductive hypothesis comes into play: it implies that, for all $A \subseteq S$, we have

$$
\begin{equation*}
s \in \delta_{x}^{\mathbb{S}}(A) \Longleftrightarrow(\delta, s) \in \operatorname{Win}_{\exists}(\mathcal{E}(\delta, \mathbb{S}[x \mapsto A])) . \tag{32}
\end{equation*}
$$

In other words, each round of the unfolding game for the map $\delta_{x}^{\mathbb{S}}$ crucially involves the evaluation game for the formula δ, played on some x-variant $\mathbb{S}[x \mapsto A]$ of \mathbb{S}.
2. This leads us to the comparison between the games $\mathcal{G}:=\mathcal{E}(\xi, \mathbb{S})$ and $\mathcal{G}_{A}:=\mathcal{E}(\delta, \mathbb{S}[x \mapsto$ $A])$. The second key observation in the inductive step for the fixpoint operators is that these games are very similar indeed. For a start, the positions of the two games are essentially the same. Positions of the form (ξ, t), which exist in the first game but not in the second, are the only exception - but in \mathcal{G}, any position (ξ, t) is immediately and automatically succeeded by the position (δ, t) which does exist in the second game. What is important is that the positions for \exists are exactly the same in the two games, and thus we may apply her positional strategies for the one game in the other game as well. The only real difference between the games shows up in the rule concerning positions of the form (x, u). In \mathcal{G}_{A}, x is a free variable $(x \in F V(\delta))$, so in a position (x, u) the game is over, the winner being determined by u being a member of A or not. In \mathcal{G} however, x is bound, so in position (x, u), the variable x will get unfolded to δ.

Combining these two observations, the key insight in the proof of (31) will be to think of $\mathcal{E}(\xi, \mathbb{S})$ as a variant of the unfolding game $\mathcal{U}:=\mathcal{U}^{\eta}\left(\delta_{x}^{\mathbb{S}}\right)$ where each round of \mathcal{U} corresponds to a version of the game \mathcal{G}_{T}, with T being the subset of S picked by \exists in \mathcal{U}. We are now ready for the details of the proof of (31).

For the direction from left to right of (31), suppose that \exists has a winning strategy in the game \mathcal{U} starting at some position s_{0}. Without loss of generality (see Exercise 3.7) we may assume that this strategy is positional. Thus we may represent it as a map $T: S \rightarrow$ $\wp(S)$, where we will write T_{s} rather than $T(s)$. By the legitimacy of this strategy, for every $s \in \operatorname{Win}_{\exists}(\mathcal{U})$ it holds that $s \in \delta_{x}^{\mathbb{S}}\left(T_{s}\right)$. So by the inductive hypothesis (32), for each such s we may assume the existence of a winning strategy f_{s} for \exists in the game $\mathcal{G}_{T_{s}} @(\delta, s)$. Given the similarities between the games \mathcal{G} and $\mathcal{G}_{T_{s}}$ (see the discussion above), this strategy is also applicable in the game $\mathcal{G} @(\delta, s)$, at least, until a new position of the form (x, t) is reached.
This suggests the following strategy g for \exists in $\mathcal{G} @\left(\xi, s_{0}\right)$:

1. after the initial automatic move, the position of the match is $\left(\delta, s_{0}\right) ; \exists$ first plays her strategy $f_{s_{0}}$;
2. each time a position (x, s) is reached, the match automatically moves to position (δ, s), where we distinguish cases:
(a) if $s \in \operatorname{Win}_{\exists}(\mathcal{U})$ then \exists continues with f_{s};
(b) if $s \notin \operatorname{Win}_{\exists}(\mathcal{U})$ then \exists continues with a random strategy.

First we show that this strategy guarantees that whenever a position of the form (x, s) is visited, s belongs to $\operatorname{Win}_{\exists}(\mathcal{U})$, so that case (b) mentioned above never occurs. The proof is by induction on the number of positions (x, s) that have been visited already. For the inductive step, if s is a winning position for \exists in \mathcal{U}, then, as we saw, f_{s} is a winning strategy for \exists in the game $\mathcal{G}_{T_{s}} @(\delta, s)$. This means that if a position of the form (x, t) is reached, the variable x must be true at t in the model $\mathbb{S}\left[x \mapsto T_{s}\right]$, and so t must belong to the set T_{s}. But by assumption of the map $T: S \rightarrow \wp(S)$ being a winning strategy in \mathcal{U}, any element of T_{s} is again a member of $\operatorname{Win}_{\exists}(\mathcal{U})$.

In fact we have shown that every unfolding of the variable x in \mathcal{G} marks a new round in the unfolding game \mathcal{U}. To see why the strategy g guarantees a win for \exists in $\mathcal{G} @\left(\xi, s_{0}\right)$, consider an arbitrary $\mathcal{G} @\left(\xi, s_{0}\right)$-match π in which \exists plays g. Distinguish cases.

First suppose that x is unfolded only finitely often. Let (x, s) be the last basic position in π where this happens. Given the similarities between the games \mathcal{G} and $\mathcal{G}_{T_{s}}$, the match from this moment on can be seen as both a g-guided \mathcal{G}-match and an f_{s}-guided $\mathcal{G}_{T_{s}}$-match. As we saw, f_{s} is a winning strategy for \exists in the game $\mathcal{G}_{T_{s}} @(\delta, s)$. But since no further position of the form (x, t) is reached, and \mathcal{G} and $\mathcal{G}_{T_{s}}$ only differ when it comes to x, this means that π is also a win for \exists in \mathcal{G}.

If x is unfolded infinitely often during the match π, then by the fact that $\xi=\eta x . \delta$, it is the highest variable that is unfolded infinitely often. We have to distinguish the case where $\eta=\nu$ from that where $\eta=\mu$. In the first case, \exists is the winner of the match π, and we are done. If $\eta=\mu$, however, x is a least fixpoint variable, and so \exists would lose the match π. We therefore have to show that this situation cannot occur. Suppose for contradiction that s_{1}, s_{2}, \ldots are the positions where x is unfolded. Then it is easy to verify that the sequence $s_{0} T_{s_{0}} s_{1} T_{s_{1}} \ldots$ constitutes a \mathcal{U}-match in which \exists plays her strategy T. But this is not possible, since T was assumed to be a winning strategy for \exists in the least fixpoint game $\mathcal{U}=\mathcal{U}^{\mu}\left(\delta_{x}^{\mathbb{S}}\right)$.

For the direction from right to left of (31), we will show how each positional winning strategies f for \exists in \mathcal{G} induces a positional strategy for her in \mathcal{U}, and that this strategy U_{f} is winning for her starting at every position $s \in W:=\left\{s \in S \mid(\xi, s) \in \operatorname{Win}_{\exists}(\mathcal{G})\right\}$.

So fix a positional winning strategy f for \exists in \mathcal{G}; that is, \exists is guaranteed to win any f-guided match starting at a position $(\varphi, t) \in \operatorname{Win}_{\exists}(\mathcal{G})$. Observe that, as discussed above, we may and will treat f as a positional strategy in each of the games \mathcal{G}_{A} as well.

Given a state $s \in W$, we let $\mathbb{T}_{f}(s)$ be the strategy tree induced by f in $\mathcal{G}_{A} @(\delta, s)$, where A is some arbitrary subset of S. That is, the nodes of \mathbb{T}_{f} consist of all f-guided finite matches in \mathcal{G}_{A} that start at (δ, s). In more detail, the root of this tree is the single-position match (δ, s); to define the successor relation of \mathbb{T}_{f}, let Σ be an arbitrary f-guided match starting at position $\operatorname{first}(\Sigma)=(\delta, s)$. If $\operatorname{last}(\Sigma)$ is a position owned by \exists, then Σ will have a single successor in \mathbb{T}_{f}, viz., the unique extension of Σ with the position $f(\Sigma)$ picked by f. On the other hand, if $\operatorname{last}(\Sigma)$ is owned by \forall, then every possible continuation $\Sigma \cdot b$, where b is an admissible position picked by \forall, is a successor of Σ.

We let $U_{f}(s)$ be the set of states u such that the position (x, u) occurs as the last element $(x, u)=\operatorname{last}(\Sigma)$ of some match Σ in $\mathbb{T}_{f}(s)$. It is easy to see that any \mathcal{G}_{A}-match Σ ending in a position of the form (x, u), is finished immediately, and thus provides a leaf of the tree \mathbb{T}_{f}. It is also an easy consequence of the definitions that, whenever $t \in U_{f}(s)$ for some $s \in W$, then there is an f-guided match $\Sigma_{s, t}$ such that $\operatorname{first}\left(\Sigma_{s, t}\right)=(\delta, s)$ and last $\left(\Sigma_{s, t}\right)=(x, t)$. Note that this match $\Sigma_{s, t}$ can be seen both as a (full) \mathcal{G}_{A}-match and as a (partial) \mathcal{G}-match.

Given our definition of a set $U_{f}(s) \subseteq S$ for every $s \in W$, in effect we have defined a map

$$
U_{f}: W \rightarrow \wp(S) .
$$

Claim 1 Viewing this map U_{f} as a positional strategy for \exists in \mathcal{U}, we claim that in fact it is a winning strategy for her in $\mathcal{U} @ s_{0}$.

Proof of Claim We need two auxiliary claims on U_{f}. First we observe that

$$
\begin{equation*}
\text { if } s \in W \text { then } s \in \delta_{x}^{\mathbb{S}}\left(U_{f}(s)\right) \text {. } \tag{33}
\end{equation*}
$$

For a proof of (33), it is obvious from the definition of $U_{f}(s)$ that f is a positional winning strategy for \exists in $\mathcal{G}_{U_{f}(s)}=\mathcal{E}\left(\delta, \mathbb{S}\left[x \mapsto U_{f}(s)\right]\right)$ starting at (δ, s). But then by the inductive hypothesis on δ we obtain that $\mathbb{S}\left[x \mapsto U_{f}(s)\right], s \Vdash \delta$, or, equivalently, $s \in \delta_{x}^{\mathbb{S}}\left(U_{f}(s)\right)$.

Second, we claim that

$$
\begin{equation*}
\text { if } s \in W \text { then } U_{f}(s) \subseteq W \tag{34}
\end{equation*}
$$

To see this, first note that if $s \in W$ then by definition $(\xi, s) \in \operatorname{Win}_{\exists}(\mathcal{G})$; but from this it is immediate that $(\delta, s) \in \operatorname{Win}_{\exists}(\mathcal{G})$, and since we assumed f to be a positional winning strategy for \exists in \mathcal{G}, it follows by definition of $U_{f}(s)$ that for every $u \in U_{f}(s)$ the position (x, u) is winning for \exists in $\operatorname{Win}_{\exists}(\mathcal{G})$. But from this it is easy to derive that both (δ, u) and (ξ, u) are winning position for \exists in \mathcal{G} as well. The latter fact then shows that $u \in W$ and since u was an arbitrary element of $U_{f}(s)$, (34) follows.

We can now prove that U_{f} is a winning strategy for \exists in $\mathcal{U} @ s_{0}$. First of all, it follows from (33) that $U_{f}(s)$ is a legitimate move in \mathcal{U} for every position $s \in W$. From this and (34) we may conclude that \exists never gets stuck in an U_{f}-guided \mathcal{U}-match starting at s_{0}; that is, she
wins every finite U_{f}-guided \mathcal{U}-match. In case $\eta=\nu$ this suffices, since in $U G^{\nu}\left(\delta_{x}^{\mathbb{S}}\right)$ all infinite matches are won by \exists.

Where $\eta=\mu$ we have a bit more work to do, since in this case all infinite matches of $\mathcal{U}^{\mu}\left(\delta_{x}^{\mathbb{S}}\right)$ are won by \forall. Suppose for contradiction that $\Sigma=s_{0} U_{f}\left(s_{0}\right) s_{1} U_{f}\left(s_{1}\right) \cdots$ would be an infinite U_{f}-guided match of $\mathcal{U}^{\mu}\left(\delta_{x}^{\mathbb{S}}\right)$. Then for every $i \in \omega$ we have that $s_{i+1} \in U_{f}\left(s_{i}\right)$, so that there is a partial f-guided match $\Sigma_{i}=\Sigma_{s_{i} s_{i+1}}$ with $\operatorname{first}\left(\Sigma_{i}\right)=\left(\delta, s_{i}\right)$ and $\operatorname{last}\left(\Sigma_{i}\right)=\left(x, s_{i+1}\right)$. But then it is straightforward to verify that the infinite match $\Sigma_{\mathcal{G}}:=\Sigma_{0} \cdot \Sigma_{1} \cdot \Sigma_{2} \cdots$ we obtain by concatenating the individual f-guided matches Σ_{i}, constitutes an infinite f-guided \mathcal{G}-match with $\operatorname{first}\left(\Sigma_{\mathcal{G}}\right)=\operatorname{first}\left(\Sigma_{0}\right)=\left(\xi, s_{0}\right)$. Since the highest fixpoint variable unfolded infinitely often during $\Sigma_{\mathcal{G}}$ obviously would be x, this match would be lost by \exists. Here we arrive at the desired contradiction, since $\left(\xi, s_{0}\right) \in \operatorname{Win}_{\exists}(\mathcal{G})$, and f was assumed to be a positional winning strategy in \mathcal{G}.

QED
Convention 3.31 In the sequel we will use the Adequacy Theorem without further notice. Also, we will write $\mathbb{S}, s \Vdash \varphi$ in case $s \in \llbracket \varphi \rrbracket^{\mathbb{S}}$, or, equivalently, $\mathbb{S}, s \Vdash_{g} \varphi$.

- Adequacy of the closure game to be discussed and proved.

Notes

What we now call the Knaster-Tarski Theorem (Theorem 3.4) was first proved by Knaster [14] in the context of power set algebras, and subsequently generalized by Tarski [27] to the setting of complete lattices. The Bekič principle (Proposition 3.15) stems from an unpublished technical report.

- more notes and references to be supplied

As far as we know, the results in section 3.2 on the duality between the least and the greatest fixpoint of a monotone map on a complete boolean algebra, are folklore. The characterization of least and greatest fixpoints in game-theoretic terms is fairly standard in the theory of (co-)inductive definitions, see for instance Aczel [1]. The equivalence of the algebraic and the game-theoretic semantics of the modal μ-calculus (here formulated as the Adequacy Theorem 3.30) was first established by Emerson \& Jutla [11].

Exercises

Exercise 3.1 Prove Proposition 3.6: show that monotone maps on complete lattices are inductive.

Exercise 3.2 Prove Theorem 3.21.
(Hint: given complete lattices \mathbb{C} and \mathbb{D}, and a monotone map $f: C \times D \rightarrow C$, show that the map $g: D \rightarrow C$ given by

$$
g(d):=\mu x . f(x, d)
$$

is monotone. Here $\mu x . f(x, d)$ is the least fixpoint of the map $f_{d}: C \rightarrow C$ given by $f_{d}(c)=$ $f(c, d)$.)

Exercise 3.3 Let $F: \wp(S) \rightarrow \wp(S)$ be some monotone map. A collection $\mathcal{D} \in \wp \wp(S)$ of subsets of S is directed if for every two sets $D_{0}, D_{1} \in \mathcal{D}$, there is a set $D \in \mathcal{D}$ with $D_{i} \subseteq D$ for $i=0,1$. Call F (Scott) continuous if it preserves directed unions, that is, if $F(\bigcup \mathcal{D})=\bigcup_{D \in \mathcal{D}} F(D)$ for every directed \mathcal{D}.
Prove the following:
(a) F is Scott continuous iff for all $X \subseteq S: F(X)=\bigcup\left\{F(Y) \mid Y \subseteq_{\omega} X\right\}$. (Here $Y \subseteq_{\omega} X$ means that Y is a finite subset of X.)
(b) If F is Scott continuous then the unfolding ordinal of F is at most ω.
(c) Give an example of a Kripke frame $\mathbb{S}=\langle S, R\rangle$ such that the operation $[R]$ is not continuous.
(d) Give an example of a Kripke frame $\mathbb{S}=\langle S, R\rangle$ such that the operation $[R]$ has closing/unfolding ordinal $\omega+1$.

Exercise 3.4 By a mutual induction we define, for every finite set P of propositional variables, the fragment $\mu \mathrm{ML}_{\mathrm{P}}^{C}$ by the following grammar:

$$
\varphi::=p|\psi| \varphi \vee \varphi|\varphi \wedge \varphi| \diamond \varphi \mid \mu q \cdot \varphi^{\prime},
$$

where $p \in \mathrm{P}, \psi \in \mu \mathrm{ML}$ is a P -free formula, and $\varphi^{\prime} \in \mu \mathrm{ML}_{\mathrm{P} \cup\{q\}}^{C}$.
Prove that for every Kripke model \mathbb{S}, every formula $\varphi \in \mu \mathrm{ML}_{\mathrm{P}}^{C}$, and every proposition letter $p \in \mathrm{P}$, the map $\varphi_{p}^{\mathbb{S}}: \wp(S) \rightarrow \wp(S)$ is continuous.

Exercise 3.5 Let $F: \wp(S) \rightarrow \wp(S)$ be a monotone operation, and let γ_{F} be its unfolding ordinal. Sharpen Corollary 3.7 by proving that the cardinality of γ_{F} is bounded by $|S|$ (rather than by $|\wp(S)|)$.

Exercise 3.6 The proof of Theorem 3.14 is based on the characterisation of least fixed points as the intersection of all prefixpoints, and similarly, of greatest fixpoints as the union of all postfixpoints. Can you also prove the theorem using the characterisation of least- and greatest fixpoints via ordinal approximations?

Exercise 3.7 Prove that the unfolding game of Definition 3.12 satisfies positional determinacy. That is, let $\mathcal{U}^{\mu}(F)$ be the least fixpoint unfolding game for some monotone map $F: \wp(S) \rightarrow \wp(S)$. Prove the existence of two positional strategies $f_{\exists}: S \rightarrow \wp(S)$ and $f_{\forall}: \wp(S) \rightarrow S$ such that for every position p of the game, either f_{\exists} is a winning strategy for \exists in $\mathcal{U}^{\mu}(F) @ p$, or else f_{\forall} is a winning strategy for \forall in $\mathcal{U}^{\mu}(F) @ p$.

Exercise 3.8 Let \mathbb{C} be a complete boolean algebra and let $f: C \rightarrow C$ be a monotone map. Pick an element $d \in C$ and let $\mu x . f(x)$ be the least fixpoint of f.
(a) Show that $d \wedge \mu x . f(x)=\perp$ iff $d \wedge \mu x . f(x \wedge \neg d)=\perp$, where $\mu x . f(x \wedge \neg d)$ denotes the smallest fixpoint of the map sending any element $x \in C$ to $f(x \wedge \neg d)$.
(b) Conclude that, for any formula of the form $\mu x . \varphi$ and an arbitrary formula γ : the formula $\gamma \wedge \mu x . \varphi$ is satisfiable iff the formula $\gamma \wedge \mu x . \varphi[x \wedge \neg \gamma / x]$ is satisfiable. (A formula φ is called satisfiable if there exists a pointed Kripke model such that $\mathbb{S}, s \Vdash \varphi$.)

- add exercise on the closure ordinal of a formula
- add exercise on (complete) additivity

4 Stream automata and logics for linear time

As we already mentioned in the introduction in the theory of the modal μ-calculus and other fixpoint logics a fundamental role is played by automata. As we will see further on, these devices provide a very natural generalization to the notion of a formula. This chapter gives an introduction to the theory of automata operating on (potentially infinite) objects. Whereas in later chapters we will meet various kinds of automata for classifying trees and general transition systems, here we confine our attention to the devices that operate on streams or infinite words, these being the simplest nontrivial examples of infinite behavior.

Convention 4.1 Throughout this chapter (and the next), we will be dealing with some finite alphabet C. Generic elements of C may be denoted as $c, d, c_{0}, c_{1}, \ldots$, but often it will be convenient to think of C as a set of colors. In this case we will denote the elements of C with lower case roman letters that are mnemonic of the most familiar corresponding color (' b ' for blue, ' g ' for green, etcetera).

Definition 4.2 Given an alphabet C, a C-stream is just an infinite C-sequence, that is, a map $\gamma: \omega \rightarrow C$ from the natural numbers to C (see Appendix A). C-streams will also be called infinite words or ω-words over C. Sets of C-streams are called stream languages or ω-languages over C.

Remark 4.3 This definition is consistent with the terminology we introduced in Chapter 1. There we defined a $\wp(\mathrm{P})$-stream or stream model for P to be a Kripke model of the form $\mathbb{S}=\langle\omega, V, S u c c\rangle$, where Succ is the standard successor relation on the set ω of natural numbers, and $V: \mathrm{P} \rightarrow \wp(\omega)$ is a valuation. If we represent V coalgebraically as a map $\sigma_{V}: \omega \rightarrow \wp(\mathrm{P})$ (cf. Remark 1.3), then in the terminology of Definition 4.2, \mathbb{S} is indeed a $\wp(P)$-stream.

4.1 Deterministic stream automata

We start with the most general definition of a deterministic stream automaton.
Definition 4.4 Given an alphabet C, a deterministic C-automaton is a quadruple $\mathbb{A}=$ $\left\langle A, \delta, A c c, a_{I}\right\rangle$, where A is a finite set, $a_{I} \in A$ is the initial state of $\mathbb{A}, \delta: A \times C \rightarrow A$ its transition function, and $A c c \subseteq A^{\omega}$ its acceptance condition. The pair $\langle A, \delta\rangle$ is called the transition diagram of \mathbb{A}.

Given an automaton $\mathbb{A}=\left\langle A, \delta, A c c, a_{I}\right\rangle$, we may extend the map $\delta: A \times C \rightarrow A$ to a map $\widehat{\delta}: A \times C^{*} \rightarrow A$ by putting

$$
\begin{array}{ll}
\widehat{\delta}(a, \varepsilon) & :=a \\
\widehat{\delta}(a, u c) & :=\delta(\widehat{\delta}(a, u), c) .
\end{array}
$$

We will write $a \xrightarrow{c} a^{\prime}$ if $a^{\prime}=\delta(a, c)$, and $a \xrightarrow{w} a^{\prime}$ if $a^{\prime}=\widehat{\delta}(a, w)$. In words, $a \xrightarrow{w} a^{\prime}$ if there is a w-labelled path from a to a^{\prime}.

Example 4.5 The transition diagram and initial state of a deterministic automaton can nicely be represented graphically, as in the picture below, where $C=\{b, r, g\}$:

An automaton comes to life if we supply it with input, in the form of a stream over its alphabet: It will process this stream, as follows. Starting from the initial state a_{I}, the automaton will step by step pass through the stream, jumping from one state to another as prescribed by the transition function.

Example 4.6 Let \mathbb{A}_{0} be any automaton with transition diagram and initial state as given above, and suppose that we give this device as input the stream $\alpha=\operatorname{brgbrgbrgbrgbrgb} \cdots$. Then we find that \mathbb{A}_{0} will make an infinite series of transitions, determined by α :

$$
a_{0} \xrightarrow{b} a_{1} \xrightarrow{r} a_{2} \xrightarrow{g} a_{2} \xrightarrow{b} a_{1} \ldots
$$

Thus the machine passes through an infinite sequence of states:

$$
\rho=a_{0} a_{1} a_{2} a_{2} a_{1} a_{2} a_{2} a_{1} a_{2} a_{2} \ldots
$$

This sequence is called the run of the automaton on the word $\alpha-\mathrm{a}$ run of \mathbb{A} is thus an A-stream.

For a second example, on the word $\alpha^{\prime}=$ brbgbrgrgrgrgrgr \cdots the run of the automaton \mathbb{A}_{0} looks as follows:

$$
a_{0} \xrightarrow{b} a_{1} \xrightarrow{r} a_{2} \xrightarrow{b} a_{1} \xrightarrow{g} a_{2} \xrightarrow{b} a_{1} \xrightarrow{r} a_{2} \xrightarrow{g} a_{2} \xrightarrow{r} a_{2} \xrightarrow{g} \cdots
$$

we see that from the sixth step onwards, the machine device remains circling in its state a_{2} : $\cdots a_{2} \xrightarrow{r} a_{2} \xrightarrow{g} a_{2} \xrightarrow{r} \cdots$.

Definition 4.7 The run of an automaton $\mathbb{A}=\left\langle A, \delta, A c c, a_{I}\right\rangle$ on a C-stream $\gamma=c_{0} c_{1} c_{2} \ldots$ is the infinite A-sequence

$$
\rho=a_{0} a_{1} a_{2} \ldots
$$

such that $a_{0}=a_{I}$ and $a_{i} \xrightarrow{c_{j}} a_{i+1}$ for every $i \in \omega$.
Generally, whether or not an automaton accepts an infinite word, depends on the existence of a successful run - note that in the present deterministic setting, this run is unique. In order to determine which runs are successful, we need the acceptance condition.

Definition 4.8 A run $\rho \in A^{\omega}$ of an automaton $\mathbb{A}=\left\langle A, \delta, A c c, a_{I}\right\rangle$ is successful with respect to an acceptance condition $A c c$ if $\rho \in A c c$.

An C-automaton $\mathbb{A}=\left\langle A, \delta, A c c, a_{I}\right\rangle$ accepts a C-stream γ if the run of \mathbb{A} on γ is successful. The ω-language $L_{\omega}(\mathbb{A})$ associated with \mathbb{A} is defined as the set of streams that are accepted by \mathbb{A}. Two automata are called equivalent if they accept the same streams.

A natural requirement on the acceptance condition is that it only depends on a bounded amount of information about the run.

Remark 4.9 In the case of automata running on finite words, there is a very simple and natural acceptance criterion. The point is that runs on finite words are themselves finite too. For instance, suppose that in Example 4.6 we consider the run on the finite word brgb:

$$
a_{0} \xrightarrow{b} a_{1} \xrightarrow{r} a_{2} \xrightarrow{g} a_{2} \xrightarrow{b} a_{1} .
$$

Then this runs ends in the state a_{1}. In this context, a natural criterion for the acceptance of the word abca by the automaton is to make it dependent on the membership of this final state a_{1} in a designated set $F \subseteq A$ of accepting states.

A structure of the form $\mathbb{A}=\left\langle A, \delta, F, a_{I}\right\rangle$ with $F \subseteq A$ may be called a finite word automaton, and we say that such a structure accepts a finite word w if the unique state a such that $a_{I} \xrightarrow{w} a$ belongs to F. The language $L(\mathbb{A})$ is defined as the set of all finite words accepted by A.

4.2 Acceptance conditions

For runs on infinite words, a natural acceptance criterion would involve the collection of states that occur infinitely often in the run.

Definition 4.10 Let $\alpha: \omega \rightarrow A$ be a stream over some finite set A. Given an element $a \in A$, we define the frequency of a in α as $\#_{a}(\alpha):=|\{n \in \omega \mid \alpha(n)=a\}|$. Based on this, we set $O c c(\alpha):=\left\{a \in A \mid \#_{a}(\alpha)>0\right\}$ and $\operatorname{Inf}(\alpha):=\left\{a \in A \mid \#_{a}(\alpha)=\omega\right\}$

In words, $\operatorname{Occ}(\alpha)$ and $\operatorname{Inf}(\alpha)$ denote the set of elements of A that occur in α at least once and infinitely often, respectively.

Definition 4.11 Given a transition diagram $\langle A, \delta\rangle$, we define the following types of acceptance conditions:

- A Muller condition is given as a collection $\mathcal{M} \subseteq \wp(A)$ of subsets of A. The corresponding acceptance condition is defined as

$$
A c c_{\mathcal{M}}:=\left\{\alpha \in A^{\omega} \mid \operatorname{Inf}(\alpha) \in \mathcal{M}\right\} .
$$

- A Büchi condition is given as a subset $F \subseteq A$. The corresponding acceptance condition is defined as

$$
A c c_{F}:=\left\{\alpha \in A^{\omega} \mid \operatorname{Inf}(\alpha) \cap F \neq \varnothing\right\} .
$$

- A parity condition is given as a map $\Omega: A \rightarrow \omega$. The corresponding acceptance condition is defined as

$$
A c c_{\Omega}:=\left\{\alpha \in A^{\omega} \mid \max \{\Omega(a) \mid a \in \operatorname{Inf}(\alpha)\} \text { is even }\right\}
$$

Automata with these acceptance conditions are called Muller, Büchi and parity automata, respectively.

Of these three types of acceptance conditions, the Muller condition perhaps is the most natural. It exactly and directly specifies the subsets of A that are admissible as the set $\operatorname{Inf}(\rho)$ of a successful run. The Büchi condition is also fairly intuitive: an automaton with Büchi condition F accepts a stream α if the run on α passes through some state in F infinitely often. This makes Büchi automata the natural analog of the automata that operate on finite words, see Remark 4.9.

The parity condition may be slightly more difficult to understand. The idea is to give each state a of \mathbb{A} a weight $\Omega(a) \in \omega$. Then any infinite A-sequence $\alpha=a_{0} a_{1} a_{2} \ldots$. induces an infinite sequence $\Omega\left(a_{0}\right) \Omega\left(a_{1}\right) \ldots$ of natural numbers. Since the range of Ω is finite this means that there is a largest natural number N_{α} occurring infinitely often in this sequence, $N_{\alpha}:=\max \{\Omega(a) \mid a \in \operatorname{Inf}(\alpha)\}$. Now, a parity automaton accepts an infinite word iff the number N_{ρ} of the associated run ρ is even.

At first sight, this condition will seem rather contrived and artificial. Nevertheless, for a number of reasons the parity automaton is destined to play the leading role in these notes. Most importantly, the distinction between even and odd parities directly corresponds to that between least and greatest fixpoint operators, so that parity automata are the more direct automata-theoretic counterparts of fixpoint formulas. An additional theoretic motivation to use parity automata is that their associated acceptance games have some very nice gametheoretical properties, as we will see further on.

Let us now first discuss some examples of automata with these three acceptance conditions.

Example 4.12 Suppose that we supply the device of Example 4.5 with the Büchi acceptance condition $F_{0}=\left\{a_{1}\right\}$. That is, the resulting automaton \mathbb{A}_{0} accepts a stream α iff the run of \mathbb{A}_{0} passes through the state a_{1} infinitely often. For instance, \mathbb{A}_{0} will accept the word $\alpha=b r g b r g b r g b r g b r g b r g b \cdots$, because the run of \mathbb{A}_{0} is the stream $a_{0} a_{1} a_{2} a_{2} a_{1} a_{2} a_{2} a_{1} a_{2} a_{2} \ldots$ which indeed contains a_{1} infinitely many times. On the other hand, as we saw already, the run of \mathbb{A}_{0} on the stream $\alpha^{\prime}=$ brbgbrgrgrgrgrgr \cdots loops in state a_{2}, and so α^{\prime} will not be accepted.

In general, it is not hard to prove that \mathbb{A}_{0} accepts a C-stream γ iff γ contains infinitely many b 's.

Example 4.13 Consider the automaton \mathbb{A}_{1} given by the following diagram and initial state:

As an example of a Muller acceptance condition, consider the set

$$
\left\{\left\{a_{0}\right\},\left\{a_{g}\right\},\left\{a_{b}, a_{g}\right\},\left\{a_{b}, a_{r}, a_{g}\right\}\right\}
$$

The resulting automaton accepts those infinite streams in which every b is followed by a finite number of r 's, followed by a g. To see this, here is a brief description of the intuitive meaning of the states:
a_{0} represents the situation where the automaton has not encountered any b 's;
a_{f} is the 'faulty' state;
a_{b} is the state where the automaton has just processed a b; it now has to pass through a finite sequence of r 's, eventually followed by a g;
a_{r} represents the situation where the automaton, after seeing a b, has processed a finite, non-empty, sequence of r 's;
a_{g} is the state where the automaton, after passing the last b, has fulfilled its obligation to process a g.

We leave the details of the proof as an exercise to the reader.
Example 4.14 For an example of a parity automaton, consider the transition diagram of Example 4.5, and suppose that we endow the set $\left\{a_{0}, a_{1}, a_{2}\right\}$ with the priority map Ω given by $\Omega\left(a_{i}\right)=i$. Given the shape of the transition diagram, it then follows more or less directly from the definitions that the resulting automaton accepts an infinite word over $C=\{b, r, g\}$ iff it either stays in a_{0}, or visits a_{2} infinitely often. From this one may derive that $L_{\omega}(\mathbb{A})$ consists of those C-streams containing infinitely many r 's or infinitely many g 's (or both). \triangleleft

It is important to understand the relative strength of Muller, Büchi and parity automata when it comes to recognizing ω-languages. The Muller acceptance condition is the more fundamental one in the sense that the other two are easily represented by it.

Proposition 4.15 There is an effective procedure transforming a deterministic Büchi stream automaton into an equivalent deterministic Muller stream automaton.

Proof. Given a Büchi condition F on a set A, define the corresponding Muller condition $\mathcal{M}_{F} \subseteq \wp(A)$ as follows:

$$
\mathcal{M}_{F}:=\{B \subseteq A \mid B \cap F \neq \varnothing\} .
$$

Clearly then, $A c \mathcal{M}_{\mathcal{M}}=A c c_{F}$. It is now immediate that any Büchi automaton $\mathbb{A}=\left\langle A, \delta, F, a_{I}\right\rangle$ is equivalent to the Muller automaton $\left\langle A, \delta, \mathcal{M}_{F}, a_{I}\right\rangle$.

QED
Proposition 4.16 There is an effective procedure transforming a deterministic parity stream automaton into an equivalent deterministic Muller stream automaton.

Proof. Analogous to the proof of the previous proposition, we put

$$
\mathcal{M}_{\Omega}:=\{B \subseteq A \mid \max (\Omega[B]) \text { is even }\},
$$

and leave it for the reader to verify that this is the key observation in turning a parity acceptance condition into a Muller one.

QED
Interestingly enough, Muller automata can be simulated by devices with a parity condition.
Proposition 4.17 There is an effective procedure transforming a deterministic Muller stream automaton into an equivalent deterministic parity stream automaton.

Proof. Given a Muller automaton $\mathbb{A}=\left\langle A, \delta, \mathcal{M}, a_{I}\right\rangle$, define the corresponding parity automaton $\mathbb{A}^{\prime}=\left\langle A^{\prime}, \delta^{\prime}, \Omega, a_{I}^{\prime}\right\rangle$ as follows. The crucial concept used in this construction is that of latest appearance records. The following notation will be convenient: given a finite sequence in A^{*}, say, $\alpha=a_{1} \ldots a_{n}$, we let $\widetilde{\alpha}$ denote the set $\left\{a_{1}, \ldots, a_{n}\right\}$, and $\alpha[\nabla / a]$ the sequence α with every occurrence of a being replaced with the symbol ∇.

To start with, the set A^{\prime} of states is defined as the collection of those finite sequences over the set $A \cup\{\nabla\}$ in which every symbol occurs exactly once:

$$
A^{\prime}=\left\{a_{1} \ldots a_{k} \nabla a_{k+1} \ldots a_{m} \mid A=\left\{a_{1}, \ldots, a_{m}\right\}\right\} .
$$

The intuition behind this definition is that a state in \mathbb{A}^{\prime} encodes information about the states of \mathbb{A} that have been visited during the initial part of its run on some word. More specifically, the state $a_{1} \ldots a_{k} \nabla a_{k+1} \ldots a_{m}$ encodes that the states visited by \mathbb{A} are a_{n+1}, \ldots, a_{m} (for some $n \leq m$, not necessarily $n=k$), and that of these, a_{m} is the state visited most recently, a_{m-1} the one before that, etc. The symbol ∇ marks the previous position of a_{m} in the list.

For a proper understanding of \mathbb{A}^{\prime} we need to go into more detail. First, for the initial position of \mathbb{A}^{\prime}, fix some enumeration d_{1}, \ldots, d_{m} of A with $a_{I}=d_{m}$, and define

$$
a_{I}^{\prime}:=d_{1} \ldots d_{m} \nabla .
$$

For the transition function, consider a state $\alpha=a_{1} \ldots a_{k} \nabla a_{k+1} \ldots a_{m}$ in A^{\prime}, and a color $c \in C$. To obtain the state $\delta^{\prime}(\alpha, c)$, replace the occurrence of $\delta\left(a_{m}, c\right)$ in $a_{1} \ldots a_{m}$ with ∇, and make
the state $\delta\left(a_{m}, c\right)$ itself the rightmost element of the resulting sequence. Thus the ∇ in the new sequence marks the latest appearance of the state $\delta\left(a_{m}, c\right)$. Formally, we put

$$
\delta^{\prime}\left(a_{1} \ldots a_{k} \nabla a_{k+1} \ldots a_{m}, c\right):=\left(a_{1} \ldots a_{m}\right)\left[\nabla / \delta\left(a_{m}, c\right)\right] \cdot \delta\left(a_{m}, c\right) .
$$

(Here we include the cases where $k=0$ or $k=m$; these cover the situations where ∇ appears at, respectively, the beginning or the end of the word.) For an example, see 4.18 below.

Now consider the runs ρ and ρ^{\prime} of \mathbb{A} and \mathbb{A}^{\prime}, respectively, on some C-stream γ. Recall that $\operatorname{Inf}(\rho)$ denotes the set of states of \mathbb{A} that are visited infinitely often during ρ. From a certain moment on, ρ will only pass through states in $\operatorname{Inf}(\rho)$; let \mathbb{A} continue its run until it has passed through each state in $\operatorname{Inf}(\rho)$ at least one more time. It is not too hard to see that from that same moment t on, ρ^{\prime} will only pass through states of the form $a_{1} \ldots a_{k} \nabla a_{k+1} \ldots a_{m}$ such that the states in $\operatorname{Inf}(\rho)$ form a final segment $a_{l+1} \ldots a_{m}$ of the sequence $a_{1} \ldots a_{m}$.

We now arrive at the role of the special symbol ∇. Since ∇ marks the previous position of a_{m}, all states occurring to its right after time t must belong to the set $\operatorname{Inf}(\rho)$. In other words, we have

$$
\operatorname{Inf}\left(\rho^{\prime}\right) \subseteq\left\{\alpha \nabla \beta \in A^{\prime} \mid \widetilde{\beta} \subseteq \operatorname{Inf}(\rho)\right\}
$$

Furthermore, among the states $\alpha \nabla \beta \in \operatorname{Inf}\left(\rho^{\prime}\right)$, the ones with the longest tail β (i.e., with maximal $|\beta|$), are exactly the ones where $\operatorname{Inf}(\rho)$ is identical to $\widetilde{\beta}$. Obviousy, these will be of interest for the definition of the acceptance condition of \mathbb{A}^{\prime}. To make the discussion somewhat more precise, define, for a subset Q of the state space $A^{\prime}, \bar{Q}:=\left\{\alpha \nabla \beta \in Q| | \widetilde{\beta^{\prime}}|\leq|\widetilde{\beta}|\right.$ for all $\left.\alpha^{\prime} \nabla \beta^{\prime} \in Q\right\}$. That is, \bar{Q} consists of the sequences $\alpha \nabla \beta \in \bar{Q}$ where β takes maximal length. Then one may show that

$$
\begin{equation*}
\left.\alpha \nabla \beta \in \overline{\operatorname{Inf}\left(\rho^{\prime}\right)} \text { implies } \widetilde{\beta}=\operatorname{Inf}(\rho)\right\} . \tag{35}
\end{equation*}
$$

This shows how to encode the success of runs of \mathbb{A} in a parity condition for \mathbb{A}^{\prime}. Putting

$$
\Omega(\alpha \nabla \beta):= \begin{cases}2 \cdot|\beta|+1 & \text { if } \widetilde{\beta} \notin \mathcal{M}, \\ 2 \cdot|\beta|+2 & \text { if } \widetilde{\beta} \in \mathcal{M},\end{cases}
$$

we ensure that the states in $\overline{\operatorname{Inf}\left(\rho^{\prime}\right)}$ receive maximal priority, and that this priority is even.
We now have the following chain of equivalences:

$$
\begin{array}{rlr}
& \mathbb{A} \text { accepts } \gamma & \\
\Longleftrightarrow & \operatorname{Inf}(\rho) \in \mathcal{M} & \text { (definition acceptance } \mathbb{A} \text {) } \\
\Longleftrightarrow & \widetilde{\beta} \in \mathcal{M} \text { whenever } \alpha \nabla \beta \in \overline{\operatorname{Inf}\left(\rho^{\prime}\right)} & \text { (statement (35)) } \tag{35}\\
\Longleftrightarrow & \max \left\{\Omega(\alpha \nabla \beta) \mid \alpha \nabla \beta \in \operatorname{Inf}\left(\rho^{\prime}\right)\right\} \text { is even } & \text { (as discussed above) } \\
\Longleftrightarrow & \mathbb{A}^{\prime} \text { accepts } \gamma . & \text { (definition acceptance } \mathbb{A}^{\prime} \text {) }
\end{array}
$$

Clearly this establishes the equivalence of \mathbb{A} and \mathbb{A}^{\prime}.
QED

Example 4.18 With \mathbb{A}_{1} the Muller automaton of Example 4.13, here are some examples of the transition function δ^{\prime} of its parity equivalent \mathbb{A}^{\prime} :

$$
\begin{array}{rlll}
\delta^{\prime}\left(a_{b} a_{r} a_{g} a_{f} a_{0} \nabla, b\right) & :=\nabla a_{r} a_{g} a_{f} a_{0} a_{b} & \delta^{\prime}\left(\nabla a_{r} a_{g} a_{f} a_{0} a_{b}, b\right) & :=a_{r} a_{g} \nabla a_{0} a_{b} a_{f} \\
\delta^{\prime}\left(a_{b} a_{r} a_{g} a_{f} a_{0} \nabla, r\right) & :=a_{b} a_{r} a_{g} a_{f} \nabla a_{0} & \delta^{\prime}\left(\nabla a_{r} a_{g} a_{f} a_{0} a_{b}, r\right) & :=\nabla a_{g} a_{f} a_{0} a_{b} a_{r} \\
\delta^{\prime}\left(a_{b} a_{r} a_{g} a_{f} a_{0} \nabla, g\right) & :=a_{b} a_{r} a_{g} a_{f} \nabla a_{0} & \delta^{\prime}\left(\nabla a_{r} a_{g} a_{f} a_{0} a_{b}, g\right) & :=a_{r} \nabla a_{f} a_{0} a_{b} a_{g}
\end{array}
$$

Likewise, a few examples of the priority map:

$$
\begin{aligned}
\Omega\left(a_{b} a_{r} a_{g} a_{f} \nabla a_{0}\right) & :=4 \\
\Omega\left(a_{g} a_{f} a_{0} a_{b} \nabla a_{r}\right) & :=3 \\
\Omega\left(a_{f} a_{r} a_{0} \nabla a_{b} a_{g}\right) & :=6 \\
\Omega\left(a_{f} a_{0} \nabla a_{b} a_{r} a_{g}\right) & :=8
\end{aligned}
$$

As the initial state of \mathbb{A}^{\prime}, one could for instance take the sequence $a_{r} a_{r} a_{g} a_{f} a_{0} \nabla$.
The following example shows that, in the case of deterministic stream automata, the recognizing power of Muller and parity automata is strictly stronger than that of Büchi automata.

Example 4.19 Consider the following language over the alphabet $C=\{b, r\}$:

$$
L=\left\{\alpha \in C^{\omega} \mid r \notin \operatorname{Inf}(\alpha)\right\} .
$$

That is, L consists of those C-streams that contain at most finitely many red items (that is, the symbol r occurs at most finitely often). We will give both a Muller and a parity automaton to recognize this language, and then show that there is no Büchi automaton for L.

It is not difficult to see that there is a deterministic Muller automaton recognizing this language. Consider the automaton \mathbb{A}_{2} given by the following diagram,

and Muller acceptance condition $\mathcal{M}_{2}:=\left\{\left\{a_{b}\right\}\right\}$. It is straightforward to verify that the run of \mathbb{A}_{2} on an $\{b, r\}$-stream α keeps circling in a_{b} iff from a certain moment on, α only produces b 's.

For a parity automaton recognizing L, endow the diagram above with the priority map Ω_{2} given by $\Omega_{2}\left(a_{b}\right)=0, \Omega_{2}\left(a_{r}\right)=1$. With this definition, there can only be one set of states of which the maximum priority is even, namely, the singleton $\left\{a_{b}\right\}$. Hence, this parity acceptance condition is the same as the Muller condition $\left\{\left\{a_{b}\right\}\right\}$.

However, there is no deterministic Büchi automaton recognizing L. Suppose for contradiction that $L=L_{\omega}(\mathbb{A})$, where $\mathbb{A}=\left\langle A, \delta, F, a_{I}\right\rangle$ is some Büchi automaton. Since the stream
$\alpha_{0}=b b b \ldots$ belongs to L, it is accepted by \mathbb{A}. Hence in particular, the run ρ_{0} of \mathbb{A} on α_{0} will pass some state $f_{0} \in F$ after a finite number, say n_{0}, of steps.

Now consider the stream $\alpha_{1}=b^{n_{0}} r b b b \ldots$. Since runs are uniquely determined, the initial n_{0} steps of the run ρ_{1} of \mathbb{A} on α_{1} are identical to the first n_{0} steps of \mathbb{A} on α_{0}, and so ρ_{1} also passes through f_{0} after n_{0} steps. But since α_{1} belongs to L too, it too is accepted by \mathbb{A}. Thus on input α_{1}, \mathbb{A} will visit a state in F infinitely often. That is, we may certainly choose an $n_{1} \in \omega$ such that ρ_{1} passes through some state $f_{1} \in F$ after $n_{0}+n_{1}+1$ steps. Now consider the stream $\alpha_{2}=b^{n_{0}} r b^{n_{1}} r b b b \ldots$, and analyze the run ρ_{2} of \mathbb{A} on α_{2}. Continuing like this, we can find positive numbers n_{0}, n_{1}, \ldots such that for every $k \in \omega$, the stream

$$
\begin{equation*}
\alpha_{k}=b^{n_{0}} r b^{n_{1}} \ldots r b^{n_{k}} r b b b \ldots \in L, \text { for all } k . \tag{36}
\end{equation*}
$$

Consider the stream

$$
\alpha=\left(b^{n_{0}} r\right)\left(b^{n_{1}} r\right) \ldots\left(b^{n_{k}} r\right) \ldots
$$

Containing infinitely many r 's, α does not belong to L. Nevertheless, it follows from (36) that the run ρ of \mathbb{A} on α passes through the states f_{0}, f_{1}, \ldots as described above. Since F is finite, there is then at least one $f \in F$ appearing infinitely often in this sequence. Thus we have found an $f \in F$ that is passed infinitely often by ρ, showing that \mathbb{A} accepts α. This gives the desired contradiction.

Remark 4.20 Since it is easy to see that the complement

$$
\bar{L}=\left\{\alpha \in C^{\omega} \mid r \in \operatorname{Inf}(\alpha)\right\}
$$

of the language studied in Example 4.19 is recognized by a Büchi automaton, the example also shows that the class of Büchi recognizable stream languages is not closed under taking complementations.

4.3 Nondeterministic automata

Nondeterministic automata generalize deterministic ones in that, given a state and a color, the next state is not uniquely determined, and in fact need not exist at all.

Definition 4.21 Given an alphabet C, a nondeterministic C-automaton is a quadruple $\mathbb{A}=$ $\left\langle A, \Delta, A c c, a_{I}\right\rangle$, where A is a finite set, $a_{I} \in A$ is the initial state of $\mathbb{A}, \Delta: A \times C \rightarrow \wp(A)$ its transition function of \mathbb{A}, and $A c c \subseteq A^{\omega}$ its acceptance condition.

As a consequence, the run of a nondeterministic automaton on a stream is no longer uniquely determined either.

Definition 4.22 Given a nondeterministic automaton $\mathbb{A}=\left\langle A, \Delta, A c c, a_{I}\right\rangle$, we define the relations $\rightarrow \subseteq A \times C \times A$ and $\rightarrow \subseteq A \times C^{*} \times A$ in the obvious way: $a \xrightarrow{c} a^{\prime}$ if $a^{\prime} \in \Delta(a, c)$, $a \xrightarrow{\varepsilon} a^{\prime}$ if $a=a^{\prime}$, and $a \xrightarrow{w c} a^{\prime}$ if there is a $a^{\prime \prime}$ such that $a \xrightarrow{w} a^{\prime \prime} \xrightarrow{c} a^{\prime}$. A run of a nondeterministic automaton $\mathbb{A}=\left\langle A, \Delta, A c c, a_{I}\right\rangle$ on an C-stream $\gamma=c_{0} c_{1} c_{2} \ldots$ is an infinite A-sequence

$$
\rho=a_{0} a_{1} a_{2} \ldots
$$

such that $a_{0}=a_{I}$ and $a_{i} \xrightarrow{c_{i}} a_{i+1}$ for every $i \in \omega$.

Now that runs are no longer unique, an automaton may have both successful and unsuccessful runs on a given stream. Consequently, there is a choice to make concerning the definition of the notion of acceptance.

Definition 4.23 A nondeterministic C-automaton $\mathbb{A}=\left\langle A, \Delta, A c c, a_{I}\right\rangle$ accepts a C-stream γ if there is a successful run of \mathbb{A} on γ.

Further concepts, such as the language recognized by an automaton, the notion of equivalence of two automata, and the Büchi, Muller and parity acceptance conditions, are defined as for deterministic automata. Also, the transformations given in the Propositions 4.15, 4.16 and 4.17 are equivalence-preserving for nondeterministic automata just as for deterministic one. Different from the deterministic case, however, is that nondeterministic Büchi automata have the same accepting power as their Muller and parity variants.

Proposition 4.24 There is an effective procedure transforming a nondeterministic Muller stream automaton into an equivalent nondeterministic Büchi stream automaton.

Proof. Let $\mathbb{A}=\left\langle A, \Delta, \mathcal{M}, a_{I}\right\rangle$ be a nondeterministic Muller automaton. The idea underlying the definition of the Büchi equivalent \mathbb{A}^{\prime} is that \mathbb{A}^{\prime}, while copying the behavior of \mathbb{A}, guesses the set $M=\operatorname{Inf}(\rho)$ of a successful run of \mathbb{A}, and at a certain (nondeterministically chosen) moment confirms this choice by moving to a position of the form (a, M, \varnothing). In order to make sure that not too many streams are accepted, the device has to keep track which of the states in M have been visited by \mathbb{A}, resetting this counter to the empty set every time when all M-states have been passed.

In some more detail, \mathbb{A}^{\prime} consists of a copy of \mathbb{A}, together with, for every set $M \in \mathcal{M}$, a part \mathbb{A}_{M} which, roughly spoken, corresponds to a copy of \mathbb{A} from which all states outside of M have been removed, and whose states record the part of M that recently has been visited.

$$
\begin{aligned}
A^{\prime} & :=A \cup \bigcup_{M \in \mathcal{M}}\{(a, M, P) \mid a \in M, P \subseteq M\}, \\
a_{I}^{\prime} & :=a_{I} \\
\Delta^{\prime}(a, c) & :=\Delta(a, c) \cup \bigcup_{M \in \mathcal{M}}\{(b, M, \varnothing) \mid b \in \Delta(a, c) \cap M\} \\
\Delta^{\prime}((a, M, P), c) & := \begin{cases}\{(b, M, P \cup\{a\}) \mid b \in \Delta(a, c) \cap M\} & \text { if } P \cup\{a\} \neq M, \\
\{(b, M, \varnothing) \mid b \in \Delta(a, c) \cap M\} & \text { if } P \cup\{a\}=M .\end{cases} \\
F & :=\left\{(a, M, P) \in A^{\prime} \mid P=\varnothing\right\} .
\end{aligned}
$$

We leave it as an exercise for the reader to verify that the resulting automaton is indeed equivalent to \mathbb{A}.

QED
We now turn to the determinization problem for stream automata. In the case of automata operating on finite words, it is not difficult to prove that nondeterminism does not really add recognizing power: any nondeterministic automaton \mathbb{A} may be 'determinized', that is, transformed into an equivalent deterministic automaton \mathbb{A}^{d}.

Remark 4.25 Finite word automata (see Example 4.9) can be determinized by a fairly simple subset construction.

Let $\mathbb{A}=\left\langle A, \Delta, F, a_{I}\right\rangle$ be a nondeterministic word automaton. A run of \mathbb{A} on a finite word $w=c_{1} \cdots c_{n}$ is defined as a finite sequence $a_{0} a_{1} \cdots a_{n}$ such that $a_{0}=a_{I}$ and $a_{i} \xrightarrow{c_{i}} a_{i+1}$ for all $i<n$. \mathbb{A} accepts a finite word w if there is a successful run, that is, a run $a_{0} a_{1} \cdots a_{n}$ ending in an accepting state a_{n}.

Given such a nondeterministic automaton, define a deterministic automaton \mathbb{A}^{+}as follows. For the states of \mathbb{A}^{+}we take the macro-states of \mathbb{A}, that is, the nonempty subsets of A. The deterministic transition function δ is given by

$$
\delta(P, c):=\bigcup_{a \in P} \Delta(a, c) .
$$

In words, $\delta(P, c)$ consists of those states that can be reached from some state in P by making one a-step in \mathbb{A}. The accepting states of \mathbb{A}^{+}are those macro-states that contain an accepting state from $\mathbb{A}: F^{+}:=\left\{P \in A^{+} \mid P \cap F \neq \varnothing\right\}$, and its initial state is the singleton $\left\{a_{I}\right\}$.

In order to establish the equivalence of \mathbb{A} and \mathbb{A}^{+}, we need to prove that for every word w, \mathbb{A} has an accepting run on w iff the unique run of \mathbb{A}^{+}on w is successful. The key claim in this proof is the following statement:

$$
\begin{equation*}
\widehat{\delta}\left(\left\{a_{I}\right\}, w\right)=\left\{a \in A \mid a_{I} \xrightarrow{w} a \mathbb{A} .\right. \tag{37}
\end{equation*}
$$

stating that $\widehat{\delta}\left(\left\{a_{I}\right\}, w\right)$ consists of all the states that \mathbb{A} can reach from a_{I} on input w. We leave the straightforward inductive proof of (37) as an exercise for the reader.

The equivalence of \mathbb{A} and \mathbb{A}^{+}then follows by the following chain of equivalences, for any finite word $w: \mathbb{A}^{+}$accepts w iff $\widehat{\delta}\left(\left\{a_{I}\right\}, w\right) \in F^{+}$iff $\widehat{\delta}\left(\left\{a_{I}\right\}, w\right) \cap F \neq \varnothing$ iff $a_{I} \xrightarrow{w}{ }_{\mathbb{A}} a$ for some $a \in F$ iff \mathbb{A} accepts w.

Unfortunately, the class of Büchi automata does not admit such a determinization procedure. As a consequence of Proposition 4.24 above, and witnessed by the Examples 4.19 and 4.26 , the recognizing power of nondeterministic Büchi automata is strictly greater than that of their deterministic variants.

Example 4.26 For a nondeterministic Büchi automaton recognizing the language

$$
L=\left\{\alpha \in C^{\omega} \mid r \notin \operatorname{Inf}(\alpha)\right\}
$$

of Example 4.19, consider the automaton given by the following picture:

In general, the Büchi acceptance condition $F \subseteq A$ of an automaton \mathbb{A} is depicted by the set of states with double circles. So in this case, $F=\left\{a_{1}\right\}$.

There is positive news as well. A key result in automata theory states that when we turn to Muller and parity automata, nondeterminism does not increase recognizing power. This result follows from Proposition 4.24 and Theorem 4.27 below.

Theorem 4.27 There is an effective procedure transforming a nondeterministic Büchi stream automaton into an equivalent deterministic Muller stream automaton.

The proof of Theorem 4.27 will be given in the next section. As an important corollary we mention the following Complementation Lemma.

Proposition 4.28 Let \mathbb{A} be a nondeterministic Muller or parity automaton. Then there is an automaton $\overline{\mathbb{A}}$ of the same kind, such that $L_{\omega}(\overline{\mathbb{A}})$ is the complement of the language $L_{\omega} \mathbb{A}$.

Leaving the proof of this proposition as an exercise for the reader, we finish this section with a summary of the relative power of the automata concept in the diagram below. Arrows indicate the reducibility of one concept to another, ' D ' and ' ND ' are short for 'deterministic' and 'nondeterministic', respectively.

Having established these equivalences we naturally arrive at the following definition.
Definition 4.29 Let C be a finite set. A C-stream language $L \subseteq C^{\omega}$ is called ω-regular if there exists a C-stream automaton $\mathbb{A}=\left(A, \Delta, \Omega, a_{I}\right)$ such that $L=L_{\omega}(\mathbb{A})$, where \mathbb{A} is either a (deterministic/nondeterministic) Muller or parity automaton, or a nondeterministic Büchi automaton.

4.4 Determinization of stream automata

This section is devoted to the proof of Theorem 4.27, which is based on a modification of the subset construction of Remark 4.25.

- more information on determinization/simulation to be supplied

Remark 4.30 This modification will have to be fairly substantial: As we will see now, Theorem 4.27 cannot be proved by a straightforward adaptation of the subset construction discussed in Remark 4.25. Consider the Büchi automaton \mathbb{A} given by the following picture:

We leave it for the reader to verify that $L_{\omega}(\mathbb{A})$ consists of those streams of $b \mathrm{~s}$ and $r \mathrm{~s}$ that contain at least one and at most finitely many red items. In particular, the stream $r^{\omega}=$ $\operatorname{rrrr} \ldots$ is rejected, while the stream $r b^{\omega}=r b b b b \ldots$ is accepted.

Now consider a deterministic automaton \mathbb{A}^{+}of which the transition diagram is given by the subset construction. Then the run of the automaton \mathbb{A}^{+}on r^{ω} is identical to its run on $r b^{\omega}$:

$$
a_{0}\left\{a_{0}, a_{1}\right\}\left\{a_{0}, a_{1}\right\}\left\{a_{0}, a_{1}\right\} \ldots
$$

In other words, no matter which acceptance condition we give to \mathbb{A}^{+}, the automaton will accept either both r^{ω} and $r b^{\omega}$, or neither. In either case $L_{\omega}\left(\mathbb{A}^{+}\right)$will be different from $L_{\omega}(\mathbb{A})$.

As a matter of fact, it will be instructive to see in a bit more detail how the runs of \mathbb{A} on r^{ω} and $r b^{\omega}$, respectively, appear as 'traces' in the run of \mathbb{A}^{+}on these two streams:

Clearly, where the second run contains one single trace that corresponds to a successful run of the automaton \mathbb{A}, in the first run, all traces that reach a successful state are aborted immediately. These two pictures clarify the subtle but crucial distinctions that get lost if we try to determinize via a straightforward subset construction.

In Safra's modification of the subset construction, the states of the deterministic automaton are finite, structured collections of macro-states; more specifically, if we order these macro-states by the inclusion relation we obtain a certain tree structure. The key idea underlying this modification is that at each step of the run, those elements of a macro-state that are accepting (i.e., members of the Büchi set of the original automaton), will be given some special treatment. Ultimately this enables one to single out the runs with a sequence of macro-states containing a good trace (that is, an infinite sequence of states constituting an accepting run of the nondeterministic automaton).

For the formal definition of Safra trees, we recall that we call two distinct nodes in a tree are called siblings if they have the same parent, and that, where \triangleleft denotes the parent-child relation, its transitive closure denotes the ancestor/descendant relation. That is, if $s \triangleleft^{+} t$ we call s a descendant of t, and t an ancestor of s. Furthermore, we recall that, where s and t are distinct nodes that are not related by the ancestor/descendant relation, there is a unique
pair of siblings $\left(s^{\prime}, t^{\prime}\right)$ such that s and t are either equal to or descendants of, respectively, s^{\prime} and t^{\prime}; we call this pair the ancestral sibling pair of (s, t).

Definition 4.31 An ordered tree is a structure $\left\langle S, r, \triangleleft,<_{H}\right\rangle$ such that $\langle S, \triangleleft\rangle$ is a tree with root $r ; \triangleleft$ is the 'child-of' relation, with $s \triangleleft t$ denoting that s is a child of t; and $<_{H}$ is a sibling ordering relation, that is, a strict partial order on S that totally orders the children of every node; if $s<_{H} t$ we may say that s is older than t. Given two distinct nodes s and t such that neither $s \triangleleft^{*} t$ nor $t \triangleleft^{*} s$, we say that s is to the left of t if the unique ancestral sibling pair $\left(s^{\prime}, t^{\prime}\right)$ of (s, t) is such that $s^{\prime}<_{H} t^{\prime}$.

A Safra tree over a set B is a pair (S, L) where S is a finite ordered tree, and $L: S \rightarrow \wp^{+}(B)$ is a labelling assigning a non-empty macrostate $L(s)$ to every node s in such a way that (i) for every node s, the set $\bigcup\{L(t) \mid t \triangleleft s\}$ is a proper subset of $L(s)$, and (ii) $L(s) \cap L(t)=\varnothing$ if s and t are siblings.

It is not hard to see that for any Safra tree (S, L) and for every state $b \in B, b$ belongs to some label set of the tree iff it belongs to the label of the root. And, if b belongs to the label of the root, then there is a unique node $s \in S$, the so-called lowest node of b, such that $b \in L(s)$ but s has no child t with $b \in L(t)$. From these observations one easily derives that

$$
\begin{equation*}
|S| \leq|B|, \tag{38}
\end{equation*}
$$

for every Safra tree over the set B.
We now turn to the details of the Safra construction.
Definition 4.32 Let \mathbb{B} be a nondeterministic Büchi automaton $\mathbb{B}=\left\langle B, b_{I}, \Delta, F\right\rangle$. We will define a deterministic Muller automaton $\mathbb{B}^{S}=\left\langle B^{S}, a_{I}, \delta, \mathcal{M}\right\rangle$.

Assume that B has n states, and let $N:=\{1, \ldots, 2 n\}$; we will think of N as the set of (potential) nodes of a Safra tree. The carrier B^{S} will consist of the collection of all colored Safra trees over B, that is, all triples (S, L, θ) such that (S, L) is a Safra tree over B with $S \subseteq N$, and θ is a map coloring nodes of the tree either white or green. The initial state of \mathbb{B}^{S} will be the Safra tree consisting of a single white node 1 labelled with the singleton $\left\{b_{I}\right\}$.

For the transition function on B^{S}, take an arbitrary colored Safra tree (S, L, θ). On input $c \in C$, the deterministic transition function δ on B^{S} transforms (S, L, θ) into a new colored, labelled Safra tree, by performing the sequence of actions below. (Note that at intermediate stages of this process, the structures may violate the conditions of Safra trees.)

1. Make macro-move Apply the power set construction to the individual nodes: for each node s, replace its label $L(s) \subseteq B$ with the set $L^{\prime}(s):=\bigcup_{a \in L(s)} \Delta(a, c)$.
2. Separate accepting states For each node $s \in S$ such that $L^{\prime}(s)$ contains accepting states, add a new ${ }^{3}$ node $s^{\prime} \in N \backslash S$ to S as the youngest child of s, and label s^{\prime} with the set $\mathrm{Ł}^{\prime}\left(s^{\prime}\right):=L^{\prime}(s) \cap F$. (Such an s^{\prime} can be canonically chosen as the smallest $n \in N$ such that $n \notin S)$.

[^2]3. Merge traces For each node s, remove those members from its label that already belong to the label of a state to the left of s (3a). After that remove all nodes with empty labels (3b).
4. Mark successful nodes For each (remaining) node s of which the label is identical to the union of the labels of its children, remove all proper descendants of s, and mark s by coloring it green. All other nodes are colored white.

For the Muller acceptance condition \mathcal{M} of \mathbb{B}^{S}, put $M \in \mathcal{M}$ if there is some $s \in\{0, \ldots, 2 n\}$ such that s is present as a node of every tree in M, and s is colored green in some tree in M. \triangleleft

Example 4.33 Example to be supplied

The following proposition states that the size of the Safra automaton is exponentially bounded.

Proposition 4.34 Let \mathbb{B} be a nondeterministic Büchi automaton with n states. Then $\left|\mathbb{B}^{S}\right|$ has at most $2^{\mathcal{O}(n * \log (n))}$ states.

Proof. We will prove the Proposition by showing there are at most $(2 n+1)^{7 n}$ coloured Safra trees over a set B of size n. For this purpose we represent coloured Safra trees in terms of functions. Recall that $N=\{1, \ldots, 2 n\}$ denotes the set of (potential) nodes of a Safra tree.

- To start with, the parent relation \triangleleft of a Safra tree can be represented by a parent function $p: N \rightarrow N \cup\{0\}$ which maps every non-root node in the tree to its unique parent, and every other element of N to 0 . There are at most $(2 n+1)^{2 n}$ of such maps.
- Similarly, the sibling order $<_{H}$ can be represented by a map from $N \rightarrow N \cup\{0\}$ which maps any node which has older siblings to the youngest of these, and every other node to 0 . Again, there at most $(2 n+1)^{2 n}$ of such maps.
- The macro-state labelling L of a Safra can be represented by the function $m: B \rightarrow$ $N \cup\{0\}$ which maps a state $b \in B$ to 0 if $b \notin L(r)$ (i.e., b is not present in the Safra tree), and to the unique-lowest node s in the tree such that $b \in L(s)$, otherwise. The number of these maps is therefore bounded by $(2 n+1)^{n}$.
- Finally, for reasons of similarity, the colouring map θ can be represented as a map from N to $N \cup\{0\}$ which maps $s \in N$ to 0 if it coloured green, and to 1 if it is either white or not present in the tree. Hence there are at most $(2 n+1)^{2 n}$ of such maps.

Every coloured Safra tree can thus be represented as a quadruple of maps from either N or B to $N \cup\{0\}$, and so the number of these trees is bounded by $(2 n+1)^{2 n} *(2 n+1)^{2 n} *$ $(2 n+1)^{n} *(2 n+1)^{2 n}=(2 n+1)^{7 n}$.

QED
It is obvious from the construction that \mathbb{B}^{S} is a deterministic automaton, so what is left of the proof of Theorem 4.27 is to establish the equivalence of \mathbb{B} and \mathbb{B}^{S}.

Proposition 4.35 Let \mathbb{B} be a nondeterministic Büchi automaton. Then

$$
L_{\omega}(\mathbb{B})=L_{\omega}\left(\mathbb{B}^{S}\right) .
$$

Proof.(Sketch) For the inclusion \subseteq, assume that there is a successful run $\rho=b_{0} b_{1} \ldots$ of \mathbb{B} on some C-stream $\gamma=c_{0} c_{1} \ldots$. Consider the (unique) run $\sigma=\left(S_{0}, L_{0}, \theta_{0}\right)\left(S_{1}, L_{1}, \theta_{1}\right) \ldots$ of \mathbb{B}^{S} on γ. Here each $\left(S_{i}, L_{i}, \theta_{i}\right)$ is a Safra tree with labeling L_{i} and coloring θ_{i}. We claim that there is an object s which after some initial phase belongs to each Safra tree of σ, and which is marked green infinitely often. The basic idea underlying the proof of this claim is to 'follow' the run ρ as a trace through the successive trees of σ.

First note that at every stage i, the state b_{i} of ρ belongs to the label $L_{i}\left(r_{i}\right)$ of the root r_{i} of the Safra tree S_{i}. It follows that the root always has a non-empty label, and hence it is never removed; thus we have $r_{0}=r_{1}=\ldots$, and so, with $r:=r_{0}$, we have already found a node r such that r is present in every Safra tree in $\operatorname{Inf}(\sigma)$. Now if r is colored green infinitely often, we are done.

So suppose that this is not the case. In other words, after a certain moment i, r will no longer be marked. Since $\rho=\left(b_{i}\right)_{i \in \omega}$ is by assumption a successful run of \mathbb{B}, it passes infinitely often through a successful state. Hence we may consider the first time $j>i$ for which b_{j} is an accepting state. But if $b_{j} \in F$, then in step 2 of stage j it has been put in the label set of a new child, say, s, of r. In step $3 \mathrm{a}, b_{j}$ may be removed from the label set of s, but only in case it was already present in the label set of an older sibling of s. It is not hard to see that in step 3 b or $4, b_{j}$ will not be removed from the label sets it belongs to after step 3 a .

We claim that in fact

$$
\begin{equation*}
\text { for all } k \geq j, b_{k} \in L_{k}\left(s_{k}\right) \text {, for some child } s_{k} \text { of } r \text {. } \tag{39}
\end{equation*}
$$

The proof of this claim rests on the observation that b_{k} can only fail to be a member of the set $\bigcup\left\{L_{k}(s) \mid s \triangleleft_{k} r\right\}$ in case r is a successful node in S_{k}, and we assumed that this was not the case. (Here \triangleleft_{k} denotes the child relation in the Safra tree S_{k}.) Now note that the merging of traces (as described in step 3a of the procedure) may cause states to be moved to the label set of a sibling, but only to an older one. Such a shift can thus only happen finitely often, so that after some stage j_{1} there is a node s such that

$$
\begin{equation*}
\text { for all } k>j_{1}: \quad s \in S_{k}, s \triangleleft_{k} r, \text { and } b_{k} \in L_{k}(s) \text {. } \tag{40}
\end{equation*}
$$

We can now repeat the argument with this s taking the role of r : either s itself is marked green infinitely often, or eventually, at some stage l, the ρ-state $b_{l} \in F$ will be placed at the next level, and remain there. Since the depth of the Safra trees involved is bounded, there must be some node s which after some initial phase belongs to each Safra tree in σ, and which is marked infinitely often.

For the opposite inclusion \supseteq, suppose that the (unique) run $\sigma=\left(S_{0}, L_{0}, \theta_{0}\right)\left(S_{1}, L_{1}, \theta_{1}\right) \ldots$ of \mathbb{B}^{S} on the input stream $\gamma=c_{0} c_{1} \ldots$ is successful. Then by definition there is some node $s \in N=\{0, \ldots, 2 n\}$ which after some initial phase will belong to each Safra tree in σ and which will subsequently be marked green infinitely often, say at the stages $k_{1}<k_{2}<\cdots$. For each $i>0$, let A_{i} denote the macro-state of s at stage k_{i}, that is: $A_{i}:=L_{k_{i}}(s)$.

For natural numbers p and q, let $\gamma[p, q)$ denote the finite word $c_{p} \cdots c_{q-1}$, so that γ is equal to the infinite concatenation

$$
\gamma=\gamma\left[0, k_{1}\right) \cdot \gamma\left[k_{1}, k_{2}\right) \cdot \gamma\left[k_{2}, k_{3}\right) \cdots
$$

Since our construction is a refinement of the standard subset construction of Remark 4.25, by (37) it easily follows from the definitions of δ that for every state $a \in A_{1}$ there is a $\gamma\left[0, k_{1}\right)$-labeled path from b_{I} to a, or briefly:

$$
\begin{equation*}
\text { for all } a \in A_{1} \text { we have } b_{I} \xrightarrow{\gamma\left[0, k_{1}\right)} a \text {. } \tag{41}
\end{equation*}
$$

With a little more effort, crucially involving the conditions for marking nodes, and the rules governing the creation and maintenance of nodes, one may prove that

$$
\begin{equation*}
\text { for all } i>0 \text { and for all } a \in A_{i+1} \text { there is an } a^{\prime} \in A_{i} \text { such that } a^{\prime} \xrightarrow{\gamma\left[k_{i}, k_{i+1}\right)} a \text {. } \tag{42}
\end{equation*}
$$

Here $a^{\prime} \xrightarrow{\gamma\left[k_{i}, k_{i+1}\right)} a$ means that there is a $\gamma\left[k_{i}, k_{i+1}\right)$-labelled path from a^{\prime} to a which passes through some state in F. Details of this proof are left as an exercise to the reader.

The remainder of the proof consists of finding a successful run of \mathbb{B} on γ as the concatenation of a run segment given by (41) and infinitely many run segments given by (42). For this we use König's Lemma.

Defining $A_{0}:=\left\{b_{I}\right\}$, we will construct a tree, all of whose nodes are pairs of the form (a, i) with $a \in A_{i}$. As the (unique) parent of a node ($a, i+1$) we pick one of the pairs (a^{\prime}, i) given by (41) (in case $i=0$) or (42) (in case $i>0$). Obviously this is a well-formed, infinite, finitely branching tree. So by König's Lemma, there is an infinite branch $\left(a_{0}, 0\right)\left(a_{1}, 1\right) \cdots$. By construction, we have $a_{0}=b_{I}$, while for each $i \geq 0$ there is a $\gamma\left[k_{i}, k_{i+1}\right)$-labelled path in \mathbb{B} from a_{i} to a_{i+1} which passes through some accepting state of \mathbb{B}. The infinite concatenation of these paths gives a run of \mathbb{B} on γ, which visits infinitely often an accepting state of \mathbb{B}, and hence by finiteness of B, it visits some state of \mathbb{B} infinitely often. Clearly then this run is accepting.

QED

4.5 Logic and automata

- discuss the relation between stream automata, the linear μ-calculus, and monadic second-order logic;
- discuss linear time logic

4.6 A coalgebraic perspective

In this section we introduce a coalgebraic perspective on stream automata. We have two reasons for doing so. First, we hope that this coalgebraic presentation will facilitate the introduction, further on, of automata operating on different kinds of structures. And second, we also believe that the coalgebraic perspective, in which the similarities between automata and the objects they classify comes out more clearly, makes it easier to understand some of the fundamental concepts and results in the area.

In this context, it makes sense to consider a slightly wider class than streams only.

Definition 4.36 A C-flow is a pair $\mathbb{S}=\langle S, \sigma\rangle$ with $\sigma: S \rightarrow C \times S$. Often we will write $\sigma(s)=\left(\sigma_{C}(s), \sigma_{0}(s)\right)$. If we single out an (initial) state $s_{0} \in S$ in such a structure, we obtain a pointed C-flow $\left(\mathbb{S}, s_{0}\right)$.

Example 4.37 Streams over an alphabet C can be seen as pointed C-flows: simply identify the word $\gamma=c_{0} c_{1} c_{2} \ldots$ with the pair $\left(\left\langle\omega, \lambda n .\left(c_{n}, n+1\right)\right\rangle, 0\right)$. Conversely, with any pointed flow $\langle\mathbb{S}, s\rangle$ we may associate a unique stream $\gamma_{\mathbb{S}, s}$ by inductively defining $s_{0}:=s, s_{i+1}:=\sigma_{0}\left(s_{i}\right)$, and putting $\gamma_{\mathbb{S}}(n):=\sigma_{C}\left(s_{n}\right)$.

It will be instructive to define the following notion of equivalence between flows. As its name already indicates, we are dealing with the analog of the notion of a bisimulation between two Kripke models. Since flows, having a deterministic transition structure, are less complex objects than Kripke models, the notion of bisimulation is also, and correspondingly, simpler.

Definition 4.38 Let \mathbb{S} and \mathbb{S}^{\prime} be two C-flows. Then a nonempty relation $Z \subseteq S \times S^{\prime}$ is a bisimulation if the following holds, for every $\left(s, s^{\prime}\right) \in Z$:
(color) $\sigma_{C}(s)=\sigma_{C}^{\prime}\left(s^{\prime}\right)$;
(successor) $\left(\sigma_{0}(s), \sigma_{0}^{\prime}\left(s^{\prime}\right)\right) \in Z$.
Two pointed flows (\mathbb{S}, s) and $\left(\mathbb{S}^{\prime}, s^{\prime}\right)$ are called bisimilar, notation: $\mathbb{S}, s \leftrightarrow \mathbb{S}^{\prime}, s^{\prime}$ if there is some bisimulation Z linking s to s^{\prime}. In case the flows \mathbb{S} and \mathbb{S}^{\prime} are implicitly understood, we may drop reference to them and simply call s and s^{\prime} bisimilar.

As an example, it is not hard to see that any pointed flow (\mathbb{S}, s) is bisimilar to the stream $\gamma_{\mathrm{S}, s}$ that we may associate with it (see Example 4.37). Restricted to the class of streams, bisimilarity means identity.

Definition 4.39 A stream is called regular if it is bisimilar to a finite pointed flow.
Associated is a new perspective on nondeterministic stream automata which makes them very much resemble these flows. Roughly speaking the idea is this. Think of establishing a bisimulation between two pointed flows in terms of one structure $\left\langle A, a_{I}, \alpha\right\rangle$ classifying the other, $\left\langle S, s_{C}, \sigma\right\rangle$.

Now on the one hand make a restriction in the sense that the classifying flow must be finite, but on the other hand, instead of demanding its transition function to be of the form $\alpha: A \rightarrow C \times A$, allow objects $\alpha(a)$ to be sets of pairs in $C \times A$, rather than single pairs. That is, introduce non-determinism by letting the transition map Δ of \mathbb{A} be of the form

$$
\begin{equation*}
\Delta: A \rightarrow \wp(C \times A) . \tag{43}
\end{equation*}
$$

Remark 4.40 This presentation (43) of nondeterminism is completely equivalent to the one given earlier. The point is that there is a natural bijection between maps of the above kind, and the ones given in Definition 4.21 as the transition structure of nondeterministic automata:

$$
\begin{equation*}
A \rightarrow \wp(C \times A) \cong(A \times C) \rightarrow \wp(A) . \tag{44}
\end{equation*}
$$

To see why this is so, an easy proof suffices. Using the principle of currying we can show that

$$
A \rightarrow((C \times A) \rightarrow 2) \cong(A \times C \times A) \rightarrow 2 \cong(A \times C) \rightarrow(A \rightarrow 2),
$$

where the first and last set can be identified with respectively the left and right hand side of (44) using the bijection between subsets and their characteristic functions.

Concretely, we may identify a map $\Delta:(A \times C) \rightarrow \wp(A)$ with the map $\Delta^{\prime}: A \rightarrow \wp(C \times A)$ given by

$$
\begin{equation*}
\Delta^{\prime}(a):=\left\{\left(c, a^{\prime}\right) \mid a^{\prime} \in \Delta(a, c)\right\} \tag{45}
\end{equation*}
$$

Thus we arrive at the following reformulation of the definition of nondeterministic automata. Note that with this definition, a stream automaton can be seen as a kind of 'multistream' in the sense that every state harbours a set of potential 'local realizations' as a flow. Apart from this, an obvious difference with flows is that stream automata also have an acceptance condition.

Definition 4.41 A nondeterministic C-stream automaton is a quadruple $\mathbb{A}=\left\langle A, \Delta, A c c, a_{I}\right\rangle$ such that $\Delta: A \rightarrow \wp(C \times A)$ is the transition function, $A c c \subseteq A^{\omega}$ is the acceptance condition, and $a_{I} \in A$ is the initial state of the automaton.

Finally, it makes sense to formulate the notion of an automaton accepting a flow in terms that are related to that of establishing the existence of a bisimulation. The nondeterminism can nicely be captured in game-theoretic terms - note however, that here we are dealing with a single player only.

In fact, bisimilarity between two pointed flows can itself be captured game-theoretically, using a trivialized version of the bisimilarity game for Kripke models of Definition 1.26. Consider two flows \mathbb{A} and \mathbb{S}. Then the bisimulation game $\mathcal{B}(\mathbb{A}, \mathbb{S})$ between \mathbb{A} and \mathbb{S} is defined as a board game with positions of the form $(a, s) \in A \times S$, all belonging to \exists. At position (a, s), if a and s have a different color, \exists loses immediately; if on the other hand $\alpha_{C}(a)=\sigma_{C}(s)$, then as the next position of the match she 'chooses' the pair consisting of the successors of a and s, respectively. These rules can concisely be formulated as in the following Table:

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\left\{\left(\alpha_{0}(a), \sigma_{0}(s)\right) \mid \alpha_{C}(a)=\sigma_{C}(s)\right\}$

Finally, the winning conditions of the game specify that \exists wins all infinite games. We leave it for the reader to verify that a pair $(a, s) \in A \times S$ is a winning position for \exists iff a and s are bisimilar.

In order to proceed, however, we need to make a slight modification. We add positions of the form $(\alpha, s) \in(C \times A) \times S$, and insert an 'automatic' move immediately after a basic position, resulting in the following Table.

Position	Player	Admissible moves
$(a, s) \in A \times S$	-	$\{(\alpha(a), s)\}$
$(\alpha, s) \in(C \times A) \times S$	\exists	$\left\{\left(\alpha_{0}, \sigma_{0}(s)\right) \mid \alpha_{C}=\sigma_{C}(s)\right\}$

The acceptance game of a nondeterministic automaton \mathbb{A} and a flow \mathbb{S} can now be formulated as a natural generalization of this game.

Definition 4.42 Given a nondeterministic C-stream automaton $\mathbb{A}=\left\langle A, a_{I}, \Delta, A c c\right\rangle$ and a pointed flow $\mathbb{S}=\left\langle S, s_{0}, \sigma\right\rangle$, we now define the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ as the following board game.

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\{(\alpha, s) \in(C \times A) \times S \mid \alpha \in \Delta(a)\}$
$(\alpha, s) \in(C \times A) \times S$	\exists	$\left\{\left(\alpha_{0}, \sigma_{0}(s)\right) \mid \alpha_{C}=\sigma_{C}(s)\right\}$

Table 8: Acceptance game for nondeterministic stream automata
Its positions and rules are given in Table 8, whereas the winning conditions of infinite matches are specified as follows. Given an infinite match of this game, first select the sequence

$$
\left(a_{0}, s_{0}\right)\left(a_{1}, s_{1}\right)\left(a_{2}, s_{2}\right) \ldots
$$

of basic positions, that is, the positions reached during play that are of the form $(a, s) \in A \times S$. Then the match is winning for \exists if the ' A-projection' $a_{0} a_{1} a_{2} \ldots$ of this sequence belongs to Acc.

Definition 4.43 A nondeterministic C-stream automaton $\mathbb{A}=\left\langle A, a_{I}, \Delta, A c c\right\rangle$ accepts a pointed flow $\mathbb{S}=\left\langle S, s_{0}, \sigma\right\rangle$ if the pair $\left(a_{I}, s_{0}\right)$ is a winning position for \exists in the game $\mathcal{A}(\mathbb{A}, \mathbb{S})$. \triangleleft

The following proposition states that the two ways of looking at nondeterministic automata are equivalent.

Proposition 4.44 Let $\mathbb{A}=\left\langle A, a_{I}, \Delta, A c c\right\rangle$, with $\Delta:(A \times C) \rightarrow \wp(A)$ be a nondeterministic C-automaton, and let \mathbb{A}^{\prime} be the nondeterministic C-stream automaton $\left\langle A, a_{I}, \Delta^{\prime}, A c c\right\rangle$, where $\Delta^{\prime}: A \rightarrow \wp(C \times A)$ is given by (45). Then \mathbb{A} and \mathbb{A}^{\prime} are equivalent.

In the sequel we will identify the two kinds of nondeterministic automata, speaking of the coalgebraic presentation $\left\langle A, a_{I}, \Delta^{\prime}: A \rightarrow \wp(C \times A), A c c\right\rangle$ of an automaton $\left\langle A, a_{I}, \Delta:\right.$ $(A \times C) \rightarrow \wp(A), A c c\rangle$.

Notes

The idea to use finite automata for the classification of infinite words originates with Büchi. In [6] he used stream automata with (what we now call) a Büchi acceptance condition to prove the decidability of the second-order theory of the natural numbers (with the successor relation). In the subsequent development of the theory of stream automata, other acceptance conditions were introduced. The Muller condition is named after the author of [21]. The invention of the parity condition, which can be seen as a refinement of the Rabin condition, is usually attributed to Emerson \& Jutla [11], Mostowski [20], and/or Wagner.

The first construction of a deterministic equivalent to a nondeterministic Muller automaton was given by McNaughton [18]. The construction we presented in section 4.4 is due to Safra [26]. Finally, the coalgebraic perspective on stream automata presented in the final section of this chapter is the author's.

Exercises

Exercise 4.1 Provide Büchi automata recognizing exactly the following stream languages:
(a) $L_{a}=\left\{\alpha \in\{a, b, c\}^{\omega} \mid a\right.$ and b occur infinitely often in $\left.\alpha\right\}$
(b) $L_{b}=\left\{\alpha \in\{a, b, c\}^{\omega} \mid\right.$ any a in α is eventually followed by a $\left.b\right\}$
(c) $L_{c}=\left\{\alpha \in\{a, b\}^{\omega} \mid\right.$ between any two a 's is an even number of b 's $\}$
(d) $L_{d}=\left\{\alpha \in\{a, b, c\}^{\omega} \mid a b\right.$ and $c c$ occur infinitely often in $\left.\alpha\right\}$

Exercise 4.2 Let C be a finite set. Show that the class of ω-regular languages over C is closed under the Boolean operations, i.e., show that
(a) If $L \subseteq C^{\omega}$ is ω-regular then its complement $\bar{L}:=\left\{\gamma \in C^{\omega} \mid \gamma \notin L\right\}$ is ω-regular.
(b) If L_{1} and L_{2} are ω-regular C-stream languages, then $L_{1} \cup L_{2}$ is ω-regular.
(c) If L_{1} and L_{2} are ω-regular C-stream languages, then $L_{1} \cap L_{2}$ is ω-regular.

Exercise 4.3 Observe that Büchi automata can also be seen as finite automata operating on finite words (see Example 4.9.
(a) Show the following, for any deterministic Büchi automaton \mathbb{A} :

$$
L_{\omega}(\mathbb{A})=\left\{\alpha \in \Sigma^{\omega} \mid \text { infinitely many prefixes of } \alpha \text { belong to } L(\mathbb{A})\right\} .
$$

(b) Does this hold for nondeterministic Büchi automata as well?

Exercise 4.4 Let C and D be finite sets and let $f: C \rightarrow D$ be a function. The function f can be extended to a function $\bar{f}: C^{\omega} \rightarrow D^{\omega}$ in the obvious way by putting $\bar{f}(\gamma):=$ $f\left(c_{0}\right) f\left(c_{1}\right) f\left(c_{2}\right) \ldots \in D^{\omega}$ for any C-stream $\gamma \in C^{\omega}$. For a given C-stream language $L \subseteq C^{\omega}$ we define

$$
\bar{f}(L):=\{\bar{f}(\gamma) \mid \gamma \in L\} \subseteq D^{\omega} .
$$

(a) Show that $L \subseteq C^{\omega}$ is ω-regular implies $f(L) \subseteq D^{\omega}$ is ω-regular.
(b) Show that there is a C-stream language $L \subseteq C^{\omega}$ such that $L=L_{\omega}(\mathbb{A})$ for some $d e$ terministic Büchi automaton \mathbb{A} and such that $f(L) \subseteq D^{\omega}$ is not recognizable by any deterministic Büchi automaton.

Exercise 4.5 Prove that nondeterministic Büchi automata have the same recognizing power as their Muller variants by showing that the automata \mathbb{A}^{\prime} and \mathbb{A} in the proof of Proposition 4.24 are indeed equivalent.

Exercise 4.6 Consider the language L_{d} of exercise 4.1.
(a) Give a clear description of the complement $\overline{L_{d}}$ of L_{d}.
(b) Give a nondeterministic Büchi automaton recognizing exactly the language $\overline{L_{d}}$.
(c) Prove that there is no deterministic Büchi automaton recognizing the language $\overline{L_{d}}$. (Hint: use the theorem from Exercise 4.3.)

Exercise 4.7 Provide deterministic Muller automata recognizing the following languages:
(a) L_{d} of exercise 4.1.
(b) $L_{a}=\left\{\alpha \in\{a, b, c\}^{\omega} \mid\right.$ between every pair of a 's is an occurrence of $b b$ or $\left.c c\right\}$.

Exercise 4.8 (regularity) Let C be a finite set, and let $L \subseteq C^{\omega}$ be a stream language over C. Prove that if L is ω-regular, then it contains a stream of the form $u v^{\omega}$ where $u \in C^{*}$ and $v \in C^{+}$.

Exercise 4.9 Describe the languages that are recognized by the following Muller automata (presented in tabular form, with \Rightarrow indicating the initial state):
(a)

\mathbb{A}	a	b
$\Rightarrow \Rightarrow q_{0}$	q_{1}	q_{2}
	q_{1}	q_{0}

(b) The same automaton as in (a) but with $\mathcal{F}:=\left\{\left\{q_{1}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$.
(c)

A	a	b	c	$\mathcal{F}:=\left\{\left\{q_{0}\right\},\left\{q_{0}, q_{1}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$.
$\Rightarrow \quad q_{0}$	q_{1}	q_{0}	q_{0}	
q_{1}	q_{0}	q_{2}	q_{0}	
q_{2}	q_{0}	q_{0}	q_{3}	
q_{3}	q_{0}	q_{0}	q_{0}	

Exercise 4.10 Prove (42) in the proof of Proposition 4.35. That is, show that for all $i>0$ and for all $a \in A_{i+1}$ there is an $a^{\prime} \in A_{i}$ such that $a^{\prime} \xrightarrow{\gamma\left[k_{i}, k_{i+1}\right)} a$.

Can you also prove that, conversely,
for all $i>0$ and for all $a \in A_{i}$ there is an $a^{\prime} \in A_{i+1}$ such that $a^{\prime} \xrightarrow{\gamma\left[k_{i}, k_{i+1}\right)} a$?

5 Parity games

A large part of the theory of modal fixpoint logic involves nontrivial concepts and results from the theory of infinite games. In this chapter we discuss some of the highlights of this theory in a fair amount of detail. This allows us to be rather informal about game-theoretic concepts in the rest of the notes.

5.1 Board games

The games that we are dealing with here can be classified as board or graph games. They are played by two agents, here to be called 0 and 1 .

Definition 5.1 If $\sigma \in\{0,1\}$ is a player, then $\bar{\sigma}$ denotes the opponent $1-\sigma$ of σ.
A board game is played on a board or arena, which is nothing but a directed graph in which each node is marked with either 0 or 1 . A match or play of the game consists of the two players moving a pebble or token across the board, following the edges of the graph. To regulate this, the collection of graph nodes, usually referred to as positions of the game, is partitioned into two sets, one for each player. Thus with each position we may associate a unique player whose turn it is to move when the token lies on position p.

Definition 5.2 A board or arena is a structure $\mathbb{B}=\left\langle B_{0}, B_{1}, E\right\rangle$, such that B_{0} and B_{1} are disjoint sets, and $E \subseteq B^{2}$, where $B:=B_{0} \cup B_{1}$. We will make use of the notation $E[p]$ for the set of admissible or legitimate moves from a board position $p \in B$, that is, $E[p]:=\{q \in B \mid(p, q) \in E\}$. Positions not in $E[p]$ will sometimes be referred to as illegitimate moves with respect to p. A position $p \in B$ is a dead end if $E[p]=\varnothing$. If $p \in B$, we let σ_{p} denote the (unique) player such that $p \in B_{\sigma_{p}}$, and say that p belongs to σ_{p}, or that it is σ_{p} 's turn to move at p.

A match of the game may in fact be identified with the sequence of positions visited during play, and thus corresponds to a path through the graph. We refer to the Appendix A for some notation concerning paths.

Definition 5.3 A path through a board $\mathbb{B}=\left\langle B_{0}, B_{1}, E\right\rangle$ is a nonempty (finite or infinite) sequence $\pi \in B^{\infty}$ such that $E \pi_{i} \pi_{i+1}$ whenever applicable. A full or complete match or play through \mathbb{B} is either an infinite \mathbb{B}-path, or a finite \mathbb{B}-path π ending with a dead end (i.e. $E[\operatorname{last}(\pi)]=\varnothing)$.

A partial match is a finite path through \mathbb{B} that is not a full match; in other words, the last position of a partial match is not a dead end. We let PM_{σ} denote the set of partial matches such that σ is the player whose turn it is to move at the last position of the match. In the sequel, we will denote this player as σ_{π}; that is, $\sigma_{\pi}:=\sigma_{\text {last }(\pi)}$.

Each full or completed match is won by one of the players, and lost by their opponent; that is, there are no draws. A finite match ends if one of the players gets stuck, that is, is forced to move the token from a position without successors. Such a finite, completed, match is lost by the player who got stuck.

The importance of this explains the definition of the notion of a subboard. Note that any set of positions on a board naturally induces a board of its own, based on the restricted edge relation. We will only call this structure a subboard, however, if there is no disagreement between the two boards when it comes to players being stuck or not.

Definition 5.4 Given a board $\mathbb{B}=\left\langle B_{0}, B_{1}, E\right\rangle$, a subset $A \subseteq B$ determines the following board $\mathbb{B}_{A}:=\left\langle A \cap B_{0}, A \cap B_{1}, E_{\lceil A}\right\rangle$, where $E_{\lceil A}:=E \cap(A \times A)$ is the restriction of E to A. This structure is called a subboard of \mathbb{B} if for all $p \in A$ it holds that $E[p]=\varnothing$ iff $E_{\lceil A}[p]=\varnothing$. \triangleleft

If neither player ever gets stuck, an infinite match arises. The flavor of a board game is very much determined by the winning conditions of these infinite matches.

Definition 5.5 Given a board \mathbb{B}, a winning condition is a map $W: B^{\omega} \rightarrow\{0,1\}$. An infinite match π is won by $W(\pi)$. A board game is a structure $\mathcal{G}=\left\langle B_{0}, B_{1}, E, W\right\rangle$ such that $\left\langle B_{0}, B_{1}, E\right\rangle$ is a board, and W is a winning condition on B.

Although the winning condition given above applies to all infinite B-sequences, it will only make sense when applied to matches. We have chosen the above definition because it is usually much easier to formulate maps that are defined on all sequences.

Before players can actually start playing a game, they need a starting position. The following definition introduces some terminology and notation.

Definition 5.6 An initialized board game is a pair consisting of a board game \mathcal{G} and a position q on the board of the game; such a pair is usually denoted $\mathcal{G} @ q$.

Given a (partial) match π, its first element $\operatorname{first}(\pi)$ is called the starting position of the match. We let $\mathrm{PM}_{\sigma}(q)$ denote the set of partial matches for σ that start at position q. \triangleleft

Central in the theory of games is the notion of a strategy. Roughly, a strategy for a player is a method that the player uses to decide how to continue partial matches when it is their turn to move. More precisely, a strategy is a function mapping partial plays for the player to new positions. It is a matter of definition whether one requires a strategy to always assign moves that are legitimate, or not; here we will not make this requirement.

Definition 5.7 Given a board game $\mathcal{G}=\left\langle B_{0}, B_{1}, E, W\right\rangle$ and a player σ, a σ-strategy, or a strategy for σ, is a map $f: \mathrm{PM}_{\sigma} \rightarrow B$. In case we are dealing with an initialized game $\mathcal{G} @ q$, then we may take a strategy to be a map $f: \mathrm{PM}_{\sigma}(q) \rightarrow B$. A match π is consistent with or guided by a σ-strategy f if for any partial match $\pi^{\prime} \sqsubset \pi$ with last $\left(\pi^{\prime}\right) \in B_{\sigma}$, the next position on π (after π^{\prime}) is indeed the element $f\left(\pi^{\prime}\right)$.

A σ-strategy f is surviving in $\mathcal{G} @ q$ if the moves that it prescribes to f-guided partial matches in $\mathrm{PM}_{\sigma} @ q$ are always admissible to σ, and winning for σ in $\mathcal{G} @ q$ if in addition all f-guided full matches starting at q are won by σ. A position $q \in B$ is winning for σ if σ has a winning strategy for the game $\mathcal{G} @ q$; the collection of all winning positions for σ in \mathcal{G} is called the winning region for σ in \mathcal{G}, and denoted as $\operatorname{Win}_{\sigma}(\mathcal{G})$.

Intuitively, f being a surviving strategy in $\mathcal{G} @ q$ means that σ never gets stuck in an f-guided match of $\mathcal{G} @ q$, and so guarantees that σ can stay in the game forever.

Convention 5.8 Observe that we allow strategies that prescribe illegitimate moves. In practice, it will often be convenient to extend the definition of a strategy even further to include maps f that are partial in the sense that they are only defined on a proper subset of PM_{σ}. We will only permit ourselves such a sloppiness if we can guarantee that $f(\pi)$ is defined for every $\pi \in \mathrm{PM}_{\sigma}$ that is consistent with the partial σ-strategy f, so that the situation where the partial strategy actually would fail to suggest a move, will never occur.

It is easy to see that a position in a game \mathcal{G} cannot be winning for both players. On the other hand, the question whether a position p is always a winning position for one of the players, is a rather subtle one. Observe that in such games the two winning regions partition the game board.

Definition 5.9 The game \mathcal{G} on the board \mathbb{B} is determined if $\operatorname{Win}_{0}(\mathcal{G}) \cup \operatorname{Win}_{1}(\mathcal{G})=B$; that is, each position is winning for one of the players.

It turns out that the axiom of choice implies the existence of infinite games that admit positions from which neither player has a winning strategy.

- Add some more detail, including a remark on the axiom of determinacy in set theory.

In principle, when deciding how to move in a match of a board game, players may use information about the entire history of the match played thus far. However, it will turn out to be advantageous to work with strategies that are simple to compute. Particularly nice are so-called positional strategies, which only depend on the current position (i.e., the final position of the partial play). Although their importance is sometimes overrated, positional strategies are convenient to work with, and they will be critically needed in the proofs of some of the most fundamental results in the automata-theoretic approach to fixpoint logic.

Definition 5.10 A strategy f is positional or history-free if $f(\pi)=f\left(\pi^{\prime}\right)$ for any π, π^{\prime} with $\operatorname{last}(\pi)=\operatorname{last}\left(\pi^{\prime}\right)$.

Convention 5.11 A positional σ-strategy may be represented as a map $f: B_{\sigma} \rightarrow B$.
As a slight generalisation of positional strategies, finite-memory strategies can be computed using only a finite amount of information about the history of the match. More details can be found in Exercise 5.2.

5.2 Winning conditions

In case we are dealing with a finite board B, then we may nicely formulate winning conditions in terms of the set of positions that occur infinitely often in a given match. But in the case of an infinite board, there may be matches in which no position occurs infinitely often (or more than once, for that matter). Nevertheless, we may still define winning conditions in terms of
objects that occur infinitely often, if we make use of finite colorings of the board. If we assign to each position $b \in B$ a color, taken from a finite set C of colors, then we may formulate winning conditions in terms of the colors that occur infinitely often in the match.

Definition 5.12 A coloring of B is a function $\Gamma: B \rightarrow C$ assigning to each position $p \in B$ a color $\Gamma(p)$ taken from some finite set C of colors. By putting $\Gamma\left(p_{0} p_{1} \cdots\right):=\Gamma\left(p_{0}\right) \Gamma\left(p_{1}\right) \cdots$ we can naturally extend such a coloring $\Gamma: B \rightarrow C$ to a map $\Gamma: B^{\omega} \rightarrow C^{\omega}$.

Now if $\Gamma: B \rightarrow C$ is a coloring, for any infinite sequence $\pi \in B^{\omega}$, the map $\Gamma \circ \pi \in C^{\omega}$ forms the associated sequence of colors. But then since C is finite there must be some elements of C that occur infinitely often in this stream.

Definition 5.13 Let \mathbb{B} be a board and $\Gamma: B \rightarrow C$ a coloring of B. Given an infinite sequence $\pi \in B^{\omega}$, we let $\operatorname{Inf} f_{\Gamma}(\pi)$ denote the set of colors that occur infinitely often in the sequence $\Gamma \circ \pi$.

A Muller condition is a collection $\mathcal{M} \subseteq \wp(C)$ of subsets of C. The corresponding winning condition is defined as the following map $W_{\mathcal{M}}: B^{\omega} \rightarrow\{0,1\}$:

$$
W_{\mathcal{M}}(\pi):= \begin{cases}0 & \text { if } \operatorname{Inf}_{\Gamma}(\pi) \in \mathcal{M} \\ 1 & \text { otherwise }\end{cases}
$$

A Muller game is a board game of which the winning conditions are specified by a Muller condition.

In words, player 0 wins an infinite match $\pi=p_{0} p_{1} \cdots$ if the set of colors one meets infinitely often on this path, belongs to the Muller collection \mathcal{M}.

- Examples to be supplied.

Muller games have two nice properties. First, they are determined. This follows from a well-known general game-theoretic result, but can also be proved directly. In addition, we may assume that the winning strategies of each player in a Muller game are finite-memory strategies. These results can in fact be generalised to arbitrary regular games, that is, board games where the winning condition is given as an ω-regular language over some colouring of the board. We refer to Exercise 5.2) for more details.

These results becomes even nicer if the Muller condition allows a formulation in terms of a priority map. In this case, as colors we take natural numbers. Note that by definition of a coloring, the range $\Omega[B]$ of the coloring function Ω is finite. This means that every subset of $\Omega[B]$ has a maximal element. Hence, every match determines a unique natural number, namely, the 'maximal color' that one meets infinitely often during the match. Now a parity winning condition states that the winner of an infinite match is 0 if this number is even, and 1 if it is odd. More succinctly, we formulate the following definition.

Definition 5.14 Let B be some set; a priority map on B is a coloring $\Omega: B \rightarrow \omega$, that is, a map of finite range. A parity game is a board game $\mathcal{G}=\left\langle B_{0}, B_{1}, E, W_{\Omega}\right\rangle$ in which the winning condition is given by

$$
W_{\Omega}(\pi):=\max \left(\operatorname{Inf}_{\Omega}(\pi)\right) \quad \bmod 2 .
$$

Such a parity game is usually denoted as $\mathcal{G}=\left\langle B_{0}, B_{1}, E, \Omega\right\rangle$.

The key property that makes parity games so interesting is that they enjoy positional determinacy. We will prove this in section 5.4. First we turn to a special case, viz., the reachability games.

5.3 Reachability Games

Reachability games are a special kind of board games. They are played on a board such as described in section 5.1, but now we also choose a subset $A \subseteq B$. The aim of the game is for the one player to move the pebble into A and for the other to avoid this to happen.

Definition 5.15 Fix a board \mathbb{B} and a subset $A \subseteq B$. The reachability game $\mathcal{R}_{\sigma}(\mathbb{B}, A)$ is then defined as the game over \mathbb{B} in which σ wins as soon as a position in A is reached or if $\bar{\sigma}$ gets stuck. On the other hand, $\bar{\sigma}$ wins if he can manage to keep the token outside of A infinitely long, or if σ gets stuck.

As an example, if $A=\varnothing$, in order to win the game $\mathcal{R}_{\sigma}(\mathbb{B}, A)$ for player $\bar{\sigma}$ it simply suffices to stay alive forever, while σ can only win by forcing $\bar{\sigma}$ to get stuck.

Remark 5.16 If we want reachability games to fit the format of a board game exactly, we have to modify the board, as follows. Given a reachability game $\mathcal{R}_{\sigma}(\mathbb{B}, A)$, define the board $\mathbb{B}^{\prime}:=\left\langle B_{0}^{\prime}, B_{1}^{\prime}, E^{\prime}\right\rangle$ by putting:

$$
\begin{aligned}
& B_{\sigma}^{\prime}:=B_{\sigma} \backslash A \\
& B_{\bar{\sigma}}^{\prime}:=B_{\bar{\sigma}} \cup A \\
& E^{\prime}:=\{(p, q) \in E \mid p \notin A\} .
\end{aligned}
$$

In other words, \mathbb{B}^{\prime} is like \mathbb{B} except that player $\bar{\sigma}$ gets stuck in a position belonging to A. Furthermore, the winning conditions of such a game are very simple: simply define W : $B^{\omega} \rightarrow\{0,1\}$ as the constant function mapping all infinite matches to $\bar{\sigma}$. This can easily be formulated as a parity condition.

Since reachability games can thus be formulated as very simple parity games, the following theorem, stating that reachability games enjoy positional determinacy, can be seen as a warming up exercise for the general case. We leave the proof of this result as an exercise for the reader.

Theorem 5.17 (Positional determinacy of reachability games) Let \mathcal{R} be a reachability game. Then there are positional strategies f_{0} and f_{1} for 0 and 1 , respectively, such that for every position q there is a player σ such that f_{σ} is a winning strategy for σ in $\mathcal{R} @ q$.

Definition 5.18 The winning region for σ in $\mathcal{R}_{\sigma}(\mathbb{B}, A)$ is called the attractor set of σ for A in \mathbb{B}, notation: $\operatorname{Attr}_{\sigma}^{\mathbb{B}}(A)$. In the sequel we will fix a positional winning strategy for σ in $\mathcal{R}_{\sigma}(\mathbb{B}, A)$ and denote it as $\operatorname{attr}_{\sigma}^{\mathbb{B}}(A)$.

Note that σ-attractor sets always contain all points from which σ can make sure that $\bar{\sigma}$ gets stuck. Furthermore, it is easy to see that in $\operatorname{attr}_{\sigma}(A)$-guided matches the pebble never leaves $\operatorname{Attr}_{\sigma}(A)$ (at least if the match starts inside $\operatorname{Attr}_{\sigma}(A)!$).

Proposition 5.19 Attr $_{\sigma}$ is a closure operation on $\mathcal{P}(B)$, i.e.

1. $A \subseteq A^{\prime}$ implies $\operatorname{Attr}_{\sigma}(A) \subseteq \operatorname{Attr}_{\sigma}\left(A^{\prime}\right)$,
2. $A \subseteq \operatorname{Attr}_{\sigma}(A)$,
3. $\operatorname{Attr}_{\sigma}\left(\operatorname{Attr}_{\sigma}(A)\right)=\operatorname{Attr}_{\sigma}(A)$.

A kind of counterpart to attractor sets are traps. In words, a set A is a σ-trap if σ can't get the pebble out of A, while her opponent has the power to keep it inside A.

Definition 5.20 Given a board \mathbb{B}, we call a subset $A \subseteq B$ a σ-trap if $E[b] \subseteq A$ for all $b \in A \cap B_{\sigma}$, while $E[b] \cap A \neq \varnothing$ for all $b \in A \cap B_{\bar{\sigma}}$.

Note that a σ-trap does not contain $\bar{\sigma}$-endpoints and that $\bar{\sigma}$ will therefore never get stuck in a σ-trap. We conclude this section with a useful proposition.

Proposition 5.21 Let \mathbb{B} be a board and $A \subseteq B$ an arbitrary subset of B. Then the following assertions hold.

1. If A is a σ-trap then A is a subboard of B.
2. The union $\bigcup\left\{A_{i} \mid i \in I\right\}$ of an arbitrary collection of σ-traps is again a σ-trap.
3. If A is a σ-trap then so is $\operatorname{Attr}_{\bar{\sigma}}(A)$.
4. The complement of $\operatorname{Attr}_{\sigma}(A)$ is a σ-trap.
5. If A is a σ-trap in \mathbb{B} then any $C \subseteq A$ is a σ-trap in \mathbb{B} iff C is a σ-trap in \mathbb{B}_{A}.

Proof. All statements are easily verified and thus the proof is left to the reader.
QED

5.4 Positional Determinacy of Parity Games

Theorem 5.22 (Positional Determinacy of Parity Games) For any parity game \mathcal{G} there are positional strategies f_{0} and f_{1} for 0 and 1 , respectively, such that for every position q there is a player σ such that f_{σ} is a winning strategy for σ in $\mathcal{G} @ q$.

5.4.1 The finite case

- Details to be supplied

5.4.2 The general case

To prove positional determinacy for arbitrary parity games, we start with the definition of players' paradises. In words, a subset $A \subseteq B$ is a σ-paradise if σ has a positional strategy f which guarantees her both that she wins the game, and that the token stays in A.

Definition 5.23 Given a parity game $\mathcal{G}(\mathbb{B}, \Omega)$, we call a $\bar{\sigma}$-trap A a σ-paradise if there exists a positional winning strategy $f: A \cap B_{\sigma} \rightarrow A$.

The following proposition establishes some basic facts about paradises.
Proposition 5.24 Let $\mathcal{G}(\mathbb{B}, \Omega)$ be a parity game. Then the following assertions hold:

1. The union $\bigcup\left\{P_{i} \mid i \in I\right\}$ of an arbitrary set of σ-paradises is again a σ-paradise.
2. There exists a largest σ-paradise.
3. If P is a σ-paradise then so is $\operatorname{Attr}_{\sigma}(P)$.

Proof. The main point of the proof of part (1) is that we somehow have to uniformly choose a strategy on the intersection of paradises, such that we will end up following the strategy of only one paradise. For this purpose, we assume that we have a well-ordering on the index set I (i.e., for the general case we assume the Axiom of Choice).

For the details, assume that $\left\{P_{i} \mid i \in I\right\}$ is a family of paradises, and let f_{i} be the positional winning strategy for P_{i}. Note that $P:=\bigcup\left\{P_{i} \mid i \in I\right\}$ is a trap for $\bar{\sigma}$ by Proposition 5.21. Assume that $<$ is a well-ordering of I, so that for each $q \in P$ there is a minimal index $\min (q)$ such that $q \in P_{\min (q)}$. Define a positional strategy on P by putting

$$
f(q):=f_{\min (q)}(q)
$$

This strategy ensures at all times that the pebble either stays in the current paradise, or else it moves to a paradise of lower index, and so, any match where σ plays according to f will proceed through a sequence of σ-paradises of decreasing index. Because of the well-ordering, this decreasing sequence of paradises cannot be strictly decreasing, and thus we know that after finitely many steps the pebble will remain in the paradise where it is, say, P_{j}. From that moment on, the match is continued as an f_{j}-guided match inside P_{j}, and since f_{j} is by assumption a winning strategy when played inside P_{j}, this match is won by σ.

Part (2) of the proposition should now be obvious: clearly the union of all σ-paradises is the greatest σ-paradise.

In order to prove part (3) we need to show that there exists a winning strategy for σ. The principal idea is to first move to P by $\operatorname{attr}_{\sigma}(P)$ and once there to follow the winning strategy in P. Let f^{\prime} be the winning strategy for P, we then define the following strategy f on $\operatorname{Attr}_{\sigma}(P)$ by

$$
f(p):= \begin{cases}f^{\prime}(p) & \text { if } p \in P \\ \operatorname{attr}_{\sigma}(P)(p) & \text { otherwise }\end{cases}
$$

A match consistent with this strategy will stay in $\operatorname{Attr}_{\sigma}(P)$ because it is a $\bar{\sigma}$-trap and $f(p) \in$ $\operatorname{Attr}_{\sigma}(P)$ for all $p \in \operatorname{Attr}_{\sigma}(P)$. It is winning because if ever the match arrives at a point
$p \in P$ then play continues as if the match were completely in P; and since f^{\prime} was supposed to be a winning strategy for σ this play is won by σ. However if we start outside P we will at first follow the strategy $\operatorname{attr}_{\sigma}(P)$ which will ensure that σ either wins or that the pebble ends up in P, in which case σ will also win.

QED
Now we are ready to prove the main assertion from which Theorem 5.22 immediately follows.

Proposition 5.25 The board of a parity game $\mathcal{G}(\mathbb{B}, \Omega)$ can be partitioned into a 0-paradise and a 1-paradise.

Proof. We will prove this proposition by induction on d, the maximal parity in the game (i.e. $n=\max (\Omega[B])$). If $d=0$ we are dealing with a reachability game (namely $\mathcal{R}_{1}(\mathbb{B}, \varnothing)$), and from the results in section 5.3 we may derive that $\operatorname{Attr}_{1}(\varnothing)$ is a 1-paradise and its complement is a 0 -paradise. So the proposition holds in case $d=0$.

Therefore in the remainder we can assume that $d \geq 1$. Let $\sigma:=d \bmod 2$, that is, σ wins an infinite play π if $\max (\operatorname{Inf}(\pi))=\max (\Omega[B])=d$. Let $P_{\bar{\sigma}}$ be the maximal $\bar{\sigma}$-paradise, with associated positional strategy f. It now suffices to show that $X:=B \backslash P_{\bar{\sigma}}$ is a σ-paradise.

First we shall show that X is a $\bar{\sigma}$-trap. By proposition 5.24(3) it follows that $\operatorname{Attr} \bar{\sigma}\left(P_{\bar{\sigma}}\right)$ is itself also a $\bar{\sigma}$-paradise. By maximality of $P_{\bar{\sigma}}$ and the fact that $\operatorname{Attr}_{\bar{\sigma}}$ is a closure operation, it follows that $P_{\bar{\sigma}}=\operatorname{Attr}_{\bar{\sigma}}\left(P_{\bar{\sigma}}\right)$. Thus by Proposition 5.21(4) we see that X, being the complement of a $\bar{\sigma}$-attractor set is a $\bar{\sigma}$-trap.

Consider \mathcal{G}_{X}, the subgame ${ }^{4}$ of \mathcal{G} restricted to X. Define $N:=\{b \in X \mid \Omega(b)=d\}$ to be the set of all points in X with priority d and let $Z:=X \backslash \operatorname{Attr}_{\sigma}^{\mathbb{B}_{X}}(N)$. Since Z is the complement of a σ-attractor set in \mathbb{B}_{X} it is a σ-trap in \mathbb{B}_{X} and hence a σ-trap of \mathbb{B}.

By the induction hypothesis we can split the subgame \mathcal{G}_{Z} into a 0 -paradise Z_{0} and a 1-paradise Z_{1}, see the picture. The winning strategies in these paradises we call f_{0} and f_{1} respectively. (All notions are with regard to the game \mathcal{G}_{Z}.) We want to show that $Z_{\bar{\sigma}}=\varnothing$, so that $Z=Z_{\sigma}$.

[^3]To this aim, we claim that $P_{\bar{\sigma}} \cup Z_{\bar{\sigma}}$ is a $\bar{\sigma}$-paradise in \mathcal{G}, and in order to prove this, we consider the following strategy g of $\bar{\sigma}$:

$$
g(b):= \begin{cases}f(b) & \text { if } b \in P_{\bar{\sigma}} \\ f_{\bar{\sigma}}(b) & \text { if } b \in Z_{\bar{\sigma}}\end{cases}
$$

It is left as an exercise for the reader to show that this is indeed a positional winning strategy for $\bar{\sigma}$ in \mathcal{G}, and in addition it keeps the pebble inside $P_{\bar{\sigma}} \cup Z_{\bar{\sigma}}$. By the definition of $P_{\bar{\sigma}}$ as the maximal $\bar{\sigma}$-paradise, we see that $P_{\bar{\sigma}}=P_{\bar{\sigma}} \cup Z_{\bar{\sigma}}$ and since $P_{\bar{\sigma}}$ and $Z_{\bar{\sigma}}$ are disjoint we conclude that $Z_{\bar{\sigma}}$ is empty indeed.

This means we can write

$$
X=Z_{\sigma} \cup \operatorname{Attr}_{\sigma}^{\mathbb{B} X}(N) .
$$

We are now almost ready to define the winning strategy for σ which keeps the token inside X. Recall that X is a $\bar{\sigma}$-trap, so that for each $b \in X \cap B_{\sigma}$, we may pick an arbitrary element $k(b) \in E[b] \cap X$. Now define the following strategy h in \mathcal{G} for σ on X.

$$
h(b):= \begin{cases}k(b) & \text { if } b \in N \\ \operatorname{attr}_{\sigma}(N)(b) & \text { if } b \in \operatorname{Attr}_{\sigma}^{\mathbb{B}} x(N) \backslash N \\ f_{\sigma}(b) & \text { if } b \in Z_{\sigma}=Z .\end{cases}
$$

It is left as an exercise for the reader to show that h is indeed a winning strategy for σ in \mathcal{G} and that it keeps the pebble in X.

QED

Finally, the assertion made in Theorem 5.22 follows directly from this proposition because by definition of paradises there now exists for every point $b \in B$ a positional winning strategy for the game $\mathcal{G}(\mathbb{B}, \Omega)$.

- strategies as 1-player games
- automatic moves
- shadow matches?

5.5 Size issues and algorithmic aspects

5.6 Game equivalences

Notes

The application of game-theoretic methods in the area of logic and automata theory goes back to work of Büchi. The positional determinacy of parity games was proved independently by Emerson \& Jutla [11] and by Mostowski in an unpublished technical report. Our proof of this result is based on Zielonka [29].

Exercises

Exercise 5.1 (positional determinacy of reachability games) Give a direct proof of the positional determinacy of reachability games, that is: prove Theorem 5.17.

Exercise 5.2 (regular games \& finite memory strategies) An infinite game $\mathcal{G}=\left\langle B_{0}, B_{1}, E, W\right\rangle$ is called regular if there exists an ω-regular language L over some finite alphabet C and a colouring $\Gamma: B \rightarrow C$, such that player 0 wins $\left(p_{i}\right)_{i<\omega} \in B^{\omega}$ precisely if the induced sequence $\left(\Gamma\left(p_{i}\right)\right)_{i<\omega} \in C^{\omega}$ belongs to L.

A strategy α for player σ in an infinite game $\mathcal{G}=\left\langle B_{0}, B_{1}, E, W\right\rangle$ is a finite memory strategy if there exists a finite set M, called the memory set, an element $m_{I} \in M$ and a map $\left(\alpha_{1}, \alpha_{2}\right): B \times M \rightarrow B \times M$ such that for all pairs of sequences $p_{0} \cdots p_{k} \in B^{*}$ and $m_{0} \cdots m_{k} \in M^{*}$: if $m_{0}=m_{I}, p_{0} \cdots p_{k} \in \mathrm{PM}_{\sigma}$ and $m_{i+1}=\alpha_{2}\left(p_{i}, m_{i}\right)$ (for all $i<k$), then $\alpha\left(p_{0} \cdots p_{k}\right)=\alpha_{1}\left(p_{k}, m_{k}\right)$.

Now let \mathcal{G} be a regular game.
(a)* Show that \mathcal{G} is determined, and that player 0 has a finite memory strategy which is winning for her in $\mathcal{G} @ p$ for every $p \in \mathrm{Win}_{0}$.
Hint: define an auxiliary game with positions $B \times M$, where M is the carrier of a deterministic parity automaton \mathbb{M} recognizing L.
(b) Does the same statement hold for player 1? That is, if $p \in \mathrm{Win}_{1}$, can you now conclude that player 1 has a winning finite memory strategy in $\mathcal{G} @ p$?

6 Parity formulas \& model checking

In this chapter we introduce parity formulas. In short, these are graph-based modal formulas with an added parity condition, that will allow us to view the evaluation games of μ-calculus formulas as instances of parity games. Providing a link between the world of μ-calculus formulas and that of parity games, they illuminate the complexity-theoretic analysis of the model checking problem of the modal μ-calculus. Parity formulas can also be studied in their own right, as an interesting generalisation of the regular (tree-based) μ-calculus formulas.

6.1 Parity formulas

We start with the basic definition of a parity formula. Recall that, given a set P of proposition letters, we define the sets Lit (P) and $\operatorname{At}(\mathrm{P})$ of literals and atomic formulas over P by setting $\operatorname{Lit}(\mathrm{P}):=\{p, \bar{p} \mid p \in \mathrm{P}\}$ and $\operatorname{At}(\mathrm{P}):=\operatorname{Lit}(\mathrm{P}) \cup\{\top, \perp\}$, respectively.

Definition 6.1 Let P be a finite set of proposition letters. A parity formula over P is a quintuple $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$, where
a) (V, E) is a finite, directed graph, with $|E[v]| \leq 2$ for every vertex $v ;{ }^{5}$
b) $L: V \rightarrow \operatorname{At}(\mathrm{P}) \cup\{\wedge, \vee, \diamond, \square, \varepsilon\}$ is a labelling function;
c) $\Omega: V \xrightarrow{\circ} \omega$ is a partial map, the priority map of \mathbb{G}; and
d) v_{I} is a vertex in V, referred to as the initial node of \mathbb{G}; such that

1) $|E[v]|=0$ if $L(v) \in \operatorname{At}(\mathrm{P})$, and $|E[v]|=1$ if $L(v) \in\{\diamond, \square\} \cup\{\varepsilon\}$;
2) every cycle of (V, E) contains at least one node in $\operatorname{Dom}(\Omega)$.

A node $v \in V$ is called silent if $L(v)=\varepsilon$, constant if $L(v) \in\{\top, \perp\}$, literal if $L(v) \in \operatorname{Lit}(\mathrm{P})$, atomic if it is either constant or literal, boolean if $L(v) \in\{\wedge, \vee\}$, and modal if $L(v) \in\{\diamond, \square\}$.

Elements of $\operatorname{Dom}(\Omega)$ will be called states, and we refer to (V, E) as the (underlying) graph of the parity formula. We say that a proposition letter q occurs in \mathbb{G} if $L(v) \in\{q, \bar{q}\}$ for some $v \in V$.

A parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ is balanced if $\operatorname{Dom}(\Omega)=\{v \in V \mid L(v)=\varepsilon\} . \quad \triangleleft$
Remark 6.2 Parity formulas share many characteristics of automata. Since we decided to use the term 'formulas' to describe them, it will be useful to have an adjective to describe 'normal' formulas, that is, the elements of the language of the modal μ-calculus. We will refer to these as 'regular' formulas.

Example 6.3 In Figure 3 we give two examples of parity formulas. The picture on the left displays a parity formula that is directly based on the μ-calculus formula $\xi=\mu x .(\bar{p} \vee \diamond x) \vee$ $\nu y .(q \wedge \square(x \vee y))$, by adding back edges to the subformula dag of ξ. The picture on the right displays a parity formula that corresponds to the formula ξ_{1} of Example 2.38. In both cases we display the label and (if defined) the priority of a node inside its representing circle. \triangleleft

[^4]

Figure 3: Two parity formulas

The definition of parity formulas needs little explanation. Condition 2) says that every cycle must pass through at least one state; this is needed to provide a winner for infinite matches of the evaluation games that we use to define the semantics of parity formulas. The rules (admissible moves) in this evaluation game are completely obvious.

Definition 6.4 Let $\mathbb{S}=(S, R, V)$ be a Kripke model for a set P of proposition letters, and let $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ be a parity P-formula. The evaluation game $\mathcal{E}(\mathbb{G}, \mathbb{S})$ is the parity game $\left(G, E^{\prime}, \Omega^{\prime}\right)$ of which the board consists of the set $V \times S$, the priority map $\Omega^{\prime}: V \times S \rightarrow \omega$ is given by

$$
\Omega^{\prime}(v, s):= \begin{cases}\Omega(v) & \text { if } v \in \operatorname{Dom}(\Omega) \\ 0 & \text { otherwise }\end{cases}
$$

and the game graph is given in Table 9. Note that we do not need to assign a player to positions that admit a single move only.

Definition 6.5 We say that a parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ holds at or is satisfied by a pointed Kripke model (\mathbb{S}, s), notation: $\mathbb{S}, s \Vdash \mathbb{G}$, if the pair $\left(v_{I}, s\right)$ is a winning position for \exists in $\mathcal{E}(\mathbb{G}, \mathbb{S})$. We let $\mathcal{Q}(\mathbb{G})$ denote the query of \mathbb{G}, that is, the class of pointed Kripke models where \mathbb{G} holds, and we call two parity formulas \mathbb{G} and \mathbb{G}^{\prime} equivalent if they determine the same query, notation: $\mathbb{G} \equiv \mathbb{G}^{\prime}$. We will use the same terminology and notation to compare parity formulas with standard formulas.

The two key complexity measures of a parity formula, viz., size and index, both have perspicuous definitions. We will introduce these measures here, together some other useful notions pertaining to parity formulas.

Position		Player	Admissible moves
$(v, s) \quad$ with $L(v)=p$ and $s \in V(p)$	\forall	\varnothing	
$(v, s) \quad$ with $L(v)=p$ and $s \notin V(p)$	\exists	\varnothing	
$(v, s) \quad$ with $L(v)=\bar{p}$ and $s \in V(p)$	\exists	\varnothing	
$(v, s) \quad$ with $L(v)=\bar{p}$ and $s \notin V(p)$	\forall	\varnothing	
$(v, s) \quad$ with $L(v)=\perp$	\exists	\varnothing	
$(v, s) \quad$ with $L(v)=\top$	\forall	\varnothing	
$(v, s) \quad$ with $L(v)=\varepsilon$	-	$E[v] \times\{s\}$	
$(v, s) \quad$ with $L(v)=\vee$	\exists	$E[v] \times\{s\}$	
$(v, s) \quad$ with $L(v)=\wedge$	\forall	$E[v] \times\{s\}$	
$(v, s) \quad$ with $L(v)=\diamond$	\exists	$E[v] \times R[s]$	
$(v, s) \quad$ with $L(v)=\square$	\forall	$E[v] \times R[s]$	

Table 9: The evaluation game $\mathcal{E}(\mathbb{G}, \mathbb{S})$

Definition 6.6 The size of a parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ is defined as its number of nodes: $|\mathbb{G}|:=|V|$.

Next to size, as the second fundamental complexity measure for a parity formula we need is its index, which corresponds to the alternation depth of regular formulas. It concerns the degree of alternation between odd and even positions in an infinite match of the evaluation game, and it is thus closely related to the range of the priority map of the formula. The most straightforward approach would be to define the index of a parity formula as the size of this range; a slightly more sophisticated approach is a clusterwise version of this.

Definition 6.7 Let $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ be a parity formula, and let u and v be vertices in V. We say that v is active in u if $E^{+} u v$, and we let $\bowtie_{E} \subseteq V \times V$ hold between u and v is u is active in v and vice versa, i.e., $\bowtie_{E}:=E^{+} \cap\left(E^{-1}\right)^{+}$. We let \equiv_{E} be the equivalence relation generated by \bowtie_{E}; the equivalence classes of \equiv_{E} will be called clusters. A cluster C is called degenerate if it is a singleton $\{v\}$ such that v is not active in itself, and nondegenerate otherwise.

The collection of clusters of a parity formula \mathbb{G} is denoted as $\operatorname{Clus}(\mathbb{G})$, and we say that a cluster C is higher than another cluster C^{\prime} if there are some $u \in C$ and $u \in C^{\prime}$ with $E^{+} u u^{\prime}$. \triangleleft

Note that in a nondegenerate cluster there is a nontrivial path between any pair of vertices. Intuitively, vertices belong to the same (nondegenerate) cluster if they can jointly occur infinitely often in some infinite match of some acceptance game for the formula. Furthermore, note that the notion of one cluster being higher than another could have been defined in many different (but equivalent) ways. For instance, C is higher than C^{\prime} iff for every $u \in C$ there is a $u^{\prime} \in C^{\prime}$ with $E^{+} u u^{\prime}$, iff $E^{+} u u^{\prime}$ holds for every $u \in C$ and $u^{\prime} \in C$, etc. Finally, observe that the 'higher than' relation between clusters is a partial order.

Proposition 6.8 Let $\tau=\left(t_{n}\right)_{n \in \omega}$ be an infinite path through the graph of a parity formula \mathbb{G}. Then \mathbb{G} has a unique cluster C such that, for some k, all t_{n} with $n>k$ belong to C. This cluster is nondegenerate.

As a corollary of this, the relative priorities of states only matter if we stay in the same cluster.

Definition 6.9 Let $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ be a parity formula. Given a cluster C of \mathbb{G}, we define its index as the number of priorities reached by states in C, that is, $\operatorname{ind}_{\mathbb{G}}(C)=$ $\left|\operatorname{Ran}\left(\Omega \upharpoonright_{C}\right)\right|$. The index of \mathbb{G} is given as the maximal index of its nondegenerate clusters, $\operatorname{ind}(\mathbb{G}):=\max \left\{\operatorname{ind}_{\mathbb{G}}(C) \mid C \in \operatorname{Clus}(\mathbb{G})\right.$ nondegenerate $\}$.

Note that a nondegenerate cluster must have at least one state. Consequently, a parity formula has a nonzero index iff it has nondegenerate clusters.

6.2 Basics

Model checking for parity formulas

Since the evaluation game for parity formulas is given as a parity game, we immediately get a quasi-polynomial upper bound on the time complexity of the model checking problem for parity formulas. Recall that the size of a (pointed) labelled transition system is simply defined as the number of points in the model.

Definition 6.10 The model checking problem for parity formulas is the problem to compute whether $\mathbb{S}, s \Vdash \mathbb{G}$, where \mathbb{S} is a (finite) labelled transition system, and \mathbb{G} is a parity formula. \triangleleft

Theorem 6.11 Assume that the problem of determining the winning regions of a parity game \mathbb{G} can be solved in time $f(n, d)$, where n and d are, respectively, the size and the index of \mathbb{G}. Then the model checking problem for parity formulas can be solved in time $f(m \cdot n, d+1)$, where m is the size of the labelled transition system, and n and d are the size and index of the parity formula, respectively.

Remark 6.12 In the above theorem we state the model checking problem as being solvable in time $f(m \cdot n, d+1)$, and not $f(m \cdot n, d)$. The reason for adding the ' +1 ' is a technicality: the index of a parity game is usually defined as the global range of the priority map, whereas for parity formulas it makes sense to define the index as the clusterwise size of the priority map. This makes a difference of 1 in the case of a parity formula of index d which has a cluster C with $\operatorname{Ran}\left(\Omega \upharpoonright_{C}\right)=\{0, \ldots, d-1\}$ and another cluster C^{\prime} with $\operatorname{Ran}\left(\Omega \upharpoonright_{C^{\prime}}\right)=\{1, \ldots, d\}$.

In the next section we will see how we can use this result to analyse the computational complexity of the model checking problem for regular formulas.

Basic observations on parity formulas

Our first basic observation concerns the balanced parity formulas.

Proposition 6.13 Let \mathbb{G} be a parity formula. Then there is an equivalent balanced parity formula \mathbb{G}^{\prime} of size $\left|\mathbb{G}^{\prime}\right| \leq 2 \cdot|\mathbb{G}|$.

- More basic observations to be added.

Operations on parity formulas

Parity formulas are interesting logical objects in their own right, and so one might want to develop their theory. To start with, it is fairly easy to define various operations on parity formulas, such as modal and boolean operations (including negation), least and fixpoint operations, and substitution.

- Examples to follow.

Morphisms and equivalence notions between parity formulas

Furthermore, it would be of interest to study various structural notions of equivalence between parity formulas. A simple but very useful concept is that of two parity formulas being parity variants.

Definition 6.14 A parity variant of a parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ is a parity formula $\mathbb{G}=\left(V, E, L, \Omega^{\prime}, v_{I}\right)$ such that (i) $\Omega(v) \equiv_{2} \Omega^{\prime}(v)$, for all v, and (ii) $\Omega(u)<\Omega(v)$ iff $\Omega^{\prime}(u)<$ $\Omega^{\prime}(v)$, for all u and v that belong to the same cluster but have different parity.

It is easy to see that parity variants are semantically equivalent, and have the same size (but not necessarily the same index). From this it follows that there are certain normal forms for parity formulas.

Definition 6.15 A parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ is called lean if Ω is injective, and tight if for any cluster C, the range of Ω on C is connected, that is, of the form $\operatorname{Ran}\left(\Omega \upharpoonright_{C}\right)=$ $[k, \ldots, n]$ for some natural numbers k, n with $k \leq n$. Here we define $[k, \ldots, n]:=\{i \in \omega \mid k \leq$ $i \leq n\}$.

It is not hard to see that every parity formula can be effectively transformed into either a lean or a tight parity variant.

- Other notions of equivalence to be discussed.

6.3 From regular formulas to parity formulas

In this section we will see how to represent a regular formula as an equivalent parity formula. In order to use the complexity result for the model checking problem for parity formulas to make similar observations on the model checking of regular formulas, we obviously want to minimimize the size and the index of the representation. It should come as no surprise that the index of this parity formula will somehow correspond to the alternation depth of the formula, while the size of the parity formula will clearly depend on the graph structure that we pick to represent the original formula.

Suppose that we are looking for a parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ representing the regular formula ξ. It seems that there are three natural candidates for the underlying graph (V, E) of \mathbb{G} : we could take the syntax tree of ξ, its subformula graph, or its closure graph. Note that each of these three structures induces a natural size measure of μ-calculus formulas, respectively length, subformula-size, and (closure-)size. The tree representation has the advantage of being immediately available for any $\xi \in \mu \mathrm{ML}$, whereas the subformula and closure graph are defined only for the clean and the tidy formulas, respectively. Because of the unwieldy size of syntax trees, however, we focus here on the other two kinds of representations.

Recall that the subformula dag of a clean formula ξ is the graph $\left(S f(\xi), \triangleright_{0}\right)$, where \triangleright_{0} is the converse of the direct subformula relation \triangleleft_{0}. We obtain the subformula graph $\left(S f(\xi), \triangleright_{0} \cup B\right)$ from this by adding the set $B:=\left\{\left(x, \delta_{x}\right) \mid x \in B V(\xi)\right\}$ of back edges to this dag. The closure graph of a tidy formula $\xi \in \mu \mathrm{ML}$ is the structure $\mathbb{C}_{\xi}=\left(C l(\xi), \rightarrow_{C}\right)$, where \rightarrow_{C} is the trace relation (restricted to the closure of ξ). In the remainder of this section we will see how to expand either of these two graphs into a full parity formula structure.

In both cases it is obvious how to define the labelling map L, and which vertex to take as the initial one. It is also more or less clear what the states should be, i.e., on which vertices the priority map Ω should be defined: In the case of the subformula graph of a clean formula ξ we will take the set $B V(\xi)$ of bound variables of ξ, while in the closure graph of a tidy formula ξ we will consider the set of all fixpoint formulas in the closure of ξ.

For the actual values of the priority map however, there is some choice. Observe, however, that in both versions of the evaluation game, the winning conditions are defined in terms of some priority order on the set of states, in combination with a fixed assignment of a parity/player to each state. For instance, in the case of the subformula game for a clean formula ξ, we use the subordination order $\preccurlyeq \xi$ on $B V(\xi)$, together with the partition of $B V(\xi)$ into μ - and ν-variables. To assign a winner to an infinite match π, we consider the $\preccurlyeq \xi^{-}$ maximal element of the set $U n f^{\infty}(\pi)$ (consisting of those bound variables that are unfolded infinitely often during π), and the winner of π is then determined by the nature of this variable. Similarly, in the case of the closure game for ξ, we can look at the fixpoint formulas that occur infinitely often in an infinite match of the game, and observe that this set has a smallest element with respect to the subformula ordering.

It therefore makes sense to discuss how to transform a priority order on the set of states into a suitable priority map, in some generality. As we will see, playing with the shape of the priority order may have an effect on the index of the associated priority map, and one priority order may yield a lower index than another.

6.3.1 From parity posets to priority maps

In this subsection we will see how to transform a priority order on some partitioned set of states, into a suitable priority map. We first develop some terminology. Throughout this subsection the reader should think of Z as the set of states in a parity formula that is either based on the subformula graph or on the closure graph of a formula ξ.

Definition 6.16 A parity poset is a structure $\mathbb{Z}=(Z, \preccurlyeq, p)$, where (Z, \preccurlyeq) is a finite poset and p is a parity map on P, that is, a map $p: Z \rightarrow\{0,1\}$. We write $z \prec z^{\prime}$ if $z \preccurlyeq z^{\prime}$ and $z \neq z^{\prime}$.

Example 6.17 Where ξ is a clean formula, take $Z:=B V(\xi)$, and let p be the function mapping μ-variables to 1 and ν-variables to 0 . The most obvious priority order on $B V(\xi)$ is the relation $\preccurlyeq_{\xi}^{\prime}$ given by

$$
x \preccurlyeq_{\xi}^{\prime} y \text { if } \delta_{x} \preccurlyeq \delta_{y} .
$$

For any tidy formula ξ, we may take Z to be the set of fixpoint formulas belonging to $C l(\xi)$, and let p be the function mapping μ-formulas to 1 and ν-formulas to 0 . The most obvious priority order on this set is the relation \triangleq, that is, the converse of the subformula relation.

To give a precise formulation of the required connection between parity posets and priority maps, we need the notion of an alternating chain in a parity poset, which is a good measure of its complexity.

Definition 6.18 Let $\mathbb{Z}=(Z, \preccurlyeq, p)$ be a parity poset. An alternating chain in \mathbb{Z} of length k in \mathbb{Z} is a finite sequence $z_{1} \cdots z_{k}$ of states such that, for all $i<k, z_{i} \prec z_{i+1}$ while z_{i} and z_{i+1} have different parity. The alternation depth $a d(\mathbb{Z})$ of Z is the maximal length of an alternating chain in \mathbb{Z}.

Since the parity map on a set of states is usually fixed, with a slight abuse of notation we will often write $a d(\preccurlyeq)$ rather than $a d(Z, \preccurlyeq, p)$; this notation is particularly useful if we compare distinct priority relations on a fixed set Z (with a fixed parity map p).

Interestingly, in both parity posets discussed in Example 6.17, the priority relation is in fact not optimal. That is, there are alternative relations that yield a lower alternation depth.

Example 6.19 Where ξ is a clean formula, an alternative order on $B V(\xi)$ is the relation $\preccurlyeq \xi$ we obtain by first defining

$$
x \preccurlyeq 0 y \text { if } y \preccurlyeq \delta_{x} \preccurlyeq \delta_{y},
$$

and then making \preccurlyeq the reflexive-transitive closure of $\preccurlyeq 0$:

$$
\preccurlyeq:=(\preccurlyeq 0)^{*} \text {. }
$$

That is: \preccurlyeq is the dependency order of Definition 2.20 . For an example where the two orders give a different alternation depth, we refer to the formula ξ_{3} in Example 2.57.

- alternative to \triangleq for tidy formulas: later/elsewhere

Definition 6.20 Let $\mathbb{Z}=(Z, \preccurlyeq, p)$ be a parity poset, and let $\Omega: Z \rightarrow \omega$ be some priority map. Then we say that Ω represents \mathbb{Z} if it satisfies the following conditions, for all $x, z \in Z$:

1) $p(z)=\Omega(z) \bmod 2$;
2) $x \preccurlyeq z$ implies $\Omega(x) \leq \Omega(z)$.

If in addition we have $a d(\mathbb{Z})=|\operatorname{Ran}(\Omega)|$, we say that Ω represents \mathbb{Z} tightly.
The role of the tightness condition in Definition 6.20 is to keep $\operatorname{Ran}(\Omega)$ small. The conditions 1 and 2 constitute some kind of soundness condition: if Ω represents \mathbb{Z}, then it yields the same winning conditions as \mathbb{Z}. This is the content of the next Proposition, the proof of which is trivial.

Proposition 6.21 Let $\mathbb{Z}=(Z, \preccurlyeq, p)$ and $\Omega: Z \rightarrow \omega$ be, respectively, a parity poset and a priority map representing it. Furthermore, let $\zeta=\left(z_{n}\right)_{n<\omega}$ be an infinite sequence of elements in Z, and assume that the set $\operatorname{Inf}(\zeta)$ has $a \preccurlyeq$-greatest element z. Then $p(z)=0$ iff $\max (\Omega[\operatorname{Inf}(\zeta)])$ is even.

Example 6.22 An example of a parity poset and two representative priority maps is given in Figure 4. The priority map in the middle is not tight, the one to the right is.

Figure 4: From a parity poset to a priority map

The key result here is that, under a mild condition that is met in the relevant cases, every parity poset is indeed tightly represented by some priority map.

Definition 6.23 Let $\mathbb{Z}=(Z, \preccurlyeq, p)$ be a parity poset. We say that \mathbb{Z} is weakly directed if Z admits a partition of directed subsets, no pair of which is connected via the relation \preccurlyeq. \triangleleft

It will be convenient for us to define a canonical priority map representing a given weakly directed parity poset $\mathbb{Z}=(Z, \preccurlyeq, p)$.

Definition 6.24 Let $\mathbb{Z}=(Z, \preccurlyeq, p)$ be a parity poset. Given a point $z \in Z$ we define $h^{\uparrow}(z)$ (respectively, $h^{\downarrow}(z)$) as the maximal length of an alternating chain starting at z (ending at z, respectively). We define the following map $\Omega_{\mathbb{Z}}: P \rightarrow \omega$:

$$
\Omega_{\mathbb{Z}}(z):= \begin{cases}a d(\mathbb{Z})-h^{\uparrow}(z) & \text { if } a d(\mathbb{Z})-h^{\uparrow}(z) \equiv_{2} p(z) \tag{46}\\ a d(\mathbb{Z})-h^{\uparrow}(v)+1 & \text { if } \operatorname{ad}(\mathbb{Z})-h^{\uparrow}(z) \not \equiv \equiv_{2} p(z),\end{cases}
$$

and we will call this map the priority map induced by \mathbb{Z}.
With a minor abuse of notation, we will often denote the priority map $\Omega_{\mathbb{Z}}$ as Ω_{\preccurlyeq}.
Theorem 6.25 Every weakly directed parity poset $\mathbb{Z}=(Z, \preccurlyeq, p)$ is tightly represented by its induced priority map $\Omega_{\mathbb{Z}}$.

- Proof to be supplied.

Example 6.26 The condition of weak directedness in Theorem 6.25 is needed. For a very simple example witnessing this, consider the parity poset below, which has alternation depth 2.

It is not hard to see that no priority map representing this parity poset can have a range of size 2.

6.3.2 Parity formulas on the subformula graph

The following theorem shows that for a clean formula, we can indeed obtain an equivalent parity formula which is based on its subformula graph, which we defined as the subformula dag, expanded with back edges.

Theorem 6.27 There is an algorithm that constructs, for a clean formula $\xi \in \mu \mathrm{ML}(\mathrm{P})$, an equivalent parity formula \mathbb{H}_{ξ} over P , such that $\left|\mathbb{H}_{\xi}\right|=|\xi|^{d}$ and $\operatorname{ind}\left(\mathbb{H}_{\xi}\right)=a d(\xi)$.

The basic idea underlying the proof of Theorem 6.27 is to view the evaluation games for clean formulas in $\mu \mathrm{ML}$ as instances of parity games. Given an arbitrary formula $\xi \in \mu \mathrm{ML}$, we then need to see which modifications are needed to turn the subformula $\operatorname{dag}\left(S f(\xi), \triangleright_{0}\right)$ into a parity formula \mathbb{H}_{ξ} such that, for any model \mathbb{S}, the evaluation games $\mathcal{E}(\xi, \mathbb{S})$ and $\mathcal{E}\left(\mathbb{H}_{\xi}, \mathbb{S}\right)$ are more or less identical. Clearly, the fact that the positions of the evaluation game $\mathcal{E}(\xi, \mathbb{S})$ are given as the pairs in the set $S f(\xi) \times S$, means that we can take the set

$$
V_{\xi}:=S f(\xi)
$$

as the carrier of \mathbb{H}_{ξ} indeed.

Looking at the admissible moves in the two games, it turns out that we cannot just take the converse direct subformula relation \triangleright_{0} as the edge relation of \mathbb{H}_{ξ} : we need to add all back edges from the set

$$
B_{\xi}:=\left\{\left(x, \delta_{x}\right) \mid x \in B V(\xi)\right\},
$$

where, as usual, we let δ_{x} denote the unique formula such that, for some $\eta \in\{\mu, \nu\}$ the formula $\eta x \cdot \delta_{x}$ is a subformula of ξ. In fact, if we write D_{ξ} for the relation \triangleright_{0}, restricted to $S f(\xi)$, then we can take

$$
E_{\xi}:=D_{\xi} \cup B_{\xi},
$$

as the edge relation of \mathbb{H}_{ξ}. Furthermore, the labelling map L_{ξ} is naturally defined via the following case distinction:

$$
L_{\xi}(\varphi):= \begin{cases}\varphi & \text { if } \varphi \in\{\top, \perp\} \cup\{p, \bar{p} \mid p \in F V(\xi)\} \\ \odot & \text { if } \varphi \text { is of the form } \varphi_{0} \odot \varphi_{1} \text { with } \odot \in\{\wedge, \vee\} \\ \varnothing & \text { if } \varphi \text { is of the form } \circlearrowleft \psi \text { with } \odot \in\{\diamond, \square\} \\ \varepsilon & \text { if } \varphi \text { is of the form } \eta_{x} x . \delta_{x} \text { with } \eta \in\{\mu, \nu\} \\ \varepsilon & \text { if } \varphi \in B V(\xi) .\end{cases}
$$

With this definition, it is easy to see that the boards of the two evaluation games $\mathcal{E}(\xi, \mathbb{S})$ and $\mathcal{E}\left(\mathbb{H}_{\xi}, \mathbb{S}\right)$ are isomorphic (in fact, identical), for any labeled transition system \mathbb{S}. As the initial node v_{ξ} of \mathbb{H}_{ξ} we simply take

$$
v_{\xi}:=\xi
$$

In order to finish the definition of the parity formula \mathbb{H}_{ξ} it is then left to come up with a suitable priority map Ω_{ξ} on V_{ξ}. For this we can simply base ourselves on the discussion in the previous subsection, taking

$$
\Omega_{\xi}:=\Omega_{\unlhd_{\xi}}
$$

where \preccurlyeq_{ξ} is the dependency order on the bound variables of ξ as introduced in Definition 2.20, cf. also Example 6.19. Note that Ω_{ξ} is a partial map, it is only defined for those subformulas of ξ that belong to its bound variables.

That is, we define

$$
\mathbb{H}_{\xi}:=\left(V_{\xi}, E_{\xi}, L_{\xi}, \Omega_{\xi}, \xi\right) .
$$

It then follows from Theorem 6.25 that the index of \mathbb{H}_{ξ} is given by the alternation depth of $\preccurlyeq \xi$. In order to get an exact match of the index of \mathbb{H}_{ξ} and the inductively defined alternation depth of ξ we need to work a bit harder, but in fact this work has been done already: Proposition 2.61 states that

$$
a d(\xi)=a d(\preccurlyeq \xi) .
$$

Proof of Theorem 6.27. In the light of the above discussion, the equivalence of ξ and \mathbb{H}_{ξ} follows from the easily verified fact that Ω_{ξ} satisfies the conditions 1 and 2 of Definition 6.20, see Proposition 6.21. It is immediate by the definitions that $\left|\mathbb{H}_{\xi}\right|=|S f(\xi)|=|\xi|^{d}$. Finally, we obtain $\operatorname{ind}\left(\mathbb{H}_{\xi}\right)=a d(\xi)$ as a consequence of Proposition 2.61 and Theorem 6.25. QED

6.3.3 Parity formulas on the closure graph

The next theorem states that for an arbitrary tidy formula, we can also find an equivalent parity formula that is based on the formula's closure graph, and has an index which is bounded by the alternation depth of the formula.

Theorem 6.28 There is a construction transforming an arbitrary tidy formula $\xi \in \mu \mathrm{ML}$ into an equivalent balanced parity formula \mathbb{G}_{ξ} which is based on the closure graph of ξ, so that $|\mathbb{G}|=|\xi|$; in addition we have ind $\left(\mathbb{G}_{\xi}\right) \leq$ ad (ξ).

When it comes to complexity issues, this is in fact the main result that bridges the gap between the world of formulas and that of automata and parity games. In particular, as an immediate corollary of Theorem 6.28 and the quasi-polynomial time complexity result on the model checking problem for parity formulas (Theorem 6.11), we find that model checking for μ-calculus formulas can be solved in quasi-polynomial time.

Theorem 6.29 Assume that the problem of determining the winning regions of a parity game \mathcal{G} can be solved in time $f(n, d)$, where n and d are, respectively, the size and the index of \mathcal{G}. Then the model checking problem for parity formulas can be solved in time $f(m \cdot n, d)$, where m is the size of the labelled transition system, and n and d are the size and alternation depth of the formula, respectively.

The priority map Ω_{g} that we will define on the closure graph of a tidy formula is in fact global in the sense that it can be defined uniformly for all (tidy) formulas, independently of any ambient formula. Furthermore, we will base this map on a partial order of fixpoint formulas, the closure priority relation \preccurlyeq_{C} that we will introduce now. Recall that \S_{f} denotes the free subformula relation introduced in Definition 2.49.

Definition 6.30 We let \equiv_{C} denote the equivalence relation generated by the relation \rightarrow_{C}, in the sense that: $\varphi \equiv_{C} \psi$ if $\varphi \rightarrow_{C} \psi$ and $\psi \rightarrow_{C} \varphi$. We will refer to the equivalence classes of \equiv_{C} as (closure) clusters, and denote the cluster of a formula φ as $C(\varphi)$.

We define the closure priority relation \preccurlyeq_{C} on fixpoint formulas by putting $\varphi \preccurlyeq_{C} \psi$ precisely if $\psi \rightarrow{ }_{C}^{\psi} \varphi$, where \rightarrow_{C}^{ψ} is the relation given by $\rho \rightarrow_{C}^{\psi} \sigma$ if there is a trace $\rho=\chi_{0} \rightarrow_{C}$ $\chi_{1} \rightarrow_{C} \cdots \rightarrow_{C} \chi_{n}=\sigma$ such that $\psi \Vdash_{f} \chi_{i}$, for every $i \in[0, \ldots, n]$. We write $\varphi \prec_{C} \psi$ if $\varphi \preccurlyeq_{C} \psi$ and $\psi \nVdash_{C} \varphi$.

The above definition of the closure priority relation is rather involved, but this seems to be unavoidable if we want to have an exact match of the index of \mathbb{G}_{ξ} to the alternation depth of ξ. A simpler alternative (which does not give such an exact match) is given in Remark 6.31 below.

Remark 6.31 The definition of the priority order \preccurlyeq_{C} may look overly complicated. In fact, simpler definitions would suffice if we are only after the equivalence of a tidy formula with an associated parity formula that is based on its closure graph, i.e., if we do not need an exact match of index and alternation depth.

In particular, we could have introduced an alternative priority order $\preccurlyeq_{C}^{\prime}$ by putting $\varphi \preccurlyeq_{C}^{\prime} \psi$ if $\varphi \equiv_{C} \psi$ and $\psi \Vdash_{f} \varphi$. If we would base a priority map Ω_{g}^{\prime} on this priority order instead of on \preccurlyeq_{C}, then we could prove the equivalence of any tidy formula ξ with the associated parity formula $\mathbb{G}_{\xi}^{\prime}:=\left(\mathbb{C}_{\xi}, \Omega_{g}^{\prime} \upharpoonright_{C l(\xi)}, \xi\right)$. However, we would not be able to prove that the index of $\mathbb{G}_{\xi}^{\prime}$ is bounded by the alternation depth of ξ.

To see this, consider the following formula:

$$
\alpha_{x}:=\nu x .((\mu y \cdot x \wedge y) \vee \nu z \cdot(z \wedge \mu y \cdot x \wedge y)) .
$$

We leave it for the reader to verify that this formula has alternation depth two, and that its closure graph looks as follows:

Let α_{y} and α_{z} be the other two fixpoint formulas in the cluster of α_{x}, that is, let $\alpha_{y}:=$ $\mu y . \alpha_{x} \wedge y$ and $\alpha_{z}:=\nu z . z \wedge \alpha_{y}$. These formulas correspond to the nodes in the graph that are labelled μy and νz, respectively. Now observe that we have $\alpha_{x} \triangleleft_{f} \alpha_{y} \triangleleft_{f} \alpha_{z}$, so that this cluster has an alternating $\preccurlyeq_{C}^{\prime}$-chain of length three: $\alpha_{z} \prec_{C}^{\prime} \alpha_{y} \prec_{C}^{\prime} \alpha_{x}$. Note however, that any trace from α_{y} to α_{z} must pass through α_{x}, the $\preccurlyeq C_{C}$-maximal element of the cluster. In particular, we do not have $\alpha_{z} \preccurlyeq C \alpha_{y}$, so that there is no \preccurlyeq_{C}-chain of length three in the cluster.

Here are some basic observations on the relation $\preccurlyeq C$ and its connection with the cluster equivalence relation \equiv_{C}.

Proposition 6.32 1) The relation \preccurlyeq_{C} is a partial order.

2) The relation \preccurlyeq_{C} is included in the closure equivalence relation: $\varphi \preccurlyeq_{C} \psi$ implies $\varphi \equiv_{C} \psi$.
3) The relation \preccurlyeq_{C} is included in the converse free subformula relation: $\varphi \preccurlyeq_{C} \psi$ implies $\psi \Vdash_{f} \varphi$.

Proof. For item 1) we need to show that \preccurlyeq_{C} is reflexive, transitive and antisymmetric. Reflexivity is obvious, and antisymmetry follows from 3). For transitivity assume that $\varphi \preccurlyeq_{C} \psi$ and $\psi \preccurlyeq \preccurlyeq_{C} \chi$ hold. By definition this means that $\psi \rightarrow_{C}^{\psi} \varphi$ and $\chi \rightarrow{ }_{C}^{\chi} \psi$. The latter entails that $\chi \Vdash_{f} \psi$ and the former means that there is some \rightarrow_{C}-trace from ψ to φ such that ψ is a free subformula of every formula along this trace. Because $\chi \Vdash_{f} \psi$ and \Vdash_{f} is transitive it then also holds that χ is a free subformula of every formula on the trace from ψ to φ. Composing this trace with the one from χ to ψ we obtain a trace from χ to φ such that χ is a free subformula of all formulas along this trace. Hence $\chi \rightarrow{ }_{C}^{\chi} \varphi$ and so $\varphi \preccurlyeq_{C} \chi$.

For item 2) we assume that $\varphi \preccurlyeq_{C} \psi$ and need to show that $\varphi \rightarrow_{C} \psi$ and $\psi \rightarrow_{C} \varphi$. The assumption $\varphi \preccurlyeq_{C} \psi$ means that $\psi \rightarrow_{C}^{\psi} \varphi$ which clearly entails $\psi \rightarrow_{C} \varphi$. But, as
already observed above, $\psi \rightarrow_{C}^{\psi} \varphi$ also entails that $\psi \Vdash_{f} \varphi$, from which $\varphi \rightarrow_{C} \psi$ follows by Proposition 2.50.

Item 3) is immediate by the definition of \preccurlyeq_{C}.
QED
Since \preccurlyeq_{C} is a partial order, we may use Definition 6.20 to base a priority map on it. We are now ready for the definition of the parity formula \mathbb{G}_{ξ} corresponding to a tidy formula ξ.

Definition 6.33 Fix some tidy formula ξ. We define \mathbb{C}_{ξ} be the closure graph $\left(C l(\xi), \rightarrow_{C}\right)$ of ξ, expanded with the natural labelling L_{C} given by

$$
L_{C}(\varphi)= \begin{cases}\varphi & \text { if } \varphi \in \operatorname{At}(\mathrm{P}) \\ \bigcirc & \text { if } \varphi=\circlearrowleft \psi \\ \odot & \text { if } \varphi=\psi_{0} \odot \psi_{1} \\ \varepsilon & \text { if } \varphi=\eta x . \psi\end{cases}
$$

Furthermore, we define Ω_{g} as the priority map that is induced by the partial order \preccurlyeq_{C}; in particular, Ω_{g} is a partial map on tidy formulas that is only defined for fixpoint formulas. Finally, we let \mathbb{G}_{ξ} be the parity formula $\mathbb{G}_{\xi}:=\left(\mathbb{C}_{\xi}, \Omega_{g} \upharpoonright_{l l(\xi)}, \xi\right)$.

- Proof of Theorem 6.28 to be supplied.

Note that this proof needs the observation that the alternation depth of a tidy formula ξ coincides with its alternation depth in terms of the relation \preccurlyeq_{C} (restricted to ξ).

6.4 From parity formulas to regular formulas

In section 6.3 we saw constructions that, for a given regular formula, produce equivalent parity formulas based on, respectively, the subformula graph and the closure graph of the original formula. We will now move in the opposite direction: we will give a construction that turns an arbitrary parity formula \mathbb{G} into an equivalent regular formula $\xi_{\mathbb{G}} \in \mu \mathrm{ML}$. Basically this construction takes a parity formulas as a system of equations, and it solves these equations by a Gaussian elimination of variables. As a result, the transformation from parity formulas to regular formulas can be seen as some sort of unravelling construction.

Interestingly, we encounter a significant difference between the two size measures introduced in Definition 2.47: whereas the closure-size of the resulting formula $\xi_{\mathbb{G}}$ is linear in the size of \mathbb{G}, its number of subformulas is only guaranteed to be exponential. And in fact, Proposition 6.41 shows that there is a family of parity formulas for which the translation actually reaches this exponential subformula-size.

The key proposition of this section is formulated in terms of balanced formulas.
Proposition 6.34 There is an effective procedure providing for any balanced parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ over some set P of proposition letters, a map $\operatorname{tr}_{\mathbb{G}}: V \rightarrow \mu \mathrm{ML}(\mathrm{P})$ such that

1) $\mathbb{G}\langle v\rangle \equiv \operatorname{tr}_{\mathbb{G}}(v)$, for every $v \in V$;
2) $\left|\operatorname{tr}_{\mathbb{G}}(v)\right| \leq|\mathbb{G}|$;
3) $\left|S f\left(\operatorname{tr}_{\mathbb{G}}(v)\right)\right|$ is at most exponential in $|\mathbb{G}|$;
4) $a d\left(\operatorname{tr}_{\mathbb{G}}\left(v_{I}\right)\right) \leq \operatorname{ind}(\mathbb{G})$.

Clearly, the algorithm mentioned in the Proposition will produce, given a balanced parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$, an equivalent μ-calculus formula.

Definition 6.35 Let $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ be a parity formula over some set P of proposition letters. We define

$$
\xi_{\mathbb{G}}:=\operatorname{tr}_{\mathbb{G}}\left(v_{I}\right)
$$

and call $\xi_{\mathbb{G}}$ the μ-calculus formula associated with \mathbb{G}.

As an immediate corollary of the Propositions 6.13 and 6.34 we obtain the following result for arbitrary parity formulas.

Theorem 6.36 Let \mathbb{G} be a parity formula. Then we find $\xi_{\mathbb{G}} \equiv \mathbb{G},\left|\xi_{\mathbb{G}}\right| \leq 2 \cdot|\mathbb{G}|$ and ad $\left(\xi_{\mathbb{G}}\right) \leq$ $\operatorname{ind}(\mathbb{G})$.

In the remainder of the section we focus on the proof of Proposition 6.34. Both the definition of the collection of translation maps $\operatorname{tr}_{\mathbb{G}}$ and the proofs of their most important properties will proceed by an induction on a certain complexity measure of parity formulas that we shall call its weight.

Definition 6.37 We define the weight of a parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ as the pair $(|\operatorname{Dom}(\Omega)|,|\mathbb{G}|)$ consisting of, respectively, the number of states and the size of \mathbb{G}. Pairs of this form will be ordered lexicographically.

Definition 6.38 The goal of this definition is to supply, by induction on the weight of parity formulas, a map

$$
\operatorname{tr}_{\mathbb{G}}: V \rightarrow \mu \mathrm{ML}(\mathrm{P})
$$

for every balanced parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ over some set P of proposition letters.
Consider a parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$, and let T be the top cluster of \mathbb{G}, that is, the cluster of the initial state v_{I}. We make the following case distinction.

Case 1: T is degenerate. In this case we must have $T=\left\{v_{I}\right\}$, with $v_{I} \notin \operatorname{Ran}(E)$, and for every $u \neq v_{I}$ we may consider the parity formula $G^{-}\langle u\rangle$ obtained by removing v_{I} from \mathbb{G} and making u the initial node. Each parity formula $\mathbb{G}^{-}\langle u\rangle$ has the same number of states as \mathbb{G}, but less vertices, so that inductively we may assume that we have defined some formula $\operatorname{tr}_{\mathbb{G}^{-}}(u)$ for each $u \neq v_{I}$. (Here we write $\operatorname{tr}_{\mathbb{G}^{-}}$instead of $\operatorname{tr}_{\mathbb{G}^{-}\langle u\rangle}$; this is justified since the translation we define does not depend on the initial node.)

We define

$$
\operatorname{tr}_{\mathbb{G}}(u):=\operatorname{tr}_{\mathbb{G}^{-}}(u)
$$

for $u \neq v_{I}$, while for v_{I} we set ${ }^{6}$

$$
\operatorname{tr}_{\mathbb{G}}\left(v_{I}\right):= \begin{cases}L\left(v_{I}\right) & \text { if } L\left(v_{I}\right) \in \operatorname{At}(\mathrm{P}) \\ \operatorname{tr}_{\mathbb{G}^{-}}(u) & \text { if } L(v)=\varnothing \in\{\diamond, \square\} \text { and } E(v)=\{u\} \\ \bigodot\left\{\operatorname{tr}_{\mathbb{G}^{-}}(u) \mid u \in E(v)\right\} & \text { if } L(v)=\odot \in\{\wedge, \vee\}\end{cases}
$$

Case 2: T is nondegenerate. In this case we have $T \cap \operatorname{Dom}(\Omega) \neq \varnothing$. Take an arbitrary state $z \in T$ such that $\Omega(z)$ equals the maximal priority reached on T. Since \mathbb{G} is balanced, z is silent (that is, $L(z)=\varepsilon$); let z^{\prime} be its unique successor.

Consider the parity formula $\mathbb{G}^{-}=\left(V, E^{-}, L^{-}, \Omega^{-}, v_{I}\right)$, which is characterised by the definition of E^{-}:

$$
E^{-}:=E \backslash\left\{\left(z, z^{\prime}\right)\right\},
$$

that is, we obtain E^{-}from E by cutting the edge from z to z^{\prime}. Furthermore, we define

$$
L^{-}(v):= \begin{cases}L(v) & \text { if } v \neq z \\ z & \text { if } v=z\end{cases}
$$

that is, \mathbb{G}^{-}sees z is a proposition letter. Finally, we set $\Omega^{-}:=\Omega \upharpoonright_{V \backslash\{z\}}$, so that \mathbb{G}^{-}has one state less than \mathbb{G}.

Inductively, then, we may assume that for all $v \in V$, some formula $\operatorname{tr}_{\mathbb{G}^{-}}(v)$ has been defined. We now define

$$
\begin{aligned}
& \operatorname{tr}_{\mathbb{G}}(z):=\eta_{z} z \cdot \operatorname{tr}_{\mathbb{G}^{-}}\left(z^{\prime}\right) \\
& \operatorname{tr}_{\mathbb{G}}(v):=\operatorname{tr}_{\mathbb{G}^{-}}(v)\left[\operatorname{tr}_{\mathbb{G}}(z) / z\right] \quad \text { if } v \neq z .
\end{aligned}
$$

where $\eta_{z}:=\mu$ if $\Omega(z)$ is odd, and $\eta_{z}:=\nu$ if $\Omega(z)$ is even.

- Example to be supplied!

Remark 6.39 Before we turn to the proof of Proposition 6.34 we note that the translation $\operatorname{tr}_{\mathbb{G}}$ is well-defined.

- some detail to be supplied

Note in particular that, although the definition of the translation map $\operatorname{tr}_{\mathbb{G}}$ involves many substitution operations, it does not involve any renaming of variables.

Proof of Proposition 6.34. \quad equivalence $\mathbb{G}\langle v\rangle \equiv \operatorname{tr}_{\mathbb{G}}(v)$ to be proved.
Claim $1\left|\operatorname{tr}_{\mathbb{G}}(v)\right| \leq|\mathbb{G}|$.

[^5]Proof of Claim For the proof of this claim we define, for an arbitrary parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$, the closure of \mathbb{G} as follows:

$$
C l(\mathbb{G}):=\bigcup\left\{C l\left(\operatorname{tr}_{\mathbb{G}}(v)\right) \mid v \in V\right\},
$$

and our proof will consist of showing that

$$
\begin{equation*}
|C l(\mathbb{G})| \leq|\mathbb{G}| . \tag{47}
\end{equation*}
$$

Clearly this suffices to prove the claim.
We will prove (47) by induction on the weight of \mathbb{G}. As in Definition 6.38 , we let T be the top cluster of \mathbb{G}, and make a case distinction. Leaving the case where T is degenerate as an exercise, we focus on the case where T is nondegenerate.

We let z and \mathbb{G}^{-}be as in Definition 6.38. Our key observation is that

$$
\begin{equation*}
C l(\mathbb{G}) \subseteq\left\{\varphi[\tau] \mid \varphi \in C l\left(\mathbb{G}^{-}\right)\right\}, \tag{48}
\end{equation*}
$$

where τ is the substitution $\tau=\left[\operatorname{tr}_{\mathbb{G}}(z) / z\right]$. For a proof of (48), we have to show that

$$
C l\left(\operatorname{tr}_{\mathbb{G}}(v)\right) \subseteq\left\{\varphi[\tau] \mid \varphi \in C l\left(\mathbb{G}^{-}\right)\right\},
$$

for every vertex v in V. To show this we make a case distinction. In case $v=z$, we have $\operatorname{tr}_{\mathbb{G}}(z)=\eta_{z} z \cdot \operatorname{tr}_{\mathbb{G}^{-}}\left(z^{\prime}\right)$, and so we find

$$
\begin{array}{rlr}
C l\left(\operatorname{tr}_{\mathbb{G}}(z)\right) & =\left\{\operatorname{tr}_{\mathbb{G}}(z)\right\} \cup\left\{\varphi[\tau] \mid \varphi \in C l\left(\operatorname{tr}_{\mathbb{G}^{-}}\left(z^{\prime}\right)\right)\right\} & \text { (Proposition 2.44) } \\
& \subseteq\{z[\tau]\} \cup\left\{\varphi[\tau] \mid \varphi \in C l\left(\operatorname{tr}_{\mathbb{G}^{-}}\left(z^{\prime}\right)\right)\right\} & \text { (obvious) } \\
& \subseteq\{z[\tau]\} \cup\left\{\varphi[\tau] \mid \varphi \in C l\left(\mathbb{G}^{-}\right)\right\} & \text {(definition } \left.C l\left(\mathbb{G}^{-}\right)\right) \\
& \subseteq\left\{\varphi[\tau] \mid \varphi \in C l\left(\mathbb{G}^{-}\right)\right\} & \left(z \in C l\left(\mathbb{G}^{-}\right)\right)
\end{array}
$$

On the other hand, if $v \neq z$, we have $\operatorname{tr}_{\mathbb{G}}(v)=\operatorname{tr}_{\mathbb{G}^{-}}(v)\left[\operatorname{tr}_{\mathbb{G}}(z) / z\right]$, and so here we obtain

$$
\begin{array}{rlr}
C l\left(\operatorname{tr}_{\mathbb{G}}(v)\right) & =\left\{\varphi[\tau] \mid \varphi \in C l\left(\operatorname{tr}_{\mathbb{G}^{-}}(v)\right)\right\} \cup C l\left(\operatorname{tr}_{\mathbb{G}}(z)\right) & \text { (Proposition 2.44) } \\
& \left.=\left\{\varphi[\tau] \mid \varphi \in C l\left(\mathbb{G}^{-}\right)(v)\right)\right\} \cup C l\left(\operatorname{tr}_{\mathbb{G}}(z)\right) & \text { (definition } \left.C l\left(\mathbb{G}^{-}\right)\right) \\
& \subseteq\left\{\varphi[\tau] \mid \varphi \in C l\left(\mathbb{G}^{-}\right)\right\} & \text {(just proved) }
\end{array}
$$

Now that we have established (48), the remainder of the proof is straightforward:

$$
|C l(\mathbb{G})| \leq\left|C l\left(\mathbb{G}^{-}\right)\right| \leq\left|\mathbb{G}^{-}\right| \leq|\mathbb{G}| .
$$

Here the first inequality is an immediate consequence of (48), the second inequality is the induction hypothesis on \mathbb{G}^{-}, and the third inequality follows from the observation that \mathbb{G}^{-} has the same set of states as \mathbb{G}. This proves (47), which, as we already saw, suffices to prove the Claim.

- to be supplied: proofs of Proposition items 3) and 4)

Remark 6.40 Note that in item 3) of Proposition 6.34 we cannot state that the subformulasize of $\operatorname{tr}_{\mathbb{G}}$ is at most exponential in the size of \mathbb{G} since the formula $\operatorname{tr}_{\mathbb{G}}$ will generally not be clean, and so its subformula-size may not be defined. For this reason we compare the number of subformulas of $\operatorname{tr}_{\mathbb{G}}$ to the size of \mathbb{G}.

- Closure can be exponentially smaller than number of subformulas

Proposition 6.41 There is a family $\left(\mathbb{F}_{n}\right)_{n \in \omega}$ such that for every n it holds that $\left|\mathbb{F}_{n}\right| \leq 2 n+2$, which implies that $\left|\xi_{\mathbb{F}_{n}}\right|$ is linear in n, while $\mid S f\left(\xi_{n} \mid \geq 2^{n}\right.$.

Proof. For the time being, we refer to Example 7.10 in C. Kupke, J. Marti \& Y. Venema, Size matters in the modal μ-calculus, arXiv:2010.14430v1.

QED

6.5 Guarded transformation

As an example of an important construction on parity formulas, we consider the operation of guarded transformation. Recall from Definition 2.48 that a μ-calculus formula is guarded if every occurrence of a bound variable is in the scope of a modal operator which resides inside the variable's defining fixpoint formula. Intuitively, the effect of this condition is that, when evaluating a guarded formula in some model, between any two iterations of the same fixpoint variable, one has make a transition in the model. Many constructions and algorithms operating on μ-calculus formulas presuppose that the input formula is in guarded form, which explains the need for low-cost guarded transformations, that is, efficient procedures for bringing a μ-calculus formula into an equivalent guarded form.

It is easy to translate the notion of guardedness to parity formulas, but in fact we will need something stronger in the next chapter, when we present the automata-theoretic perspective on the modal μ-calculus.

Definition 6.42 A path $\pi=v_{0} v_{1} \cdots v_{n}$ through a parity formula is unguarded if $n \geq 1$, $v_{0}, v_{n} \in \operatorname{Dom}(\Omega)$ while there is no i, with $0<i \leq n$, such that v_{i} is a modal node. A parity formula is guarded if it has no unguarded cycles, and strongly guarded if it has no unguarded paths.

In words, a parity formula is strongly guarded if every path, leading from one state (node in $\operatorname{Dom}(\Omega)$) to another contains at least one modal node (occurring after the path's starting state). The following theorem states that on arbitrary parity formulas, we can give an exponential-size guarded transformation; note that the index of the formula does not change. At the time of writing it is not known whether every parity formula can be transformed into a guarded equivalent of subexponential size.

Theorem 6.43 There is an algorithm that transforms a parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ into a strongly guarded parity formula \mathbb{G}^{g} such that

1) $\mathbb{G}^{g} \equiv \mathbb{G}$;
2) $\left|\mathbb{G}^{g}\right| \leq 2^{1+|\operatorname{Dom}(\Omega)|} \cdot|\mathbb{G}|$;
3) $\operatorname{ind}\left(\mathbb{G}^{g}\right) \leq \operatorname{ind}(\mathbb{G})$;

We will prove Theorem 6.43 via a construction that step by step improves the 'degree of guardedness' of the parity formula. In the intermediate steps we will be dealing with a modified notion of guardedness.

Definition 6.44 A parity formula $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ is strongly k-guarded if it every unguarded path $\pi=v_{0} v_{1} \cdots v_{n}$ satisfies $\Omega\left(v_{n}\right)>k$.

Clearly, a parity formula is (strongly) guarded iff it is (strongly) m-guarded, where m is the maximum priority value of the formula. Hence, we may prove Theorem 6.43 by successively applying the following proposition. Recall that a parity formula is called lean if its priority map is injective. We say that a parity formula has silent states only if each of its states is labelled ε.

Proposition 6.45 Let \mathbb{G} be a lean, strongly k-guarded parity formula with silent states only. Then we can effectively obtain a lean, $k+1$-guarded parity formula \mathbb{G}^{\prime}, with silent states only, and such that $\mathbb{G}^{\prime} \equiv \mathbb{G},\left|\mathbb{G}^{\prime}\right| \leq 2 \cdot|\mathbb{G}|$ and $\operatorname{ind}\left(\mathbb{G}^{\prime}\right) \leq \operatorname{ind}(\mathbb{G})$.

Proof. Let $\mathbb{G}=\left(V, E, L, \Omega, v_{I}\right)$ be an arbitrary lean, strongly k-guarded parity formula with silent states, that is, $\operatorname{Dom}(\Omega) \subseteq L^{-1}(\varepsilon)$. Without loss of generality we may assume that in fact $\operatorname{Dom}(\Omega)=L^{-1}(\varepsilon)$. If \mathbb{G} happens to be already $k+1$-guarded, then there is nothing to do: we may simply define $\mathbb{G}^{\prime}:=\mathbb{G}$.

On the other hand, if \mathbb{G} is $k+1$-unguarded, then in particular there must be a state $z \in V$ such that $\Omega(z)=k+1$. By injectivity of Ω, z is unique with this property. In this case we will build the parity formula \mathbb{G}^{\prime}, roughly, on the disjoint union of \mathbb{G}, a copy of a part of \mathbb{G} that is in some sense generated from z, and an additional copy of z itself.

For the definition of \mathbb{G}^{\prime}, let W^{z} be the smallest set $W \subseteq V$ containing z, which is such that $E[w] \subseteq W$ whenever $w \in W$ is boolean. Now define

$$
V^{\prime}:=(V \times\{0\}) \cup\left(W^{z} \times\{1\}\right) \cup(\{z\} \times\{2\}) .
$$

In the sequel we may write u_{0} instead of $(u, 0)$, for brevity. Furthermore, recall that we use V_{m} to denote the set of modal vertices of \mathbb{G}. The edge relation E^{\prime} is now given as follows:

$$
\begin{aligned}
E^{\prime}:= & \left\{\left(u_{0}, v_{0}\right) \mid(u, v) \in E \text { and } v \neq z\right\} \quad \cup\left\{\left(u_{1}, v_{1}\right) \mid(u, v) \in E \text { and } v \neq z\right\} \\
& \cup\left\{\left(u_{0}, z_{1}\right) \mid(u, z) \in E\right\} \\
& \cup\left\{\left(u_{1}, v_{0}\right) \mid(u, v) \in E \text { and } u \in V_{m}\right\} \quad \cup\left\{\left(u_{1}, u_{0}\right) \mid u \in \operatorname{Dom}(\Omega) \text { and } \Omega(u)>k+1\right\} \\
& \cup\left\{\left(u_{1}, z_{2}\right) \mid(u, z) \in E \text { and } u \notin V_{m}\right\}
\end{aligned}
$$

To understand the graph $\left(V^{\prime}, E^{\prime}\right)$, it helps, first of all, to realise that the set W^{z} provides a subgraph of (V, E), which forms a dag with root z and such that every 'leaf' is either a modal or propositional node, or else a state $v \in \operatorname{Dom}(\Omega)$ with $\Omega(v)>k$. (It cannot be the case that $\Omega(v) \leq k$ due to the assumed k-guardedness of \mathbb{G}.) Second, it is important to realise that the only way to move from the V-part of V^{\prime} to the W^{z}-part is via the root z_{1} of the W^{z}-part, while the only way to move in the converse direction is either directly following a
modal node, or else by making a dummy transition from some vertex u_{1} to its counterpart u_{0} for any $u \in W^{z}$ with $\Omega(u)>k$. Finally, we add a single vertex z_{2} to V^{\prime}.

Furthermore, we define the labelling L^{\prime} and the priority map Ω^{\prime} of \mathbb{G}^{\prime} by putting

$$
L^{\prime}\left(u_{i}\right):= \begin{cases}L(u) & \text { if } i=0,1 \\ \widehat{z} & \text { if } u_{i}=z_{2}\end{cases}
$$

where we recall that $\widehat{z}=\perp$ if $\Omega(z)$ is odd and $\widehat{z}=\top$ if $\Omega(z)$ is even, and

$$
\Omega^{\prime}\left(u_{i}\right):= \begin{cases}\Omega(u) & \text { if } i=0 \text { and } u \in \operatorname{Dom}(\Omega) \\ \uparrow & \text { otherwise } .\end{cases}
$$

In words, the label of a node (v, i) in \mathbb{G}^{\prime} is identical to the one of v in \mathbb{G}, with the sole exception of the vertex $(z, 2)$. To explain the label of the latter node, note that by construction, any unguarded E^{\prime}-path from z_{1} to z_{2} projects to an unguarded $k+1$-cycle from z to z in \mathbb{G}. If $\Omega(z)=k+1$ is odd, any such cycle represents (tails of) infinite matches that are lost by \exists; for this reason we may label the 'second' appearance of z in the E^{\prime}-path, i.e., as the node z_{2}, with \perp.

We now turn to the proof of the proposition. It is not hard to show that \mathbb{G}^{\prime} is lean and that $\left|\mathbb{G}^{\prime}\right| \leq 2 \cdot|\mathbb{G}|$.

To show that $\operatorname{ind}\left(\mathbb{G}^{\prime}\right) \leq \operatorname{ind}(\mathbb{G})$, note that obviously, the projection map $u_{i} \mapsto u$ preserves the cluster equivalence relation, i.e., $u_{i} \equiv_{E^{\prime}} v_{j}$ implies $u \equiv_{E} v$. Hence, the image of any cluster C^{\prime} of \mathbb{G}^{\prime} under this projection is part of some cluster C of \mathbb{G}. But then by definition of Ω^{\prime} it is easy to see that $\operatorname{ind}\left(C^{\prime}\right) \leq \operatorname{ind}(C)$. From this it is immediate that $\operatorname{ind}\left(\mathbb{G}^{\prime}\right) \leq \operatorname{ind}(\mathbb{G})$.

To see why \mathbb{G}^{\prime} is $k+1$-guarded, suppose for contradiction that it has a $k+1$-unguarded path $\pi=\left(v_{0}, i_{0}\right)\left(v_{1}, i_{1}\right) \cdots\left(v_{n}, i_{n}\right)$. It is easy to see that this implies that the projection $v_{0} v_{1} \cdots v_{n}$ of π is an unguarded path in \mathbb{G} (here we ignore possible dummy transitions of the form $\left.\left(u_{1}, u_{0}\right)\right)$, and so by assumption on \mathbb{G} it must be the case that $\Omega^{\prime}\left(v_{n}, i_{n}\right)=\Omega\left(v_{n}\right)=k+1$. This means that $\left(v_{n}, i_{n}\right)=(z, 0)$; but the only way to arrive at the node $(z, 0)$ in $\left(V^{\prime}, E^{\prime}\right)$ is directly following a modal node (in $W^{z} \times\{1\}$), which contradicts the unguardedness of the path π.

In order to finish the proof of the Proposition, we need to prove the equivalence of \mathbb{G}^{\prime} and \mathbb{G}; but this can be established by a relatively routine argument of which we skip the details. QED

Proof of Theorem 6.43. Let \mathbb{G} be an arbitrary parity formula; without loss of generality we may assume that \mathbb{G} is lean, i.e., Ω is injective. Let $\operatorname{Ran}(\Omega)=\left\{k_{1}, \ldots, k_{n}\right\}$; then $|\operatorname{Dom}(\Omega)|=$ n. To ensure that all states are silent, we may have to duplicate some vertices; that is, we continue with a version \mathbb{H} of \mathbb{G} that has at most twice as many vertices, but the same index, the same number of states, and silent state only.

By a straightforward induction we apply Proposition 6.45 to construct, for every $i \in$ $[1, \ldots, n]$, a k_{i}-guarded parity automaton \mathbb{H}^{i} with silent states only, and such that $\mathbb{H}^{i} \equiv \mathbb{G}$, $\left|\mathbb{H}^{i}\right| \leq 2^{i+1} \cdot|\mathbb{G}|$, and $\operatorname{ind}\left(\mathbb{H}^{i}\right)=\operatorname{ind}(\mathbb{G})$. Clearly then we find that \mathbb{H}^{n} is the desired strongly guarded equivalent of \mathbb{G}; and since $n=|\operatorname{Dom}(\Omega)|$ we find that $\left|\mathbb{H}^{n}\right| \leq 2^{1+n} \cdot|\mathbb{G}|$ as required.

Remark 6.46 On a closer inspection of the construction in the proof of Proposition 6.45, the reader may observe that inductively, we may assume that for every i, every predecessor of a state in \mathbb{H}^{i} with priority at most k_{i} is in fact a modal node. From this, it follows that we may impose, in the formulation of Theorem 6.43, an additional constraint on \mathbb{G}^{g}, namely, that every predecessor of a state is a modal node, more formally, that $\left(E^{g}\right)^{-1}\left[\operatorname{Dom}(\Omega] \subseteq V_{m}^{g}\right.$. \triangleleft

7 Tableau games and derivation systems

7.1 The Tableau Game

Introduction

In this section we introduce the tableau game: a two-player board game that we will use to investigate whether a given formula, or set of formulas, is satisfiable or not. This game will be closely connected with the evaluation game, in that one match of the tableau game corresponds to a bundle of matches of the evaluation game. Since we will be working with the version of the evaluation game that is based on the closure of a tidy formula, in the tableau game as well a prominent role will be reserved for infinite traces.

7.1.1 The tableau game

As mentioned the tableau game is about the satisfiability of finite sets of formulas, that we shall call sequents.

Definition 7.1 A sequent is simply a finite set of tidy formulas. We define the following operation on sequents:

$$
\begin{array}{ll}
\Omega \Sigma & :=\{\varrho \varphi \mid \varphi \in \Sigma\} \\
\wp^{-1} \Sigma & :=\{\varphi \mid \odot \varphi \in \Sigma\}
\end{array}
$$

for every modal operator \triangle.
Convention 7.2 As is common in proof theory, we will often denote the union operation on sequents simply by a comma instead of using the set-theoretic symbol \cup, and we will not write the parentheses in case of a singleton set. For instance, we let Σ, φ denote the sequent $\Sigma \cup\{\varphi\}$.

The tableau game \mathcal{T} is a board game with two players: B, or Builder (female) and R, or Refuter (male). A position of this game is either a sequent or a pair consisting of a sequent Σ and a formula φ. Such a pair will be written as $\langle\Sigma, \varphi\rangle$ to distinguish it from the set Σ, φ. For the intuition underlying this game: it is Builder's goal to show that the sequent Φ, which provides the initial position of the game, is satisfiable in some pointed Kripke model, while Refuter intends to prove this claim wrong.

The game proceeds in rounds, of two moves each. Both the start and the end of a round consist of some basic position, that is, some sequent $\Sigma \subseteq C l(\Phi)$ (where Φ is the initial position). At a basic position Σ, Refuter is required to pick some formula $\varphi \in \Sigma$; depending on the shape of φ, some rule will be applied to the sequent; the result of which will be a new sequent that provides the next basic position. For instance, if Refuter picks a fixpoint formula then this formula is simply unfolded; if he picks a disjunction then it is up to Builder to pick a disjunct, etc.

The details of the rules and their effects are specified in Table 10, and discussed in Remark 7.7. As usual, we say that a player gets stuck if there is no legitimate move available to them; in this case the game is over and the player who got stuck loses the match. For instance, if Φ is empty then Refuter will immediately get stuck; this corresponds to our agreement that
$\Lambda \varnothing \equiv T$: the conjunction of the empty set of formulas is equivalent to the constant T, and hence certainly satisfiable. If none of the players gets stuck the resulting match will be infinite, and we need to check how the winning conditions determine a winner of the match.

Position	Player	Admissible moves
Σ	R	$\{\langle\Gamma, \varphi\rangle \mid \Gamma \cup\{\varphi\}=\Sigma\}$
$\langle\Gamma, \perp\rangle$	B	\varnothing
$\langle\Gamma, \top\rangle$	-	$\{\Gamma\}$
$\langle\Gamma, \ell\rangle$, with $\bar{\ell} \in \Gamma$	B	\varnothing
$\langle\Gamma, \ell\rangle$, with $\bar{\ell} \notin \Gamma$	R	\varnothing
$\left\langle\Gamma, \varphi_{0} \wedge \varphi_{1}\right\rangle$	-	$\left\{\Gamma \cup\left\{\varphi_{0}, \varphi_{1}\right\}\right\}$
$\left\langle\Gamma, \varphi_{0} \vee \varphi_{1}\right\rangle$	B	$\left\{\Gamma \cup\left\{\varphi_{0}\right\}, \Gamma \cup\left\{\varphi_{1}\right\}\right\}$
$\langle\Gamma, \eta x \psi\rangle$	-	$\{\Gamma \cup\{\psi[\eta x \psi / x]\}\}$
$\left\langle\Gamma, \diamond_{d} \psi\right\rangle$	-	$\left\{\{\psi\} \cup \square_{d}^{-1} \Gamma\right\}$
$\left\langle\Gamma, \square_{d} \psi\right\rangle$	R	\varnothing

Table 10: Tableau game
Intuitively, in a game $\mathcal{T} @ \Phi$, a winning strategy for Builder should correspond to a model for Φ, whereas a winning strategy for Refuter, which we will refer to as a refutation, constitutes a formal proof for the unsatisfiability of Φ, and hence, of the validity of the formula $\bigvee \bar{\Phi}$, where $\bar{\Phi}:=\{\bar{\varphi} \mid \varphi \in \Phi\}$. In correspondence with this, one may see Table 10 as providing the proof rules of some derivation system, with the understanding that it is refuter who determines the order in which these rules are applied.

Definition 7.3 The tableau game, denoted as \mathcal{T}, is a board game, with players B (or Builder, female) and R (or Refuter, male). Its positions are given by the set

$$
\wp_{\omega}\left(\mu \mathrm{ML}^{t}\right) \cup\left\{\langle\Gamma, \varphi\rangle \mid \Gamma \in \wp_{\omega}\left(\mu \mathrm{ML}^{t}\right), \varphi \in \mu \mathrm{ML}^{t}\right\},
$$

where we recall that $\mu \mathrm{ML}^{t}$ denotes the set of tidy μ-calculus formulas. Positions of the form $\Sigma \in \wp_{\omega}\left(C l\left(\mu \mathrm{ML}^{t}\right)\right.$ will be called basic. The board of the game is given in Table 10, and its winning conditions are given in Definition 7.19 below.

Note that \mathcal{T} is a global game, so to say, in the sense that its board consists of the set of all sequents of tidy formulas, and all sequent/formula pairs of tidy formulas. Nevertheless, our attention will almost exclusively be directed towards initialized games of the form $\mathcal{T} @ \Phi$, for some sequent Φ. It is not hard to see that every position that is reachable in \mathcal{T} from Φ will consist of formulas from $C l(\Phi)$ only.

Before we define the winning conditions we introduce some terminology, and we comment on the dynamics of the game; in particular we discuss the rules that we may associate with each position of the form $\langle\Gamma, \varphi\rangle$.

Definition 7.4 Consider a position in \mathcal{T} of the form $\langle\Gamma, \varphi\rangle$. We will refer to φ as the principal formula of this position, and to Γ as its context; formulas in Γ will be called side formulas.

We will also call φ an active formula of the position $\langle\Gamma, \varphi\rangle$. In case φ is of the form $\diamond_{d} \psi$, all formulas of the form $\square_{d} \chi$ are called active as well. In all other cases the principal formula φ is the only active formula.

Note that at a basic position Σ, Refuter not only picks a formula $\varphi \in \Sigma$, he also picks a context Γ, and he can either choose $\Gamma=\Sigma$ (so $\varphi \in \Gamma$) or $\Gamma=\Sigma \backslash\{\varphi\}$ (so $\varphi \notin \Gamma$). We need some terminology here.

Definition 7.5 Let Σ be some position in \mathcal{T}, and suppose that Refuter picks, as the next position, the pair $\langle\Gamma, \varphi\rangle$. In case $\Gamma=\Sigma$ we call his move cumulative; if, on the other hand $\Gamma=\Sigma \backslash\{\varphi\}$, we call it reductive. In case Refuter always plays reductively, we say that he follows a reductive strategy.

Convention 7.6 For the time being we will always want to restrict Refuter to play reductively. This means that the admissible moves of Refuter at a sequent position Σ are of the form $\langle\Gamma, \varphi\rangle$ with $\Gamma:=\Sigma \backslash\{\varphi\}$.

In Remark 7.7 we discuss the various tableau rules/moves of the tableau game.
Remark 7.7 In this remark we discuss the various positions of the form $\langle\Gamma, \varphi\rangle$, their owners, and the moves available to these owners.

Case $\varphi=\perp$. In this case the sequent Γ, φ is surely not satisfiable. Accordingly, positions of type $\langle\Gamma, \perp\rangle$ belong to Builder, but since there are no legitimate moves, she will get stuck immediately.

Case $\varphi=\mathrm{T}$. In this case the formula φ has no effect on the satisfiability of the sequent, and so it can be removed. Note that if $\Gamma=\varnothing$, Refuter will get stuck at the next position; this is appropriate, since the singleton $\{T\}$ is satisfiable.

Case $\varphi=\ell$. Note that this covers both the cases where $\ell=p$ and where $\ell=\bar{p}$, for some proposition letter p; in the first case we have $\bar{\ell}=\bar{p}$ and in the second case, $\bar{\ell}=p$.
Either way we make a further case distinction: if the negation $\bar{\ell}$ of the literal belongs to Γ, the sequent Γ, φ is surely not satisfiable; this position can thus be treated in a similar way as the one where $\varphi=\perp$. On the other hand, if $\bar{\ell}$ does not belong to Γ, then there is no way of telling whether Γ, ℓ is satisfiable or not, at least not without further analysis of Γ. Refuter has picked the formula ℓ to soon, as it were, and in order to discourage him from doing so, we designed the game in such a way that he gets stuck in this situation.

Case $\varphi=\varphi_{0} \wedge \varphi_{1}$. Note that the sequent $\Gamma, \varphi_{0} \wedge \varphi_{1}$ is satisfiable iff $\Gamma, \varphi_{0}, \varphi_{1}$ is satisfiable; hence if Refuter has picked a conjunction it will immediately be replaced by its conjuncts.

Case $\varphi=\varphi_{0} \vee \varphi_{1}$. In this case we find that $\Gamma, \varphi_{0} \vee \varphi_{1}$ is satisfiable iff at least one of Γ, φ_{0} or Γ, φ_{1} is satisfiable, and since Builder is the player who aims for showing satisfiability, it is up to her to pick one of these two sequents.

Case $\varphi=\eta x \psi$. This case is simple: if a fixpoint formula is principal, then it will simply be unfolded.

Case $\varphi=\diamond_{d} \psi$. In this case the match moves to a 'successor state', so to speak, which serves as a witness for the formula ψ. However, at this successor state, then, not only ψ, but also every formula φ such that $\square_{d} \varphi \in \Gamma$, must be true.

Case $\varphi=\square_{d} \psi$. Picking a box formula constitutes a mistake for Refuter, since box formulas only form a 'real' requirement in tandem with a diamond formula. To discourage Refuter from picking a box formula, we make sure that at a position of the form $\left\langle\Gamma, \square_{d} \psi\right\rangle$ he loses immediately.
Convention 7.8 In the sequel we will present strategies for Refuter in a proof-theoretic format. That is, a strategy f will be given as a labelled tree, of which the nodes represent the partial f-guided matches. Furthermore, every node t is labelled with the sequent Σ_{t} representing the final position of the partial match represented by t. Furthermore, at any node t we will underline the formula picked by Refuter's strategy. Assuming that Refuter uses a reductive strategy, the node t thus also reveals the resulting position. In other words, the labelled tree thus completely determines Refuter's strategy.

We now turn to the definition of the winning conditions of the tableau game. First we consider the ways in which one of the two players could win or lose a finite match.

To start with, observe that Refuter can force an (almost) immediate win at those sequents that contain \perp, or, for some proposition letter p, both p and \bar{p}. Similarly, if Σ contains the formula $\bigvee \varnothing$, Builder will get stuck immediately if this formula is selected by Refuter.

On the other hand, as we already mentioned Refuter will get stuck at the empty sequent since there is no principal formula to pick. Another possibility for Refuter to get stuck is at a sequent that consists of atomic and box formulas only, if the propositional part does not contain \perp or a pair p, \bar{p}. In such a case Refuter may survive for one more round if the sequent contains the formula T, but after that every principal formula he picks will result in an immediate loss.

Example 7.9 Consider the ML-sequent $\square \diamond \bar{p} \vee \square \perp, \diamond \square(\bar{p} \vee q), \square \square \bar{q}$.

$$
\begin{aligned}
& \frac{\overline{\bar{p}, p, \bar{q} \quad \overline{\bar{p}}, q, \bar{q}}}{\bar{p}, p \vee q), \bar{q}} \\
& \frac{\frac{\diamond \bar{p}, \square(p \vee q), \square \bar{q}}{\square \diamond \bar{p}, \diamond \square(p \vee q), \square \square \bar{q}} \quad \frac{\perp \overline{\perp, \square(p \vee q), \square \bar{q}}}{\square \perp, \diamond \square(p \vee q), \square \square \bar{q}}}{\stackrel{\square \diamond \bar{p} \vee \square \perp, \diamond \square(p \vee q), \square \square \bar{q}}{ }}
\end{aligned}
$$

The labelled tree above represents a refutation for this sequent, that is, a winning strategy for Refuter.

It is not hard to see that, at least if Refuter plays reductively, all matches of the tableau game for a sequent of basic modal formulas will be finite.

7.1.2 Trails and traces

In this subsection we discuss how to assign a winner to an infinite match of the tableau game. It will be useful to have a generic notation for an arbitrary match of the tableau game.

Convention 7.10 First of all, note that every match of \mathcal{T} is a path of positions that alternate between sequents and sequent-formula pairs, Observe that the successor of a sequent position of the form Σ is always a sequent formula pair $\langle\Gamma, \chi\rangle$ such that $\Sigma=\Gamma \cup\{\chi\}$, that is, Σ can always be retrieved from Γ and χ. Hence, to denote an infinite match of the form $\pi=\Sigma_{0}\left\langle\Gamma_{0}, \chi_{0}\right\rangle \Sigma_{1}\left\langle\Gamma_{1}, \chi_{1}\right\rangle \Sigma_{2} \cdots$ without loss of information we may write $\pi=\left(\left\langle\Gamma_{n}, \chi_{n}\right\rangle\right)_{n<\omega}$. By a slight abuse of notation we will usually denote this match as $\pi=\left(\Gamma_{n}, \chi_{n}\right)_{n<\omega}$.

To determine the winner of an infinite match, we need to keep track of the so-called trails of formulas. Basically, a trail is a record of the possible development of an individual formula during a match, as determined by the proof rules.

Example 7.11 Consider the sequent

$$
\Phi=\{\langle *\rangle(p \vee q),[*] \bar{p},[*] \bar{q}\}
$$

where $\langle *\rangle(p \vee q)=\mu x(p \vee q) \vee \diamond x,[*] \bar{p}=\nu y \bar{p} \wedge \square y$, and $[*] \bar{q}=\nu z \bar{q} \wedge \square z$. The labelled tree below represents a strategy for Refuter.

$$
\begin{aligned}
& \frac{\vdots}{\frac{(p \vee q) \vee \diamond\langle *\rangle(p \vee q), \bar{p} \wedge \square[*] \bar{p}, \bar{q} \wedge \square[*] \bar{q}}{(p \vee q) \vee \diamond\langle *\rangle(p \vee q), \bar{p} \wedge \square[*] \bar{p}, \underline{[*] \bar{q}}}} \frac{(p \vee q) \vee \diamond\langle *\rangle(p \vee q), \underline{[*] \bar{p},[*] \bar{q}}}{\frac{(p)}{(p)}}
\end{aligned}
$$

Note that this tree is infinite but regular in the sense that the subtree generated from the node labelled (\dagger) is isomorphic to the tree itself. In the tree we also display the (in this case unique) trail on the infinite branch of the tree which starts at the formula $\langle *\rangle(p \vee q)$ at the root node.

Roughly speaking, we will declare that
an infinite match of the tableau game is winning for Refuter if it carries a μ-trail.
Clearly then, we need to define this notion of a μ-trail. The following example shows that this definition is somewhat tricky.

Example 7.12 Consider the sequent

$$
\Phi:=\{\mu x x, \nu y y\} .
$$

First of all, note that since $\mu x x \equiv \perp$ and $\nu y y \equiv \top$, the sequent Φ is not satisfiable, and so we want Refuter to have a winning strategy in the tableau game. Now consider the following four strategies for Refuter:

:	:	:	
$\mu x x, \nu y y$	$\mu x x, \underline{\nu y y}$	$\overline{\mu x} x, \nu y y$	$\overline{\mu x x, \nu y y}$
$\mu x x, \nu y y$	$\mu x x, \underline{y} y$	$\mu x x, \nu y y$	$\mu x x, \nu y y$
$\mu x x, \nu y y$			
$\underline{\mu x x, \nu y y}$	$\overline{\mu x x, \underline{\nu y y}}$	$\underline{\mu x x, \nu y y}$	$\overline{\mu x x, \underline{\nu y y}}$
$\mu x x, \nu y y$			

The difference is that Refuter keeps unfolding $\mu x x$ in the leftmost strategy, he keeps unfolding $\nu y y$ in the second strategy, he unfolds $\mu x x$ twice and then keeps unfolding $\nu y y$ in the third strategy, and he alternates between unfolding the two fixpoint formulas in the rightmost strategy. In this example, we shall call the two red sequences μ-trails, since the μ-formula is unfolded infinitely often, whereas the green trails in the middle are not μ-trails, since each of them only features finitely many unfoldings of $\mu x x$. Hence the first and the fourth strategy are winning for Refuter, the second and the third one are not.

In order to formulate the winning conditions of the tableau game unambiguously, we need a precise definition of the notion of a trail and of its associated trace. For this purpose, consider one round of the tableau game, say, of the form $\Sigma \cdot\langle\Gamma, \chi\rangle \cdot \Sigma^{\prime}$. With this configuration we associate a direct trail relation $\mathrm{T}_{\Gamma, \chi}$ between Σ and Σ^{\prime}; intuitively, we put a pair (φ, ψ) in this relation if ψ is the 'residu' of φ after the application of the rule associated with the pair (Γ, χ). This situation has two distinct manifestations: one in which φ is an active formula, and one in which φ is a side formula. Roughly, the idea is that the active trail relation contains pairs of the form (φ, ψ) where φ is active and ψ is a direct derivative of φ, while the passive trail relation gathers all pairs (φ, ψ) where φ is a side formula and ψ is equal to φ. The trail relation is then simply defined as the union of the active and the passive trail relation.

Example 7.13 To give two simple examples: if $\Sigma=\{\varphi \wedge \psi, \psi, \chi\}$, and Refuter picks the conjunction $\varphi \wedge \psi$ as his principal formula, then the next sequent is $\Sigma^{\prime}=\{\varphi, \psi, \chi\}$. Now the
active trail relation consists of the pairs $(\varphi \wedge \psi, \varphi)$ and $(\varphi \wedge \psi, \psi)$ and the passive trail relation of the pairs (ψ, ψ) and (χ, χ).

If $\Theta=\{\square \varphi, \square \psi, \diamond \varphi, \diamond \xi, p, \eta x \chi\}$ and Refuter picks the formula $\diamond \varphi$, then the next sequent is $\Theta^{\prime}=\{\varphi, \psi\}$. The active trail relation consists of the pairs $(\diamond \varphi, \varphi),(\square \varphi, \varphi)$ and $(\square \psi, \psi)$, and the passive trail relation is empty.

Below we spell out the definition in detail; recall that the diagonal relation on a set A is denoted by $I d_{A}$.

Definition 7.14 Let $\Sigma,\langle\Gamma, \varphi\rangle$ and Σ^{\prime} be positions in the tableau game $\mathcal{T} @ \Phi$, and assume that $\langle\Gamma, \varphi\rangle$ is a legitimate move at Σ, and likewise for Σ^{\prime} at $\langle\Gamma, \varphi\rangle$. We define two relations $\mathrm{A}_{\Gamma, \varphi}, \mathrm{P}_{\Gamma, \varphi} \subseteq \Sigma \times \Sigma^{\prime}$, by means of the following case distinction:

Case $\varphi=\mathrm{T}$. We define $\mathrm{A}_{\Gamma, \varphi}:=\varnothing$ and $\mathrm{P}_{\Gamma, \varphi}:=I d_{\Gamma}$.
Case $\varphi=\varphi_{0} \wedge \varphi_{1}$. We define $\mathrm{A}_{\Gamma, \varphi}:=\left\{\left(\varphi_{0} \wedge \varphi_{1}, \varphi_{0}\right),\left(\varphi_{0} \wedge \varphi_{1}, \varphi_{1}\right)\right\}$ and $\mathrm{P}_{\Gamma, \varphi}:=I d_{\Gamma}$.
Case $\varphi=\varphi_{0} \vee \varphi_{1}$. We define $\mathrm{A}_{\Gamma, \varphi}:=\left\{\left(\varphi_{0} \vee \varphi_{1}, \varphi_{i}\right)\right\}$ (depending on Builder's choice) and $\mathrm{P}_{\Gamma, \varphi}:=I d_{\Gamma}$.

Case $\varphi=\eta x \psi$. We define $\mathrm{A}_{\Gamma, \varphi}:=\{(\eta x \psi, \psi[\eta x \psi / x])\}$ and $\mathrm{P}_{\Gamma, \varphi}:=I d_{\Gamma}$.
Case $\varphi=\diamond_{d} \psi$. We define $\mathrm{A}_{\Gamma, \varphi}:=\left\{\left(\diamond_{d} \psi, \psi\right)\right\} \cup\left\{\left(\square_{d} \chi, \chi\right) \mid \square_{d} \chi \in \Sigma\right\}$ and $\mathrm{P}_{\Gamma, \varphi}:=\varnothing$.
Finally, the general trail relation $T_{\Gamma, \varphi}$ is simply defined as $T_{\Gamma, \varphi}:=A_{\Gamma, \varphi} \cup P_{\Gamma, \varphi}$.
Note that in the definition of the trail relation we do not need to consider the cases where the formula φ is a literal, a box formula, or equal to the formula \perp, since in these cases the position $\langle\Gamma, \varphi\rangle$ does not have a successor.

Remark 7.15 If Refuter has made a reductive move, resulting in a position $\langle\Gamma, \varphi\rangle$ such that $\varphi \notin \Gamma$, then the relations $\mathrm{A}_{\Gamma, \varphi}$ and $\mathrm{P}_{\Gamma, \varphi}$ are disjoint.

Should we allow cumulative moves, however, then this need not longer be the case. Consider for instance the sequent $\Sigma=\{\mu x x, \nu y y\}$. If Refuter picks the formula $\mu x x$ and cumulatively takes $\Gamma:=\Sigma$, then we find that the pair $(\mu x x, \mu x x)$ belongs to both the active and the passive trail relation.

Definition 7.16 Let $\left.\pi=\Sigma_{0}\left\langle\Gamma_{n}, \zeta_{n}\right\rangle, \Sigma_{n+1}\right)_{n<\kappa}$ be some match of the tableau game. The trail graph of π is defined as the pair (V, E) with

$$
\begin{aligned}
V & :=\left\{(\varphi, n) \mid 0 \leq n<\kappa, \varphi \in \Sigma_{n}\right\} \\
E & :=\left\{((\varphi, n),(\psi, n+1)) \mid(\varphi, \psi) \in \mathrm{T}_{\Gamma_{n}, \zeta_{n}}\right\} .
\end{aligned}
$$

We will often write $\varphi @ n \rightsquigarrow \psi @ n+1$ to denote that $((\varphi, n),(\psi, n+1)) \in E$. More generally, we will write $\varphi @ n \rightsquigarrow \psi @ m$ if there is a path through the trail graph from (φ, n) to (ψ, m).

A trail on π is any sequence $\tau=\left(\varphi_{n}\right)_{n<\omega}$ such that the sequence $\left(\varphi_{n}, n\right)_{n<\omega}$ is a path through the trail graph of π. In case π is infinite, a trail τ on π is called progressive if $\tau(n)$ is active infinitely often, that is: $\tau(n)=\zeta_{n}$ for infinitely many n.

To determine the winner of an infinite match, we are only interested in the active part of its trails. For that purpose we define the notion of a condensation of a trail; this is the trace we obtain from the trace by omitting the passive steps.

Definition 7.17 Let $\tau=\left(\varphi_{n}\right)_{n<\kappa}$ be a trail on the match $\pi=\Sigma_{0}\left(\left\langle\Gamma_{n}, \zeta_{n}\right\rangle, \Sigma_{n+1}\right)_{n<\kappa}$ of the tableau game $\mathcal{T} @ \Phi$. Then the condensation $\widehat{\tau}$ is obtained from τ by omitting all φ_{i+1} from τ for which $\left(\varphi_{i}, \varphi_{i+1}\right)$ belongs to the passive trail relation $\mathrm{P}_{v_{i}, v_{i+1}}$. Any sequence of the form $\widehat{\tau}$ for some trail on π is called a trace on π.

Example 7.18 The red trail in the refutation of Example 7.11 is of the form

$$
\underline{\varphi}, \psi, \psi, \psi, \psi, \underline{\psi}, \underline{\Delta}, \underline{\varphi}, \psi, \psi, \ldots
$$

where we abbreviate $\varphi:=\langle *\rangle(p \vee q)$ and $\psi:=(p \vee q) \vee \diamond\langle *\rangle(p \vee q)$ (and we indicate whether the formula is active by underlining it). Its condensation is the infinite trace

$$
\varphi, \psi, \diamond \varphi, \varphi, \psi, \diamond \varphi, \ldots
$$

In the four matches of Example 7.12 we get the following four trails of μ-formulas (with active formulas underlined), together with their condensations:

1. $\underline{\mu x x}, \underline{\mu x x}, \underline{\mu x x}, \underline{\mu x x}, \underline{\mu x x}, \ldots \quad \mu x x, \ldots$
2. $\overline{\mu x x}, \overline{\mu x x}, \overline{\mu x x}, \overline{\mu x x}, \overline{\mu x x}, \ldots \quad \quad \mu x x$
3. $\underline{\mu x x}, \underline{\mu x x}, \mu x x, \mu x x, \mu x x, \ldots \quad \mu x x, \mu x x$
4. $\underline{\mu x x}, \mu x x, \underline{\mu x x}, \mu x x, \underline{\mu x x}, \ldots \quad \mu x x, \ldots$

Clearly only the first and the last trail are progressive and condense into an infinite trace. \triangleleft
It is not difficult to see that condensed trails are traces, and that the condensation of a progressive trail is infinite. This observation then provides us with the right tool for defining the winning conditions of the tableau game.

Definition 7.19 Let π be some infinite \mathcal{T}-match. For $\eta \in\{\mu, \nu\}$, we define an η-trail on π to be a progressive trail on π whose condensation is a η-trace. A infinite \mathcal{T}-match π is winning for Refuter if it carries a μ-trail.

7.2 Determinacy and adequacy

- intro

7.2.1 Determinacy

Proposition 7.20 Let Φ be some $\mu \mathrm{ML}$-sequent. Then the tableau game $\mathcal{T} @ \Phi$ is ω-regular: the set of matches that are won by either player forms an ω-regular language.

Theorem 7.21 (Determinacy) Let Φ be some $\mu \mathrm{ML}$-sequent. Then the tableau game $\mathcal{T}(\Sigma)$ is determined: either Builder or Refuter has a winning strategy.
Proof. This is an immediate consequence of Proposition 7.20 and X .
QED
Theorem 7.22 (Adequacy) Let Φ be some $\mu \mathrm{ML}$-sequent. Then Φ is satisfiable iff Builder has a winning strategy in the tableau game $\mathcal{T}(\Phi)$.

We will discuss and prove the two directions of the adequacy theorem separately.

7.2.2 Soundness

Proposition 7.23 (Soundness) Let Φ be some $\mu \mathrm{ML}$-sequent. If Φ is satisfiable then Builder has a winning strategy in the tableau game $\mathcal{T} @ \Phi$.

Proof. Assume that the $\mu \mathrm{ML}$-sequent Φ is satisfied at the point s_{0} of the model \mathbb{S}. This means that $\left(\bigwedge \Phi, s_{0}\right)$ is a winning position for \exists in the evaluation game $\mathcal{E}:=\mathcal{E}(\bigwedge \Phi, \mathbb{S}) @\left(\bigwedge \Phi, s_{0}\right)$. Fix some positional winning strategy f for \exists in this game.

We will use this strategy f to provide Builder with a winning strategy \widetilde{f} in $\mathcal{T} @ \Phi$. Next to the definition of \widetilde{f} we will associate, with each \widetilde{f}-guided match π, a state $s_{\pi} \in S$. Intuitively, the role of s_{π} will be as follows. Let $\pi \in \mathrm{PM}_{B}$ be some partial match ending at a position of the form $\left\langle\Gamma, \varphi_{0} \vee \varphi_{1}\right\rangle$; that is, Refuter has just picked the disjunction $\varphi_{0} \vee \varphi_{1}$ as his principal formula. Then \tilde{f} will suggest to Builder to choose the sequent Γ, φ_{i}, where φ_{i} is \exists 's choice at the position ($\varphi_{0} \vee \varphi_{1}, s_{\pi}$). For this to work, and in particular, to make sure that Builder wins all infinite \tilde{f}-guided matches, she needs to maintain a rather tight connection between the strategies f and \widetilde{f}, to the effect that
${ }^{(*)} \quad$ every trail on an \tilde{f}-guided \mathcal{T}-match corresponds to an f-guided \mathcal{E}-match.
More precisely: along with the definition of \widetilde{f} we will inductively define a monotone family ρ_{π} of functions, where for every \widetilde{f}-guided match π that ends at a sequent position, ρ_{π} maps every trail τ on π to an f-guided \mathcal{E}-match $\rho_{\pi}(\tau)$ such that $\operatorname{last}\left(\rho_{\pi}(\tau)\right)=\left(\operatorname{last}(\tau), s_{\pi}\right)$ and

$$
\widehat{\tau}=\left(\rho_{\pi}(\tau)\right)_{L},
$$

where we recall that, generally, ρ_{L} denotes the left projection of the match ρ, that is, the trace of formulas determined by ρ, cf. Definition 2.41. Here the monotonicity condition requires that $\pi \sqsubset \pi^{\prime}$ and $\tau \sqsubset \tau^{\prime}$ imply $\rho_{\pi}(\tau) \sqsubset \rho_{\pi^{\prime}}\left(\tau^{\prime}\right)$. Note that it follows from this that $\mathbb{S}, s_{\pi} \Vdash \varphi$, for every formula φ which belongs to the sequent that constitutes the final position of π.

At the start of the game, the match π consists of the single position Φ; we define $s_{\pi}:=s_{0}$ and $\rho_{\pi}(\tau):=\left(\operatorname{last}(\tau), s_{0}\right)$, for any trail τ on π. (Note that any such trail consists of a single formula $\operatorname{first}(\tau)=\operatorname{last}(\tau) \in \Phi$.) With these definitions it is easy to see that the condition (*) is met.

For the inductive step, assume that π is an \widetilde{f}-guided match ending at a sequent position, say, $\operatorname{last}(\pi)=\Sigma$, and that we have defined the position s_{π} satisfying $\left({ }^{*}\right)$. We already observed that this implies that $\mathbb{S}, s_{\pi} \Vdash \Sigma$. Assume that Refuter's move at this position is the pair $\langle\Gamma, \varphi\rangle$, extending π to the match $\pi^{\prime}=\pi \cdot\langle\Gamma, \varphi\rangle$. We can now simply define $s_{\pi^{\prime}}:=s_{\pi}$. For the next step we make a case distinction as to the nature of φ.

Case $\varphi=\top$. In this case the next position is Γ, so that the match π^{\prime} is extended to

$$
\pi^{\prime \prime}:=\pi \cdot\langle\Gamma, \top\rangle \cdot \Gamma .
$$

We define $s_{\pi^{\prime \prime}}:=s_{\pi}$.
In order to check that the condition $\left(^{*}\right.$) still holds, consider an arbitrary trail τ on $\pi^{\prime \prime}$. It is easy to see that τ must be of the form $\tau=\sigma \cdot \psi$, where σ is a trail on π, last $(\sigma)=\psi$ and (ψ, ψ) belongs to the passive trail relation. From this it is immediate that $\widehat{\tau}=\widehat{\sigma}$. Furthermore, by the induction hypothesis we have $\widehat{\sigma}=\left(\rho_{\pi}(\sigma)\right)_{L}$. We define $\rho_{\pi^{\prime \prime}}(\tau):=\rho_{\pi}(\sigma)$, and so we obtain $\widehat{\tau}=\left(\rho_{\pi^{\prime \prime}}(\tau)\right)_{L}$ as required.

Case $\varphi=\perp$. Note that, actually, this case cannot occur since $\mathbb{S}, s_{\pi} \Vdash \Sigma$.
Case $\varphi=\ell$. This case is left as an exercise for the reader.
Case $\varphi=\varphi_{0} \vee \varphi_{1}$. This is the only case where we need to extend the definition of \tilde{f}. Define

$$
\widetilde{f}\left(\pi \cdot\left\langle\Gamma, \varphi_{0} \vee \varphi_{1}\right\rangle\right):=\Gamma \cup\left\{\varphi_{i}\right\},
$$

where φ_{i} is the formula picked by \exists 's winning strategy f at position $\left(\varphi_{0} \vee \varphi_{1}, s_{\pi}\right)$. Note that the latter position is winning for \exists by the inductive hypothesis, so that f provides a legitimate move. In this case the match π^{\prime} is extended to

$$
\pi^{\prime \prime}:=\pi \cdot\left\langle\Gamma, \varphi_{0} \vee \varphi_{1}\right\rangle \cdot \Gamma \cup\left\{\varphi_{i}\right\} .
$$

We define $s_{\pi^{\prime \prime}}:=s_{\pi}$ and proceed to check the condition $(*)$. For this purpose consider an arbitrary trail τ on $\pi^{\prime \prime}$. There are two subcases to distinguish:

Subcase $\tau=\sigma \cdot \varphi_{i}$, with last $(\sigma)=\varphi_{0} \vee \varphi_{1}$. By the induction hypothesis we have $\widehat{\sigma}=$ $\left(\rho_{\pi}(\sigma)\right)_{L}$. Now define $\rho_{\pi^{\prime \prime}}(\tau):=\rho_{\pi}(\sigma) \cdot\left(\varphi_{i}, s_{\pi}\right)$, so that we obtain $\left(\rho_{\pi^{\prime \prime}}(\tau)\right)_{L}=$ $\left(\rho_{\pi}(\sigma)\right)_{L} \cdot \varphi_{i}=\widehat{\sigma} \cdot \varphi_{i}=\widehat{\sigma \cdot \varphi_{i}}=\widehat{\tau}$.
Subcase $\tau=\sigma \cdot \psi$, where $\operatorname{last}(\sigma)=\psi$ for some idle formula $\psi \neq \varphi_{0} \vee \varphi_{1}$. In this case it is easy to see that $\widehat{\tau}=\widehat{\sigma}$, and we may proceed as in the case where $\varphi=T$.

Case $\varphi=\varphi_{0} \wedge \varphi_{1}$. In this case the next position in \mathcal{T} is $\Gamma, \varphi_{0}, \varphi_{1}$, so that the match π^{\prime} is extended to

$$
\pi^{\prime \prime}:=\pi \cdot\left\langle\Gamma, \varphi_{0} \wedge \varphi_{1}\right\rangle \cdot \Gamma \cup\left\{\varphi_{0}, \varphi_{1}\right\} .
$$

We define $s_{\pi^{\prime \prime}}:=s_{\pi}$ and proceed to check the condition $(*)$. For this purpose consider an arbitrary trail τ on $\pi^{\prime \prime}$. As in the previous case, where φ was a disjunction, there are two subcases to consider: an active one where τ is the continuation of a trail σ on π with last $(\sigma)=\varphi$ and $\operatorname{last}(\tau) \in\left\{\varphi_{0}, \varphi_{1}\right\}$, and a passive one where τ is the continuation of a trail σ on φ with the side formula $\psi=\operatorname{last}(\sigma)$. In both cases it is straightforward to check that we can update the map ρ in such a way that $\left({ }^{*}\right)$ holds indeed.

Case $\varphi=\eta x \psi$. This case is left as an exercise for the reader.

Case $\varphi=\diamond_{d} \psi$. In this case the next position in \mathcal{T} is the sequent $\square_{d}^{-1} \Sigma \cup\{\psi\}$, and we find

$$
\pi^{\prime \prime}:=\pi \cdot\left\langle\Gamma, \diamond_{d} \psi\right\rangle \cdot \square_{d}^{-1} \Sigma \cup\{\psi\} .
$$

Define $s_{\pi^{\prime \prime}}:=t$, where $t \in R_{d}\left[s_{\pi}\right]$ is \exists 's choice at position $\left(\diamond_{d} \psi, s_{\pi}\right)$ of the evaluation game as suggested by her positional strategy f - recall that by the induction hypothesis we have $\mathbb{S}, s_{\pi} \Vdash \diamond_{d} \psi$.
To show that the condition (*) holds, we consider an arbitrary trail τ on $\pi^{\prime \prime}$; this trail must be of the form $\sigma \cdot \chi$ for a (unique) π-trail σ, where either $\chi=\psi$ and $\operatorname{last}(\sigma)=\diamond_{d} \psi$, or last $(\sigma)=\square_{d} \chi$. Furthermore, inductively we may assume that $\widehat{\sigma}=\left(\rho_{\pi}(\sigma)\right)_{L}$.
Here we distinguish two subcases:
Subcase $\chi=\psi$ and $\operatorname{last}(\sigma)=\diamond_{d} \psi$. In this case we have $\tau=\sigma \cdot \psi$. Define $\rho_{\pi^{\prime \prime}}(\tau):=$ $\rho_{\pi}(\sigma) \cdot(\psi, t)$, then we find $\left(\rho_{\pi^{\prime \prime}}(\tau)\right)_{L}=\left(\rho_{\pi}(\sigma)\right)_{L} \cdot \psi=\widehat{\sigma} \cdot \psi=\widehat{\sigma \cdot \psi}=\widehat{\tau}$ as required.
Subcase last $(\sigma)=\square_{d} \chi$. Now define $\rho_{\pi^{\prime \prime}}(\tau):=\rho_{\pi}(\sigma) \cdot(\chi, t)$; that is, the continuation of the \mathcal{E}-match $\rho_{\pi}(\sigma)$ in which \forall at position $\left(\operatorname{last}(\sigma), s_{\pi}\right)=\left(\square_{d} \chi, s_{\pi}\right)$ picks the successor t of s_{π}, thus moving the \mathcal{E}-match to position $(\chi, t)=\left(\operatorname{last}(\tau), s_{\pi^{\prime \prime}}\right)$. Here we find $\left(\rho_{\pi^{\prime \prime}}(\tau)\right)_{L}=\left(\rho_{\pi}(\sigma)\right)_{L} \cdot \chi=\widehat{\sigma} \cdot \chi=\widehat{\sigma \cdot \chi}=\widehat{\tau}$, again as required.

Case $\varphi=\square_{d} \psi$. In this case Refuter gets stuck and loses immediately.
To see why \widetilde{f} is a winning strategy for B in $\mathcal{T} @ \Phi$, we consider an arbitrary full \tilde{f}-guided match π. First of all, observe that in all the cases above where the position $\langle\Gamma, \varphi\rangle$ belonged to Builder, we could indeed supply her with some move. Hence, as long as she maintains the condition $\left({ }^{*}\right)$, Builder cannot get stuck. In particular, this means that she wins π in case it is finite.

This leaves the case where π is infinite. Consider an arbitrary progressive trail τ on π, then our goal is to show that $\widehat{\tau}$ is a ν-trace. The point, here, is that τ is the limit of a family of trails, each of which corresponds to an f-guided match of \mathcal{E}. But then τ itself also corresponds to an f-guided \mathcal{E}-match $\rho_{\pi}(\tau)$, namely, the limit of the mentioned \mathcal{E}-matches it is here that we need the monotonicity condition. But since f is assumed to be winning strategy for \exists in \mathcal{E}, this match ρ_{τ} is won by \exists, which simply means that $\widehat{\tau}=\left(\rho_{\pi}(\tau)_{L}\right.$ is a ν-trace indeed.

QED

Completeness

Turning to the completeness of the tableau game, the intuitions are as follows. Assume that Builder has a winning strategy f in the tableau game $\mathcal{T} @ \Phi$, we will use this strategy to construct a model \mathbb{S}_{f} in which Φ can be satisfied. For the states of this model, we will take f-guided matches - but only the ones in which Refuter plays in a certain, locally exhaustive way. To make these intuitions precise we need some definitions.

Definition 7.24 A trace τ is called local if it features no transition of the form $\Omega_{\varphi} \rightarrow_{C} \varphi$, for any modality Ω. A \mathcal{T}-match π is called local if it features no modal position, that is, no positions of the form $\left\langle\Gamma, \diamond_{d} \psi\right\rangle$ or $\left\langle\Gamma, \square_{d} \psi\right\rangle$.

Note that a local trace may end at a box- or diamond formula; in fact it may also start with one, but only if it is a one-formula trace. Concerning the relation between local matches and local traces: a match π is local if, and only if, each of its trails condensates to a local trace.

As mentioned, the only strategies of Refuter that we will take account, when constructing a model \mathbb{S}_{f} from a winning strategy for Builder, are the locally exhaustive ones. Intuitively, a strategy is locally exhaustive if Refuter makes sure that every boolean or fixpoint formula will become principal, before he is allowed to pick a modal formula.

Definition 7.25 Let Φ be some μ ML-sequent. A strategy g for Refuter is locally exhaustive in $\mathcal{T} @ \Phi$ if every g-guided $\mathcal{T} @ \Phi$-match π satisfies the following conditions:

1. at a sequent position Σ, Refuter never picks an atomic or modal formula if there are still boolean or fixpoint formulas available in Σ;
2. if π is infinite, say, $\pi=\left(\Gamma_{n}, \zeta_{n}\right)_{n<\omega}$, then for every $k<\omega$ and for every formula $\varphi \in \Sigma_{k}$ that is either a conjunction, a disjunction or a fixpoint formula, there is some $m>k$ such that $\varphi=\zeta_{m}$, while the partial match $\left(\Gamma_{n}, \zeta_{n}\right)_{k \leq n<m}$ is local.

A $\mathcal{T} @ \Phi$-match π is locally exhaustive if it is local, guided by some locally exhaustive and reductive strategy of Refuter, and maximal with respect to these two properties. The collection of these matches is denoted as $L E$.

Example 7.26 Of the four strategies in Example 7.12, only the rightmost one is locally exhaustive.

Also note that 'locally exhaustive' does not necessarily mean 'fair', and certainly not 'winning'. For instance, any locally exhaustive strategy operating on the sequent $\Sigma=$ $\{\nu x x, \square p, \diamond \bar{p}\}$ will keep picking $\nu x x$ as the principal formula, and thus miss the easy win arising from picking the formula $\diamond \bar{p}$.

Remark 7.27 Locally exhaustive strategy are not hard to find. Refuter can easily arrange one by maintaining, throughout any match of $\mathcal{T} @ \Phi$, a priority list of all boolean and fixpoint formulas in $C l(\Phi)$. At any position during the match π he then picks, as the principal formula, the first formula on this list that belongs to Σ; and after this move he updates the list by moving the chosen formula to the end of the list.

Locally exhaustive matches are either infinite or end with a sequent that consists of modal and atomic formulas only. As we will see now, if we can guarantee that these matches are finite, the completeness proof becomes much easier.

Completeness: the guarded case

Recall that a modal μ-calculus formula ξ is guarded if for every subformula of ξ of the form $\eta x . \delta, x$ is guarded in δ, that is, every free occurrence of x in δ is in the scope of a modality. The key property of these formulas is that any local trace starting with a guarded formula is finite. As a corollary of this, any local \mathcal{T}-match starting with a guarded sequent is finite as well, as the following proposition shows.

Proposition 7.28 Let Φ be some $\mu \mathrm{ML}$-sequent consisting of guarded formulas, and let λ be some local match of $\mathcal{T} @ \Phi$ in which Refuter plays reductively. Then λ is finite. In particular, every locally exhaustive match is finite, and ends with a sequent consisting of modal and atomic formulas only.

Proof. Let $C l^{l o c}(\Phi)$ be the smallest subset of $C l(\Phi)$ that contains Φ and is closed under taking the direct derivatives of boolean and fixpoint formulas. For any formula $\varphi \in C l^{l o c}(\varphi)$, define $l d(\varphi)$, the local depth of φ, as the maximal number of steps from φ to an atomic or modal formula - this is well-defined, precisely by guardedness. Extending this definition to sequents, we put

$$
l d(\Phi):=\sum_{\varphi \in \Phi} l d(\varphi) .
$$

Now let λ be some local match in which Refuter plays reductively. It is then straightforward to see that the local depth of the successive sequents in λ strictly decreases, and from this it immediately follows that λ is finite.

QED

Remark 7.29 It also follows from Proposition 7.28 that, in a tableau games starting from a guarded sequent, every reductive strategy of Refuter that does not pick modal or atomic formulas as principal formulas, is locally exhaustive.

As we will see now, Proposition 7.28 simplifies the construction of a model from a winning strategy for Builder significantly.

Proposition 7.30 (Completeness for guarded formulas) Let Φ be some $\mu \mathrm{ML}$-sequent consisting of guarded formulas. If Builder has a winning strategy in the tableau game $\mathcal{T} @ \Phi$, then Φ is satisfiable.

Proof. For the time being we restrict the proof to the monomodal case. Assume that B has a winning strategy f in $\mathcal{T} @ \Phi$; we will use f to define a Kripke model \mathbb{S}_{f}, and then show that Φ is satisfiable in \mathbb{S}_{f}.

For the definition of \mathbb{S}_{f} we recall some notation: where $\left(\pi_{i}\right)_{0 \leq i \leq k}$ is a tuple of sequences, we let $\bigodot_{i \leq k} \pi_{i}$ denote their concatenation, that is: $\bigodot_{i \leq k} \pi_{i}:=\pi_{0} \cdot \pi_{1} \cdots \pi_{k}$.

Basically, for the set S_{f} of states of \mathbb{S}_{f} we take the collection of f-guided matches where between the modal positions we find locally exhaustive matches. Formally, a state of \mathbb{S}_{f} will be any tuple of the form

$$
\left(\pi_{i}\right)_{0 \leq i \leq k},
$$

where $k \geq 0$, the sequence $\bigodot_{i \leq k} \pi_{i}$ is an f-guided match, π_{0} is a locally exhaustive match starting at Φ, and for each $i>\overline{0}, \pi_{i}$ is a match of the form $\pi_{i}=\left\langle\Gamma_{i}, \diamond \varphi_{i}\right\rangle \cdot \lambda_{i}$ with λ_{i} a locally exhaustive match starting at the position $\square^{-1} \Gamma_{i} \cup\left\{\varphi_{i}\right\}$.

Note that by Proposition 7.28 every π_{i} must be finite (due to guardedness) and end with a sequent position consisting of atomic and modal formula only (due to maximality); we will write $\Sigma_{i}:=\operatorname{last}\left(\pi_{i}\right)$ (so $\Sigma_{i}=\operatorname{last}\left(\lambda_{i}\right)$ for $i>0$). Observe as well that, since $\bigodot_{i \leq k} \pi_{i}$ must be
a well-defined \mathcal{T}-match, the latter condition implies that $\diamond \varphi_{i} \in \Sigma_{i-1}$ and $\Gamma_{i}=\square^{-1} \Sigma_{i-1}$. In a picture we denote the match $\bigodot_{i \leq k} \pi_{i}$ as follows:

For the accessibility relation R_{f} we take

$$
R_{f}:=\left\{\left(\left(\pi_{i}\right)_{i \leq k},\left(\pi_{i}\right)_{i \leq k+1}\right) \mid\left(\pi_{i}\right)_{i \leq k},\left(\pi_{i}\right)_{i \leq k+1} \in S_{f}\right\}
$$

and the valuation V_{f} is given by

$$
V_{f}(p):=\left\{\left(\pi_{i}\right)_{i \leq k} \mid p \in \operatorname{last}\left(\pi_{k}\right\} .\right.
$$

Consider any locally exhaustive match in \mathcal{T} that starts with the position Φ, and let s_{0} be the one-item tuple in S_{f} corresponding with this match. Our goal will be to show that

$$
\begin{equation*}
\mathbb{S}_{f}, s_{0} \Vdash \Phi \tag{49}
\end{equation*}
$$

For the proof of (49), fix some formula $\xi \in \Phi$. We will provide \exists with a winning strategy \widetilde{f} in the evaluation game $\mathcal{E}:=\mathcal{E}\left(\Phi, \mathbb{S}_{f}\right) @\left(\xi, s_{0}\right)$. The strategy \widetilde{f} will be defined by induction on the length of a partial \mathcal{E}-match, and we will simultaneously prove that \exists can maintain a certain safety condition that we define now.

Consider an arbitrary \mathcal{E}-match ρ ending at position (φ, s). Then, focussing on the modal positions in ρ, there is a unique way of writing $\rho=\rho_{0} \cdot \ldots \cdot \rho_{k-1} \cdot \rho_{k}$, such that $\operatorname{last}\left(\rho_{0}\right), \ldots, \operatorname{last}\left(\rho_{k-1}\right)$ are the only modal positions on ρ. Similarly, there is a unique way of writing $s=\left(\pi_{i}\right)_{i \leq k^{\prime}}$ as in the definition of states given above; here for $i>0$ we will write $\pi_{i}=\left\langle\Gamma_{i}, \diamond \varphi_{i}\right\rangle \cdot \lambda_{i}$. We call ρ safe if $k=k^{\prime}$ and, for all $i<k,\left(\rho_{i}\right)_{L}$ is a trace on π_{i}, and $\left(\rho_{k}\right)_{L}$ is a trace on some initial segment of π_{k}. (Recall that, given a match ρ of the evaluation game, we write ρ_{L} to denote the formula part of ρ, that is, where $\rho=\left(\varphi_{n}, t_{n}\right)_{n<\kappa}$, we have $\left.\rho_{L}=\left(\varphi_{n}\right)_{n<\kappa}.\right)$

The key claim in the completeness proof is then the following.
Claim 1 Let ρ be some safe partial match of \mathcal{E}. If $\rho \in \mathrm{PM}_{\exists}$ then \exists has a legitimate move such that the resulting partial match is safe, and if $\rho \notin \mathrm{PM}_{\exists}$ all possible continuations of ρ are safe.

Proof of Claim Let (φ, s) be the last position of ρ, and let $\rho_{0}, \ldots, \rho_{k}$ and π_{0}, \ldots, π_{k} be the respective matches of \mathcal{E} and \mathcal{T} that witness the safety of ρ. By the safety condition, the final part ρ_{k} of ρ is a trace on some initial segment π_{k}^{\prime} of π_{k}. We make a case distinction as to whether φ is modal or not.

We first consider the case where φ is not modal. Since π_{k} is a locally exhaustive match, we may without loss of generality assume that φ is the principal formula of π_{k}^{\prime}, that is, last $\left(\pi_{k}^{\prime}\right)$ is of the form $\langle\Gamma, \varphi\rangle$ (and π_{k}^{\prime} is a proper initial segment of π_{k}). Note that here $\varphi \notin \Gamma$ since we assume that Refuter plays reductively. We make a further case distinction as to the nature of φ.

Case $\varphi=\mathrm{T}$. In this case $\rho \in \mathrm{PM}_{\forall}$, but since \forall has no legitimate moves, the statement in the claim about all possible continuations of ρ is vacuously true.

Case $\varphi=\perp$. Note that actually this case cannot occur since by assumption the match $\bigodot_{i \leq k} \pi_{i}$ is f-guided; hence it cannot feature a position of the form $\langle\Gamma, \perp\rangle$ where Builder would get stuck.

Case $\varphi=\varphi_{0} \vee \varphi_{1}$. Builder's strategy f at the partial match $\left(\bigodot_{i<k} \pi_{i}\right) \odot \pi_{k}^{\prime}$ (of which the last position is $\left.\operatorname{last}\left(\pi_{k}^{\prime}\right)=\langle\Gamma, \varphi\rangle\right)$ informs her which one of the disjuncts of φ to pick. Say that f prescribes to pick the disjunct φ_{i}, moving in \mathcal{T} to position $\Gamma \cup\left\{\varphi_{i}\right\}$, then in the evaluation game \exists extends the partial match ρ to $\rho^{+}:=\rho \cdot \varphi_{i}$.
Now observe that by definition of states, the sequence $\pi_{k}^{\prime} \cdot \Gamma, \varphi_{i}$ is an initial segment of π_{k}. It is then straightforward to verify that ρ^{+}is safe - the main observation is that its final part $\left(\rho_{k}^{+}\right)_{L}$ is obviously a trace on $\pi_{k}^{\prime} \cdot \Gamma, \varphi_{i}$.

The remaining non-modal cases are left as exercises for the reader.
We now consider the case where φ is modal. Since π_{k} features no modal positions, any modal formula, once present at some sequent position on π_{k}, will passively remain present until the final position of π_{k} is reached. Consequently, we may, without loss of generality, assume that $\pi_{k}^{\prime}=\pi_{k}$. Recall that the final position of π_{k} must be a sequent position, say, $\Sigma:=\operatorname{last}\left(\pi_{k}\right)$, and that we have $\varphi \in \Sigma$. We now make a further case distinction as to whether φ is a box- or a diamond formula.

Case $\varphi=\diamond \psi$. In this case we have to find, in the evaluation game, a successor s^{+}of s for \exists, and we look for inspiration at the tableau game. That is, suppose that in $\mathcal{T} @ \Phi$, at position Σ, Refuter picks $\diamond \psi$ as the next principal formula, that is, he extends π to the match $\pi \cdot\langle\Gamma, \diamond \psi\rangle$, where $\Gamma:=\Sigma \backslash\{\diamond \psi\}$. The next position in the tableau game is then fixed as $\Theta:=\square^{-1} \Gamma \cup\{\psi\}$, extending π to $\pi \cdot\langle\Gamma, \diamond \psi\rangle \cdot \Theta$.

Now let λ_{k+1} some locally exhaustive match starting at position Θ, and such that $\odot\left(\pi_{i}\right)_{i \leq k+1}$ is an f-guided match of $\mathcal{T} @ \Phi$, where $\pi_{k+1}:=\langle\Gamma, \diamond \psi\rangle \cdot \lambda_{k+1}$. Define $s^{+}:=$ $\left(\pi_{i}\right)_{i \leq k+1}$, then it is straightforward to verify that $\left(s, s^{+}\right) \in R_{f}$, and so \exists is allowed to pick s^{+}as the required successor of s in \mathcal{E}. Furthermore, it is immediate by the definitions that $\rho^{+}:=\rho \cdot\left(\psi, s^{+}\right)$is a safe extension of ρ.

Case $\varphi=\square \psi$. Finally then assume that in \mathcal{E}, \forall picks some successor t of s. By definition of R_{f}, with $s=\left(\pi_{i}\right)_{i \leq k}$, the state t must be of the form $t=\left(\pi_{i}\right)_{i \leq k+1}$, where for some diamond formula $\diamond \chi \in \Sigma=\operatorname{last}\left(\pi_{k}\right)$, we have $\operatorname{first}\left(\pi_{k+1}\right)=(\Sigma \backslash\{\diamond \chi\}, \diamond \chi)$. Write $\pi_{k+1}=(\Sigma \backslash\{\diamond \chi\}, \diamond \chi) \cdot \lambda_{k+1}$, then λ_{k+1} is a locally exhaustive match; and writing $\Theta:=\operatorname{first}\left(\lambda_{k+1}\right)$, it must be the case that $\Theta=\square^{-1}(\Sigma \backslash\{\diamond \chi\}) \cup\{\psi\}=\square^{-1} \Sigma \cup\{\psi\}$.
But as we already saw, we have $\varphi=\square \psi \in \Sigma$, so that we find $\psi \in \Theta$. In other words, we have shown that the extension $\rho^{+}:=\rho \cdot(\psi, t)$ of ρ is safe indeed.

This finishes the proof of the claim.

To see why Claim 1 suffices to prove (49), consider an arbitrary full match ρ of \mathcal{E}, where \exists plays the strategy suggested by the claim. If ρ is finite then it is obvious that \exists is the winner, since it is an immediate consequence of the claim that she will not get stuck.

Now consider the case where ρ is infinite. It follows by guardedness that there is a unique way of splitting up ρ as $\rho=\bigodot_{i<\omega} \rho_{i}$, such that $\operatorname{last}\left(\rho_{0}\right)$, $\operatorname{last}\left(\rho_{1}\right), \ldots$ are the modal positions on ρ. Furthermore, since \exists maintained the safety conditions throughout the match, with each $k<\omega$ we may associate a position $s_{k}=\left(\pi_{i}\right)_{i \leq k}$ such that $\bigodot_{i \leq k} \pi_{i}$ is an f-guided match of $\mathcal{T} @ \Phi$, and for all $i<k,\left(\rho_{i}\right)_{L}$ is a trace on π_{i}. It is then not hard to see that ρ_{L} is a trace on $\bigodot_{i \leq k} \pi_{i}$, while the latter match is clearly f-guided. It follows that ρ must be a ν-trace, hence, winning for \exists in \mathcal{E}.

QED

Completeness: the general case

We now turn to the completeness proof in the general case, that is, where we no longer restrict to guarded formulas. The set-up of the proof is basically the same as in the guarded case: given a sequent Φ for which Builder has a winning strategy in the tableau game, we construct a model \mathbb{S}_{f} based on Builder's winning strategy f. In fact we would like to define the set S_{f} of states in exactly the same way as before, but we face the problem that now locally exhaustive matches are no longer necessarily finite. As a consequence, given a tuple $s=\left(\pi_{i}\right)_{i \leq k}$ of such matches, we can no longer concatenate the π_{i} 's, leave alone require that such a concatenation is an f-guided \mathcal{T}-match. As a solution to this problem we define, for each infinite match π a finite representation $\widetilde{\pi}$. We require this finite representation to be an initial segment of π which is long enough to cover, in a sense to be made precise, all finite traces on π. As our states we can then take those tuples $s=\left(\pi_{i}\right)_{i \leq k}$ for which the sequence $\pi_{s}:=\left(\widetilde{\pi}_{i}\right)_{i<k} \cdot \pi_{k}$ is an f-guided \mathcal{T}-match.

To define the operation $\mathcal{\sim}$ that provides a finite representation of π, we need some preparations. Recall that we write $\tau: \varphi \rightarrow_{C} \psi$ if τ is a finite trace such that $\operatorname{first}(\tau)=\varphi$ and $\operatorname{last}(\tau)=\psi$. In case τ passes a fixpoint formula, we write $\tau: \varphi \rightarrow{ }_{C}^{\xi} \psi$, where $\xi=\operatorname{msf}(\tau)$ is the most significant formula on τ, and if there is no such fixpoint formula, we write $\tau: \varphi \rightarrow_{C}^{o} \psi$.

Definition 7.31 Let τ and τ^{\prime} be two traces. We say that τ and τ^{\prime} are interchangeable, notation: $\tau \sim \tau^{\prime}$, if we have both $\tau: \varphi \rightarrow{ }_{C}^{\alpha} \psi$ and $\tau^{\prime}: \varphi \rightarrow{ }_{C}^{\alpha} \psi$ for some $\alpha \in C l(\varphi) \cup\{o\}$. \triangleleft

In words, τ and τ^{\prime} are interchangeable if $\operatorname{first}(\tau)=\operatorname{first}\left(\tau^{\prime}\right)$ and $\operatorname{last}(\tau)=\operatorname{last}\left(\tau^{\prime}\right)$, and either both τ and τ^{\prime} pass some fixpoint formula and $\operatorname{msf}(\tau)=\operatorname{msf}\left(\tau^{\prime}\right)$, or neither τ nor τ^{\prime} passes a fixpoint formula. The name given to the interchangeability relation is inspired by the following proposition. We omit its proof, which is a fairly straightforward manipulation of the definitions.

Proposition 7.32 Let $\tau=\bigodot_{n<\omega} \tau_{n}$ and $\tau^{\prime}=\bigodot_{n<\omega} \tau_{n}^{\prime}$ be two infinite traces such that $\tau_{n} \sim \tau_{n}^{\prime}$ for all n. Then τ and τ^{\prime} have the same type, that is, for $\eta \in\{\mu, \nu\}$ it holds that τ is an η-trace iff τ^{\prime} is an η-trace.

Obviously, the interchangeability relation, restricted to formulas in the closure of some fixed set Φ, is an equivalence relation of finite index.

Definition 7.33 Let $\lambda=\left(\Sigma_{n} \cdot\left\langle\Gamma_{n}, \zeta_{n}\right\rangle\right)_{n<\omega}$ be an infinite (and hence) locally exhaustive match. Let $\operatorname{MFor}(\lambda)$ and $\operatorname{LFor}(\lambda)$ be, respectively, the sets of modal and literal formulas occurring in some sequent on λ, and let $\operatorname{Tr}_{l m}(\lambda)$ be the set of traces on π that end at a literal or modal formula. For $\tau \in \operatorname{Tr}_{l m}(\lambda)$, fix $\widetilde{\tau}$ as some trail of minimal length on λ such that $\widetilde{\tau} \sim \tau$.

Let $\widetilde{\lambda}$ be the shortest initial segment of λ which is long enough to carry every trace in $\left\{\widetilde{\tau} \mid \tau \in \operatorname{Tr}_{l m}(\lambda)\right\}$ from beginning to end. For any match of the form $\pi=\langle\Gamma, \varphi\rangle \cdot \lambda$, we will write $\widetilde{\pi}:=\langle\Gamma, \varphi\rangle \cdot \widetilde{\lambda}$. We shall refer to $\widetilde{\lambda}$ and $\widetilde{\pi}$ as the finite representation of λ (respectively, of π).

Arguing for the correctness of this definition, our point is that, due to the relation \sim having finite index, the set $\left\{\widetilde{\tau} \mid \tau \in \operatorname{Tr}_{l m}(\lambda)\right\}$ is finite. From this it follows that $\widehat{\lambda}$ is well-defined, and in fact, finite.
We are now ready to prove the completeness of the tableau game for arbitrary sequents.
Proposition 7.34 (Completeness (general case)) Let Φ be some $\mu \mathrm{ML}$-sequent. If Builder has a winning strategy in the tableau game $\mathcal{T} @ \Phi$, then Φ is satisfiable.

Proof. Let Φ be as in the statement of the theorem. As in the guarded case, we will define a model $\mathbb{S}_{f}=\left(S_{f}, R_{f}, V_{f}\right)$ in which we will subsequently show Φ to be satisfiable.

As announced, a state of \mathbb{S}_{f} will be any tuple of the form

$$
s=\left(\pi_{i}\right)_{0 \leq i \leq k},
$$

provided that $\pi_{s}:=\bigodot_{i \leq k} \widetilde{\pi}_{i}$ is an f-guided match, π_{0} is a locally exhaustive match starting at Φ, and for each $i>\overline{0}, \pi_{i}$ is a match of the form $\pi_{i}=\left\langle\Gamma_{i}, \diamond \varphi_{i}\right\rangle \cdot \lambda_{i}$ where λ_{i} is a locally exhaustive match. For the accessibility relation R_{f} we take

$$
R_{f}:=\left\{\left(\left(\pi_{i}\right)_{i \leq k},\left(\pi_{i}\right)_{i \leq k+1}\right) \mid\left(\pi_{i}\right)_{i \leq k},\left(\pi_{i}\right)_{i \leq k+1} \in S_{f}\right\}
$$

and the valuation V_{f} is given by

$$
V_{f}(p):=\left\{\left(\pi_{i}\right)_{i \leq k} \mid p \in \operatorname{last}\left(\widetilde{\pi}_{k}\right\} .\right.
$$

Observe that, in the case of guardedness we find that $\tilde{\lambda}=\lambda$; from this it follows that the two definitions coincide, which justifies our use of the same notation.

As before, let s_{0} be the one-item tuple in S_{f} corresponding with some \mathcal{T}-match starting from the position Φ. Our goal will be to show that

$$
\begin{equation*}
\mathbb{S}_{f}, s_{0} \Vdash \Phi \tag{50}
\end{equation*}
$$

As in the guarded case, for the proof of (50), we will provide \exists with a winning strategy \widetilde{f} in the evaluation game $\mathcal{E}:=\mathcal{E}\left(\Phi, \mathbb{S}_{f}\right) @\left(\xi, s_{0}\right)$ for some arbitrary but fixed formula $\xi \in \Phi$, and we will show that she can maintain the following notion of safety during any \widetilde{f}-guided \mathcal{E}-match.

Consider an arbitrary \mathcal{E}-match ρ ending at position (φ, s). Then, focussing on the modal positions in ρ, there is a unique way of writing $\rho=\rho_{0} \cdot \ldots \cdot \rho_{k-1} \cdot \rho_{k}$, such that
$\operatorname{last}\left(\rho_{0}\right), \ldots, \operatorname{last}\left(\rho_{k-1}\right)$ are the only modal positions on ρ. Similarly, there is a unique way of writing $s=\left(\pi_{i}\right)_{i<k^{\prime}}$ as in the definition of states given above; here for $i>0$ we will write $\pi_{i}=\left\langle\Gamma_{i}, \diamond \varphi_{i}\left\langle\cdot \lambda_{i}\right.\right.$. We call ρ safe if $k=k^{\prime}$ and, for all $i<k, \widetilde{\left(\rho_{i}\right)_{L}}$ is a trace on $\widetilde{\pi}_{i}$, and $\left(\rho_{k}\right)_{L}$ is a trace on some initial segment of π_{k}. Note that from this it follows that $\widetilde{\left(\rho_{i}\right)_{L}} \cdot \ldots \cdot \widetilde{\left(\rho_{k-1}\right)_{L}} \cdot\left(\rho_{k}\right)_{L}$ is a trace on π_{s}.

The key claim in this version of the completeness proof is the following.
Claim 1 Let ρ be some safe partial match of \mathcal{E}. If $\rho \in \mathrm{PM}_{\exists}$ then \exists has an legitimate move such that the resulting partial match is safe, and if $\rho \notin \mathrm{PM}_{\exists}$ all possible continuations of ρ are safe.

Proof of Claim The proof of this claim is very similar to that of the corresponding statement in the guarded case. Let (φ, s) be the last position of ρ, and let $\rho_{0}, \ldots, \rho_{k}$ and π_{0}, \ldots, π_{k} be the respective matches of \mathcal{E} and \mathcal{T} that witness the safety of ρ.

By the safety condition, the final segment ρ_{k} of ρ is a trace on some initial segment π_{k}^{\prime} of π_{k}. The key innovative aspect in the current proof is the following. By the definition of a state, the sequence $\pi_{s}:=\bigodot_{i<k} \widetilde{\pi}_{i}$ is a match which has π_{k} as its tail; moreover, π_{s} is f-guided, so that we may use it to define \exists 's strategy in \mathcal{E}.

For a proof of the claim, we make a case distinction as to the nature of φ. We only cover the cases where φ is a disjunction or a diamond formula.

Case $\varphi=\varphi_{0} \vee \varphi_{1}$. Since π_{k} is a locally exhaustive match, we may without loss of generality assume that φ is the principal formula of π_{k}^{\prime}, that is, last $\left(\pi_{k}^{\prime}\right)$ is of the form $\langle\Gamma, \varphi\rangle$ (and π_{k}^{\prime} is a proper initial segment of π_{k}). Builder's strategy f at the partial match π_{s} (of which the last position is $\operatorname{last}\left(\pi_{k}^{\prime}\right)=\langle\Gamma, \varphi\rangle$) informs her to pick one of the disjuncts of φ, say, φ_{i}. She now picks the same disjunct in the evaluation game, extending the match to $\rho^{+}:=\rho \cdot\left(\varphi_{i}, s\right)$. It is completely straightforward to verify that this is indeed a safe continuation of ρ.

In the case where φ is a modal formula, the key step is the following. Up to this moment we have been exclusively working with the entire match π_{k}, and the entire trace ρ_{k}, being the final part of the \mathcal{E}-match ρ. Since we are about to make a modal move, the trace $\tau_{k}:=\widetilde{\rho_{k}}$, and the finite representative $\widetilde{\pi_{k}}$ of π_{k} now come into the picture. Note that by definition of τ_{k} we have $\tau_{k} \sim \rho_{k}$, and that by definition of $\widetilde{\pi_{k}}$, this τ_{k} is actually a trace on $\widetilde{\pi_{k}}$. Furthermore, since $\widetilde{\pi_{k}}$ is an initial segment of π_{k}, it is immediate that the sequence $\bigodot_{i \leq k} \widetilde{\pi}_{i}$, being an initial segment of the f-guided $\mathcal{T} @ \Phi$-match $\pi_{s}=\left(\bigodot_{i<k} \widetilde{\pi_{i}}\right) \cdot \pi_{k}$, is itself an f-guided $\mathcal{T} @ \Phi$-match as well. Finally, observe that $\operatorname{last}\left(\tau_{k}\right)=\operatorname{last}\left(\rho_{k}\right)=\operatorname{last}(\rho)=\varphi$; so, since φ is modal and τ_{k} is a trace on $\widetilde{\pi_{k}}$, this means that we find $\varphi \in \Sigma$, where the sequent Σ is the last position of π_{k}.

Case $\varphi=\diamond \psi$. In this case we have to find, in the evaluation game, a successor s^{+}of s for \exists, and we look for inspiration at the tableau game. That is, suppose that in $\mathcal{T} @ \Phi$, at position $\Sigma=\operatorname{last}\left(\widetilde{\pi_{k}}\right)$, Refuter picks $\diamond \psi$ as the next principal formula, that is, he extends the \mathcal{T}-match $\bigodot_{i \leq k} \widetilde{\pi}_{i}$ to $\left(\bigodot_{i \leq k} \widetilde{\pi}_{i}\right) \cdot\langle\Gamma, \diamond \psi\rangle$, where $\Gamma:=\Sigma \backslash\{\diamond \psi\}$. The next position in the tableau game is then fixed as $\Theta:=\square^{-1} \Gamma \cup\{\psi\}$, extending the \mathcal{T}-match further to $\left(\bigodot_{i \leq k} \widetilde{\pi_{i}}\right) \cdot\langle\Gamma, \diamond \psi\rangle \cdot \Theta$.

Now let λ_{k+1} and $\pi_{k+1}:=\langle\Gamma, \diamond \psi\rangle \cdot \lambda_{k+1}$ be such that λ_{k+1} is some locally exhaustive match starting at position Θ, and $\left(\bigodot_{i \leq k} \widetilde{\pi}_{i}\right) \cdot \pi_{k+1}$ is an f-guided match of $\mathcal{T} @ \Phi$. Define $s^{+}:=\left(\pi_{i}\right)_{i \leq k+1}$, then it is straightforward to verify that $\left(s, s^{+}\right) \in R_{f}$, and so \exists is allowed to pick s^{+}as the required successor of s in \mathcal{E}. Furthermore, it is immediate by the definitions that $\rho^{+}:=\rho \cdot\left(\psi, s^{+}\right)$is a safe extension of ρ.

We leave the case where $\varphi=\square \psi$ as an exercise for the reader.
Let \widetilde{f} be any strategy in \mathcal{E} as suggested by the claim, and let ρ be any \widetilde{f}-guided full match of \mathcal{E}. In order to show that \exists is the winner of ρ, we distinguish cases. First of all, it is an immediate consequence of the Claim that \exists always has a move available if it is her turn, and so she never gets stuck.

Hence, we may restrict attention to the case where ρ is infinite. For starters, note that every finite initial segment of ρ is safe. We make a further case distinction, as to the number of modal positions in ρ (that is, positions (φ, s) where $\varphi=\odot \psi$ for some modality \bigcirc).

- The case where ρ passes only finitely many modal positions is left as an exercise for the reader.

The interesting case is where ρ passes infinitely many modal positions; in this case there is a unique way of writing $\rho=\bigodot_{k<\omega} \rho_{k}$, where $\left(\operatorname{last}\left(\rho_{k}\right)\right)_{k<\omega}$ is the sequence of modal positions on ρ. Write $\operatorname{last}\left(\rho_{k}\right)=\left(\varphi_{k}, s_{k}\right)$, then we may define $\left(\pi_{k}\right)_{k<\omega}$ such that $s_{k}=\left(\pi_{i}\right)_{i \leq k}$ for all k. It easily follows from the definitions of S_{f} and R_{f} that the sequence $\bigodot_{k<\omega} \widetilde{\pi_{k}}$ is in fact an f-guided $\mathcal{T} @ \Phi$-match. But since every finite initial segment of ρ is safe, it easily follows that for each k, the trace $\tau_{k}:=\widetilde{\left(\rho_{k}\right)_{L}}$ is a trace on $\widetilde{\pi_{k}}$. It then follows that the trace $\tau:=\bigodot_{k<\omega} \tau_{k}$ is a trace on $\bigodot_{k<\omega} \widetilde{\pi_{k}}$, and hence, a ν-trace. It also follows that $\tau_{n} \sim\left(\rho_{k}\right)_{L}$, for each $k<\omega$, and so ρ must also be a ν-trace by Proposition 7.32.

This finishes the proof of (50), and hence, that of the proposition.
QED

Exercises

Exercise 7.1 Show that weakening is an admissible rule
Exercise 7.2 for guarded formulas, any reductive strategy suffices to prove completeness
Exercise 7.3 Show that Refuter may always restrict to a reductive strategy. That is, ...

Exercise 7.4 Show that for guarded formulas, we may fix the order in which Refuter picks formulas. Does this also hold in general?

7.3 Decidability of the satisfiability problem

7.4 Disjunctive normal forms via streamlined tableaux
7.5 A cut-free proof system
7.6 Other derivation systems

9 Modal automata

9.1 Introduction

In this chapter we introduce and discuss the automata that we shall use to study the modal μ-calculus. These automata come in various shapes and types, but they all operate on the same type of structures, namely pointed Kripke structures, or transition systems.

The basic idea is that automata can be seen as alternatives to formulas. In particular, an automaton \mathbb{A} will either accept of reject a given pointed Kripke model, and thus it can be compared to a formula ξ, which will either be true or false at a point in a Kripke model. This inspires the following definition.

Definition 9.1 Let \mathbb{A} be an automaton, and assume that we have defined the notions of acceptance and rejection of a pointed Kripke model by such an automaton. In case \mathbb{A} accepts the pointed Kripke structure (\mathbb{S}, s) we write $\mathbb{S}, s \Vdash \mathbb{A}$, and rejection of (\mathbb{S}, s) by \mathbb{A} is denoted as $\mathbb{S}, s \nVdash \mathbb{A}$. The class of pointed Kripke models that are accepted by a given automaton \mathbb{A} is denoted as $\mathcal{Q}(\mathbb{A})$, and we will sometimes refer to $\mathcal{Q}(\mathbb{A})$ as the class or query that is recognized by \mathbb{A}. Two automata \mathbb{A} and \mathbb{A}^{\prime} are equivalent, notation: $\mathbb{A} \equiv \mathbb{A}^{\prime}$, if $\mathcal{Q}(\mathbb{A})=\mathcal{Q}\left(\mathbb{A}^{\prime}\right)$.

We say that a formula ξ is equivalent to \mathbb{A}, notation: $\xi \equiv \mathbb{A}$, if $\mathbb{S}, s \Vdash \xi$ iff \mathbb{A} accepts (\mathbb{S}, s), for every pointed Kripke model (\mathbb{S}, s).

All our automata will be of the form $\mathbb{A}=\left\langle A, \Theta, A c c, a_{I}\right\rangle$ where A is a finite set of states, $A c c \subseteq A^{\omega}$ is the acceptance condition (usually given by a parity map Ω), $a_{I} \in A$ is the starting state of the automaton, and the transition map Θ has as its domain the set $A \times C$, where $C=\wp(\mathrm{P})$ is the set of colors over some set P of proposition letters. We will almost exclusively work with automata that are themselves logic-based, in the sense that the co-domain of Θ is some logical language consisting of relatively simple one-step formulas over the carrier set A of the automata. In other words, the states in A will play a double role as propositional variables.

For each type of automaton that we will encounter, the question whether such a device accepts or rejects a given pointed Kripke model (\mathbb{S}, s) is determined by playing some kind of infinite board game that we call the acceptance game associated with the automaton and the Kripke structure. This game will always proceed in rounds, each of which starts and ends at a so-called basic position $(a, s) \in A \times S$, and consists of the two players, \exists and \forall, moving a token via some intermediate position(s) to a new basic position. For a rough, intuitive understanding of the acceptance game, the reader may think of \exists claiming, at a basic position (a, s), that the automaton \mathbb{A}, taken from the perspective a, is a good 'description' of the pointed structure (\mathbb{S}, s).

The rules of the game are determined by the precise shape of the transition function Θ, and in each case will be given explicitly. The winning conditions of the acceptance game are fixed. Finite matches, as always, are lost by the player who got stuck. The winner of an infinite match Σ is always determined by applying the acceptance condition Acc to the infinite A-stream $a_{I} a_{1} a_{2} \cdots$ which is induced by the sequence $\left(a_{I}, s\right)\left(a_{1}, s_{1}\right)\left(a_{2}, s_{2}\right) \cdots$ of basic positions occurring in Σ. The definition of acceptance is also fixed: the automaton \mathbb{A} accepts
the pointed Kripke model (\mathbb{S}, s) precisely if the pair $\left(a_{I}, s\right)$ is a winning position for \exists in the acceptance game.

To understand the connections between the various kinds of automata, it is good to understand how one round of the game takes a match from one basic position (a_{i}, s_{i}) to the next $\left(a_{i+1}, s_{i+1}\right)$. In principle, it is \exists 's task to propose a set $Z_{i} \subseteq A \times S$ of witnesses that substantiate her claim that the automaton \mathbb{A}, taken from the perspective a_{i}, is a good description of the pointed model $\left(\mathbb{S}, s_{i}\right)$. Then it is \forall who picks the new basic position $\left(a_{i+1}, s_{i+1}\right)$ as an element of the set Z_{i}. In fact, all acceptance games featuring in this chapter could be formulated in such a way that these are exactly the moves that players can make. However, we will usually take a slightly different perspective on the witness relation. In particular, since we are often thinking of A as a set of propositional variables, it will make sense to represent a relation $Z \subseteq A \times S$ as either a valuation $V_{Z}: A \rightarrow \wp S$ or as a marking or coloring $m_{Z}: S \rightarrow \wp A$, defined by putting, respectively,

$$
\begin{aligned}
V_{Z}(a) & :=\{s \in S \mid(a, s) \in Z\} \\
m_{Z}(s) & :=\{a \in A \mid(a, s) \in Z\} .
\end{aligned}
$$

As already mentioned, the automata that we shall meet here come in various shapes, and they can be classified in many ways. One crucial distinction to make is that between alternating and non-deterministic automata. Where the generic modal automaton that we will introduce here is of the alternating type, many results on the modal μ-calculus are proved using the subclass of non-deterministic automata, where the transition map is of a conceptually simpler kind. What makes an automaton nondeterministic is the interaction pattern between the two players in the acceptance game: when the automaton is non-deterministic, a winning strategy for \exists should in principle (but depending on the branching structure of the transition system) reduce the role of \forall to that of a path finder in the model.

- For the time being we restrict attention to the mono-modal case.

9.2 Modal automata

Modal automata are based on the modal one-step language. This language consists of very simple modal formulas, built up from a collection A of propositional variables, corresponding to the bound variables of a formula.

Definition 9.2 Given a set X, we define the set Latt (X) of lattice terms over X through the following grammar:

$$
\pi::=\perp|\top| x|\pi \wedge \pi| \pi \vee \pi,
$$

where $x \in X$. Given a set A, we define the set $1 \mathrm{ML}(A)$ of modal one-step formulas over A by the following grammar:

$$
\alpha::=\perp|\top| \diamond \pi|\square \pi| \alpha \wedge \alpha \mid \alpha \vee \alpha,
$$

with $\pi \in \operatorname{Latt}(A)$.

Examples of one-step formula are $\diamond(a \wedge b)$ or $\square \perp \vee(\diamond a \wedge \square b)$. Observe that the set of modal one-step formulas over A corresponds to the set of lattice terms over the set $\{\diamond \pi, \square \pi \mid$ $\pi \in \operatorname{Latt}(A)\}$. Observe too that every occurrence of an element of A must be positive, and in the scope of exactly one modality.

Definition 9.3 A modal P -automaton \mathbb{A} is a quadruple $\left(A, \Theta, \Omega, a_{I}\right)$ where A is a non-empty finite set of states, of which $a_{I} \in A$ is the initial state, $\Omega: A \rightarrow \omega$ is the priority map, and the transition map

$$
\Theta: A \times \wp \mathrm{P} \rightarrow 1 \mathrm{ML}(A)
$$

maps states to one-step formulas. The class of modal automata over the set P is denoted as Autp(1ML).

The operational semantics of modal automata is defined in terms of a so-called acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ associated with a modal automaton \mathbb{A} and a Kripke structure \mathbb{S}. \exists 's moves in this game will consist of 'local' valuations for the propositional variables in A, or rather, markings $m: S \rightarrow \wp A$. Such a marking turns a Kripke model over P into a Kripke model over the set $\mathrm{P} \cup A$.

Throughout this chapter we will represent a Kripke model (S, R, V) coalgebraically as a triple $\left(S, R, \sigma_{V}\right)$ where we think of the binary relation R as a map $R: S \rightarrow \wp(S)$, and represent the valuation $V: \mathrm{P} \rightarrow \wp(S)$ as its transpose colouring $\sigma_{V}: S \rightarrow \wp(\mathrm{P})$.

Definition 9.4 Let P and A be disjoint sets of proposition letters and propositional variables, respectively. Given a Kripke model $\mathbb{S}=\left(S, R, \sigma_{V}\right)$ over the set P , and an A-marking $m: S \rightarrow$ $\wp A$, we let $\mathbb{S} \oplus m$ denote the Kripke model $\left(S, R, \sigma_{V} \cup m\right)$, where $\sigma_{V} \oplus m$ is the marking given by $\sigma_{V} \oplus m(s):=\sigma_{V}(s) \cup m(s)$.

Definition 9.5 The acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ associated with such an automaton \mathbb{A} and a pointed Kripke model (\mathbb{S}, s) is the parity game that is determined by the rules given in Table 18. Positions of the form $(a, s) \in A \times S$ are called basic.

Position	Player	Admissible moves	Priority
$(a, s) \in A \times S$	\exists	$\left\{m: S \rightarrow \wp A \mid \mathbb{S} \oplus m, s \Vdash \Theta\left(a, \sigma_{V}(s)\right)\right\}$	$\Omega(a)$
$m: S \rightarrow \wp A$	\forall	$\{(b, t) \mid b \in m(t)\}$	0

Table 18: Acceptance game for modal automata

As explained in the introduction to this chapter, matches of the acceptance game proceed in rounds, moving from one basic position to the next. During a round of the game, the players are inspecting a local 'window' into the Kripke model, by means of a one-step formula. Concretely, at the start of a round, \exists 's task at a basic position (a, s) is to satisfy the onestep formula $\Theta\left(a, \sigma_{V}(s)\right)$ at the state s in \mathbb{S}. For this purpose, she has to come up with a interpretation for the variables in A, since this is not provided by the valuation V of \mathbb{S}. More specifically, \exists has to select a marking $m: S \rightarrow \wp A$, in such a way that the formula $\Theta\left(a, \sigma_{V}(s)\right)$
becomes true at s in the model $\mathbb{S} \oplus m$ (as given in Definition 9.4). Once \exists has made her choice, it is \forall 's turn; he needs to pick a new basic position from the witness set $\{(b, t) \mid b \in m(t)\}$.

Observe that both players could get stuck in such a match. For instance, it might be impossible for \exists to satisfy the formula $\Theta\left(a, \sigma_{V}(s)\right)$ at the state s, because the formula requires s to have successors where it has none. Alternatively, if \exists could pick the empty marking m at a position (a, s), then she would immediately win the match since \forall would get stuck.

- examples of modal automata

Remark 9.6 Note that it is in \exists 's interest to keep, at any basic position (s, a) of the acceptance game, the set of witnesses as small as possible. More precisely, if at some position (a, s) of the game, \exists has two admissible markings, say, m and m^{\prime}, at her disposal, and these are such that $Z_{m}:=\{(b, t) \in S \times A \mid b \in m(t)\} \subseteq Z_{m^{\prime}}:=\left\{(b, t) \in S \times A \mid b \in m^{\prime}(t)\right\}$, then it will always be to her advantage to choose the marking m rather than m^{\prime}. In particular, since all occurrences of propositional variables from A in one-step formulas must be in the scope of exactly one modality, to satisfy such a formula at a given point s of the model, the only points that matter are the successors of s. For these reasons, we may without loss of generality restrict the admissible moves of \exists at a position (a, s) of the acceptance game to those markings m of which the domain is the collection of successors of current point s. In section 9.4 we will work out this perspective.

Convention 9.7 We will usually identify a match $\Sigma=\left(a_{0}, s_{0}\right) m_{0}\left(a_{1}, s_{1}\right) m_{1}\left(a_{2}, s_{2}\right) m_{2} \ldots$ of the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ with the sequence $\left(a_{0}, s_{0}\right)\left(a_{1}, s_{1}\right)\left(a_{2}, s_{2}\right) \ldots$ of its basic positions.

Some basic concepts concerning modal automata are introduced in the following definition.
Definition 9.8 Fix a modal P-automaton $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$.
Given a state a of \mathbb{A}, we write $\eta_{a}=\mu$ if $\Omega(a)$ is odd, and $\eta_{a}=\nu$ if $\Omega(a)$ is even; we call η_{a} the (fixpoint) type of a and say that a is an η_{a}-state. The sets of μ - and ν-states are denoted with A^{μ} and A^{ν}, respectively.

The occurrence graph of \mathbb{A} is the directed graph $\left(G, E_{\mathbb{A}}\right)$, where $E_{\mathbb{A}} a b$ if b occurs in $\Theta(a, c)$ for some $c \in \wp(\mathrm{P})$. We let $\triangleleft_{\mathbb{A}}$ denote the transitive closure of the converse relation $E_{\mathbb{A}}^{-1}$ of $E_{\mathbb{A}}$ and say that b is active in a if $b \triangleleft_{\mathbb{A}} a$. We write $a \bowtie_{\mathbb{A}} b$ if $a \triangleleft_{\mathbb{A}} b$ and $b \triangleleft_{\mathbb{A}} a$. A cluster of \mathbb{A} is a cell of the equivalence relation generated by $\bowtie_{\mathbb{A}}$ (i.e., the smallest equivalence relation on A containing $\bowtie_{\mathbb{A}}$); a cluster C is degenerate if it is of the form $C=\{a\}$ with $a \not \bowtie_{\mathbb{A}} a$. The unique cluster to which a state $a \in A$ belongs is denoted as C_{a}. We write $a \sqsubset_{\mathbb{A}} b$ if $\Omega(a)<\Omega(b)$, and $a \sqsubseteq_{\mathbb{A}} b$ if $\Omega(a) \leq \Omega(b)$.

An alternating Ω-chain of lenth k in \mathbb{A} is a sequence $a_{0} a_{1} \cdots a_{k}$ of states that all belong to the same cluster and satisfy, for all $i<k$, that $\Omega\left(a_{i}\right)<\Omega\left(a_{i+1}\right)$ while a_{i} and a_{i+1} have different parity.

The following proposition is immediate by the definitions.
Proposition 9.9 Let $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$ and $\mathbb{A}^{\prime}=\left\langle A, \Theta^{\prime}, \Omega, a_{I}\right\rangle$ be two modal automata such that $\Theta(a, c) \equiv \Theta^{\prime}(a, c)$ for each $a \in A$ and $c \in \wp(P)$. Then $\mathbb{A} \equiv \mathbb{A}^{\prime}$.

Remark 9.10 Another way of defining the semantics of modal automata is via the 'slow' acceptance game of Table 19, which is perhaps closer to the evaluation games of the modal μ calculus. In this set-up, at a basic position $(a, s) \exists$ does not have to come up with a marking m, but rather, the state a is 'unfolded' into the formula $\Theta\left(a, \sigma_{V}(s)\right)$, and the two players engage in a little sub-game in order to determine whether $\Theta\left(a, \sigma_{V}(s)\right)$ is true at s or not. At the end of this sub-game, unless one of the players got stuck, the match arrives at another basic position. We leave it as an exercise for the reader to check that the two games are in fact equivalent.

Position	Player	Admissible moves	Priority
$(a, s) \in A \times S$	-	$\left\{\left(\Theta\left(a, \sigma_{V}(s)\right), s\right)\right\}$	$\Omega(a)$
(\top, s)	\forall	\varnothing	0
(\perp, s)	\exists	\varnothing	0
$(\diamond \pi, s)$	\exists	$\{(\pi, t) \mid t \in R(s)\}$	0
$(\square \pi, s)$	\forall	$\{(\pi, t) \mid t \in R(s)\}$	0
$\left(\varphi_{0} \vee \varphi_{1}, s\right)$	\exists	$\left\{\left(\varphi_{0}, s\right),\left(\varphi_{1}, s\right)\right\}$	0
$\left(\varphi_{0} \wedge \varphi_{1}, s\right)$	\forall	$\left\{\left(\varphi_{0}, s\right),\left(\varphi_{1}, s\right)\right\}$	0

Table 19: Slow acceptance game for modal automata
Regarding complexity matters, we define the size of a modal automaton to get a nice fit with the (slow) acceptance game defined in Remark 9.10. In particular, this means that we cannot simply define the size of an automaton as its number of states, we have to take the transition map of the device into account as well. Note that the size $|\alpha|$ of a modal one-step α is simply defined as its number of subformulas, or, equivalently, as the size of its closure. The index of modal automata is defined in the same way as for parity formulas.

Definition 9.11 Let $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$ be a modal automaton. The size $|\mathbb{A}|$ of \mathbb{A} is defined as follows:

$$
|\mathbb{A}|:=\sum_{(a, c) \in A \times C}|\Theta(a, c)| .
$$

Its index $\operatorname{ind}(\mathbb{A})$ is given as the maximal length of an alternating Ω-chain in \mathbb{A}.
Later on this chapter we will provide effective translations transforming a μ-calculus formula into an equivalent modal automaton, and vice versa. As a corollary of this result we obtain that modal automata are bisimulation invariant - in Exercise 9.2 the reader is asked to give a direct proof.

Theorem 9.12 Let \mathbb{A} be a modal automaton.. Then for any bisimilar pair (\mathbb{S}, s) and $\left(\mathbb{S}^{\prime}, s^{\prime}\right)$ of pointed Kripke models it holds that

$$
\mathbb{S}, s \Vdash \mathbb{A} \Longleftrightarrow \mathbb{S}^{\prime}, s^{\prime} \Vdash \mathbb{A} .
$$

9.3 Disjunctive modal automata

A key tool in the study of the model μ-calculus is provided by the automata that we are about to introduce now, viz., the nondeterministic variants of the modal automata that we just met in section 9.2. The disjunctive automata, as we shall call them, are obtained by restricting the co-domain of the transition map of a modal automaton to the set of so-called disjunctive one-step formulas, which are based on the cover modality discussed in section 1.7.

Definition 9.13 Given a finite set A, we define the set $1 \mathrm{DML}(A)$ of disjunctive modal one-step formulas in A as follows

$$
\alpha::=\perp|\top| \nabla B \mid \alpha \vee \alpha
$$

where $B \subseteq A$.
A modal P-automaton $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$ is called disjunctive or non-deterministic if $\Theta(a, c) \in 1 \operatorname{DML}(A)$, for every $a \in A$ and $c \in \wp(\mathrm{P})$.

- example(s) to be supplied

Remark 9.14 As a variant of Definition 9.13, we will sometimes require that the range of the transition map Θ of a disjunctive automaton is given by the formulas of the slightly more restricted one-step language ${1 \mathrm{DML}_{r}}^{\text {given by }}$ the following grammar:

$$
\alpha::=\perp|\nabla B| \alpha \vee \alpha,
$$

where $B \subseteq A$. In other words, in this set-up every formula $\Theta(a, c)$ is a finite disjunction of nabla formulas; the difference with the language of Definition 9.13 is that here, the formula T is not allowed.

We leave it as an exercise to the reader to prove that the two versions of the definition are equivalent, in the sense that there are transformations from one type of automaton into the other.

As already mentioned, the key property making an automaton non-deterministic is that, on Kripke structure with a sufficiently nice branching structure, a winning strategy for \exists in the acceptance game should always be able to find markings that are functional. We will now make this statement more precise.

Definition 9.15 Let \mathbb{A} and \mathbb{S} be a modal automaton and a Kripke structure, respectively. A strategy f for \exists in the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ is called separating if for all partial matches Σ ending in a basic position (a, s), the marking $m_{\Sigma}: S \rightarrow \wp A$ picked by f satisfies $\left|m_{\Sigma}(t)\right| \leq 1$ for all $t \in S$, and $\left|m_{\Sigma}(t)\right|=0$ for all $t \notin \sigma_{R}(s)$.

In words, a strategy is separating if it picks markings that assign to each point in S at most one state in A, and assign the empty set to any point that is not a successor of the currently inspected point of S. For a (non-)example, consider the one-step formula $\diamond a_{0} \wedge \square a_{1}$; it should be clear that to satisfy this formula at a point s, one needs at least one successor of s where both a_{0} and a_{1} hold. This means that no separating strategy will prescribe a
legitimate move for a position of the form (a, s) if the formula that \exists needs to satisfy is $\Theta\left(a, \sigma_{V}(s)\right)=\diamond a_{0} \wedge \square a_{1}$.

Separating winning strategies have the following property, which we will put to good use in the sequel.

Definition 9.16 Let \mathbb{A} and (\mathbb{S}, r) be a modal automaton and a pointed Kripke structure, respectively. A strategy f for \exists in the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, r\right)$ is called functional if for every $s \in S$ there is at most one $a \in A$ such that the position (a, s) is reachable in an f-guided match of $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, r\right)$.

In case \exists has a functional winning strategy in the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, r\right)$, we say that \mathbb{A} strongly accepts (\mathbb{S}, r), and write $\mathbb{S}, r \Vdash_{s} \mathbb{A}$.

Proposition 9.17 Let \mathbb{A} be a modal automaton, and let (\mathbb{S}, s) be a pointed tree model. Then every separating winning strategy in the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, s\right)$ is functional.

We have now arrived at the key result about disjunctive automata.
Theorem 9.18 Let \mathbb{A} and (\mathbb{S}, r) be a disjunctive modal automaton and a pointed Kripke model, respectively. Then $\mathbb{S}, r \Vdash \mathbb{A}$ iff there is a rooted tree model $\left(\mathbb{S}^{\prime}, r^{\prime}\right)$ such that $\mathbb{S}, r \overleftrightarrow{~}$ $\left(\mathbb{S}^{\prime}, r^{\prime}\right)$ and $\mathbb{S}^{\prime}, r^{\prime} \Vdash_{s} \mathbb{A}$.

Proof of Theorem 9.18. With $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$, let $\kappa:=|A|$ be the state-size of \mathbb{A}. We leave it for the reader to construct a tree model \mathbb{S}^{\prime} with root r^{\prime}, and a bounded morphism $g: \mathbb{S}^{\prime} \rightarrow \mathbb{S}$ such that $g\left(r^{\prime}\right)=r$ and such that every $s^{\prime} \neq r^{\prime}$ in \mathbb{S}^{\prime} has at least $\kappa-1$ many siblings t^{\prime} such that $g\left(t^{\prime}\right)=g\left(s^{\prime}\right)$.

By positional determinacy we may assume that \exists has a positional strategy f in $\mathcal{A}(\mathbb{A}, \mathbb{S})$ which is winning when played from any winning position for \exists. We will use this strategy to define a separating positional winning strategy for \exists in $\mathcal{A}\left(\mathbb{A}, \mathbb{S}^{\prime}\right)$.

The key claim is the following.
Claim 1 Let $s \in S$ and $s^{\prime} \in S^{\prime}$ be such that $g\left(s^{\prime}\right)=s$, let $\alpha \in 1 \operatorname{DML}(A)$ be a one-step formula and let $m: R(s) \rightarrow \wp(A)$ be a marking such that $\mathbb{S} \oplus m, g\left(s^{\prime}\right) \Vdash \alpha$. Then there is a separating marking $m^{\prime}: R^{\prime}\left(s^{\prime}\right) \rightarrow \wp(A)$ such that $\mathbb{S}^{\prime}, s^{\prime} \Vdash \alpha$ and $m^{\prime}\left(t^{\prime}\right) \subseteq m\left(g\left(t^{\prime}\right)\right)$, for all $t^{\prime} \in R^{\prime}\left(s^{\prime}\right)$.

Proof of Claim In case α contains \top as one of its disjuncts, we simply take the empty marking for m^{\prime}, that is, we define $m^{\prime}\left(t^{\prime}\right):=\varnothing$ for every $t^{\prime} \in S^{\prime}$.

In the sequel we focus on the case where α does not contain T as one of its disjuncts (in fact this is without loss of generality, cf. Remark 9.14). It follows from the legitimacy of m, as a move for \exists in $\mathcal{A}(\mathbb{A}, \mathbb{S})$, that $\mathbb{S}, m, s \Vdash \alpha$; this means that $\mathbb{S} \oplus m, s \Vdash \nabla B$ for some disjunct ∇B of α, where $B \subseteq A$. We now consider two subcases.

If $B=\varnothing$, it follows from $\mathbb{S} \oplus m, s \Vdash \nabla B$ that $\sigma_{R}=\varnothing$; but then we also have $\sigma_{R^{\prime}}\left(s^{\prime}\right)=\varnothing$, since g is a bounded morphism. In this case we also define m^{\prime} as the empty marking.

Finally, assume that $B \neq \varnothing$; since $\mathbb{S} \oplus m, s \Vdash \nabla B$ we may without loss of generality assume that $\varnothing \neq m(t) \subseteq B$, for all $t \in \sigma_{R}(s)$. Now consider an arbitrary successor t of s. By the assumption on g there are at least κ many successors t^{\prime} of s^{\prime} such that $g\left(t^{\prime}\right)=t$, and since
$\kappa \geq|\mathbb{A}|$ this implies that there is a surjection $h: g^{-1}(t) \rightarrow m(t)$. Define $m^{\prime}: \sigma_{R^{\prime}}\left(s^{\prime}\right) \rightarrow \wp A$ by putting

$$
m^{\prime}\left(t^{\prime}\right):=\left\{h\left(t^{\prime}\right)\right\} .
$$

We leave it as an exercise for the reader to check that $\mathbb{S}^{\prime}, m^{\prime}, s^{\prime} \Vdash \nabla B$. This means that $\mathbb{S}^{\prime}, m^{\prime}, s^{\prime} \Vdash \alpha$, thus establishing that m^{\prime} is a legitimate move for \exists at position $\left(a, s^{\prime}\right)$ in $\mathcal{A}\left(\mathbb{A}, \mathbb{S}^{\prime}\right)$ indeed. Finally, it is immediate from the definition of m^{\prime} that $m^{\prime}\left(t^{\prime}\right) \subseteq m\left(g\left(t^{\prime}\right)\right)$, for all $t^{\prime} \in \sigma_{R^{\prime}}\left(s^{\prime}\right)$.

Based on Claim 1, we may provide \exists with the following positional strategy f^{\prime} in $\mathcal{A}\left(\mathbb{A}, \mathbb{S}^{\prime}\right)$. Given a position $\left(a, s^{\prime}\right)$, in case $\left(a, g\left(s^{\prime}\right)\right)$ is a winning position for \exists in $\mathcal{A}(\mathbb{A}, \mathbb{S})$, we let f^{\prime} pick a marking m^{\prime} as given by the claim, while f^{\prime} picks an random move in case $\left(a, g\left(s^{\prime}\right)\right) \notin$ $\operatorname{Win}_{\exists}(\mathcal{A}(\mathbb{A}, \mathbb{S}))$.

It is not hard to prove that for any f^{\prime}-guided (partial) match $\Sigma=\left(a_{n}, s_{n}^{\prime}\right)_{n<\lambda}$ of $\mathcal{A}\left(\mathbb{A}, \mathbb{S}^{\prime}\right)$, its g-projection $\Sigma^{g}:=\left(a_{n}, g\left(s_{n}^{\prime}\right)\right)_{n<\lambda}$ is a f-guided (partial) match of $\mathcal{A}\left(\mathbb{A}, \mathbb{S}^{\prime}\right)$. From this it is immediate that f^{\prime} is a winning strategy when played from a winning position, while it is obvious from its definition that f is separating.

QED
Further on in this chapter we will prove a Simulation Theorem, providing a construction which effectively transforms a given modal automaton into an equivalent disjunctive modal automaton.

9.4 One-step logics and their automata

Modal one-step logic

As we saw in section 9.2, modal one-step formulas provide the co-domain of the transition map of a modal automaton. The operational semantics of modal automata is given by a two-player acceptance game, and a match of this game proceeds in rounds, during which the players investigate a local window into the Kripke structure, by means of the semantics of one of these one-step formulas. It will be rewarding to introduce some terminology for this 'local window' and study the semantics of one-step formulas in some more detail. This will allow us to introduce the notion of a one-step logic and use it to generalise the notion of a modal automaton.

The crucial observation is the following. Consider a modal automaton $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$ and a Kripke model \mathbb{S}. At a basic position (a, s) of the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S}), \exists$ has to come up with a marking m which makes the one-step formula $\Theta\left(a, \sigma_{V}\right)$ true at s in the expanded model $\mathbb{S} \oplus m$. The point is that, because of the special shape of modal one-step formulas, we do not use all information on the model $\mathbb{S} \oplus m$: in fact all we need access to is the set $R[s]$ of successors of s, and the marking m. In the sequel it will convenient to present this information in the format of a one-step model, which is nothing but a set, together with a marking for the set of variables.

Definition 9.19 Fix a set A. A one-step A-model over a set Y is a pair (Y, m) such that $m: Y \rightarrow \wp(A)$ is an A-marking of the elements of Y with A-colors.

Remark 9.20 In order to deal with blind worlds (points in a Kripke model that have no successors), we need to allow one-step models with an empty domain. Observe that there is in fact exactly one such structure: the pair $(\varnothing, \varnothing)$. Apart from this exception, a one-step model is nothing but a structure in the sense of first-order model theory, for the signature consisting of a monadic predicate for each element of A. That is, we may consider the A-model (Y, m) as the structure (Y, V_{m}), simply by representing the marking m by its associated valuation V_{m} interpreting the variables as subsets of the domain Y.

Definition 9.21 The one-step satisfaction relation \Vdash^{1} between one-step models and modal one-step formulas is defined as follows. Fix a one-step model (Y, m).

First, we define the value $\llbracket \pi \rrbracket^{0}$ of a formula $\pi \in \operatorname{Latt}(A)$ by the following induction:

$$
\begin{array}{llll}
\llbracket a \rrbracket^{0} & :=V_{m}(a) \quad(=\{t \in Y \mid a \in m(t)\}) & & \\
\llbracket \top \rrbracket^{0} & :=Y & \llbracket \perp \rrbracket^{0} & :=\varnothing \\
\llbracket \pi_{0} \vee \pi_{1} \rrbracket^{0} & :=\llbracket \pi_{0} \rrbracket^{0} \cup \llbracket \pi_{1} \rrbracket^{0} & \llbracket \pi_{0} \wedge \pi_{1} \rrbracket^{0} & :=\llbracket \pi_{0} \rrbracket^{0} \cap \llbracket \pi_{1} \rrbracket^{0} .
\end{array}
$$

Sometimes we write $(Y, m), t \Vdash^{0} \pi$ in case $t \in \llbracket \pi \rrbracket^{0}$.
Second, we inductively define the one-step satisfaction relation as follows:

$$
\begin{array}{lll}
(Y, m) \Vdash^{1} \top & \\
(Y, m) \Vdash^{1} \perp & & \\
(Y, m) \Vdash^{1} \square \pi & \text { if } & \llbracket \pi \rrbracket^{0}=Y \\
(Y, m) \Vdash^{1} \diamond \pi & \text { if } & \llbracket \pi \rrbracket^{0} \cap Y \neq \varnothing \\
(Y, m) \Vdash^{1} \alpha_{0} \wedge \alpha_{1} & \text { if } & (Y, m) \Vdash^{-1} \alpha_{0} \text { and }(Y, m) \Vdash^{1} \alpha_{1} \\
(Y, m) \Vdash^{1} \alpha_{0} \vee \alpha_{1} & \text { if } & (Y, m) \Vdash^{-1} \alpha_{0} \text { or }(Y, m) \Vdash^{1} \alpha_{1}
\end{array}
$$

In case $(Y, m) \Vdash^{1} \alpha$ we say that α is true in the one-step model (Y, m).
Example 9.22 In this format, the semantics of disjunctive formulas boils down to the following, as can easily be verified, for a subset $B \subseteq A$:

$$
(Y, m) \Vdash^{1} \nabla B \text { iff } B \subseteq \bigcup\{m(y) \mid y \in Y\} \text { and } m(y) \cap B \neq \varnothing, \text { for all } y \in Y .
$$

That is, ∇B holds in a one-step model (Y, m) iff every $b \in B$ is satisfied at some $y \in Y$, and every $y \in Y$ satisfies some $b \in B$.

Furthermore, observe that the empty model will satisfy every formula of the form $\square \pi$, and no formula of the form $\diamond \pi$. We have $(Y, m) \Vdash^{1} \nabla \varnothing$ iff $Y=\varnothing$.

The following proposition, which can be proved by a straightforward induction on the complexity of one-step formulas, shows that the one-step semantics developed above is just an alternative perspective on the standard semantics of one-step formulas.

Proposition 9.23 Let $\mathbb{S}=(S, R, V)$ be a Kripke model, let s be a point in S, let $m: R[s] \rightarrow$ $\wp(A)$ be an A-marking, and let $\alpha \in 1 \mathrm{ML}(A)$ be a modal one-step formula. Then

$$
\mathbb{S} \oplus m, s \Vdash \alpha \text { iff }(R[s], m) \Vdash^{1} \alpha .
$$

Given Proposition 9.23, the acceptance game of modal automata can now be naturally defined in terms of this one-step semantics, as in Table 20.

Position	Player	Admissible moves	Priority
$(a, s) \in A \times S$	\exists	$\left\{m: R(s) \rightarrow \wp A \mid(R(s), m) \Vdash^{1} \Theta\left(a, \sigma_{V}(s)\right)\right\}$	$\Omega(a)$
m	\forall	$\{(b, t) \mid b \in m(t)\}$	0

Table 20: Acceptance game for one-step automata

General one-step logic

As we will see below, the notion of a one-step logic provides a way to generalise the concept of a modal automaton to a much wider setting.

Definition 9.24 A one-step language is a map L which assigns to any finite set A a collection $\mathrm{L}(A)$ of one-step formulas over A. This map is subject to the constraint that every map $\tau: A \rightarrow A^{\prime}$ induces a substitution or renaming $[\tau]: \mathrm{L}(A) \rightarrow \mathrm{L}\left(A^{\prime}\right)$ such that

1) $\left[i d_{A}\right]=i d_{\mathrm{L}(A)}$;
2) $\left[\tau^{\prime} \circ \tau\right]=\left[\tau^{\prime}\right] \circ[\tau]$, for any pair $\tau: A \rightarrow A^{\prime}$ and $\tau^{\prime}: A^{\prime} \rightarrow A^{\prime \prime}$;
3) $\alpha[\tau]=\alpha$ for any $\alpha \in \mathrm{L}(A)$, if $\tau: A \rightarrow A^{\prime}$ is such that $\tau(a)=a$ for all $a \in A$.

We will use postfix notation for this renaming, writing $\alpha[\tau]$ for the formula we obtain from α by renaming every variable $a \in A$ by $\tau(a) \in A^{\prime}$. For instance, where $\alpha \in 1 \mathrm{ML}(A)$ is the formula $\diamond a \wedge \square(b \vee c)$ and $\tau: A \rightarrow A^{\prime}$ satisfies $\tau(a)=\tau(c)=a^{\prime}$ and $\tau(b)=b^{\prime}$, we find $\alpha[\tau]=\diamond a^{\prime} \wedge \square\left(b^{\prime} \vee a^{\prime}\right)$. Note that it follows from the above definition that $A \subseteq A^{\prime}$ implies $\mathrm{L}(A) \subseteq \mathrm{L}\left(A^{\prime}\right)$, for any one-step language L .

Definition 9.25 A one-step logic is a pair $\left(\mathrm{L}, \Vdash^{1}\right)$ consisting of a one-step language L and an interpretation \Vdash^{1} which indicates, for every one-step A-model (Y, m) and every one-step formula $\alpha \in \mathrm{L}(A)$, whether α is true or false in (Y, m), denoted as, respectively, $(Y, m) \Vdash^{1} \alpha$ and $(Y, m) \| \Vdash^{1} \alpha$.

The interpretation \Vdash^{1} is subject to the condition of monotonicity: if $m(t) \subseteq m^{\prime}(t)$, for all $t \in Y$, then $(Y, m) \Vdash^{1} \alpha$ implies $\left(Y, m^{\prime}\right) \Vdash^{1} \alpha$, for all $\alpha \in \mathrm{L}(A)$. Furthermore, the interpretation is supposed to be well-behaved with respect to renamings, in the following sense. Observe that a map $\tau: A^{\prime} \rightarrow A$ transforms any A-valuation $V: A \rightarrow \wp(Y)$ to an A^{\prime}-valuation $V \circ \tau: A^{\prime} \rightarrow \wp(Y)$; we will require that $\left(Y, m_{V}\right) \Vdash^{1} \alpha[\tau]$ iff $\left(Y, m_{V \circ \tau}\right) \Vdash^{1} \alpha$, for any formula $\alpha \in \mathrm{L}(A)$.

We will generally be sloppy and blur the distinction between a one-step language and a one-step logic, in the understanding that the interpretation of one-step languages is generally fixed (and always clear from context).

In Definition 9.21 we introduced the one-step perspective on modal logic. As a different, particularly interesting example of a one-step logic, we may consider two versions of monadic first-order logic, where we see the variables in A as monadic predicate symbols.

Definition 9.26 The set $\operatorname{MFOE}(A)$ of monadic first-order formulas over A is given by the following grammar:

$$
\alpha::=\top|\perp| a(x)|\neg a(x)| x \doteq y|x \neq y| \alpha \vee \alpha|\alpha \wedge \alpha| \exists x . \alpha \mid \forall x . \alpha
$$

where $a \in A$ and x, y are first-order (individual) variables. The language $\mathrm{MFO}(A)$ of monadic first-order logic is the equality-free fragment of $\operatorname{MFOE}(A)$; that is, atomic formulas of the form $x \doteq y$ and $x \neq y$ are not permitted:

$$
\alpha::=\top|\perp| a(x)|\neg a(x)| \alpha \vee \alpha|\alpha \wedge \alpha| \exists x . \alpha \mid \forall x . \alpha
$$

In both languages we use the standard definition of free and bound variables, and we call a formula a sentence if it has no free variables. For each of the languages $L \in\{1 F 0,1 \mathrm{FOE}\}$, we define the positive fragment L^{+}of L as the language obtained by almost the same grammar as for L , but with the difference that we do not allow negative formulas of the form $\neg a(x)$ (but do allow formulas $x \neq y$).

To define the semantics of these formulas, we make a distinction between the empty onestep model and non-empty models, cf. Remark 9.20. In the latter case we view a one-step model (Y, m) as the first-order structure $\left(Y, V_{m}\right)$. If we add to such a model an assignment g, interpreting individual variables of the language as elements of the domain, we may inductively define, in a completely straightforward way, the notion of a monadic formulas being true in a model-with-assignment:

$$
(Y, m), g \models \alpha .
$$

Note the truth of a sentence of the language does not depend on the assignment, so that may simply write

$$
(Y, m) \models \alpha
$$

in case $(Y, m), g \models \alpha$ for some/each assignment.
The empty model must be dealt with differently. Since we cannot define assignments on the empty model in a meaningful way, we cannot interpret arbitrary formulas in the empty model. Fortunately, however, we can give an interpretation for every sentence of the language, simply by making every formula of the form $\forall x . \alpha$ true, and every formula of the form $\exists x . \alpha$ false in the empty model. Using this as a basis for an inductive definition, we easily define a truth relation

$$
(\varnothing, \varnothing) \models \alpha
$$

for any monadic first-order sentence α.
In the light of the above discussion, we will take the (positive) sentences of the languages $\operatorname{mFOE}(A)$ and $\operatorname{MFOE}(A)$ as two respective one-step languages.

Definition 9.27 We define the one-step languages $1 \mathrm{FOE}(A)$ and $1 \mathrm{FO}(A)$ as the collection of positive sentences in $\operatorname{MFOE}(A)$ and $\operatorname{MFOE}(A)$, respectively. The semantics \Vdash^{-1} of these languages is defined by putting

$$
(Y, m) \Vdash^{1} \alpha \text { iff }(Y, m) \models \alpha,
$$

for any one-step model (Y, m).

One-step logic

Continuing our general discussion, we introduce some natural notions pertaining to one-step logics.

Definition 9.28 Two one-step formulas α and α^{\prime} are (one-step) equivalent, denoted $\alpha \equiv_{1} \alpha^{\prime}$, if they are satisfied by exactly the same one-step models.

Example 9.29 Examples of one-step equivalent pairs of formulas include instance of the standard propositional distributive laws, such as the modal distributive law:

$$
\left(\diamond a_{1} \vee \diamond a_{2}\right) \wedge \square b \equiv_{1}\left(\diamond a_{1} \wedge \square b\right) \vee\left(\diamond a_{2} \wedge \square b\right),
$$

the familiar axioms of modal logic, such as

$$
\square(a \wedge b) \equiv_{1} \square a \wedge \square b,
$$

but also formulas involving the nabla modality, such as

$$
\nabla B \wedge \nabla B^{\prime} \equiv_{1} \bigvee\left\{\nabla\left\{b \wedge b^{\prime} \mid b R b^{\prime}\right\} \mid R \subseteq B \times B^{\prime} \text { and }\left(B, B^{\prime}\right) \in \bar{\gamma} R\right\}
$$

(cf. Proposition 1.36(1)).
Examples such as

$$
\diamond\left(a_{1} \wedge a_{2}\right) \wedge \square b \equiv_{1} \exists x\left(a_{1}(x) \wedge a_{2}(x)\right) \wedge \forall y b(y) .
$$

show that Definition 9.28 also covers the notion of one-step equivalence across languages. \triangleleft
We may lift the notion of equivalence to the level of one-step logics.
Definition 9.30 We say that two one-step $\left(\mathrm{L}, \Vdash^{1}\right)$ and $\left(\mathrm{L}^{\prime}, \Vdash^{-1}\right)$ languages are (effectively) equivalent if for every formula in L there is an (effectively obtainable) equivalent formula in L^{\prime}, and vice versa.

A particular interesting example of such an equivalence is the following.
Proposition 9.31 The one-step languages 1 ML and 1 FO are effectively equivalent.
Proof. It is easy to rewrite a modal one-step formula into an equivalent first-order formula. For the opposite direction, the key observation is that in equality-free monadic first-order logic, every formula can be rewritten into a normal form where every monadic predicate is in the scope of exactly one quantifier.

QED
Among the results about the modal one-step language that we shall need later is the following one-step version of the usual bisimulation invariance result for modal logic, i.e. all one-step formulas are invariant for bisimulations between one-step models in a precise sense.

Definition 9.32 We say that two one-step A-models (Y, m) and $\left(Y^{\prime}, m^{\prime}\right)$ are one-step bisimilar, notation: $(Y, m) \overleftrightarrow{セ}^{1}\left(Y^{\prime}, m^{\prime}\right)$, if they satisfy the following conditions:
(forth) for all $s \in S$, there is $s^{\prime} \in S^{\prime}$ with $m(s)=m^{\prime}\left(s^{\prime}\right)$;
(back) for all $s^{\prime} \in S^{\prime}$, there is $s \in S$ with $m(s)=m^{\prime}\left(s^{\prime}\right)$.
Proposition 9.33 (One-step Bisimulation Invariance) Let (Y, m) and (Y^{\prime}, m^{\prime}) be two one-step A-models. If $(Y, m) \overleftrightarrow{\leftrightarrow}^{1}\left(Y^{\prime}, m^{\prime}\right)$, then both one-step models satisfy the same formulas in $1 \mathrm{ML}(A)$.

Automata for one-step logics

We now see how the concept of one-step logic naturally give rise to the following generalisation of modal automata.

Definition 9.34 Let $\left(\mathrm{L}, \Vdash^{-1}\right)$ be a one-step logic. An L-automaton over a set P of proposition letters is a quadruple $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$, where A is a finite state set with initial state a_{I}, $\Theta: A \times \wp(\mathrm{P}) \rightarrow \mathrm{L}(A)$ is a transition function, and $\Omega: A \rightarrow \omega$ is a priority map.

The semantics of L-automata is given by a two-player acceptance game, of which the rules are given in exactly the same way as those for modal automata, cf. Table 20.

As we will see later on, the automata for 1 FO and 1 FOE are of particular interest since they correspond to, respectively, the modal μ-calculus and (on tree models) monadic second-order logic. The first observation is immediate by our earlier observations on the equivalence of $\mu \mathrm{ML}$ and modal automata, and Proposition 9.31.

An important theme in the study of these automata is how their properties are already determined at the one-step level. Here are some first examples, regarding the closure properties of L-automata. Recall that a query is simply a class of pointed Kripke models.

Definition 9.35 Given be a one-step logic $\left(\mathrm{L}, \Vdash^{1}\right)$, we call a query K L-recognisable if there is some L-automaton \mathbb{A} that recognises K , i.e., such that $\mathbb{S}, s \Vdash \mathbb{A}$ iff \mathbb{S}, s belongs to K .

We will generally be interested in closure properties of the class of recognisable queries. It is rather easy to see that if a one-step language is closed under taking conjunctions/disjunctions, then the associated class of recognisable languages is closed under taking intersections/unions. The question of closure under complementation is more interesting; note that since our onestep languages consist of monotone formulas only, closure under negation at the one-step level is not possible.

Definition 9.36 Let $\left(\mathrm{L}, \Vdash^{1}\right)$ be a one-step logic. We say that L is closed under taking conjunctions, if, given a pair of one-step formulas α and β, there is a one-step formula γ such that any one-step model satisfies γ iff it satisfies both α and β. The notion of closure under disjunctions is defined analogously.

Given two one-step formulas α and β in $\mathrm{L}(A)$, we call β a boolean dual of α if for every one-step model (Y, m) we have that

$$
(Y, m) \Vdash^{1} \beta \text { iff }(Y, \bar{m}) \Vdash^{1} \alpha,
$$

where \bar{m} is the complement marking of m, given by $\bar{m}(t):=A \backslash m(t)$, for all $t \in Y$. We say that L is closed under taking boolean duals if every formula in L has a boolean dual in L. \triangleleft

Example 9.37 The one-step modal language is closed under taking conjunctions, disjunctions and boolean duals. We let α^{∂} be the formula we obtain from a formula $\alpha \in 1$ ML by simultaneously replacing all occurrences of \perp by \top, all conjunctions by disjunctions, all diamonds by boxes, and vice versa. For example: $(\diamond \top \wedge \square(a \vee b))^{\partial}=\square \perp \vee \diamond(a \wedge b)$. It is easy to verify that for every $\alpha \in 1 \mathrm{ML}$, the formulas α and α^{∂} are boolean duals of one another.

The one-step language of disjunctive modal logic is closed under taking disjunctions, but not conjunctions or boolean duals.

Proposition 9.38 Let $\left(\mathrm{L}_{\mathrm{L}}, \Vdash^{1}\right)$ be a one-step logic.

1) If L is closed under taking conjunctions, then the L -recognisable queries are closed under taking intersections.
2) If L is closed under taking disjunctions, then the L-recognisable queries are closed under taking unions.
3) If L is closed under taking boolean duals, then the L-recognisable queries are closed under complementation.

Proof. We leave the proof of the first two statements as an exercise to the reader. For the proof of the third part we need to show that with any L-automaton \mathbb{A} we can associate an L-automaton $\overline{\mathbb{A}}$ which accepts exactly those pointed Kripke models that are rejected by \mathbb{A}.

Let $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$ be an L-automaton, and define $\overline{\mathbb{A}}$ to be the structure $\overline{\mathbb{A}}:=\left(A, \Theta^{\partial}, \Omega^{\prime}, a_{I}\right)$ given by putting $\Theta^{\partial}(a, c):=\Theta(a, c)^{\partial}$ and $\Omega^{\prime}(a):=1+\Omega(a)$.

Now take an arbitrary pointed Kripke model (\mathbb{S}, s). Comparing the acceptance games $\mathcal{A}(\mathbb{A}, \mathbb{S})$ and $\mathcal{A}(\overline{\mathbb{A}}, \mathbb{S})$ we observe that the role of \exists in the latter game is basically the same as that of \forall in the first. From this it follows that any position (a, s) is winning for \exists in $\mathcal{A}(\overline{\mathbb{A}}, \mathbb{S})$ iff it is winning for \forall in $\mathcal{A}(\mathbb{A}, \mathbb{S})$. Using determinacy we derive that $\mathbb{S}, s \Vdash \overline{\mathbb{A}}$ iff $\mathbb{S}, s \nvdash \mathbb{A}$, as required.

QED

9.5 From formulas to automata and back

In this section we will substantiate our earlier claim that modal automata are indeed an alternative way to look at the modal μ-calculus. That is, we will provide effective constructions that transform a (parity) formula into an equivalent modal automaton, and vice versa. In both directions we will let these transformations pass via the intermediate structures of transparent modal automata; these are variations of modal automata in which the proposition letters, instead of featuring as part of the domain of the transition map, may occur on the co-domain side. That is, we have to extend the definition of one-step formulas, allowing (unguarded) occurrences of proposition letters.

Definition 9.39 Given a set P of proposition letters and a set A of propositional variables, we define the set 1EML (P, A) of extended one-step modal formulas over P and A using the following grammar:

$$
\alpha::=\perp|\top| p|\bar{p}| \diamond \pi|\square \pi| \alpha \wedge \alpha \mid \alpha \vee \alpha,
$$

with $P \in \mathrm{P}$ and $\pi \in \operatorname{Latt}(A)$.
Observe that in an extended modal one-step formula, the proposition letters from P may only occur 'at the surface', that is, not in the scope of a modality; as in $1 \mathrm{ML}(A)$-formulas, every occurrence of a variable from A must be in the scope of exactly one modality.

Definition 9.40 A transparent modal automaton over a set P of proposition letters is a quadruple of the form $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$, where A is a finite set of states, of which a_{I} is the initial state, $\Omega: A \rightarrow \omega$ is a priority map, and

$$
\Theta: A \rightarrow 1 \operatorname{EML}(\mathrm{P}, A)
$$

is the transition map.
Given a Kripke model $\mathbb{S}=(S, R, V)$, we define the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ as the parity game of which the admissible moves and the priority map are given in Table 21.

Position	Player	Admissible moves	Priority
$(a, s) \in A \times S$	-	$\{(\Theta(a), s)\}$	$\Omega(a)$
(p, s), with $p \in \mathrm{P}$ and $s \in V(p)$	\forall	\varnothing	0
(p, s), with $p \in \mathrm{P}$ and $s \notin V(p)$	\exists	\varnothing	0
(\bar{p}, s), with $p \in \mathrm{P}$ and $s \in V(p)$	\exists	\varnothing	0
(\bar{p}, s), with $p \in \mathrm{P}$ and $s \notin V(p)$	\forall	\varnothing	0
$(\mathrm{~T}, s)$	\forall	\varnothing	0
(\perp, s)	\exists	\varnothing	0
$\left(\varphi_{0} \vee \varphi_{1}, s\right)$	\exists	$\left\{\left(\varphi_{0}, s\right),\left(\varphi_{1}, s\right)\right\}$	0
$\left(\varphi_{0} \wedge \varphi_{1}, s\right)$	\forall	$\left\{\left(\varphi_{0}, s\right),\left(\varphi_{1}, s\right)\right\}$	0
$(\diamond \pi, s)$	\exists	$\{(\pi, t) \mid t \in R(s)\}$	0
$(\square \pi, s)$	\forall	$\{(\pi, t) \mid t \in R(s)\}$	0

Table 21: Acceptance game for transparent modal automata
The key feature of this acceptance game is that at a basic position of the form $(a, s) \in$ $A \times S$, the one-step formula $\Theta(a)$ that \exists needs to satisfy at s does not depend on the colour of s. On the other hand, this formula may now contain literals over P , and in this way the colour of s does play a role when the players evaluate the truth of $\Theta(a)$.

In the sequel we will refer to standard modal automata (i.e., as given in Definition 9.3) as chromatic to distinguish them from the transparent ones introduced here.

The main part of this section consists of constructions that transform chromatic modal automata into transparent ones and vice versa, and transform parity formulas into transparent modal automata and vice versa. In all cases we will compare the size and index of the input and the output structure (these notions are defined for transparent automata as for chromatic ones). Throughout the remainder we fix a set P of proposition letters, and we think of the sizes of P and $\wp(P)$ as being constant.

Proposition 9.41 There is an effective construction that transforms a transparent modal P -automaton \mathbb{A} into a chromatic modal P -automaton \mathbb{A}^{c}, such that

1) $\mathbb{A}^{c} \equiv \mathbb{A}$;
2) $\left|\mathbb{A}^{c}\right|=\mathcal{O}(|\mathbb{A}|)$;
3) $\operatorname{ind}\left(\mathbb{A}^{c}\right)=\operatorname{ind}(\mathbb{A})$.

Proof. The intuition behind the transformation is that in the acceptance game for a transparent automaton we may encounter literals over P , which are to be evaluated at the current state. Depending on the colour of the current state, every such literal will be evaluated to be either true or false. This means, that if we fix this colour, as we do in the acceptance game of a chromatic automaton, we can simply replace every literal with the appropriate boolean constant (T or \perp), thus obtaining at a one-step formula in the 'not-extended' language $1 \mathrm{ML}(A)$. Performing this substitution systematically, we arrive at the following definitions.

Given a colour $c \in \wp(\mathrm{P})$, we define the substitution $\tau_{c}: 1 \mathrm{EML}(\mathrm{P}, A) \rightarrow 1 \mathrm{ML}(A)$ given by

$$
\tau_{c}(p):= \begin{cases}\top & \text { if } p \in c \\ \perp & \text { if } p \notin c .\end{cases}
$$

Based on this we go from a transparent modal automaton $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$ to its chromatic counterpart $\mathbb{A}^{c}:=\left(A, \Theta^{\prime}, \Omega, a_{I}\right)$ by putting

$$
\Theta^{\prime}(a, c):=\Theta(a)\left[\tau_{c}\right] .
$$

The key observation about these substitutions is that for any Kripke model $\mathbb{S}=(S, R, V)$ over P , any s in \mathbb{S}, any A-marking m on s, and any extended one-step formula α we have

$$
\mathbb{S} \oplus m, s \Vdash \alpha \text { iff } \mathbb{S} \oplus m, s \Vdash \alpha\left[\tau_{c_{s}}\right],
$$

where c_{s} is the colour of s under V.
It is this equivalence that enables us to move smoothly between the acceptance games $\mathcal{A}(\mathbb{A}, \mathbb{S})$ and $\mathcal{A}\left(\mathbb{A}^{c}, \mathbb{S}\right)$: it shows that at any basic position (a, s), any marking $m: S \rightarrow \wp(A)$ is legitimate in $\mathcal{A}(\mathbb{A}, \mathbb{S})$ iff it is legitimate in $\mathcal{A}\left(\mathbb{A}^{c}, \mathbb{S}\right)$. From this we easily infer that the winning positions for \exists in the two games coincide, which clearly suffices to prove the equivalence of \mathbb{A} and $\mathbb{A}^{c}(1)$. The statements (2) and (3) are trivial consequences of the definitions. QED

In the opposite direction there is an equally simple transformation.
Proposition 9.42 There is an effective construction that transforms a chromatic modal Pautomaton \mathbb{A} into a transparent modal P -automaton \mathbb{A}^{t}, such that

1) $\mathbb{A}^{t} \equiv \mathbb{A}$;
2) $\left|\mathbb{A}^{t}\right|=\mathcal{O}(|\mathbb{A}|)$;
3) $\operatorname{ind}\left(\mathbb{A}^{t}\right)=\operatorname{ind}(\mathbb{A})$.

Proof. Let $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$ be a chromatic automaton over some set P of proposition letters. We will define $\mathbb{A}^{t}:=\left(A, \Theta^{t}, \Omega, a_{I}\right)$, where $\Theta^{t}: A \rightarrow 1 \operatorname{EML}(\mathrm{P}, A)$ is given by

$$
\Theta^{t}(a):=\bigvee_{c \in \wp(\mathrm{P})}(\odot c \wedge \Theta(a, c)) .
$$

Here $\odot c$ is the formula 'exactly c ':

$$
\odot c:=\bigwedge_{p \in c} p \wedge \bigwedge_{p \in \mathrm{P} \backslash c} \bar{p},
$$

which holds in a state s in a Kripke model over P if c is exactly the colour of s. It is easily verified that \mathbb{A}^{t} satisfies the conditions listed in the statement of the theorem. QED

We now turn to the equivalence of parity formulas and transparent modal automata. The transformation of the first into the latter type of structure is the most complex construction in this section - but the hardest part of the work has already been done in section 6.5 where we discussed guarded transformations of parity formulas.

Proposition 9.43 There is an effective construction that transforms a parity P-formula \mathbb{G} into a transparent modal P -automaton $\mathbb{A}_{\mathbb{G}}$, such that

1) $\mathbb{A}_{\mathbb{G}} \equiv \mathbb{G}$;
2) $\left|\mathbb{A}_{\mathbb{G}}\right| \leq 2^{\mathcal{O}(|\mathbb{G}|)}$
3) $\operatorname{ind}\left(\mathbb{A}_{\mathbb{G}}\right)=\operatorname{ind}(\mathbb{G})$.

Proof. Recall that by Theorem 6.43 there is an algorithm that transforms \mathbb{G} into an equivalent strongly guarded parity formula \mathbb{H} of size (roughly) exponential in $|\mathbb{G}|$, and index $\operatorname{ind}(\mathbb{H})=\operatorname{ind}(\mathbb{G})$. Without loss of generality we may assume that every state of \mathbb{H} is the successor of some modal node, cf. Remark 6.46.

The transparent modal automaton \mathbb{A} will be directly based on \mathbb{H}. First of all, we let the carrier A of \mathbb{A} be the set of successors of modal nodes, together with the initital vertex v_{I}, that is:

$$
A:=\left\{v_{I}\right\} \cup E\left[V_{m}\right] .
$$

Clearly then all states of \mathbb{H} belong to A, and with every modal node u we may associate an element $a_{u} \in A$: its unique successor. We define $a_{I}:=v_{I}$, and as the priority map of \mathbb{A} we take the map $\Omega^{\prime}: A \rightarrow \omega$ given by

$$
\Omega^{\prime}(a):= \begin{cases}\Omega(a) & \text { if } a \in \operatorname{Dom}(\Omega) \\ 0 . & \text { otherwise }\end{cases}
$$

It is left to define the transition map $\Theta: A \rightarrow 1 \mathrm{EML}(\mathrm{P}, A)$. Basically, for any $a \in A$ we will read off $\Theta(a)$ from a directed acyclic graph $\mathbb{D}_{a}:=\left(D_{a}, E_{a}\right)$ that we will cut out from the underlying graph (V, E) of \mathbb{H}. We define D_{a} as the smallest subset D of V that contains a and is closed under taking E-successors of non-modal nodes (that is, if $v \in D \backslash V_{n}$, then $E[v] \subseteq D)$. Clearly, any node $u \in D_{a}$ must be either modal or atomic if $E[u]$ is empty, and either boolean or silent if it is not. The relation E_{a} can now be defined as follows:

$$
E_{a}:=\left\{(u, v) \in E \cap\left(D_{a} \times D_{a}\right) \mid v \neq a\right\} .
$$

It follows from the strong guardedness of \mathbb{H} that \mathbb{D} is acyclic, so that we may use the relation E_{a} for recursive definitions. (It is for this reason that we did not define E_{a} as the restriction
of E to the set D_{a}; this would create cycles in case D_{a} would contain a modal node u such that Eua.) In particular, we will define a formula $\theta_{a}(u) \in 1$ EML for every $u \in D_{a}$:

$$
\theta_{a}(u):= \begin{cases}L(u) & \text { if } u \text { is atomic } \\ \wp a_{u} & \text { if } u \text { is modal and } L(u)=\varnothing \\ \bigodot\{L(v) \mid E u v\} & \text { if } u \text { is boolean and } L(u)=\odot \\ \theta_{a}(v) & \text { if } L(u)=\varepsilon \text { and } E u v .\end{cases}
$$

Finally, then, we define

$$
\Theta(a):=\theta_{a}(a) .
$$

It is easy to verify that every formula of the form $\theta_{a}(u)$ is an extended modal one-step formula over P and A. This implies that $\Theta: A \rightarrow 1 \mathrm{EML}(\mathrm{P}, A)$ is of the required type.

It is an immediate consequence of the definitions that $|\mathbb{A}| \leq \mathbb{H}$ and $\operatorname{ind}(\mathbb{A}) \leq \operatorname{ind}(\mathbb{H})$; from this we obtain the items (2) and (3) of the theorem. It thus remains to prove the equivalence of \mathbb{A} and \mathbb{H}. But a moment of reflection will show that, for any Kripke model \mathbb{S}, the evaluation game $\mathcal{E}:=\mathcal{E}(\mathbb{H}, \mathbb{S})$ and the acceptance game $\mathcal{A}:=(\mathbb{A}, \mathbb{S})$ are isomorphic, apart from the automatic moves of type $(a, s) \rightarrow(\Theta(a), s)$ in \mathcal{A}, which have no counterpart in \mathcal{E}. QED

Proposition 9.44 There is an effective construction that transforms a transparent modal P -automaton \mathbb{A} into a parity P -formula $\mathbb{G}_{\mathbb{A}}$, such that

1) $\mathbb{G}_{\mathbb{A}} \equiv \mathbb{A}$;
2) $\left|\mathbb{G}_{\mathbb{A}}\right|=|\mathbb{A}|$;
3) $\operatorname{ind}\left(\mathbb{G}_{\mathbb{A}}\right)=\operatorname{ind}(\mathbb{A})$.

Proof. Given $\mathbb{A}=\left(A, \Theta, \Omega, a_{I}\right)$, define $\mathbb{G}_{\mathbb{A}}=\left(V, E, L, \Omega, v_{I}\right)$ by putting

$$
\begin{array}{ll}
V & :=A \cup \bigcup_{a \in A} S f(\Theta(a)) \\
E & :=\{(a, \Theta(a)) \mid a \in A\} \cup\left(\triangleright_{0} \cap(V \times V)\right) \\
\Omega(v) & := \begin{cases}\Omega(v) & \text { if } v \in A \\
\uparrow & \text { otherwise }\end{cases} \\
v_{I} & :=a_{I},
\end{array}
$$

where we recall that \triangleright_{0} is the converse of the direct subformula relation \triangleleft_{0}. We leave it for the reader to verify that $\mathbb{G}_{\mathbb{A}}$ satisfies the conditions (1), (2) and (3). QED

9.6 Simulation Theorem

In this section we will prove the most important result of this chapter, viz., the Simulation Theorem stating that every modal automaton can be replaced with an equivalent disjunctive modal automaton.

Theorem 9.45 There is a construction sim transforming a modal automaton \mathbb{A} into an equivalent disjunctive modal automaton $\operatorname{sim}(\mathbb{A})$.

The definition of the simulating automaton proceeds in two stages. We first come up with an automaton \mathbb{A}^{\sharp} of which the transition map already has the right shape, but the acceptance condition is not a parity condition but a so-called ω-regular set over the carrier A^{\sharp} of \mathbb{A}^{\sharp} (i.e., a subset of $\left(A^{\sharp}\right)^{\omega}$ that itself can be recognized by some finite stream automaton with a parity acceptance condition). As we shall see, the move from \mathbb{A} to \mathbb{A}^{\sharp} involves a 'change of basis': the states of \mathbb{A}^{\sharp} will be taken from the set $A^{\sharp}:=\wp(A \times A)$ of binary relations over A, and the definition of the transition map Θ^{\sharp} of \mathbb{A}^{\sharp} is based on various links between the one-step languages we obtain by taking A and A^{\sharp} as sets of (formal) variables. In the second step of the construction we then show how \mathbb{A}^{\sharp}, like any automaton with an ω-regular acceptance condition, can be transformed into a standard modal automaton with a parity condition.

In fact, we shall prove a slightly more general version of Theorem 9.45, by abstracting from the precise shape of the one-step languages 1ML and 1DML that form the codomain of the transition function of modal and disjunctive modal automata, respectively. Our proof will only use a certain distributive law that holds between $1 \mathrm{ML}(A)$ and $1 \mathrm{DML}(A)$, and for future reference it will make sense to formulate our definitions and results for two arbitrary one-step languages satisfying such a distributive law.

Convention 9.46 Throughout this section we we shall be dealing with two one-step languages L_{1} and L_{2}, providing sets $\mathrm{L}_{i}(A)$ of formulas for each set A of propositional variables.

Recall that, in line with the context of fixpoint logics that we are working in, we will assume that, for any one-step logic L , the formulas in $\mathrm{L}(A)$ are all monotone. Recall as well that in Definition 9.34 we introduced the notion of an L-automaton, and that in Table 20 we summarize the rules of the acceptance game of such automata.

Our purpose will be to prove that, under some natural constraints on the relation between two one-step languages L_{1} and L_{2}, every L_{1}-automaton can be simulated by an L_{2}-automaton, that is, transformed into an equivalent L_{2}-automaton. In the case where $\mathrm{L}_{1}=1 \mathrm{ML}$ and $\mathrm{L}_{2}=1 \mathrm{DML}$, the simulating language 1 DML corresponds to some fragment of 1 ML , in which the use of conjunctions is severely restricted. Here the construction of the simulating automaton corresponds to finding a disjunctive normal form for the modal automata.

In order to formulate the condition on L_{1} and L_{2} under which we can prove a simulation theorem, we need some preparatory work. Informally, let $\mathrm{L}^{\wedge}(A)$ denote the version of the language L that allows conjunctions of proposition letters from A to occur at positions where L only allows the proposition letters from A themselves. As an example, recall that the language $1 \mathrm{DML}(A)$ is built up from basic formulas ∇B, where $B \subseteq A$. Examples of formulas in $1 \mathrm{DML}^{\wedge}(A)$ are $\nabla\{a \wedge b, b\}$ and $\perp \vee \nabla\left\{a_{1} \wedge a_{2} \wedge a_{3}, \top\right\}$. Observe that these two formulas do not belong to $1 \mathrm{DML}(A)$, and thus bear witness to the fact that the latter language forms a proper subset of $1 \mathrm{DML}^{\wedge}(A)$. On the other hand, it is easy to see that $1 \mathrm{ML}(A)=1 \mathrm{ML}^{\wedge}(A)$.

A convenient way of thinking about the formulas in $\mathrm{L}^{\wedge}(A)$ is that they are substitution instances of formulas in $\mathrm{L}(\wp A)$ under a special substitution θ_{A}. Formally we define the languare as follows.

Definition 9.47 For any set A and any language L, we define the language

$$
\mathrm{L}^{\wedge}(A):=\left\{\varphi\left[\theta_{A}\right] \mid \varphi \in \mathrm{L}(\wp A)\right\},
$$

where we let θ_{A} denote the substitution that replaces, for any subset $B \subseteq A$, the (formal) variable B with the conjunction $\bigwedge B$.

As an example, we obtain the formula $\square a \wedge \square(a \wedge b) \in 1 \mathrm{ML}(A)$ from the formula $\square\{a\} \wedge$ $\square\{a, b\} \in 1 \mathrm{ML}(\mathrm{P}, \wp A)$ by substituting $a=\bigwedge\{a\}$ for $\{a\}$, and $a \wedge b=\bigwedge\{a, b\}$ for $\{a, b\}$.

Now we can define the key condition on two languages L_{1} and L_{2}, making that L_{2}-automata can simulate L_{1}-automata, as follows.

Definition $9.48 \mathrm{~L}_{2}$ is \bigwedge-distributive over L_{1} if, for each set A, and for every finite set Φ of $\mathrm{L}_{1}(A)$-formulas we have

$$
\bigwedge \Phi \equiv \psi\left[\theta_{A}\right]
$$

for some formula $\psi \in \mathrm{L}_{2}(\wp A)$.
Informally, L_{2} is \bigwedge-distributive over L_{1} if every finite conjunction of $\mathrm{L}_{1}(A)$-formulas is equivalent to some $\left.\mathrm{L}_{2} \hat{(} A\right)$-formula. The terminology can be motivated as follows: L_{2} is Λ distributive over L_{1} if every conjunction of L_{1}-formulas is equivalent to an L_{2}-formula of conjunctions; that is, if conjunctions in L_{1} 'distribute over L_{2}-formulas'. As a key example of \bigwedge-distributivity we have the following result, which can be proved along the same lines as Proposition 1.36.

Proposition 9.49 $1 \mathrm{DML}(A)$ is \bigwedge-distributive over $1 \mathrm{ML}(A)$.
The importance of the notion of \bigwedge-distributivity lies in the following Theorem, which obviously generalises the simulation theorem for modal automata.

Theorem 9.50 (Simulation Theorem) Let L_{1} and L_{2} be two one-step languages such that L_{2} is Λ-distributive over L_{1}. Then there is an effective construction sim transforming an L_{1}-automaton \mathbb{A} into an equivalent L_{2}-automaton $\operatorname{sim}(\mathbb{A})$.

We now turn to the definition of the L_{2}-automaton \mathbb{A}^{\sharp} that simulates an arbitrary but fixed L_{1}-automaton \mathbb{A}. Note that our prime example concerns a simulation theorem where the transition structure of the simulating automaton is of a significantly simpler nature than that of the simulated one. The intuition underlying the definition of \mathbb{A}^{\sharp} is that one \mathbb{A}^{\sharp}-match will correspond to a bundle of several \mathbb{A}-matches in parallel, and that to win an \mathbb{A}^{\sharp}-match, \exists has to win each of these parallel \mathbb{A}-matches. It is thus to be expected that we will obtain \mathbb{A}^{\sharp} via some kind of power construction on \mathbb{A}.

For some more detail, suppose that \exists is faced with a set $\left\{(a, s) \mid a \in B_{s}\right\}$ of positions in some \mathbb{A}-acceptance game, for some subset $B_{s} \subseteq A$ (and one single state s). She could try to respond to all challenges posed by these positions in one go by coming up with a single marking $m: R[s] \rightarrow \wp A$ such that $(R[s], m) \Vdash^{1} \bigwedge\left\{\Theta\left(a, c_{s}\right) \mid a \in B\right\}$. Then for each such successor t of s, we can see $B_{t}=m(t)$ as the set of new challenges that she should take care of at t in parallel. In this way, we may think of a match of the simulating automaton moving in rounds, from one 'macro-position' (B_{i}, s_{i}) (corresponding to the set $\left\{\left(b, s_{i}\right) \mid b \in B_{i}\right\}$) to another 'macro-position' $\left(B_{i+1}, s_{i+1}\right)$ (corresponding to the set $\left.\left\{\left(b, s_{i+1}\right) \mid b \in B_{i+1}\right\}\right)$.

This approach would suggest to take $\wp A$ as the carrier set of \mathbb{A}^{\sharp}. However, if we would simply take the states of \mathbb{A}^{\sharp} to be macro-states of \mathbb{A}, i.e., subsets of \mathbb{A}, we would get into trouble when defining the acceptance condition of \mathbb{A}, similar to the problems one encounters when determinizing stream automata. The problem is that from a sequence $B_{1} B_{2} B_{3} \ldots$ of subsets of A, representing an \mathbb{A}^{\sharp}-match, we cannot recognize the set of parallel \mathbb{A}-matches that this sequence corresponds to. We can take an elegant way out of this problem by defining the carrier set A^{\sharp} of \mathbb{A}^{\sharp} to be the set of binary relations over A, and to link A^{\sharp}-sequences and A-sequences via the notion of a trace through a sequence of binary relations.

Definition 9.51 Fix a set A. We let A^{\sharp} denote the set of binary relations over A, that is,

$$
A^{\sharp}:=\wp(A \times A) .
$$

Given an infinite word $\rho=R_{1} R_{2} R_{3} \ldots$ over the set A^{\sharp}, a trace through ρ is either a finite A-word $\alpha=a_{0} a_{1} a_{2} \ldots a_{k}$, or an A-stream $\alpha=a_{0} a_{1} a_{2} \ldots$, such that $a_{i} R_{i+1} a_{i+1}$ for all $i<k$ (respectively, for all $i<\omega$). Finite traces through finite A^{\sharp}-sequences are defined similarly. \triangleleft

The key idea behind the definition of \mathbb{A}^{\sharp} and the proof of its equivalence to \mathbb{A}, is that with each $\mathcal{A}\left(\mathbb{A}^{\sharp}, \mathbb{S}\right)$-match with basic positions

$$
\left(R_{1}, s_{1}\right)\left(R_{2}, s_{2}\right)\left(R_{3}, s_{3}\right) \ldots
$$

and each trace $a_{0} a_{1} a_{2}$ through $R_{1} R_{2} R_{3} \ldots$ we may associate an $\mathcal{A}(\mathbb{A}, \mathbb{S})$-match with basic positions

$$
\left(a_{1}, s_{1}\right)\left(a_{2}, s_{2}\right)\left(a_{3}, s_{3}\right) \ldots
$$

This explains the winning condition of the automaton \mathbb{A}^{\sharp} : an A^{\sharp}-stream should be winning for \exists if all traces through it are winning according to the acceptance condition of \mathbb{A}.

Definition 9.52 Relative to a parity condition Ω on A, call an infinite trace $\alpha \in A^{\omega}$ bad if the maximum priority occurring infinitely often on α is an odd number. Let NBT_{Ω} denote the set of infinite A^{\sharp}-words that contain no bad traces relative to Ω.

Note that the automaton \mathbb{A}^{\sharp} will be equipped with this set NBT_{Ω} as its acceptance condition, and while we will be able to establish that \mathbb{A}^{\sharp} is equivalent to $\mathbb{A}, N B T_{\Omega}$ clearly is not a parity condition. This we will take care of in the second part of the construction.

Before giving the formal details, let us first provide some further intuitions behind the definition of \mathbb{A}^{\sharp}. Our starting point is that a state R of \mathbb{A}^{\sharp} encodes the macro-state $\operatorname{Ran}(R):=$ $\{b \in A \mid(a, b) \in R$ for some $a \in A\}$, that is, the range of R. This already suffices to motivate the definition of the initial state of \mathbb{A}^{\sharp} :

$$
R_{I}:=\left\{\left(a_{I}, a_{I}\right)\right\} .
$$

In order to introduce the definition of $\Theta^{\sharp}:\left(A^{\sharp} \times \wp \mathrm{P}\right) \rightarrow \mathrm{L}_{2}\left(A^{\sharp}\right)$, consider a model \mathbb{S} and a position of the form (R, s) in the acceptance game $\mathcal{G}^{\sharp}=\mathcal{A}\left(\mathbb{A}^{\sharp}, \mathbb{S}\right)$. Take a state $a \in \operatorname{Ran}(R)$, then at the position (a, s) in the game $\mathcal{G}=\mathcal{A}(\mathbb{A}, \mathbb{S}), \exists$ has to come up with a marking $m_{a, s}: R[s] \rightarrow \wp(A)$ such that $\left(R[s], m_{a, s}\right) \Vdash^{-1} \Theta\left(a, c_{s}\right)$. Since the position (R, s) encodes
the 'macro-position' $\{(a, s) \mid a \in \operatorname{Ran}(R)\}$, we need to consider all of the formulas $\Theta\left(a, c_{s}\right)$ (with $a \in \operatorname{Ran}(R)$) in parallel; this would suggest to consider the conjunction $\bigwedge\left\{\Theta\left(a, c_{s}\right) \mid\right.$ $a \in \operatorname{Ran}(R)\}$. However, in this conjunction we are no longer able to retrieve the 'origin' of a propositional variable $b \in A$. For this reason we use the following trick. We consider any pair $(a, b) \in A \times A$ as a new propositional variable, representing the variable b tagged with the 'origin' a.

Definition 9.53 Given a language L and a variable a, let τ_{a} be the substitution replacing any variable $b \in A$ with the variable $(a, b) \in A \times A$. In words, we say that τ_{a} tags each variable b with a. Given a state a of \mathbb{A} and a color $c \in \wp \mathrm{P}$, let $\Theta^{\star}(a, c) \in \mathrm{L}_{1}(A \times A)$ be the formula

$$
\Theta^{\star}(a, c):=\Theta(a, c)\left[\tau_{a}\right]
$$

that is, each $b \in A$ occurring in $\Theta(a)$ is replaced with (a, b).
As an example, if $\Theta(a, c)=\diamond a \wedge \square b$, then $\Theta^{\star}(a, c)=\diamond(a, a) \wedge \square(a, b)$.
Using this trick we can think of a state $R \in A^{\sharp}$ unfolding into the formula $\bigwedge\left\{\Theta^{\star}\left(a, c_{s}\right) \mid\right.$ $a \in \operatorname{Ran}(R)\} \in \mathrm{L}_{1}(A \times A)$. Observe that any variable in this formula that is in the scope of a modality, must be of the form $(a, b) \in A \times A$, thus encoding a 'direct meaning' b together with its 'origin' a. Also note that any binary relation $Q \in A^{\sharp}$ now represents a set of (formal) variables, and so it makes sense to consider for instance the conjunction $\bigwedge Q$.

The following proposition is immediate by the definitions.
 let A be some set. Then for every finite set Φ of formulas in $\mathrm{L}_{1}(A \times A)$ there is a formula $\psi \in \mathrm{L}_{2}\left(A^{\sharp}\right)$ such that

$$
\begin{equation*}
\bigwedge \Phi \equiv \psi\left[\theta_{A \times A}\right] \tag{92}
\end{equation*}
$$

where $\theta_{A \times A}$ is the substitution replacing every relation $Q \subseteq A \times A$ with the conjunction $\bigwedge Q$.
We are now ready for the formal definition of the automaton \mathbb{A}^{\sharp}.
Definition 9.55 Let L_{1} and L_{2} be two languages such that L_{2} is Λ-distributive over L_{1}, and let $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$ be an L_{1}-automaton. \mathbb{A}^{\sharp} is given as the L_{2}-automaton

$$
\mathbb{A}^{\sharp}:=\left\langle A^{\sharp}, \Theta^{\sharp}, \mathrm{NBT}_{\Omega}, R_{I}\right\rangle .
$$

Here $A^{\sharp}=\wp(A \times A)$ is the set of binary relations on A, the initial state R_{I} is the relation $R_{I}:=\left\{\left(a_{I}, a_{I}\right)\right\}$. The transition function Θ^{\sharp} is given by fixing, for $\Theta^{\sharp}(R, c)$, a formula $\psi \in \mathrm{L}_{2}\left(A^{\sharp}\right)$ satisfying

$$
\begin{equation*}
\bigwedge\left\{\Theta^{\star}(a, c) \mid a \in \operatorname{Ran}(R)\right\} \equiv \psi\left[\theta_{A \times A}\right] \tag{93}
\end{equation*}
$$

Finally, the acceptance condition $\operatorname{NBT}_{\Omega} \subseteq\left(A^{\sharp}\right)^{\omega}$ is as given in Definition 9.52.
The main technical result of this section concerns the following equivalence.

Proposition 9.56 Let L_{1} and L_{2} be two languages such that L_{2} is \bigwedge-distributive over L_{1}, and let \mathbb{A} be an L_{1}-automaton. Then \mathbb{A} is equivalent to \mathbb{A}^{\sharp}.

A key proposition, relating the various formulas, languages and substitutions that feature in the simulation construction, is the following.

Proposition 9.57 Let \mathbb{A} be an L_{1}-automaton and let D be some set. Suppose that for each $a \in A$ a marking $m_{a}: D \rightarrow \wp A$ is given. For $R \in A^{\sharp}$, let $m_{R}: D \rightarrow \wp(A \times A)$ and $m_{R}^{\sharp}: D \rightarrow \wp\left(A^{\sharp}\right)$ be the markings given by

$$
\begin{aligned}
m_{R}(d) & :=\left\{(a, b) \mid a \in \operatorname{Ran}(R) \notin b \in m_{a}(d)\right\} \\
m_{R}^{\sharp}(d) & :=\left\{m_{R}(d)\right\} .
\end{aligned}
$$

Then the following are equivalent, for any $c \in \wp \mathrm{P}$:

1. $\left(D, m_{a}\right) \Vdash^{1} \Theta(a, c)$ for each $a \in \operatorname{Ran}(R)$;
2. $\left(D, m_{R}\right) \Vdash^{1} \bigwedge\left\{\Theta^{\star}(a, c) \mid a \in \operatorname{Ran}(R)\right\}$;
3. $\left(D, m_{R}^{\sharp}\right) \Vdash \Vdash^{1} \Theta^{\sharp}(R, c)$.

We leave the (straightforward) proof of this Proposition as an exercise to the reader.
Proof of Proposition 9.56. Fix an arbitrary pointed model $\left(\mathbb{S}, s_{0}\right)$, then it suffices to prove that

$$
\begin{equation*}
\mathbb{A} \text { accepts }\left(\mathbb{S}, s_{0}\right) \text { iff } \mathbb{A}^{\sharp} \operatorname{accepts}\left(\mathbb{S}, s_{0}\right) . \tag{94}
\end{equation*}
$$

For the direction from left to right, define a position (R, s) to be safe if for all $a \in \operatorname{Ran}(R)$, (a, s) is winning for \exists in the acceptance game $\mathcal{G}=\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, s_{0}\right)$. Now define the following strategy for \exists in $\mathcal{G}^{\sharp}=\mathcal{A}\left(\mathbb{A}^{\sharp}, \mathbb{S}\right) @\left(R_{I}, s_{0}\right)$:

- If (R, s) is safe, then \exists uses Proposition 9.57 to transform the set of moves $\left\{m_{a, s} \mid a \in\right.$ $\operatorname{Ran}(R)\}$, given by her winning strategy in \mathcal{G}, into a marking $m_{R, s}^{\sharp}: R[s] \rightarrow \wp A^{\sharp}$.
- If (R, s) is not safe, then \exists plays in a random way.

It is not very hard to prove the following three claims on this strategy.
Claim 1 If (R, s) is safe then the moves suggested by the above strategy are legitimate.
Claim 2 If (R, s) is safe then all pairs (Q, t) such that $Q \in m_{R, s}^{\sharp}(t)$ are safe.
Claim 3 Consider an infinite \mathcal{G}^{\sharp}-match, guided by the above strategy for \exists, with basic positions $\left(R_{I}, s_{0}\right)\left(R_{1}, s_{1}\right)\left(R_{2}, s_{2}\right) \ldots$, and let $a_{I} a_{I} a_{1} a_{2} \ldots$ be a trace through $R_{I} R_{1} R_{2} \ldots$ Then there is an infinite \mathcal{G}-match, guided by \exists 's winning strategy, of which the basic positions are $\left(a_{I}, s_{0}\right)\left(a_{1}, s_{1}\right)\left(a_{2}, s_{2}\right) \ldots$

On the basis of these three claims, it easily follows that the given strategy is winning for \exists from any safe position. In particular, it follows from the assumption that $\left(a_{I}, s_{0}\right) \in \mathrm{Win}_{\exists}(\mathcal{G})$ that $\left(R_{I}, s_{0}\right)$ is safe, and hence winning for \exists in \mathcal{G}^{\sharp}. This shows that \mathbb{A}^{\sharp} accepts $\left(\mathbb{S}, s_{0}\right)$, as required.

The proof of the opposite direction (' \Leftarrow ') of (94) is somewhat similar, and left as an exercise.

Regular automata

In the previous subsection we defined a nondeterministic automaton \mathbb{A}^{\sharp} and proved it to be equivalent to the given automaton $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$. The only shortcoming of the automaton \mathbb{A}^{\sharp} is that its acceptance condition $\operatorname{NBT}_{\Omega} \subseteq\left(A^{\sharp}\right)^{\omega}$ is not given by a parity function. We will now see that this problem can easily be overcome since NBT_{Ω} has the form of an ω-regular language over the alphabet A^{\sharp}, that is, it is recognized by some stream automaton.

Definition 9.58 An automaton $\mathbb{A}=\left\langle A, \Theta, A c c, a_{I}\right\rangle$ is called ω-regular if $A c c \subseteq A^{\omega}$ is an ω regular language, i.e., if $A c c$ is the stream language recognized by some deterministic stream automaton with a parity (or Muller) acceptance condition.

Here we shall prove that, given an regular automaton \mathbb{A} of which the acceptance condition is given by some deterministic parity stream automaton \mathbb{Z}, we can effectively construct a parity automaton $\mathbb{A} \odot \mathbb{Z}$ that is equivalent to \mathbb{A}. First, however, we show that, indeed, \mathbb{A}^{\sharp} is a regular automaton, by constructing a stream automaton recognizing the ω-language NBT_{Ω}.

Proposition 9.59 Let A be some finite set, and let $\Omega: A \rightarrow \omega$ be a parity function on A. Then the set NBT_{Ω} is an ω-regular language over the alphabet A^{\sharp}.

Proof. First we define a nondeterministic A^{\sharp}-stream parity automaton \mathbb{B} which accepts exactly those infinite A^{\sharp}-streams that do contain a bad trace. Given the properties of parity stream automata it is fairly straightforward to continue from here. First, take a deterministic equivalent \mathbb{B}^{\prime} of \mathbb{B}; such an automaton exists by Theorem 4.27 . And second, since \mathbb{B}^{\prime} is deterministic, it is easy to perform complementation on it, that is, define an automaton \mathbb{C} that accepts exactly those A^{\sharp}-streams that are rejected by \mathbb{B}^{\prime}. In short: $L_{\omega}(\mathbb{C})=\left(A^{\sharp}\right)^{\omega} \backslash L_{\omega}\left(\mathbb{B}^{\prime}\right)=$ $\left(A^{\sharp}\right)^{\omega} \backslash L_{\omega}(\mathbb{B})$. Clearly then $L_{\omega}(\mathbb{C})=\mathrm{NBT}_{\Omega}$.

For the definition of \mathbb{B}, take an object $b_{I} \notin A$, and define $B:=A \cup\left\{b_{I}\right\}$. Let $\Delta: B \times A^{\sharp} \rightarrow$ $\wp(B)$ be given by putting

$$
\Delta(b, R):= \begin{cases}\operatorname{Ran}(R) & \text { if } b=b_{I}, \\ R[b] & \text { if } b \in A,\end{cases}
$$

and define Ω^{+1} by putting $\Omega^{+1}(a):=\Omega(a)+1$ for $a \in A$, and $\Omega^{+1}\left(b_{I}\right):=0$. Then \mathbb{B} is the automaton $\left\langle B, \Delta, \Omega^{+1}, b_{I}\right\rangle$.

It is immediate from the definitions that $b_{I} \xrightarrow{R} a$ iff $a \in \operatorname{Ran}(R)$, that is, if there is some $a^{\prime} \in A$ such that $a^{\prime} R a$. From this and the definition of Δ it follows that

$$
b_{I} \xrightarrow{R_{1}} a_{1} \xrightarrow{R_{2}} a_{2} \xrightarrow{R_{3}} \ldots
$$

is a run of \mathbb{B} iff there is some $a_{0} \in A$ such that $a_{0} a_{1} a_{2} \ldots$ is a trace through $R_{1} R_{2} \ldots$ Then the definition of Ω^{+1} ensures that \mathbb{B} indeed accepts those A^{\sharp}-streams that contain a bad trace. QED

It follows from Proposition 9.59 that the automaton \mathbb{A}^{\sharp} defined in the previous section is a regular automaton. Hence we have proved the main result of this section if we can show that
every disjunctive regular automaton can be replaced by a disjunctive modal automaton with a parity acceptance condition. This is what we will focus on now. In fact, we will effectively transform a nondeterministic, regular automaton \mathbb{A} (of which the acceptance condition is given as the stream language recognized by some stream automaton \mathbb{Z}) into an equivalent parity automaton $\mathbb{A} \odot \mathbb{Z}$.

Definition 9.60 Let $\mathbb{Z}=\left\langle Z, \zeta, \Omega, a_{I}\right\rangle$ be a deterministic parity A-stream automaton, and let $\mathbb{A}=\left\langle A, \Theta, A c c, a_{I}\right\rangle$ be a disjunctive modal automaton. Then $\mathbb{A} \odot \mathbb{Z}$ is the disjunctive modal automaton given as

$$
\mathbb{A} \odot \mathbb{Z}=\left\langle A \times Z, \Theta^{\zeta}, \Psi,\left(a_{I}, z_{I}\right)\right\rangle
$$

where $\Theta^{\zeta}:((A \times Z) \times \wp \mathrm{P}) \rightarrow 1 \mathrm{DML}(A \times Z)$ is given by

$$
\Theta^{\zeta}((a, z), c):=\Theta(a, c)[(b, \zeta(z, a)) / b \mid b \in A],
$$

and

$$
\Psi(a, z):=\Omega(z) .
$$

defines $\Psi: A \times Z \rightarrow \omega$.

Intuitively, the automaton $\mathbb{A} \odot \mathbb{Z}$ behaves like \mathbb{A}, with the stream automaton \mathbb{Z} following and directly processing the path through \mathbb{A} taken during a match of the acceptance game. More precisely, when the automaton \mathbb{A} moves from state a to b, the corresponding moves of $\mathbb{A} \odot \mathbb{Z}$ are from any position (a, z) to $(b, \zeta(z, a))$, where $\zeta(z, a)$ is the state obtained from z by processing the 'letter' a. Formally, this is established by the transition structure Θ^{ζ} of the automaton $\mathbb{A} \odot \mathbb{Z}$ as follows: $\Theta^{\zeta}((a, z), c)$ is obtained from $\Theta(a, c)$ by substituting every occurrence of a $b \in A$ by the ('formal') variable $(b, \zeta(z, a)) \in A \times Z$.

Theorem 9.61 Let $\mathbb{Z}=\left\langle Z, \zeta, \Omega, z_{I}\right\rangle$ be a deterministic parity stream automaton, and let $\mathbb{A}=\left\langle A, \Theta, A c c, a_{I}\right\rangle$ be a disjunctive modal automaton such that $A c c=L_{\omega}(\mathbb{Z})$. Then \mathbb{A} and $\mathbb{A} \odot \mathbb{Z}$ are equivalent.

- Proof of Theorem 9.61 to be supplied

Finally, for the proof of the Simulation Theorem we need to combine various results obtained in this Chapter.

Proof of Theorem 9.50. It follows from the Propositions 9.49, 9.56 and 9.59 that every modal automaton can be simulated by a disjunctive, regular automaton. Then the Simulation Theorem follows by combining this observation with Theorem 9.61.

QED

Notes

Exercises

Exercise 9.1 Show that the 'slow' acceptance discussed in Remark 9.10 is equivalent to the standard acceptance game of Definition 9.5.

Exercise 9.2 Give a direct, game-theoretic argument proving Theorem 9.12. That is, show that modal automata are bisimulation invariant.

Exercise 9.3 Show the equivalence of the two notions of disjunctive modal automata as discussed in Remark 9.14. That is, give a construction that transforms an arbitrary disjunctive modal automaton into a $1^{\mathrm{DML}}{ }_{r}$-automaton.

Exercise 9.4 Let \mathbb{A} be a disjunctive modal automaton, and let (\mathbb{S}, r) be a finite pointed Kripke model. Show that $\mathbb{S}, r \Vdash \mathbb{A}$ iff there is a finite pointed model $\left(\mathbb{S}^{\prime}, r^{\prime}\right)$ such that

Exercise 9.5 Show that the one-step languages 1FO and 1FOE are closed under taking boolean duals.

Exercise 9.6 Prove Proposition 9.38
Exercise 9.7 Prove Proposition 9.57.
Exercise 9.8 Prove equivalence (94) in the proof of Proposition 9.56.

10 Model theory of the modal μ-calculus

In this Chapter we will see how to apply the automata-theoretic tools developed in the previous chapter to prove some model-theoretic results about the modal μ-calculus.

- overview of chapter to be supplied

10.1 Small model property

As our first result we will prove a small model property for the modal μ-calculus, by showing that if a modal automaton accepts some pointed Kripke model, it accepts one of which the size is bounded by the size of the automaton. Recall that, given a modal automaton \mathbb{A} we refer to the class of pointed Kripke models that are accepted by \mathbb{A} as the query of \mathbb{A}, notation: $\mathcal{Q}(\mathbb{A})$, and that classes of this form are called recognizable.

Theorem 10.1 Let \mathbb{A} be a modal automaton. Then $\mathcal{Q}(\mathbb{A}) \neq \varnothing$ iff \mathbb{A} accepts a finite pointed model of size at most exponential in the state-size of \mathbb{A}.

Because of the Simulation Theorem it suffices to prove Theorem 10.1 for disjunctive modal automata. Our proof will be based on an alternative perspective of these devices, revealing their close resemblance the Kripke models that they operate on.

Kripke automata

The key observation in our proof is that the semantics of the cover modality and the notion of a bisimulation are defined in a very similar fashion, both involving the coalgebraic presentation of Kripke models, and the notion of relation lifting.

Fix a set P of proposition letters. Recall from Remark 1.3 and Definition 1.4 that we can represent a Kripke model ${ }^{6}(S, R, V)$ as a pair

$$
\mathbb{S}=(S, \sigma: S \rightarrow \mathrm{~K} S)
$$

where K is the Kripke functor given by putting, for an arbitrary set S :

$$
\mathrm{K} S:=\wp(\mathrm{P}) \times \wp(S)
$$

In Definition 1.29 we introduced two notions of relation lifting. Given a binary relation $Z \subseteq S \times S^{\prime}$, we define the relation $\bar{\wp} Z \subseteq \wp S \times \wp S^{\prime}$ as follows:

$$
\begin{aligned}
\bar{\wp} Z:=\left\{\left(X, X^{\prime}\right) \mid \quad\right. & \text { for all } x \in X \text { there is an } x^{\prime} \in X^{\prime} \text { with }\left(x, x^{\prime}\right) \in Z \\
\& & \text { for all } \left.x^{\prime} \in X^{\prime} \text { there is an } x \in X \text { with }\left(x, x^{\prime}\right) \in Z\right\} .
\end{aligned}
$$

Similarly, define, associated with the Kripke functor K , the relation $\overline{\mathrm{K}} Z \subseteq \mathrm{~K} S \times \mathrm{K} S^{\prime}$ as follows:

$$
\overline{\mathrm{K}} Z:=\left\{\left((\pi, X),\left(\pi^{\prime}, X^{\prime}\right)\right) \mid \pi=\pi^{\prime} \text { and }\left(X, X^{\prime}\right) \in \bar{\wp} Z\right\} .
$$

[^6]| Position | Player | Admissible moves |
| :--- | :---: | :--- |
| $(a, s) \in A \times S$ | - | $\{(\alpha(a), \sigma(s))\}$ |
| $(\beta, \tau) \in \mathrm{K} A \times \mathrm{K} S$ | \exists | $\{Z \in \wp(A \times S) \mid(\beta, \tau) \in \overline{\mathrm{K}} Z\}$ |
| $Z \in \wp(A \times S)$ | \forall | $Z=\{(b, t) \mid(b, t) \in Z\}$ |

Table 22: Bisimilarity game for Kripke models
To make our point we now introduce a new class of automata, consisting of so-called Kripke automata, and show that these are in fact equivalent to the disjunctive automata defined earlier on.

As our starting point we consider, for two Kripke models $\mathbb{A}=\langle A, \alpha\rangle$ and $\mathbb{S}=\langle S, \sigma\rangle$, the bisimilarity game $\mathcal{B}(\mathbb{A}, \mathbb{S})$ of Definition 1.26 . Using the above notion of relation lifting, the rules of this game can be reformulated as in Table 22. Recall that the winning conditions of the bisimilarity game are such that all infinite games are won by \exists.

The main conceptual step is to think of \mathbb{A} as a 'proto-automaton' that we use to classify \mathbb{S} rather than as of a Kripke model that we are comparing with \mathbb{S}. In order to turn \mathbb{A} into a proper Kripke automaton, four technical modifications have to be made:
(1) A small change is that we require \mathbb{A} (i.e., its carrier set A) to be finite.
(2) Second, and equally undramatic, we add an initial state to the structure of \mathbb{A}.
(3) Third, whereas the winner of an infinite match of a bisimulation game is always \exists, the winner of an infinite acceptance match will be determined by an explicit acceptance condition on A^{ω} - a parity condition, in our case.
(4) The fourth and foremost modification is that we introduce nondeterminism to the transition structure of \mathbb{A}. That is, Kripke automata will harbour many 'realizations' of Kripke models - and in each round of the acceptance game, it is \exists 's task to pick an actual local realization of the current state of \mathbb{A}.

Definition 10.2 Given a set P of proposition letters, a Kripke automaton for P is a quadruple $\mathbb{A}=\left\langle A, \Delta, \Omega, a_{I}\right\rangle$ such that the transition function Δ is given as a map $\Delta: A \rightarrow \wp(\mathrm{~K} A)$. The acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ associated with a Kripke automaton $\mathbb{A}=\left\langle A, \Delta, \Omega, a_{I}\right\rangle$ and a Kripke structure \mathbb{S} is given by Table 23. A pointed Kripke model (\mathbb{S}, s) is accepted by \mathbb{A} if the position

Position	Player	Admissible moves	Priority
$(a, s) \in A \times S$	\exists	$\{(\gamma, \sigma(s)) \in \mathrm{K} A \times \mathrm{K} S \mid \gamma \in \Delta(a)\}$	$\Omega(a)$
$(\gamma, \tau) \in \mathrm{K} A \times \mathrm{K} S$	\exists	$\{Z \subseteq A \times S \mid(\gamma, \tau) \in \overline{\mathrm{K}} Z\}$	0
$Z \in \wp(A \times S)$	\forall	Z	0

Table 23: Acceptance game for Kripke automata
$\left(a_{I}, s\right)$ is a winning position for \exists in the acceptance game.
For an informal description of the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$, note that each round consists of exactly three moves, with interaction pattern $\exists \exists \forall$. At a basic position (a, s), the 'Kunfolding' $\sigma(s) \in \mathrm{K} S$ of s is fixed, but \exists chooses the unfolding of a to be an arbitrary element
γ of $\Delta(a)$. After this move, the play arrives at a position of the form $(\gamma, s) \in \mathrm{K} A \times S$. The players now proceed as in the bisimilarity game for Kripke models. First \exists chooses a 'local bisimulation' linking γ and $\sigma(s)$, that is, a relation $Z \subseteq A \times S$ such that $(\gamma, \sigma(s)) \in \overline{\mathrm{K}} Z$. Spelled out, this means that \exists can only choose such a relation Z if γ is of the form $(c, B) \in$ $\wp(\mathrm{P}) \times \wp(A)$ with $c=\sigma_{V}(s)$, and that Z has to satisfy the back and forth conditions, stating that for all $b \in B$ there is $t \in R[s]$ with $b Z t$, and vice versa. The round ends with \forall choosing an element (b, t) from Z, thus providing the next basic position of the match.

We will now show that Kripke automata are nothing but disjunctive automata in disguise, and vice versa.

Definition 10.3 First let $\mathbb{A}=\left\langle A, \Delta, \Omega, a_{I}\right\rangle$ be some Kripke automaton. We define its modal companion \mathbb{A}^{M} as the disjunctive modal automaton $\mathbb{A}^{M}:=\left\langle A, \Delta^{M}, \Omega, a_{I}\right\rangle$, where Δ^{M} : $A \times \wp(\mathrm{P}) \rightarrow 1 \mathrm{DML}(A)$ is given by putting

$$
\Delta^{M}(a, c):=\bigvee\{\nabla B \mid(c, B) \in \Delta(a)\} .
$$

Conversely, let $\mathbb{D}=\left\langle D, \Theta, \Omega, d_{I}\right\rangle$ be a disjunctive modal automaton. Without loss of generality we may assume that the domain of Θ consists of formulas in the restricted format of Remark 9.14, that is, for every pair $(a, c) \in A \times \wp(\mathrm{P})$ there is a (possibly empty) index set $I_{a, c}$ such that

$$
\Theta(a, c)=\bigvee\left\{\nabla B_{i} \mid i \in I_{a, c}\right\} .
$$

We now define the transition map Δ_{Θ} by putting

$$
\Delta_{\Theta}(a):=\left\{\left(c, B_{i}\right) \in \mathrm{K} A \mid c \in \wp(\mathrm{P}), i \in I_{a, c}\right\}
$$

and define $\mathbb{D}^{K}:=\left\langle D, \Delta_{\Theta}, \Omega, d_{I}\right\rangle$ and call this structure the Kripke companion of \mathbb{D}. \triangleleft
Remark 10.4 For a better understanding of the equivalence between disjunctive modal automata and Kripke models, it may be useful to take the following perspective. Given sets P (of proposition letters) and A of states, it is not hard to see that the collection of possible transition functions of disjunctive modal automata (in the restricted format of Remark 9.14 corresponds to the set

$$
T_{D}:=(A \times \wp(\mathrm{P})) \rightarrow \wp(\wp(A)),
$$

while the set of possible transition maps of Kripke automata is given as the collection

$$
T_{K}:=A \rightarrow \wp(\wp(\mathrm{P}) \times \wp(A)) \text {. }
$$

Now recall that by 'currying' there is a bijective correspondence
(†) $(X \times Y) \rightarrow Z \cong X \rightarrow(Y \rightarrow Z)$
for any triple of sets X, Y and Z. Furthermore, for any set X there is a well-known bijective correspondence between the powerset $\wp(X)$ of X and the collection of functions from X to the two-element set $2:=\{0,1\}$:
$(\ddagger) \wp(X) \cong X \rightarrow 2$.

Using these observations it is straightforward to verify the following bijective correspondences between the sets T_{D} and T_{K} :

$$
\begin{aligned}
& (A \times \wp(\mathrm{P})) \rightarrow \wp \wp(A) \\
\cong(\ddagger) & (A \times \wp(\mathrm{P})) \rightarrow(\wp(A) \rightarrow 2)) \\
\cong & (\dagger) \quad(A \times \wp(\mathrm{P}) \times \wp(A)) \rightarrow 2 \\
\cong & (\dagger) \quad A \rightarrow((\wp(\mathrm{P}) \times \wp(A)) \rightarrow 2) \\
\cong & (\ddagger) \quad A \rightarrow \wp(\wp(\mathrm{P}) \times \wp(A))
\end{aligned}
$$

In fact, the translations given in Definition 10.3 can be obtained by computing the bijections between T_{D} and T_{K}, on the basis of those in (\dagger) and (\ddagger).

Proposition 10.5 (i) Let $\mathbb{A}=\left\langle A, \Delta, \Omega, a_{I}\right\rangle$ be a Kripke automaton. Then $\mathbb{A} \equiv \mathbb{A}^{M}$.
(ii) Let $\mathbb{D}=\left\langle D, \Theta, \Omega, d_{I}\right\rangle$ be a disjunctive modal automaton. Then $\mathbb{D} \equiv \mathbb{D}^{K}$.

Proof. The proof of this proposition is straightforward. If we merge the two moves of \exists in each round of the acceptance game for Kripke automata into one, we may in fact show that, for any Kripke model \mathbb{S}, the acceptance games $\mathcal{A}\left(\mathbb{A}^{M}, \mathbb{S}\right)$ and $\mathcal{A}(\mathbb{A}, \mathbb{S})$ are isomorphic, and similarly for the acceptance games $\mathcal{A}\left(\mathbb{D}^{K}, \mathbb{S}\right)$ and $\mathcal{A}(\mathbb{D}, \mathbb{S})$.

QED

Small model property for Kripke automata

We will now prove the small model property for Kripke automata. This framework allows us to prove a result that is quite a bit stronger than just a small model theorem: we may show that, if \mathbb{A} is a Kripke automaton recognizing a non-empty query, then $\mathcal{Q} \mathbb{A}$ contains a Kripke model that 'lives inside' or inhabits \mathbb{A}.

Definition 10.6 Let $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$ be a Kripke automaton. If S is a subset of A, and $\sigma: S \rightarrow \mathrm{~K} S$ is such that $\sigma(s) \in \Delta(s)$ for all $s \in S$, then we say that the Kripke model $\mathbb{S}=\langle S, \sigma\rangle$ inhabits \mathbb{A}. When we use this terminology for a pointed Kripke model (\mathbb{S}, s), we require in addition that $s=a_{I}$.

The key tool in our proof of the small model property will be the following satisfiability game that we may associate with a Kripke automaton. Intuitively the reader may think of this game as the simultaneous projection on \mathbb{A} of all acceptance games of \mathbb{A}, as should become clear from the proof of Theorem 10.8 below.

Definition 10.7 Let $\mathbb{A}=\left\langle A, \Delta, \Omega, a_{I}\right\rangle$ be a Kripke automaton. Then the satisfiability game $\mathcal{S}(\mathbb{A})$ is given by Table 24. The winning condition for infinite matches is defined using the priority map for game positions (see the table) as a parity condition.

One last remark before we formulate and prove the main technical result of this section: the proof of this theorem involves a crucial application of the Positional Determinacy of parity games.

Position	Player	Admissible moves	Priority
$a \in A$	\exists	$\Delta(a)$	$\Omega(a)$
$(c, B) \in \mathrm{K} A$	\forall	B	0

Table 24: Satisfiability game for Kripke automata

Theorem 10.8 The following are equivalent, for any Kripke automaton $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$:

1) $\mathcal{Q}(\mathbb{A}) \neq \varnothing$;
2) $a_{I} \in \operatorname{Win}_{\exists}(\mathcal{S}(\mathbb{A}))$;
3) \mathbb{A} accepts a pointed model inhabiting \mathbb{A}.

Proof. $1 \Rightarrow 2$ Suppose that \mathbb{A} accepts some pointed model $\left(\mathbb{S}, s_{0}\right)$. Then by definition, \exists has a winning strategy in the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, s_{0}\right)$. This strategy will be the basis of her winning strategy in the satisfiability game of \mathbb{A}.

Concretely, in $\mathcal{S}(\mathbb{A}) @ a_{I}, \exists$ will maintain the following condition. Put $a_{0}=a_{I}$, and let

$$
a_{0}\left(c_{1}, B_{1}\right) a_{1}\left(c_{2}, B_{2}\right) \ldots a_{k}
$$

be an initial segment of an $\mathcal{S}(\mathbb{A})$-match (with $\left(c_{i+1}, B_{i+1}\right) \in \Theta\left(a_{i}\right)$ being the move of \exists at position a_{i}, and $a_{i+1} \in B_{i+1}$ the next move of \forall). Then \exists sees this match as the projection of a parallel match of $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, s_{0}\right)$ where she plays her winning strategy:

The existence of such a parallel match is easily proved by an inductive argument, of which the base case is immediate by the shape (a_{I} versus $\left(a_{I}, s_{0}\right)$) of the initial game positions. Inductively assume that at stage k, the matches of $\mathcal{S}(\mathbb{A})$ and $\mathcal{A}(\mathbb{A}, \mathbb{S})$ have arrived at the positions a_{k} and $\left(a_{k}, s_{k}\right)$ respectively. We will show that there is a way to continue both matches for one round in such a way that the next basic positions are of the form b and (b, t), respectively, for some $b \in A$ and $t \in S$, with the continuation in the acceptance game being guided by \exists 's winning strategy.

Suppose that \exists 's winning strategy in the acceptance game tells her to choose position $\left((c, B), \sigma\left(s_{k}\right)\right)$, followed by the relation Z. Then at position a_{k} of $\mathcal{S}(\mathbb{A})$, we define her strategy to be such that she picks (c, B). Now suppose that in the match of $\mathcal{S}(\mathbb{A}), \forall$ chooses some element $b \in B$ as the next position. It follows by the assumption that \exists 's strategy is winning, that $(c, B) \in \Theta\left(a_{k}\right), c=\sigma_{V}\left(s_{k}\right)$ and $\left(B, R\left[s_{k}\right]\right) \in \bar{\gamma}(Z)$. Hence there must be an element $t \in R\left[s_{k}\right]$ such that $(b, t) \in Z$; in the acceptance game, she may look at a continuation of the match where \forall picks the pair (b, t). In other words, we have proved that \exists can maintain the parallel match for one more round.

Using this strategy in the satisfiability game will then guarantee her to win the match, since the associated sequence of \mathbb{A}-states is the same for both matches, and in the $\mathcal{A}(\mathbb{A}, \mathbb{S})$ match \exists plays according to a strategy that was assumed to be winning.
$2 \Rightarrow 3$ Assume that \exists has a winning strategy in the satisfiability game starting from the initial state a_{I} of \mathbb{A}. Let $S:=\operatorname{Win}_{\exists}(\mathcal{S}(\mathbb{A}))$ be the set of positions in A that are winning for \exists. The key point of the satisfiability game for Kripke automata is that $\mathcal{S}(\mathbb{A})$ is a parity game, and so we may without loss of generality assume that this strategy is positional, see Theorem 5.22. In other words, we may represent it as a map $\sigma: S \rightarrow \mathrm{~K} A$. We invite the reader to check that $\sigma(a) \in \mathrm{K} S$ for all $a \in S$. Now define \mathbb{S} be the Kripke model $\langle S, \sigma\rangle$. The map $\sigma: S \rightarrow \mathrm{~K} S$ then induces a binary relation $R \subseteq S \times S$ and a valuation $V: \mathrm{P} \rightarrow \wp(S)$, viz., the unique R and V such that $\sigma(s)=\left(R[s], \sigma_{V}(s)\right)$. We claim that \mathbb{A} accepts $\left(\mathbb{S}, a_{I}\right)$.

To see why this is the case, we will prove that $\left(a_{I}, a_{I}\right)$ is a winning position in the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$. The winning strategy that we may equip \exists with in this game is in fact very simple:

- at position (a, s), pick $(\sigma(a), \sigma(s))$ as the next position if $a=s \in \mathrm{Win}_{\exists}(\mathcal{S}(\mathbb{A}))$, and choose a random element otherwise;
- at position $\left((c, B),\left(c^{\prime}, B^{\prime}\right)\right)$, pick the relation $\left\{(b, b) \mid b \in B \cap B^{\prime}\right\}$.

It can be proved that any match of the acceptance game in which \exists uses this strategy, can be 'projected' onto a match of the satisfiability game in which she plays her winning strategy:

$$
\begin{array}{ccccccc}
\left(a_{I}, a_{I}\right) & \left(\sigma\left(a_{I}\right), \sigma\left(a_{I}\right)\right) & \left\{(b, b) \mid b \in R\left[a_{I}\right]\right\} & \left(a_{1}, a_{1}\right) & \left(\sigma\left(a_{1}\right), \sigma\left(a_{1}\right)\right) & \ldots & \left(a_{n}, a_{n}\right) \\
\Downarrow & \Downarrow & \Downarrow & \Downarrow & & \Downarrow & \\
a_{I} & \sigma\left(a_{I}\right) & \Downarrow & \Downarrow & \sigma\left(a_{1}\right) & \ldots & a_{n}
\end{array}
$$

Given the winning conditions of $\mathcal{A}(\mathbb{A}, \mathbb{S})$ and $\mathcal{S}(\mathbb{A})$ it is then immediate that the given strategy indeed guarantees that \exists wins any match starting at position $\left(a_{I}, a_{I}\right)$.
$3 \Rightarrow 1$ This implication is a direct consequence of the definitions.
QED

10.2 Normal forms and decidability

In this section we will see two more corollaries of the results in the previous chapter.

Disjunctive normal form

As a first consequence, we now see that every formula of the modal μ-calculus can be brought into so-called disjunctive normal form. For the definition of the connectives used below we refer to Definition 1.37.

Definition 10.9 Given sets P of proposition letters, the set of disjunctive modal μ-calculus formulas over P is given by the following grammar:

$$
\varphi::=x|\perp| \top|\varphi \vee \varphi| \pi \bullet \nabla \Phi|\mu x . \varphi| \nu x . \varphi
$$

Here $\pi \in \mathrm{CL}(\mathrm{P})$ denotes a conjunction of literals over P , and Φ a finite collection of disjunctive formulas, and x is a variable not in P .

We let $\mu \mathrm{ML}_{\mathrm{D}}(\mathrm{P})$ denote the sentences of this language, that is, the disjunctive formulas φ such that $F V(\varphi) \subseteq \mathrm{P}$.

These formula are called disjunctive because the only admissible conjunctions are the special ones of the form $\pi \bullet \nabla \Phi$, where π is a propositional formula (in fact, a conjunction of literals).

Theorem 10.10 There is an effective algorithm that rewrites a modal fixpoint formula $\xi \in$ $\mu \mathrm{ML}(\mathrm{P})$ into an equivalent disjunctive formula ξ^{d} of closure size at most exponential in $|\xi|$.

- proof (based on the results of the previous chapters) to be supplied.
- size issues to be addressed!

Decidability

- Intro

Theorem 10.11 There is an algorithm that decides in linear time (measured in dag-size) whether a given disjunctive formula ξ is satisfiable or not.

Proof. It is easy to see that the proof of this proposition is a direct consequence of the following observations:

1. T is satisfiable;
2. \perp is not satisfiable;
3. $\varphi_{1} \vee \varphi_{2}$ is satisfiable iff φ_{1} or φ_{2} are satisfiable;
4. $\pi \bullet \nabla \Phi$ is satisfiable iff both π and each $\varphi \in \Phi$ is satisfiable;
5. if $\mu x . \varphi$ is disjunctive, then it is satisfiable iff $\varphi[\perp / x]$ is satisfiable;
6. if $\nu x . \varphi$ is disjunctive, then it is satisfiable iff $\varphi[\mathrm{T} / x]$ is satisfiable.

The proof of these claims is left as an exercise for the reader.
QED

Decidability of the satisfiability problem for modal fixpoint formulas is then an immediate consequence of the previous two results.

Corollary 10.12 There is an algorithm that decides in elementary time whether a given modal fixpoint formula ξ is satisfiable or not.

- Corollary 10.12 does not provide the best complexity bound for the satisfiability problem for the μ-calculus, which can in fact be solved in (singly) exponential time.

10.3 Uniform interpolation and bisimulation quantifiers

In this section we will prove that the modal μ-calculus enjoys the property of uniform interpolation by proving that we can express the so-called bisimulation quantifiers in the language.

Definition 10.13 Given two modal fixpoint formulas φ and ψ, we say that ψ is a (local) consequence of φ, notation: $\varphi \models \psi$, if $\mathbb{S}, s \Vdash \varphi$ implies $\mathbb{S}, s \Vdash \psi$, for every pointed Kripke model (\mathbb{S}, s).

A formalism has the (Craig) interpolation property if we can find an interpolant for every pair of formulas φ and ψ such that $\varphi \models \psi$. This interpolant is a formula θ such that $\varphi \models \theta$ and $\theta \models \psi$; but most importantly, the requirement on θ is that it may only use proposition letters that occur both in φ and ψ, or more precisely: $F V(\theta) \subseteq F V(\varphi) \cap F V(\psi)$.

```
- why this is an important property
```

Uniform interpolation is a very strong version of interpolation in which the interpolant θ does not depend on the particular shape of one of the formulas, but only on its vocabulary (set of free variables). More precisely, we define the following.

Definition 10.14 Let φ be a modal fixpoint formula, and $\mathrm{P} \subseteq F V(\varphi)$ be a set of variables. Then a (right) uniform interpolant of φ with respect to P is a formula θ with $F V(\theta) \subseteq \mathrm{P}$, such that

$$
\begin{equation*}
\varphi \models \psi \text { iff } \theta \models \psi . \tag{95}
\end{equation*}
$$

for all formulas ψ with $F V(\psi) \cap F V(\varphi) \subseteq \mathrm{P}$.
In words, (95) states that θ has exactly the same consequences as φ, at least, if we restrict to formulas ψ such that all free variables shared by φ and ψ belong to P .

Remark 10.15 To justify the terminology 'uniform interpolant', take some formula ψ with $F V(\psi) \cap F V(\varphi) \subseteq \mathrm{P}$. We claim that

$$
\begin{equation*}
\varphi \models \psi \text { implies } \varphi \models \theta \text { and } \theta \models \psi \tag{96}
\end{equation*}
$$

for any uniform interpolant θ of φ with respect to P .
To see this, suppose that $\varphi \models \psi$, and let θ be a uniform interpolant of φ with respect to P . Then we have $\theta \models \psi$ by (95), so it remains to show that $\varphi \models \theta$. But this follows immediately from the fact that by definition we have $F V(\theta) \cap F V(\varphi) \subseteq \mathrm{P}$, so that we may apply (95) to θ itself (and use that, obviously, $\theta \models \theta$).

Remark 10.16 Dually, we could have introduced the notion of a left uniform interpolant for ψ, instead of a right interpolant for φ. A left interpolant for ψ, with respect to a set $\mathrm{P} \subseteq F V(\psi)$ of proposition letters, is a formula χ with $F V(\chi) \subseteq \mathrm{P}$, and such that $\varphi \models \psi$ iff $\varphi \vDash \chi$. But since negation is definable in the modal μ-calculus as an operation $\sim: \mu \mathrm{ML}(\mathrm{P}) \rightarrow$ $\mu \mathrm{ML}(\mathrm{P})$ and so we have $\varphi \models \psi$ iff $\sim \psi \models \sim \varphi$, it is not hard to see that if θ is a (right) uniform interpolant for ψ, then its negation $\sim \theta$ is a left interpolant for ψ. In other words, since our language is closed under classical negation, requiring that every formula has a right uniform interpolant is equivalent to requiring that every formula has a left uniform interpolant. \triangleleft

The following theorem states that uniform interpolants exist in the modal μ-calculus.
Theorem 10.17 (Uniform Interpolation) Let φ be a modal fixpoint formula, and let P be a set of variables such that $\mathrm{P} \subseteq F V(\varphi)$. Then φ has a uniform interpolant with repect to P.

The proof consists of showing that the modal μ-calculus can express the so-called bisimulation quantifiers.

Definition 10.18 Given a proposition letter q, the bisimulation quantifier $\widetilde{\exists} q$ is an operator with the following semantics:

$$
\begin{equation*}
\mathbb{S}, s \Vdash \tilde{\exists} q \cdot \varphi \text { iff } \mathbb{S}^{\prime}, s^{\prime} \Vdash \varphi, \text { for some pointed model } \mathbb{S}^{\prime}, s^{\prime} \leftrightarrow_{\mathbb{R} \backslash q} \mathbb{S}, s, \tag{97}
\end{equation*}
$$

where \mathbb{S} is some Kripke model over a set R of proposition letters, and $\overleftrightarrow{\mathrm{L}}_{\mathrm{R} \backslash q}$ is the bisimilarity relation 'up to q ', that is, we only require the condition (prop) of Definition 1.19 to hold for proposition letters $p \in \mathrm{R} \backslash q$.

The bisimulation quantifier $\widetilde{\exists} q$ is a second-order existential quantifier, but nonstandard in the sense that it does not quantify over subsets of the actual model \mathbb{S}, but rather over subsets of possibly distinct (but bisimilar-up-to- q) models. For instance, if s is a state in \mathbb{S} with one single successor, then obviously the formula $\widetilde{\exists} q(\diamond q \wedge \diamond \bar{q})$ would be false if we had to interpret q as a subset of S. However, taking a bisimilar pointed model $\left(\mathbb{S}^{\prime}, s^{\prime}\right)$ such that s^{\prime} has two successors, we can easily interpret q as a subset of S^{\prime} such that the formula $\diamond q \wedge \diamond \bar{q}$ becomes true at s^{\prime}. Similarly, the formula $\widetilde{\exists} q(q \wedge \square \bar{q})$ holds at any point in any Kripke model.

The main result underlying the proof of Theorem 10.17 is that the bisimulation quantifiers are definable in the modal μ-calculus. The following notation will be convenient.

Convention 10.19 Where P is a set of proposition letters, and q is a proposition letter (which may or may not belong to P), we write $\mathrm{P} \backslash q$ rather than $\mathrm{P} \backslash\{q\}$.

Theorem 10.20 For any set P of proposition letters, and any proposition letter q, there is a map

$$
\tilde{\exists} q: \mu \mathrm{ML}_{\mathrm{D}}(\mathrm{P}) \rightarrow \mu \mathrm{ML}_{\mathrm{D}}(\mathrm{P} \backslash q)
$$

such that for any formula $\varphi \in \mu \mathrm{ML}_{\mathrm{D}}(\mathrm{P})$, we have $F V(\widetilde{\exists} q \cdot \varphi)=F V(\varphi) \backslash q$, and the semantics of $\Im q . \varphi$ satisfies (97), for any Kripke model over a set of proposition letters $\mathrm{R} \supseteq \mathrm{P}$.

The proof of Theorem 10.20 crucially involves disjunctive modal automata. Before going into the details, there is a technicality that we need to get out of the way.

Remark 10.21 Let $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$ be a modal automaton over some set P of proposition letters, and let $\mathbb{S}=(S, R, V)$ be a Kripke model over some, possibly larger, set R. Then strictly speaking the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ is not well-defined since the domain of the transition map Θ is of the form $\operatorname{Dom}(\Theta)=A \times \wp(\mathrm{P})$, while the range of the colouring map
σ_{V} of \mathbb{S} is the set $\operatorname{Ran}\left(\sigma_{V}\right)=\wp(\mathrm{R})$. But clearly we can take care of this mismatch by working with the map $\Theta_{\mathrm{R}}: A \times \wp(\mathrm{R}) \rightarrow 1 \mathrm{ML}(A)$ given by

$$
\Theta_{\mathrm{R}}(a, c):=\Theta(a, c \cap \mathrm{P})
$$

In the sequel we will largely ignore this issue.
We now turn to the details of the proof of Theorem 10.20. Because of the existence of truthpreserving translations between formulas and automata, it suffices to provide a construction on modal automata that instantiates the bisimulation quantifier, and because of the Simulation Theorem it suffices to define this construction for disjunctive modal automata.

Definition 10.22 Let P be a set of proposition letters and let q be a proposition letter (possibly but not necessarily in P). Let $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$ be a disjunctive modal automaton over the set P . We abbreviate $C:=\wp(\mathrm{P})$ and $C^{-}:=\wp(\mathrm{P} \backslash\{q\})$.

Now we define the modal automaton $\widetilde{\exists} q \cdot \mathbb{A}$ as the structure $\exists q \cdot \mathbb{A}:=\left\langle A, \Theta^{ \pm q}, \Omega, a_{I}\right\rangle$, where

$$
\Theta^{ \pm q}(a, c):=\Theta(a, c \backslash\{q\}) \vee \Theta(a, c \cup\{q\})
$$

defines the transition map $\Theta^{ \pm q}: A \times C^{-} \rightarrow 1 \mathrm{DML}(A)$.
The main technical result that we will prove is the following. Recall from Definition 9.16 that we write $\mathbb{S}, s_{I} \Vdash_{s} \mathbb{A}$ in case \exists has a functional strategy in the game $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, s_{I}\right)$.

Proposition 10.23 Let \mathbb{A} be a disjunctive modal P -automaton, and let \mathbb{S} be a Kripke model over some set $\mathrm{R} \supseteq \mathrm{P}$. Then the following are equivalent, for any state $s_{I} \in \mathbb{S}$:

1) $\mathbb{S}, s_{I} \vdash_{s} \widetilde{\exists} q \cdot \mathbb{A}$;
2) $\mathbb{S}[q \mapsto Q], s_{I} \Vdash_{s} \mathbb{A}$, for some subset $Q \subseteq S$.

Proof. We only consider the case where $\mathrm{R}=\mathrm{P}$, leaving it for the reader to extend the result to the more general case (cf. Remark 10.21). Fix a disjunctive P -automaton $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$ and an R-model $\mathbb{S}=(S, R, V)$; to simplify notation we will write $c_{t}:=\sigma_{V}(t)$, for an arbitrary point $t \in S$. Similarly, we will write $c-q:=c \backslash\{q\}$ and $c+q:=c \cup\{q\}$ for an arbitrary colour $c \in \wp(\mathrm{P})$. Furthermore, we will use the one-step presentation of the acceptance game, as in Table 20.

For the direction 1) $\Rightarrow 2$) of the Proposition, assume that $\mathbb{S}, s_{I} \Vdash_{s} \widetilde{\exists} q \cdot \mathbb{A}$. In other words, \exists has a functional positional strategy f which is winning in the game $\mathcal{A}(\exists) \cdot \mathbb{A}, \mathbb{S}) @\left(a_{I}, s_{I}\right)$. Abbreviate $\mathcal{A}:=\mathcal{A}(\exists q \cdot \mathbb{A}, \mathbb{S})$.

Let $U \subseteq S$ be the set of points t in S such that, for some state $a \in A$, the position (a, t) is f-reachable in $\mathcal{A} @\left(a_{I}, s_{I}\right)$. It follows from functionality of f that for every $t \in U$ there is a unique such state in \mathbb{A}; we will denote this state as a_{t}. Furthermore, since f is a winning strategy in $\mathcal{A} @\left(a_{I}, s_{I}\right)$, every position of the form $\left(a_{t}, t\right)$ is winning for \exists, and so by legitimacy of f, the marking $m_{t}: R[t] \rightarrow \wp(A)$ picked by f at this position is such that

$$
\begin{equation*}
\left(R[t], m_{t}\right) \Vdash^{1} \Theta^{ \pm q}\left(a_{t}, c_{t}\right) . \tag{98}
\end{equation*}
$$

Given that $\Theta^{ \pm q}\left(a_{t}, c_{t}\right)=\Theta\left(a_{t}, c_{t}-q\right) \vee \Theta\left(a_{t}, c_{t}+q\right)$, this observation provides the set $Q \subseteq S$ that we are looking for:

$$
Q:=\left\{t \in U \mid\left(R[t], m_{t}\right) \Vdash^{1} \Theta\left(a_{t}, c_{t}+q\right)\right\} .
$$

We claim that $\mathbb{S}[q \mapsto Q], s_{I} \Vdash_{s} \mathbb{A}$, and to show this, we define the following positional strategy f_{Q} for \exists in $\mathcal{A}_{Q}:=\mathcal{A}(\mathbb{A}, \mathbb{S}[q \mapsto Q])$. At a position $(a, t) \in A \times S, \exists$ will play as follows:

- in case $t \in U$ and $a=a_{t}$, she picks the marking m_{t};
- in all other cases she picks a random marking.

We first show that for each $t \in U$ and $a=a_{t}$ this strategy provides a legitimate move in \mathcal{A}_{Q}, that is,

$$
\begin{equation*}
\left(R[t], m_{t}\right) \Vdash^{1} \Theta\left(a_{t}, \sigma_{V[q \mapsto Q]}(t)\right) . \tag{99}
\end{equation*}
$$

To see this, make the following case distinction:

- If $\left(R[t], m_{t}\right) \Vdash^{1} \Theta\left(a_{t}, c_{t}+q\right)$ then by definition of Q we find $t \in Q$. This means that $\sigma_{V[q \mapsto Q]}(t)=\sigma_{V}(t) \cup\{q\}=c_{t}+q$. In other words, (99) holds indeed.
- If, on the other hand, $\left(R[t], m_{t}\right) \Vdash^{1} \Theta\left(a_{t}, c_{t}+q\right)$ then by definition of Q we find $t \notin Q$. Furthermore, by (98) and the definition of $\Theta^{ \pm q}$ it must be the case that $\left(R[t], m_{t}\right) \Vdash^{1}$ $\Theta\left(a_{t}, c_{t}-q\right)$. But since $t \notin Q$ we have $\sigma_{V[q \mapsto Q]}(t)=\sigma_{V}(t) \backslash\{q\}=c_{t}-q$, so that again we obtain (99).

It remains to show that f_{Q} is functional, and winning for \exists in $\mathcal{A}_{Q} @\left(a_{I}, s_{I}\right)$, but this is in fact easy. The point is that at any position of the form $\left(a_{t}, t\right)$ the strategies f and f_{Q} prescribe the same move, viz., m_{t}, and that at the position m_{t} the moves of \forall in \mathcal{A} and \mathcal{A}_{Q} are the same. From this it follows that every position for \exists that is reachable in an f_{Q}-guided match of $\mathcal{A}_{Q} @\left(a_{I}, s_{I}\right)$ is of the form $\left(a_{t}, t\right)$ (with $t \in U$), and so by our previous claim about the legitimacy of f_{Q} at such positions, f_{Q} is a surviving strategy. Now consider an f_{Q}-guided full match of $\mathcal{A}_{Q} @\left(a_{I}, s_{I}\right)$; this very same match is also an f-guided match of \mathcal{A}, and hence won by \exists - after all we assumed that f is a winning strategy for \exists in $\mathcal{A}\left(a_{I}, s_{I}\right) @\left(a_{I}, s_{I}\right)$, and the winning conditions in \mathcal{A}_{Q} and \mathcal{A} are the same. In other words, every f_{Q}-guided full match of $\mathcal{A}_{Q} @\left(a_{I}, s_{I}\right)$ is won by \exists. Finally, since f is a functional strategy, so is f_{Q}. This finishes the proof that 1) $\Rightarrow 2$).

The proof of the opposite implication, 2$) \Rightarrow 1$), is similar; we omit the details.
QED
From this, Theorem 10.20 is almost immediate.
Proof of Theorem 10.20. Let P and q be a set of proposition letters and a proposition letter, respectively, let \mathbb{A} be a disjunctive modal automaton over P , and let (\mathbb{S}, r) be a pointed model over a set R of proposition letters such that $P \subseteq R$. It suffices to show that

$$
\begin{equation*}
\mathbb{S}, r \Vdash \tilde{\exists}_{q \cdot \mathbb{A}} \text { iff } \mathbb{S}^{\prime}, r^{\prime} \Vdash \mathbb{A} \text {, for some }\left(\mathbb{S}^{\prime}, r^{\prime}\right) \text { with } \mathbb{S}, r \overleftrightarrow{G}_{\mathrm{R} \backslash q} \mathbb{S}^{\prime}, r^{\prime} \text {. } \tag{100}
\end{equation*}
$$

But since \mathbb{A} is disjunctive, it is easy to see that $\widetilde{\exists} q \cdot \mathbb{A}$ is disjunctive as well, and so it follows from Theorem 9.18 that

Combining this with Proposition 10.23 we find

$$
\begin{equation*}
\mathbb{S}, r \Vdash \widetilde{\exists} q \cdot \mathbb{A} \text { iff } \mathbb{S}^{\prime}[q \mapsto Q], r^{\prime} \Vdash_{s} \mathbb{A} \text {, for some }\left(\mathbb{S}^{\prime}, r^{\prime}\right) \text { with } \mathbb{S}, r \overleftrightarrow{\mathrm{G}}_{\mathrm{R} \backslash q} \mathbb{S}^{\prime}, r^{\prime} \text { and some } Q \subseteq S^{\prime} . \tag{102}
\end{equation*}
$$

Now it is obvious that $\mathbb{S}^{\prime}[q \mapsto Q], r^{\prime} \overleftrightarrow{\mathrm{Q}}_{\mathrm{R} \backslash q} \mathbb{S}^{\prime}, r^{\prime}$. But then (100) is immediate.
QED
Finishing this section, we show how to derive the uniform interpolation property from the definability of the bisimulation quantifiers.

Proof of Theorem 10.17. Fix the formula φ and the set P , and let q_{1}, \ldots, q_{n} enumerate the free variables of φ that are not in P , that is, $\left\{q_{1}, \ldots, q_{n}\right\}=F V(\varphi) \backslash \mathrm{P}$. We claim that the formula $\widetilde{\exists} q_{1} \cdots \widetilde{\exists} q_{n} \cdot \varphi$ is the required (right) uniform interpolant of φ with respect to P .

To prove this, take an arbitrary formula ψ such that $F V(\psi) \cap F V(\varphi) \subseteq \mathrm{P}$. Clearly this implies that no q_{i} is a free variable of ψ. We first show that

$$
\varphi \models \widetilde{\exists} q_{1} \ldots \widetilde{\exists} q_{n} \cdot \varphi .
$$

To see this, let (\mathbb{S}, s) be some pointed Kripke model (over some set $\mathrm{R} \supseteq F V(\varphi)$) such that $\mathbb{S}, s \Vdash \varphi$. Since we obviously have that $\mathbb{S}, s \overleftrightarrow{\mathrm{G}}_{\mathrm{R} \backslash q} \mathbb{S}, s$ for any proposition letter q, it easily follows that $\varphi \models \widetilde{\exists} q_{1} \ldots \widetilde{\exists} q_{n} . \varphi$. This takes care of the right-to-left direction from (95).

For the opposite direction of (95), assume that $\varphi \vDash \psi$, and let (\mathbb{S}, s) be a pointed Kripke model such that $\mathbb{S}, s \Vdash \widetilde{\exists} q_{1} \ldots \widetilde{\exists} q_{n} \cdot \varphi$. It follows that there is a sequence $\left(\mathbb{S}_{i}, s_{i}\right)_{0 \leq i \leq n}$ of pointed models such that $(\mathbb{S}, s)=\left(\mathbb{S}_{0}, s_{0}\right), \mathbb{S}_{n}, s_{n} \Vdash \varphi$, and $\mathbb{S}_{i}, s_{i} \overleftrightarrow{U}_{\mathrm{R} \backslash q_{i+1}} \mathbb{S}_{i+1}, s_{i+1}$ for all i with $0 \leq i<n$. Then by assumption it follows from $\mathbb{S}_{n}, s_{n} \Vdash \varphi$ that $\mathbb{S}_{n}, s_{n} \Vdash \psi$. But since none of the proposition letters q_{i} is free in ψ, step by step applying the bisimulation invariance of the modal μ-calculus we may show that each pointed model \mathbb{S}_{i}, s_{i} satisfies ψ. In particular, we find that $\mathbb{S}, s \Vdash \psi$, as required.

QED

Notes

The decidability of the satisfiability problem of the modal μ-calculus was first proved by Kozen and Parikh [17] via a reduction to $S n S$. Emerson \& Jutla [10] established the Exptimecompleteness of this problem. The finite model property was proved by Kozen [16].

Uniform interpolation of the modal μ-calculus was proved by D'Agostino \& Hollenberg [8], who established some other model-theoretic results as well.

Exercises

Exercise 10.1 Let γ be some disjunctive fixed point formula.
(a) Show that $\mu x \cdot \gamma$ is satisfiable iff $\gamma[\perp / x]$ is satisfiable.
(b) Show that $\nu x \cdot \gamma$ is satisfiable iff $\gamma[\top / x]$ is satisfiable.
(c) Do the above statements hold for arbitrary fixed point formulas as well?

Exercise 10.2 Prove the left-to-right direction of (110) in Proposition 11.28.
Exercise 10.3 Is disjunctivity of the automaton \mathbb{A} needed in the proof of Proposition 10.23?
Exercise 10.4 (PDL + bisimulation quantifier) Consider a setting with finitely many atomic actions. Let PDL $+\widetilde{\exists}$ be the extension of propositional dynamic logic with (explicit) bisimulation quantifiers. Show that there is a (truth-preserving) translation from the modal μ-calculus to PDL $+\widetilde{\exists}$.

11 Expressive completeness

In this chapter we compare the expressive power of the modal μ-calculus to that of monadic second-order logic. The key result that we will prove is that the modal μ-calculus has the same expressive power as the bisimulation invariant fragment of monadic second-order logic, in brief:

$$
\begin{equation*}
\mu \mathrm{ML} \equiv \mathrm{MSO} / \overleftrightarrow{ } \text {. } \tag{103}
\end{equation*}
$$

In fact, Theorem 11.21, the actual result that we are going to prove is a bit stronger than (103).

Our proof will be automata-theoretic in nature: after discussing two different (but equivalent) versions of monadic second-order logic in section 11.1, we show in section 11.2 that on tree models, MSO has the same expressive power as the class $A u t(1 \mathrm{FOE})$ of automata over the one-step logic 1FOE. Since the modal μ-calculus corresponds to the class Aut (1FO), we will prove (103) in section 11.3 via a comparison of the one-step languages 1 FOE and 1 F0.

11.1 Monadic second-order logic

Second-order logic is the extension of first-order logic where quantification is allowed, not only over individuals, but also over relations on the domain. In monadic second-order logic, this second-order quantification is restricted to unary relations, that is, subsets of the domain. The syntax of monadic second-order logic is usually defined as the extension of that of firstorder logic by second-order quantifiers of the form $\exists p / \forall p$, where p is a monadic predicate symbol.

Definition 11.1 Given a set D of atomic actions, a set IVar of individual variables and a set Prop of set variables, we define the language $\mathrm{MSO}_{\mathrm{D}}^{2}$ as follows:

$$
\varphi::=x \doteq y\left|R_{d} x y\right| p(x)|\neg \varphi| \varphi \vee \varphi|\exists x . \varphi| \exists p . \varphi
$$

Here x and y are variables from IVar, p is a variable from P , and $d \in \mathrm{D}$ is an atomic action.
We let $\mathrm{MSO}_{\mathrm{D}}^{2}(\mathrm{X}, \mathrm{P})$ denote the set of $\mathrm{MSO}_{\mathrm{D}}^{2}$-formulas φ of which all individual free variables are from X and all free set variables are from P . In case X is a singleton $\{x\}$, we write $\operatorname{MSO}_{\mathrm{D}}^{2}(x, \mathrm{P})$ rather than $\mathrm{MSO}_{\mathrm{D}}^{2}(\{x\}, \mathrm{P})$

This semantics of this language is completely standard, with $\exists x$ denoting first-order quantification (that is, quantification over individual states), and $\exists p$ denoting monadic secondorder quantification (that is, quantification over sets of states).

It turns out, however, that for a nice inductive translation of $M S O$ to automata, it is more convenient to use a slightly nonstandard version of $M S O$ that is single-sorted in that it only admits second-order variables, not first-order ones. Quantification over individuals can then be simulated by quantification over singleton sets. In addition, to facilitate the comparison with modal languages, which are interpreted in pointed Kripke models, we need to install a feature in the language that allows access to the designated or actual world of the Kripke model.

Definition 11.2 Given a set D of atomic actions, we define the language of monadic secondorder logic $\mathrm{MSO}_{\mathrm{D}}$ as follows:

$$
\varphi::=p \sqsubseteq q\left|R_{d} p q\right| \Downarrow p|\neg \varphi| \varphi \vee \varphi \mid \exists p . \varphi,
$$

where p and q are propositional variables from P . We let $\mathrm{MSO}_{\mathrm{D}}(\mathrm{P})$ denote the set of $\mathrm{MSO}_{\mathrm{D}^{-}}$ formulas of which the free variables are from P.

Definition 11.3 Given a Kripke model $\mathbb{S}=\langle S, V, R\rangle$, and a designated point $s \in S$, we define the semantics of MSO as follows:

$$
\begin{array}{lll}
\mathbb{S}, s \models p \sqsubseteq q & \text { if } & V(p) \subseteq V(q) \\
\mathbb{S}, s \models R_{d} p q & \text { if } & \text { for all } t \in V(p) \text { there is a } u \in V(q) \text { with } R_{d} t u \\
\mathbb{S}, s \models \Downarrow p & \text { if } & V(p)=\{s\} \\
\mathbb{S}, s \models \neg \varphi & \text { if } & \mathbb{S}, s \neq \varphi \\
\mathbb{S}, s \models \varphi \vee \psi & \text { if } & \mathbb{S}, s \models \varphi \text { or } \mathbb{S}, s \models \psi \\
\mathbb{S}, s \models \exists p . \varphi & \text { if } & \mathbb{S}[p \mapsto X], s \models \varphi \text { for some } X \subseteq S .
\end{array}
$$

An MSO-formula φ is bisimulation invariant if $\mathbb{S}, s \leftrightarrows \mathbb{S}^{\prime}, s^{\prime}$ implies that $\mathbb{S}, s \models \varphi \Leftrightarrow \mathbb{S}^{\prime}, s \models \varphi$. \triangleleft

Remark 11.4 In fact, one may think of the formalism as a first-order logic of which the intended models are power structures of the form $\langle\wp(S), \subseteq, \vec{R},\{s\}\rangle$, where $R_{d}(Y, Z)$ iff for all $y \in Y$ there is a $z \in Z$ such that $R_{d} y z$.)

It is not too hard to see that the two languages are in fact equivalent.
Theorem 11.5 There are effective procedures transforming a formula in $\operatorname{MSO}^{2}(x, \mathrm{P})$ into an equivalent $\mathrm{MSO}(\mathrm{P})$-formula, and vice versa:

$$
\mathrm{MSO}^{2} \equiv \mathrm{MSO}
$$

To start with, there is a straightforward, inductively defined translation $(\cdot)^{\prime}: \mathrm{MSO}_{\mathrm{D}}(\mathrm{P}) \rightarrow$ $\operatorname{MSO}_{\mathrm{D}}^{2}(x, \mathrm{P})$ such that

$$
\mathbb{S}, s \models \varphi \text { iff } \mathbb{S} \models \varphi^{\prime}[s],
$$

for all formulas $\varphi \in \operatorname{MSO}_{\mathrm{D}}(\mathrm{P})$ and all pointed Kripke models \mathbb{S}. The only interesting clause in the inductive definition of this translation concerns the \Downarrow-connective, for which we set

$$
(\Downarrow p)^{\prime}:=\forall y(p(y) \leftrightarrow y \doteq x) .
$$

For the opposite direction, the key observation is that MSO can interpret MSO ${ }^{2}$ by encoding individual variables as set variables denoting singletons. To understand how this works, we need to have a closer look at the semantics. Formulas of the language MSO^{2} are interpreted over Kripke models \mathbb{S} with an assignment, that is, a map $\alpha: I \operatorname{Var} \rightarrow S$ interpreting the individual variables as elements of S. But then we can encode such an MSO^{2}-model $\mathbb{S}=(S, R, V)$ with assignment α, as the MSO-model $\mathbb{S}^{\alpha}:=\left(M, R, V^{\alpha}\right)$ over Prop $\cup \operatorname{IVar}$, where $V^{\alpha}(p):=V(p)$ if p is a set variabe, and $V^{\alpha}(x):=\{\alpha(x)\}$ if x is an individual variable.

Proposition 11.6 There is a translation $(\cdot)^{t}: \mathrm{MSO}_{\mathrm{D}}^{2}(\mathrm{X}, \mathrm{P}) \rightarrow \mathrm{MSO}_{\mathrm{D}}(\mathrm{P} \uplus \mathrm{X})$ such that

$$
\begin{equation*}
\mathbb{S} \models \varphi[\alpha] \text { iff } \mathbb{S}^{\alpha} \models \varphi^{t} \tag{104}
\end{equation*}
$$

for all $\varphi \in \operatorname{MSO}_{\mathrm{D}}^{2}(\mathrm{X}, \mathrm{P})$, all Kripke models $\mathbb{S}=(S, R, V)$ and all assignments $\alpha: \mathrm{X} \rightarrow S$.
As a corollary, for all $\varphi \in \operatorname{MSO}_{\mathrm{D}}^{2}(x, \mathrm{P})$ and all pointed Kripke models (\mathbb{S}, s) we obtain

$$
\begin{equation*}
\mathbb{S} \models \varphi[s] \text { iff } \mathbb{S}, s \models \forall x .\left(\Downarrow x \rightarrow \varphi^{t}\right) . \tag{105}
\end{equation*}
$$

Proof. The translation crucially involves the MSO-formulas empty (p) and $\operatorname{sing}(p)$ given by

$$
\begin{array}{ll}
\operatorname{empty}(p) & :=\forall q(p \sqsubseteq q) \\
\operatorname{sing}(p) & :=\forall q(q \sqsubseteq p \rightarrow(\operatorname{empty}(q) \vee p \sqsubseteq q)) .
\end{array}
$$

It is not hard to prove that these formulas hold in \mathbb{S} iff, respectively, $V(p)$ is empty and $V(p)$ is a singleton.

With these formulas defined, we can now inductively fix the translation as follows:

$$
\begin{array}{ll}
(p(x))^{t} & :=x \sqsubseteq p \\
\left(R_{d} x y\right)^{t} & :=R_{d} x y \\
(x \doteq y)^{t} & :=x \sqsubseteq y \wedge y \sqsubseteq x \\
\left(\neg \varphi^{t}\right. & :=\neg \varphi^{t} \\
\left(\varphi_{0} \vee \varphi_{1}\right)^{t} & :=\varphi_{0}^{t} \vee \varphi_{1}^{t} \\
(\exists x . \varphi)^{t} & :=\exists x .\left(\operatorname{sing}(x) \wedge \varphi^{t}\right) \\
(\exists p . \varphi)^{t} & :=\exists p . \varphi^{t}
\end{array}
$$

It is a routine exercise to verify (104), so we leave the details for the reader. Similarly, the proof of (105) is immediate by (104) and the definitions of the semantics of \Downarrow. QED

Note that the translation $(\cdot)^{t}$ given in the proof of Proposition 11.6 does not involve the connective \Downarrow. The only use of \Downarrow in this setting is to mark the designated node of a pointed Kripke model.

11.2 Automata for monadic second-order logic

The aim of this section is to provide an automata-theoretic perspective on monadic secondorder logic. That is, we will provide a construction transforming an arbitrary MSO-formula φ into an automaton \mathbb{B}_{φ} that is equivalent to φ, at least, if we confine attention to tree models. In fact, we will encounter various kinds of automata, all corresponding to MSO-formulas, and all taking some fragment of monadic first-order logic as the co-domain of their transition map, as in Definition 9.26 and Definition 9.27.

Recall that the set $\operatorname{MFOE}(A)$ of monadic first-order formulas over A is given by the following grammar:

$$
\alpha::=\top|\perp| a(x)|\neg a(x)| x \doteq y|x \neq y| \alpha \vee \alpha|\alpha \wedge \alpha| \exists x . \alpha \mid \forall x . \alpha
$$

where $a \in A$ and x, y are first-order (individual) variables, and that $\operatorname{MFO}(A)$ is the set of $\operatorname{MFOE}(A)$-formulas without occurrences of identity formulas (or their negations). Recall as

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\left\{U: A \rightarrow \wp(R(s)) \mid(R(s), U) \models \Theta\left(a, \sigma_{V}(s)\right)\right\}$
$U: A \rightarrow \wp(S)$	\forall	$\{(b, t) \mid t \in U(b)\}$

Table 25: Acceptance game for $M S O$-automata
well that $1 \mathrm{FOE}(A)$ and $1 \mathrm{FO}(A)$ are the one-step languages consisting of the sentences of, respectively, $\operatorname{MFOE}(A)$ and $\operatorname{MFO}(A)$, where each monadic predicate $a \in A$ occurs only positively. It will be convenient in this section to present one-step models using valuations rather than markings; that is, a one-step model will be denoted as a pair (Y, V) consisting of some set Y and an A-valuation $V: A \rightarrow \wp(Y)$.

Definition 11.7 An $M S O$-automaton over a set P of proposition letters is nothing but a 1 FOE-automaton over P , that is, a quadruple $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$, where A, a_{I} and Ω are as usual, and Θ is a map $\Theta: A \times \wp(\mathrm{P}) \rightarrow 1 \mathrm{FOE}(A)$.

The acceptance game of such an automaton with respect to a Kripke model \mathbb{S} is given in Table 11.2. The winning conditions for both finite and infinite matches are as usual.

In words, the acceptance game proceeds as follows. At a basic position $(a, s), \exists$ chooses a valuation U interpreting each 'predicate' $a \in A$ as a subset $U(a)$ of the set $R(s)$ of successors of s. In this choice, she is bound by the condition that the sentence $\Theta\left(a, \sigma_{V}(s)\right)$ must be true in the resulting A-structure $(R(s), U)$. Once chosen, this map U itself determines the next position of the match. As a position, U belongs to player \forall, and all he has to do is to choose a pair (b, t) such that $t \in U(b)$. This pair (b, t) is then the next basic position of the match.

The link with modal automata is given by Proposition 9.31, stating that, seen as one-step languages, 1FO is equivalent to 1 ML . From this we obtain the equivalence in expressive power of the automata classes $A u t(1 \mathrm{FO})$ and $A u t(1 \mathrm{ML})$, which in its turn entails the following.

Theorem 11.8 There are effective procedures transforming a μ-calculus formula into an equivalent MSO-automaton in $A u t(1 \mathrm{FO})$, and vice versa:

$$
\mu \mathrm{ML} \equiv A u t(1 \mathrm{FO})
$$

The main result of this section states a very similar result for MSO and arbitrary MSOautomata, if we confine our attention to tree models:

Theorem 11.9 There are effective procedures transforming an MSO-formula ξ into an MSOautomaton \mathbb{A}, and vice versa, such that the corresponding formula ξ and automaton \mathbb{A} are equivalent on the class of tree models:

$$
\mathrm{MSO} \equiv A u t(1 \mathrm{FOE})(\text { on tree models })
$$

Note that on arbitrary models, monadic second-order logic can express properties that cannot be captured by $M S O$-automata. For instance, it is easy to write an MSO-formula
stating that the designated point of a Kripke model lies on a cycle, but there is no MSO automaton that recognizes exactly the class of pointed Kripke models with this property.

We will prove the two directions in the statement of Theorem 11.9 separately. Leaving the transformation of automata to monadic second-order formulas to the end of the section, we first concentrate on the opposite direction.

Proposition 11.10 There is an effective procedure transforming a formula $\varphi \in \operatorname{MSO}(\mathrm{P})$ into an MSO-automaton \mathbb{B}_{φ} over P that is equivalent to φ over the class of tree models. That is:

$$
\begin{equation*}
\mathbb{S}, r \models \varphi \text { iff } \mathbb{B}_{\varphi} \text { accepts }(\mathbb{S}, r) . \tag{106}
\end{equation*}
$$

for any tree model \mathbb{S} with root r.
We will prove Proposition 11.10 by induction on the complexity of $M S O$-formulas. The proposition below takes care of the atomic case.

Proposition 11.11 Let φ be one of the atomic MSO-formulas: Rpq, $p \sqsubseteq q$, or $\Downarrow p$. Then there is an MSO-automaton \mathbb{B}_{φ} that is equivalent to φ on tree models.

Proof. We restrict attention to the formula $R p q$, leaving the other cases as an exercise for the reader. The automaton $\mathbb{B}_{R p q}$ is defined as the structure $\left(\left\{a_{0}, a_{1}\right\}, \Theta, \Omega, a_{0}\right)$, where Θ is given by putting:

$$
\begin{aligned}
\Theta\left(a_{0}, c\right) & := \begin{cases}\exists y\left(a_{1}(y) \wedge \forall z\left(z \neq y \rightarrow a_{0}(z)\right)\right) & \text { if } p \in c \\
\forall z a_{0}(z) & \text { otherwise }\end{cases} \\
\Theta\left(a_{1}, c\right) & := \begin{cases}\perp & \text { if } q \notin c \\
\exists y\left(a_{1}(y) \wedge \forall z\left(z \neq y \rightarrow a_{0}(z)\right)\right) & \text { if } q \in c \text { and } p \in c \\
\forall z a_{0}(z) & \text { otherwise }\end{cases}
\end{aligned}
$$

Furthermore, Ω is defined via $\Omega\left(a_{i}\right):=0$ for each a_{i} - as a consequence, \exists wins all infinite games. We leave it for the reader to verify that this automaton is of the right shape, and that it is indeed equivalent to the formula $R p q$ on tree models.

QED
For the inductive step of the argument, there are three cases to consider, corresponding to, respectively, the connectives \vee and \neg, and the (second-order) existential quantification. It turns out that the first two cases are relatively easy to handle, cf. Proposition 9.38. To take care of the existential quantification however, we need to work with nondeterministic automata, in which every formula $\Theta(a, c)$ has been brought into a certain normal form. Fortunately, we can prove a simulation theorem for $M S O$-automata, implying that we may transform any MSO -automaton into an equivalent nondeterministic one. We need some definitions on these normal forms of 1 FOE-formulas.

Definition 11.12 Fix a set A of propositional variables. We introduce some abbreviations for MFOE-formulas:

$$
\operatorname{diff}\left(y_{1}, \ldots, y_{n}\right):=\bigwedge\left\{y_{i} \neq y_{j} \mid 1 \leq i<j \leq n\right\}
$$

and, for a set $B \subseteq A$:

$$
\tau_{B}(x):=\bigwedge_{a \in B} a(x)
$$

Now define the following MFOE-sentences:

$$
\begin{aligned}
& \chi_{\overline{\bar{B}, \bar{C}}}:=\exists y_{1} \cdots y_{n}\left(\operatorname{diff}(\bar{y}) \wedge \bigwedge_{i} \tau_{B_{i}}\left(y_{i}\right) \wedge \forall z\left(\operatorname{diff}(\bar{y}, z) \rightarrow \bigvee_{j} \tau_{C_{j}}(z)\right)\right) \\
& \chi_{\bar{B}, \bar{C}}:=\exists y_{1} \cdots y_{n}\left(\bigwedge_{i} \tau_{B_{i}}\left(y_{i}\right) \wedge \forall z \bigvee_{j} \tau_{C_{j}}(z)\right)
\end{aligned}
$$

where $\bar{B}=B_{1}, \ldots, B_{n}$ and $\bar{C}=C_{1}, \ldots, C_{m}$ are two sequences of subsets of A.
Sentences of the form $\chi=(\bar{B}, \bar{C})$ are said to be in basic form, and in special basic form in case each B_{i} and C_{j} is a singleton. The sets of these formulas are denoted as $\operatorname{BF}(A)$ and $\operatorname{SBF}(A)$, respectively.

In words, the formula $\operatorname{diff}\left(y_{1}, \ldots, y_{n}\right)$ expresses that the variables y_{1}, \ldots, y_{n} refer to n distinct objects of the domain. The formula $\tau_{B}(x)$ can be seen to state that x realises the type B, that is: it satisfies all predicates a in B. The formula $\chi_{\overline{\bar{B}}, \bar{C}}$ expresses the existence of n distinct objects realising the B-types, with all other objects realising one of the C-types. This formula is (equivalent to) the formula $\forall z \bigvee_{j} \tau_{C_{j}}(z)$ in the special case where $n=0$, and, in case $m=0$ as well, to the formula $\forall z \perp$ (which holds in the empty model only). As a simplified version of $\chi_{\overline{\bar{B}}, \bar{C}}^{\bar{C}}$, the sentence $\chi_{\bar{B}, \bar{C}}$ states that all types in \bar{B} are witnessed by some object, while every object satisfies some C-type. Note that for the latter reason, $\chi_{\bar{B}, \bar{C}}$ is generally not a semantics consequence of $\chi_{\overline{\bar{B}}, \bar{C}}$. Finally, observe that $\chi_{\overline{\bar{B}}, \bar{C}}$ and $\chi_{\bar{B}, \bar{C}}$ are positive sentences, and hence, one-step formulas in 1 FOE and 1 FO , respectively.

Using these normal forms, we can now define the notion of a nondeterministic MSOautomaton.

Definition 11.13 An $M S O$-automaton $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$ is called nondeterministic if $\operatorname{Ran}(\Theta) \subseteq$ $\operatorname{Dis}(\operatorname{SBF}(A))$, that is, every formula $\Theta(a, c)$ is a disjunction of special basic formulas. \triangleleft

Nondeterministic automata are of interest because they admit functional strategies - in tree models, that is. As in Definition 9.16, we call a strategy f for \exists in the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, r\right)$ functional if for every $s \in S$ there is at most one $a \in A$ such that the position (a, s) is reachable in an f-guided match of $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, r\right)$. In case \exists has a functional strategy which is in addition winning, we write $\mathbb{S}, r \Vdash_{s} \mathbb{A}$. The following proposition states that on tree models, we may always assume that winning strategies are functional.

Proposition 11.14 Let \mathbb{A} be a nondeterministic MSO-automaton, and let \mathbb{S} be a tree-based Kripke model with root r. Then $\mathbb{S}, r \Vdash \mathbb{A}$ iff $\mathbb{S}, r \Vdash_{s} \mathbb{A}$.

As a corollary, nondeterministic MSO-automata are closed under existential second-order quantification.

Corollary 11.15 Let $\mathbb{D}=\left\langle D, \Delta, \Omega, d_{I}\right\rangle$ be a nondeterministic MSO-automaton over the set $\mathrm{P} \cup\{p\}$. Then there is a nondeterministic automaton $\mathbb{D}^{\exists p}$ over P , such that for all tree models (\mathbb{S}, r) :

$$
\begin{equation*}
\mathbb{D}^{\exists p} \text { accepts }(\mathbb{S}, r) \text { iff } \mathbb{D} \text { accepts }(\mathbb{S}[p \mapsto T], r) \text { for some } T \subseteq S \tag{107}
\end{equation*}
$$

Proof. Define the automaton $\mathbb{D}^{\exists p}:=\left\langle D, \Delta^{\exists p}, \Omega, d_{I}\right\rangle$, with alphabet $C=\wp(\mathrm{P})$, by putting

$$
\Delta^{\exists p}(a, c):=\Delta(a, c) \vee \Delta(a, c \cup\{p\}) .
$$

Clearly then $\mathbb{D}^{\exists p}$ is a nondeterministic $M S O$-automaton, so it remains to prove that $\mathbb{D}^{\exists p}$ satisfies (107). But since we may assume winning strategies to be functional, this proof is a variation on a proof given earlier, viz., that of Proposition 10.23.

QED
But if nondeterministic MSO-automata admit existential second-order quantification, in order to transfer this closure property to the class of arbitrary automata, all we need is the following Simulation Theorem which states in particular that every MSO-automaton has a nondeterministic equivalent.

Theorem 11.16 (Simulation Theorem) There are effective constructions transforming an automaton of any of the kinds below to an equivalent automaton of any other kind:

1) $\operatorname{Aut}(1 \mathrm{FOE})$,
2) $\operatorname{Aut}(\operatorname{Dis}(\operatorname{BF}(A))$,
3) $\operatorname{Aut}(\operatorname{Dis}(\operatorname{SBF}(A))$.

To prove the implication from 1) to 2) of this result, we need a model-theoretic result on monadic first-order logic, that will be of use later on as well.

Proposition 11.17 There is an effective procedure transforming an arbitrary positive sentence in $\operatorname{MFOE}(A)$ to an equivalent disjunction of sentences in basic form.

The proof of this result, which we omit for the time being, is a fairly straightforward exercise in the theory of Ehrenfeucht-Fraïssé games.

Proof of Theorem 11.16. The implications from 3) to 2) and from 2) to 1) are trivial consequences of the definitions. The implication from 1) to 2) is immediate by Proposition 11.17.

The hardest part of the proof concerns the remaining implication, from 2) to 3). This, however, is an instance of the general simulation theorem that we proved in section 9.6. We only need to verify that the language $\operatorname{Dis}(\mathrm{SBF})$, seen as a one-step language, is Λ-distributive over $\operatorname{Dis}(\mathrm{BF})$, and therefore, over 1FOE, but we leave this as an exercise for the reader. QED

With this Simulation Theorem we have all the results that are needed for the inductive translation of second-order formulas to MSO-automata.

Proof of Proposition 11.10. As mentioned, the proposition is proved by induction on the complexity of $\varphi \in$ MSO. The atomic case of the induction is covered by Proposition 11.11. For the induction step, the case where $\varphi=\exists p . \psi$ is taken care of by Theorem 11.16 and Corollary 11.15. The remaining cases, where respectively $\varphi=\neg \psi$ and $\varphi=\varphi_{0} \vee \varphi_{1}$, are left as exercises for the reader.

Proposition 11.10 takes care of one direction of Theorem 11.9; for the opposite direction we need to find an equivalent formula $\xi_{\mathbb{A}} \in \operatorname{MSO}$ for each $M S O$-automaton \mathbb{A}.

Proposition 11.18 There is an effective procedure transforming an $M S O$-automaton \mathbb{A} into a formula $\xi_{\mathbb{A}} \in \mathrm{MSO}^{2}(\mathrm{P})$ that is equivalent to φ over the class of tree models. That is:

$$
\begin{equation*}
\mathbb{A} \text { accepts }(\mathbb{S}, r) \text { iff } \mathbb{S}, r \models \xi_{\mathbb{A}} \text {. } \tag{108}
\end{equation*}
$$

for any tree model \mathbb{S} with root r.
Proof. For the time being we confine ourselves to a proof sketch. The basic idea is to encode the operational semantics of an MSO -automaton in monadic second-order logic; this works for nondeterministic automata over tree models, since we can express the working of a functional strategy.

To give a bit more detail, fix an $M S O$-automaton \mathbb{A}. We first transform \mathbb{A} into an equivalent nondeterministic automaton $\mathbb{D}=\left(D, \Theta, \Omega, d_{I}\right)$; this is possible by Theorem 11.16. It then suffices to write down a monadic second-order formula $\xi(x)$ in $\operatorname{MSO}^{2}(x)$ such that, for an arbitrary tree model \mathbb{S} with root r :

$$
\mathbb{S} \models \xi[r] \text { iff } \exists \text { has a functional positional winning strategy in } \mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, r\right) \text {. }
$$

Let $\mathbb{S}=(S, R, V)$ be a an arbitrary tree model with root r and let $D=\left\{a_{1}, \ldots, a_{n}\right\}$. Here we think of the a_{i} as second-order variables that will be quantified over existentially, in order to express the existence of a functional positional strategy. Take an arbitrary valuation $U: D \rightarrow \wp(S)$. It is easy to write down an $\operatorname{MSO}^{2}(x)$-formula $\varphi(\bar{a}, x)$ which holds of the resulting model $\mathbb{S} \oplus U$ iff $\left|U\left(a_{i}\right)\right| \leq 1$ for each i, so that we may think of the associated marking m_{U} as a potential functional strategy of \exists in the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$. Writing a_{s} for the unique state such that $a_{s} \in m_{U}$, we may then use the one-step formula $\Theta\left(a, \sigma_{V}(s)\right)$ as a basis for a first-order formula which expresses that this potential strategy induced by U actually provides a legitimate move for \exists at position $\left(a_{s}, s\right)$. Finally, note that any infinite match of $\mathcal{A}(\mathbb{A}, \mathbb{S}) @\left(a_{I}, r\right)$ corresponds to a branch of \mathbb{S} (that is, an infinite path starting at r); using a second-order variable b to range over such branches, it is then fairly straightforward to write down a formula stating that the highest parity occurring infinitely often on any match of an m_{U}-guided match is even.

QED

11.3 Expressive completeness modulo bisimilarity

A central result in the theory of basic modal logic states that modal logic corresponds to the bisimulation invariant fragment of first-order logic. In this section we will prove an extension of this result stating that the modal μ-calculus is the bisimulation invariant fragment of monadic second-order logic. While it is not difficult to show that every $\mu \mathrm{ML}$-formula is equivalent to a bisimulation-invariant formula in MSO, it is the converse correspondence where the true importance of the result lies. We may see it as an expressive completeness result, stating that the modal μ-calculus is sufficiently strong to express every bisimulation-invariant formula in monadic second-order logic. Note that in a context such as process theory, where we consider bisimilar pointed Kripke models as different representations of the same process, bisimulationinvariant properties are in fact the only relevant ones. In such a situation, we may read the bisimulation-invariance result as saying that modal fixpoint logic has the same expressive power as monadic second-order logic, when it comes to expressing relevant properties.

```
- Add examples of what can be expressed in MSO, and not in }\mu\mathrm{ ML:
    - every point has exactly two d-successors
    - the actual state does not lie on a cycle
```

We first show that there is truth-preserving translation mapping every formula of the modal μ-calculus to an equivalent monadic second-order formula. Recall from Remark 11.4 that $\operatorname{MSO}_{\mathrm{D}}^{2}(x, \mathrm{P})$ is the standard (two-sorted) version of monadic second-order logic.

Definition 11.19 For any individual variable x we define, by induction on the complexity of a formula $\varphi \in \mu \mathrm{ML}_{\mathrm{D}}$, a translation $\mathrm{ST}_{x}: \mu \mathrm{ML}_{\mathrm{D}}(\mathrm{P}) \rightarrow \mathrm{MSO}_{\mathrm{D}}^{2}(x, \mathrm{P})$.

$$
\begin{array}{ll}
\mathrm{ST}_{x}(p) & :=p(x) \\
\mathrm{ST}_{x}(\neg \varphi) & :=\neg \mathrm{ST}_{x}(\varphi) \\
\operatorname{STx}\left(\diamond_{d} \varphi\right) & :=\exists y\left(R_{d} x y \wedge \mathrm{ST}_{y}(\varphi)\right) \\
\operatorname{STx}(\diamond \varphi) & :=\exists y\left(\operatorname{Rxy} \wedge \mathrm{ST}_{y}(\varphi)\right) \\
\operatorname{STx}(\mu p . \varphi) & :=\exists p \cdot(p(x) \wedge \forall y .(p(y) \leftrightarrow \forall q \cdot(\operatorname{PRE}(\varphi, q) \rightarrow q(y)))),
\end{array}
$$

where $\operatorname{PRE}(\varphi, q)$ abbreviates the formula $\forall y .\left(\operatorname{ST}_{y}(\varphi)[q / p] \rightarrow q(y)\right)$.
Theorem 11.20 For any formula $\varphi \in \mu \mathrm{ML}$ we have $\varphi \equiv \mathrm{ST}_{x}(\varphi)$, in the sense that

$$
\mathbb{S}, s \Vdash \varphi \text { iff } \mathbb{S} \models \operatorname{ST}_{x}(\varphi)[s]
$$

for every pointed Kripke model (\mathbb{S}, s).
Proof. The proof of this theorem can be proved by a straightforward induction on the complexity of $\mu \mathrm{ML}$-formulas.

For the inductive clause of the least fixpoint operator μ, consider the formula $\mu x . \varphi$. We leave it for the reader to verify (using the inductive hypothesis) that the formula $\operatorname{PRE}(\varphi, q)$ expresses that q is a pre-fixpoint of φ, and that the formula $\forall y .(p(y) \leftrightarrow \forall q .(\operatorname{PRE}(\varphi, q) \rightarrow q(y)))$ expresses that p is the intersection of all pre-fixpoints of φ.

QED
In the other direction, the actual result that we will prove is somewhat stronger than mere expressive completeness.

Theorem 11.21 There is an effectively defined translation $(\cdot)^{*}: \mathrm{MSO} \rightarrow \mu \mathrm{ML}$ such that a formula $\varphi \in$ MSO is invariant under bisimulations iff it is equivalent to φ^{*}.

We will prove this result by automata-theoretic means. Recall that in the previous section we obtained the following characterisations of the languages MSO and $\mu \mathrm{ML}$:

$$
\begin{aligned}
& \mathrm{MSO} \sim \operatorname{Aut}(1 \mathrm{FOE}) \quad(\text { on trees }) \\
& \mu \mathrm{ML} \sim \operatorname{Aut}(1 \mathrm{FO}) .
\end{aligned}
$$

The translation (.)* : MSO $\rightarrow \mu \mathrm{ML}$ mentioned in Theorem 11.21 will be based on a construction transforming 1FOE-automata into 1 FO-automata, whereas this construction in its turn is based on a translation $(\cdot)^{*}$ at the one-step level. For the details, we need to develop some
rudimentary model theory at the level of monadic first-order logic, in this case linking the one-step languages MFOE and MFO.

Recall from Definition 9.26 that $1 \mathrm{FOE}(A)$ and $1 \mathrm{FO}(A)$ denote the sets of A-positive sentence in the languages $\operatorname{MFOE}(A)$ and $\operatorname{MFO}(A)$ of monadic first-order logic with and without identity, respectively. Our translation (•)* involves the basic forms of Definition 11.13. Based on Proposition 11.17, we can provide the required translation from 1FOE to 1 FO.

Definition 11.22 Fix a set A of propositional variables. For an arbitrary sentence $\chi=(\bar{B}, \bar{C}) \in$ $\mathrm{BF}(A)$ we define

$$
\left(\chi^{=}(\bar{B}, \bar{C})\right)^{*}:=\chi(\bar{B}, \bar{C}),
$$

and we extend this translation to the set $\operatorname{Dis}(\operatorname{BF}(A))$, simply by putting

$$
\left(\bigvee_{i} \alpha_{i}\right)^{*}:=\bigvee_{i} \alpha_{i}^{*}
$$

By Proposition 11.17 we may extend this definition to a map $(\cdot)^{*}: 1 \mathrm{FOE}(A) \rightarrow 1 \mathrm{FO}(A)$.
Observe that the translation is in fact very simple: we obtain $(\chi=(\bar{B}, \bar{C}))^{*}$ from $\chi=(\bar{B}, \bar{C})$ simply by forgetting about the identity formulas occurring in the latter formula.

To exhibit the model-theoretic relation between the formulas α and α^{*}, we need one further definition.

Definition 11.23 Let $f: D^{\prime} \rightarrow D$ be a surjective map from one set D^{\prime} to another set D, and let A be some set of variables. Given a valuation $V: A \rightarrow \wp D$, we define the valuation $V_{f}: A \rightarrow \wp D^{\prime}$, by putting, for $a \in A$:

$$
V_{f}(a):=\left\{s^{\prime} \in D^{\prime} \mid f\left(s^{\prime}\right) \in V(a)\right\},
$$

and, conversely, given a valuation $U: A \rightarrow \wp D^{\prime}$, we let

$$
U^{f}(a):=\left\{f s^{\prime} \in D \mid s^{\prime} \in U(a)\right\}
$$

define a valuation on D.
The only fact that we need about these translations and valuations is the following Proposition. We will use this result to transform the winning strategy of \exists in one acceptance game to a winning strategy for her in a related acceptance game.

Proposition 11.24 Let $\alpha \in \operatorname{FOE}(A)$ be some one-step formula, and let D be some set. We let π denote the left projection map $\pi: D \times \omega \rightarrow D$.

1) For any A-valuation V on D we have

$$
\begin{equation*}
D, V \models \alpha^{*} \text { iff } D \times \omega, V_{\pi} \models \alpha . \tag{109}
\end{equation*}
$$

2) As a corollary, for any A-valuation U on $D \times \omega$ we have

$$
D \times \omega, U \models \alpha \text { only if } D, U^{\pi} \models \alpha^{*} .
$$

Proof. We leave the case where D is the empty set as an exercise for the reader, and focus on the case where $D \neq \varnothing$.

For part 1) of the Proposition, let α, D and π be as in its formulation. We will prove the equivalence (109).

For the left-to-right direction of (109), assume that $\langle D, V\rangle \vDash \chi(\bar{B}, \bar{C})$. Let d_{1}, \ldots, d_{n} be elements in D satisfying the existential part of $\chi(\bar{B}, \bar{C})$, that is, for each i we find $d_{i} \in$ $\bigcap_{b \in B_{i}} V(b)$. From the universal part of the formula it follows that for each $d \in D$ there is a subset $C_{d} \subseteq A$ such that $d \in \bigcap_{c \in C_{d}} V(c)$. Now we move to $D \times \omega$; it is easy to see that its elements $\left(d_{1}, 1\right), \ldots,\left(d_{n}, n\right)$ provide a sequence of n distinct elements that satisfy $\left(d_{i}, i\right) \in \bigcap_{b \in B_{i}} V_{\pi}(b)$ for each i. In addition, every element (d, n) distinct from the ones in the mentioned tuple will satisfy $(d, n) \in \bigcap_{c \in C_{d}} V_{\pi}(c)$. From these observations it is immediate that $\left\langle D \times \omega, V_{\pi}\right\rangle \models \chi=(\bar{B}, \bar{C})$.

For the opposite direction of (109), assume that $\left\langle D \times \omega, V_{\pi}\right\rangle \vDash \chi=(\bar{B}, \bar{C})$. Let $\left(d_{1}, k_{1}\right), \ldots$, $\left(d_{n}, k_{n}\right)$ be the sequence of distinct elements of $D \times \omega$ witnessing the existential part of $\chi=(\bar{B}, \bar{C})$ in \mathbb{D}^{\prime}. Then clearly, d_{1}, \ldots, d_{n} witness the existential part of $\chi(\bar{B}, \bar{C})$ in $\langle D, V\rangle$. In order to show that $\langle D, V\rangle$ also satisfies the universal part $\forall z \bigvee_{j} \tau_{C_{j}}(z)$ of χ, consider an arbitrary element $d \in D$. Take any $m \in \omega \backslash\left\{k_{1}, \ldots, k_{n}\right\}$, then (d, m) is distinct from each $\left(d_{i}, k_{i}\right)$. It follows that for some j we have $(d, m) \in \bigcap_{c \in C_{j}} V_{\pi}(c)$, and so we obtain $d \in \bigcap_{c \in C_{j}} V(c)$. Since d was arbitrary this shows that indeed $\langle D, V\rangle \vDash \forall z \bigvee_{j} \tau_{C_{j}}(z)$. So we have proved that $\langle D, V\rangle \models \chi(\bar{B}, \bar{C})$.

For part 2), assume that $D \times \omega, U \models \alpha^{*}$. It is straightforward to verify that $U(a) \subseteq$ $\left(U^{\pi}\right)_{\pi}(a)$, for all $a \in A$. Hence by monotonicity of α with respect to the proposition letters in A, it follows that $D \times \omega,\left(U^{\pi}\right)_{\pi} \models \alpha^{*}$. But then we find $D, U^{\pi} \models \alpha^{*}$ by part 1) of the proposition.

Automata

Any translation between one-step formulas naturally induces a transformation of automata. In the current setting we obtain the following.

Definition 11.25 Given an automaton $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$ in $A u t(1 \mathrm{FOE})$, we define the map $\Theta^{*}:(A \times \wp(\mathrm{P})) \rightarrow 1 \mathrm{FO}(A)$ by putting

$$
\Theta^{*}(a):=(\Theta(a))^{*},
$$

and we let \mathbb{A}^{*} denote the automaton $\mathbb{A}^{*}:=\left\langle A, \Theta^{*}, \Omega, a_{I}\right\rangle$.
We have now arrived at the main technical result of this section. It involves the notion of the ω-unravelling $\mathbb{E}_{\omega}(\mathbb{S}, s)$ of a model \mathbb{S} around a point s. This construction ${ }^{7}$ generalizes that of the unravelling of a model (Definition 1.23).

Definition 11.26 Let κ be a countable cardinal with $1 \leq \kappa \leq \omega$, and let (\mathbb{S}, s) be a pointed Kripke model of type (P, D). A κ-path through \mathbb{S} is a finite (non-empty) sequence of the form

[^7]$s_{0} d_{1} k_{1} s_{1} \cdots s_{n-1} d_{n} k_{n} s_{n}$, where $s_{i} \in S, d_{i} \in \mathrm{D}$ and $k_{i}<\kappa$ for each i, and such that $R_{d_{i+1}} s_{i} s_{i+1}$ for each $i<n$. The set of such paths is denoted as $\operatorname{Path} s^{\kappa}(\mathbb{S})$; we use the notation $\operatorname{Path} s_{s}^{\kappa}(\mathbb{S})$ for the set of paths starting at s. Given such a sequence ρ, we let $\operatorname{last}(\rho) \in S$ denote its last item.

The κ-expansion of \mathbb{S} around s is the transition system $\mathbb{E}_{\kappa}(\mathbb{S}, s)=\left\langle P a t h s_{s}^{\kappa}(\mathbb{S}), \sigma^{\kappa}\right\rangle$, where

$$
\begin{aligned}
\sigma_{V}^{\kappa}\left(s_{0} \cdots d_{n} k_{n} s_{n}\right) & :=\sigma_{V}\left(s_{n}\right) \\
\sigma_{d}^{\kappa}\left(s_{0} \cdots d_{n} k_{n} s_{n}\right) & :=\left\{\left(s_{0} \cdots d_{n} k_{n} s_{n} d k t\right) \in \operatorname{Path}_{s}(\mathbb{S}) \mid R_{d} s_{n} t, 0<k<\kappa\right\}
\end{aligned}
$$

defines the coalgebra map $\sigma^{\kappa}=\left(\sigma_{V},\left(\sigma_{d} \mid d \in \mathrm{D}\right)\right)$.
It is not hard to check that the unravelling of a model (Definition 1.23) can be identified with its 1-expansion. It is straightforward to verify the following proposition.

Proposition 11.27 For any countable cardinal κ with $1 \leq \kappa \leq \omega$, the function last, mapping a sequence to its last item, is a surjective bounded morphism from $\mathbb{E}_{\kappa}(\mathbb{S}, s)$ to \mathbb{S} mapping the single-item sequence s to its single state s.

Proposition 11.28 Let \mathbb{A} be an automaton in $A u t(1 \mathrm{FOE})$, then for any pointed Kripke model (\mathbb{S}, s) we have that

$$
\begin{equation*}
\mathbb{S}, s \Vdash \mathbb{A}^{*} \operatorname{iff} \mathbb{E}_{\omega}(\mathbb{S}, s), s \Vdash \mathbb{A} \tag{110}
\end{equation*}
$$

Proof. Let $\mathbb{A}=\left\langle A, \Theta, \Omega, a_{I}\right\rangle$ and (\mathbb{S}, s) be as in the formulation of the Theorem. Let f denote the (surjective) bounded morphism from $\mathbb{E}_{\omega}(\mathbb{S}, s)$ to \mathbb{S}, and recall that by definition f is the function last mapping an ω-path to its final element. We will only prove the right-to-left direction of (110), leaving the (slightly easier) opposite direction as an exercise to the reader.

So assume that $\mathbb{E}_{\omega}(\mathbb{S}, s), s \Vdash \mathbb{A}$. Then \exists has a (positional) winning strategy h in the acceptance game $\mathcal{A}^{\omega}:=\mathcal{A}\left(\mathbb{A}, \mathbb{E}_{\omega}(\mathbb{S}, s)\right) @\left(a_{0}, s_{0}\right)$, where we write $a_{0}:=a_{I}$ and $s_{0}:=s$. We need to provide her with a winning strategy h^{\prime} in the acceptance game $\mathcal{A}:=\mathcal{A}\left(\mathbb{A}^{*}, \mathbb{S}\right) @\left(a_{0}, s_{0}\right)$, and we will define h^{\prime} by induction on the length of a partial \mathcal{A}-match $\Sigma=\left(a_{i}, s_{i}\right)_{0 \leq i \leq n}$. Via a simultaneous induction we define a partial \mathcal{A}^{ω}-match $\Sigma^{\prime}=\left(a_{i}, s_{i}^{\prime}\right)_{0 \leq i \leq n}$ which will be guided by \exists 's winning strategy h and satisfies $f\left(s_{i}^{\prime}\right)=s_{i}$, for all i.

For the inductive step of these definitions, consider a partial \mathcal{A}-match $\Sigma=\left(a_{i}, s_{i}\right)_{0 \leq i \leq n}$. Without loss of generality we may assume that Σ itself is guided by h^{\prime}, and inductively we may assume the existence of an h-guided shadow match $\Sigma^{\prime}=\left(a_{i}, s_{i}^{\prime}\right)_{0 \leq i \leq n}$ of \mathcal{A}^{ω} such that $f\left(s_{i}^{\prime}\right)=s_{i}$, for all i. In order to extend the definition of h^{\prime}, so that it defines a move for \exists in the partial match Σ, obviously we consider this partial shadow match. Let $U: A \rightarrow \wp \sigma_{R}^{\omega}\left(s^{\prime}\right)$ be the A-valuation picked by \exists 's winning strategy h in the match Σ^{\prime}. If we compare the collections $\sigma_{R}(s)$ and $\sigma_{R}^{\omega}\left(s^{\prime}\right)$ of successors of s and s^{\prime} respectively, it is obvious that f restricts to a surjection from $\sigma_{R}^{\omega}\left(s^{\prime}\right)$ to $\sigma_{R}(s)$. Hence we may take the valuation

$$
U^{f}: A \rightarrow \wp \sigma_{R}(s)
$$

induced by U as in Definition 11.23, as the move given by the strategy h in the partial match Σ.

To see that this move is legitimate, we need to show that

$$
\begin{equation*}
\sigma_{R}, U^{f} \models \Theta^{*}\left(a_{n}, \sigma_{V}\left(s_{n}\right)\right), \tag{111}
\end{equation*}
$$

that is, the one-step formula $\Theta^{*}\left(a_{n}, \sigma_{V}\left(s_{n}\right)\right.$ holds in the A-structure $\left(\sigma_{R}, U^{f}\right)$. It will be convenient to think of $\sigma_{R}^{\omega}\left(s^{\prime}\right)$ as the set $\sigma_{R}(s) \times \omega$, and of f as the projection map π : $\sigma_{R}(s) \times \omega \rightarrow \sigma_{R}(s)$. Then (111) is immediate by Proposition 11.242) and the fact that

$$
\begin{equation*}
\sigma_{R}^{\omega}, U \models \Theta\left(a_{n}, \sigma_{V}\left(s_{n}\right)\right), \tag{112}
\end{equation*}
$$

simply because the valuation U is the legitimate move provided by \exists 's winning strategy h. Clearly then, the valuation U^{f} is a legitimate move for \exists.

In order to finish the inductive definition, we need to show how to extend, for any response (b, t) of \forall to \exists 's move U^{f}, the shadow match Σ^{\prime} with a position $\left(b, t^{\prime}\right)$ such that $f t^{\prime}=t$. But this is straightforward: if (b, t) is a legitimate move for \forall in \mathcal{A} at position U, then we have $t \in U^{f}(b)$, and so by definition there is a state $t^{\prime} \in \sigma_{R}^{\omega}\left(s^{\prime}\right)$ such that $f t^{\prime}=t$ and $t^{\prime} \in U(b)$. Clearly then the continuation $\Sigma^{\prime} \cdot\left(b, t^{\prime}\right)$ of Σ^{\prime} satisfies the requirements.

We will now show that the just defined strategy h^{\prime} is in fact winning for \exists in \mathcal{A}. For this purpose, consider a full \mathcal{A}-match Σ which is guided by h^{\prime}.

First consider the case where Σ is finite. It is not hard to prove, using the existence of the h-guided shadow match Σ^{\prime}, that the player who got stuck in Σ is \forall.

Having taken care of the finite matches, we now consider the case where $\Sigma=\left(a_{i}, s_{i}\right)_{0 \leq i<\omega}$ is infinite. It is not difficult to see that in this case there is an h-guided infinite shadow match $\Sigma^{\prime}=\left(a_{i}, s_{i}^{\prime}\right)_{0 \leq i<\omega}$ of \mathcal{A}^{ω}, such that $f s_{i}^{\prime}=s_{i}$ for all $i<\omega$. But since h was assumed to be a winning strategy for \exists in $\mathcal{A}^{\omega}, \Sigma^{\prime}$ is actually won by her. But since the priority maps of \mathbb{A} and \mathbb{A}^{*} are exactly the same, from this it is immediate that \exists is also the winner the \mathcal{A}-match Σ. QED

Proof of main result

As we shall see now, the expressive completeness of the modal μ-calculus is an almost immediate corollary of Proposition 11.28, given our earlier automata-theoretic characterizations of MSO and the modal μ-calculus.

Proof of Theorem 11.21. Let $\varphi \in \operatorname{MSO}$ be a monadic second-order formula, and let $\mathbb{B}_{\varphi} \in$ Aut (1FOE) be the automaton as given in Theorem 11.9. Then by Theorem 11.8 there is a formula $\varphi^{*} \in \mu \mathrm{ML}$ that is equivalent to the translation $\left(\mathbb{B}_{\varphi}\right)^{*}$ of \mathbb{B}_{φ}. Clearly then φ^{*} has been effectively obtained from φ.

We will show that φ is invariant under bisimulations iff it is equivalent to the formula φ^{*}. The direction from right to left is immediate since formulas of the modal μ-calculus are bisimulation invariant.

For the opposite direction, observe that by Proposition 11.28 and the definition on φ^{*}, for an arbitrary pointed Kripke model (\mathbb{S}, s) we have

$$
\begin{equation*}
\mathbb{S}, s \Vdash \varphi^{*} \text { iff } \mathbb{E}_{\omega}(\mathbb{S}, s), s \Vdash \varphi . \tag{113}
\end{equation*}
$$

Now assume that φ is bisimulation invariant, then we have that

$$
\begin{equation*}
\mathbb{S}, s \Vdash \varphi \operatorname{iff} \mathbb{E}_{\omega}(\mathbb{S}, s), s \Vdash \varphi \tag{114}
\end{equation*}
$$

Combining these two observations, we see that $\mathbb{S}, s \Vdash \varphi^{*}$ iff $\mathbb{S}, s \Vdash \varphi$. But since (\mathbb{S}, s) was arbitrary, this means that φ and φ^{*} are equivalent, as required. QED

Notes

The result that the modal μ-calculus is the bisimulation-invariant fragment of monadic secondorder logic is due to Janin \& Walukiewicz [13].

Exercises

Exercise 11.1 Let (D, V) and $\left(D^{\prime}, V^{\prime}\right)$ be two one-step models over the same set A of monadic predicates. Then (D, V) is a quotient of $\left(D^{\prime}, V^{\prime}\right)$ if there is a surjection $f: D^{\prime} \rightarrow D$ such that $V^{\prime}=V_{f}$. An MFOE-sentence α is invariant under taking quotients if we we have that $(D, V) \models \alpha$ iff $\left(D^{\prime}, V^{\prime}\right) \models \alpha$, whenever (D, V) is a quotient of $\left(D^{\prime}, V^{\prime}\right)$.

Let α be an MFOE-sentence. Prove that α is invariant under taking quotients iff $\alpha \equiv \alpha^{*}$. Conclude that 1 FO is the 'quotient-invariant fragment' of 1 FOE.

A Mathematical preliminaries

Sets and functions We use standard notation for set-theoretic operations such as union, intersection, product, etc. The power set of a set S is denoted as $\wp(S)$ or $\wp S$, and we sometimes denote the relative complement operation as $\sim_{S} X:=S \backslash X$. The size or cardinality of a set S is denoted as $|S|$.

Let $f: A \rightarrow B$ be a function from A to B. Given a set $X \subseteq A$, we let $f[X]:=\{f(a) \in$ $B \mid a \in X\}$ denote the image of X under f, and given $Y \subseteq B, f^{-1}[Y]:=\{a \in A \mid f(a) \in Y\}$ denotes the preimage of Y. In case f is a bijection, we let f^{-1} denote its inverse. The composition of two functions $f: A \rightarrow B$ and $g: B \rightarrow A$ is denoted as $g \circ f$ or $g f$, and the set of functions from A to B will be denoted as either B^{A} or $A \rightarrow B$.

It is well-known that there is a bijective correspondence, often called 'currying':

$$
(A \times B) \rightarrow C \cong A \rightarrow(B \rightarrow C)
$$

which associates, with a function $f: A \times B \rightarrow C$, the map that, for each $a \in A$, yields the function $f_{a}: B \rightarrow C$ given by $f_{a}(b):=f(a, b)$.

Relations Given a relation $R \subseteq A \times B$, we introduce the following notation. Dom (R) and $\operatorname{Ran}(R)$ denote the domain and range of R, respectively. R^{-1} denotes the converse of R. For $R \subseteq S \times S, R^{*}$ denotes the reflexive-transitive closure of R, and R^{+}the transitive closure. For $X \subseteq A$, we put $R[X]:=\{b \in B \mid(a, b) \in R$ for some $a \in X\}$; in case $X=\{s\}$ is a singleton, we write $R[s]$ instead of $R[\{s\}]$. For $Y \subseteq B$, we will write $\langle R\rangle Y$ rather than $R^{-1}[Y]$, while $[R] Y$ denotes the set $\{a \in A \mid b \in Y$ whenever $(a, b) \in R\}$. Note that $[R] Y=A \backslash\langle R\rangle(B \backslash Y)$. A relation R on S is acyclic if there are no elements s such that $R^{+} s s$.

An equivalence relation on a set A is a binary relation that is reflexive, symmetric and transitive. The equivalence class or cell of an element $a \in A$ relative to an equivalence relation is the set of all elements in A that are linked to a by the relation.

A preorder is a structure (P, \sqsubseteq) such that \sqsubseteq is a reflexive and transitive relation on P; given such a relation we will write \sqsubset for the asymmetric version of \sqsubseteq (given by $u \sqsubset v$ iff $u \sqsubseteq v$ but not $v \sqsubseteq u$) and \equiv for the equivalence relation induced by $\sqsubseteq ~(g i v e n ~ b y ~ u \equiv v i f f ~ u \sqsubseteq v$ and $v \sqsubseteq u$). Cells (that is, equivalence classes) of such a relation will often be called clusters. A preorder is directed if for any two points u and v there is a w such that $u \sqsubseteq w$ and $v \sqsubseteq w$. A partial order is a preorder \sqsubseteq which is antisymmetric, i.e., such that $p \sqsubseteq q$ and $q \sqsubseteq p$ imply $p=q$. Observe that in a poset we have that $p \sqsubset q$ iff $p \sqsubseteq q$ and $p \neq q$.

Sequences, lists and streams Given a set C, we define C^{*} as the set of finite lists, words or sequences over C. We will write ε for the empty sequence, and define $C^{+}:=C^{*} \backslash\{\varepsilon\}$ as the set of nonempty words. An infinite word, or stream over C is a map $\gamma: \omega \rightarrow C$ mapping natural numbers to elements of C; the set of these maps is denoted by C^{ω}. We write $\Sigma^{\infty}:=\Sigma^{*} \cup \Sigma^{\omega}$ for the set of all sequences over Σ. The concatenation of a (finite) word u and a (finite or infinite) word v is denoted as $u \cdot v$ or $u v$. Where $\kappa \in \omega \cup\{\omega\}$, and $\left(\pi_{i}\right)_{0 \leq i<\kappa}$ is a sequence of finite sequences, we denote its concatenation as $\bigodot_{0 \leq i<\kappa} \pi_{i}$ (with the understanding that this denotes the empty sequence ε in case $\kappa=0$).

We use \sqsubseteq for the initial segment relation between sequences, and \sqsubset for the proper (i.e., irreflexive) version of this relation. For a nonempty sequence π, first (π) denotes the first element of π. In the case that π is finite and nonempty we write $\operatorname{last}(\pi)$ for the last element of π. Given a stream $\gamma=c_{0} c_{1} \ldots$ and two natural numbers $i<j$, we let $\gamma[i, j)$ denote the finite word $c_{i} c_{i+1} \ldots c_{j-1}$.

Graphs and trees A (directed) graph is a pair $\mathbb{G}=\langle G, E\rangle$ consisting of a set G of nodes or vertices and a binary edge relation E on G. A finite path through such a graph is a nonempty sequence $\left(s_{i}\right)_{0 \leq i \leq n}=s_{0} \cdots s_{n}$ in G^{*} such that $E s_{i} s_{i+1}$ for all $i<n$. Similarly, an infinite path is a sequence $\left(s_{i}\right)_{0 \leq i<\omega}=s_{0} s_{1} \cdots$ in G^{ω} such that $E s_{i} s_{i+1}$ for all $i<\omega$. A (proper) cycle is a path $s_{0} \cdots s_{n}$ such that $n>0, s_{0}=s_{n}$ and s_{0}, \ldots, s_{n-1} are all distinct. A graph is acyclic if it has no cycles.

A tree is a graph $\mathbb{T}=(T, R)$ which contains a node r, called a root of \mathbb{T}, such that every element $t \in T$ is reachable by a unique path from r. (In particular, this means that \mathbb{T} is acyclic, and that the root is unique.) Where s and t are nodes in some tree (T, R), if $(s, t) \in R$ we say that t is a child of s and that s is the parent of t. If $(s, t) \in R^{+}$we call s an ancestor of t, and t a descendant of s. Distinct nodes with the same parent are called siblings.

Fact A. 1 (König's Lemma) Let \mathbb{G} be a finitely branching, acyclic tree. If \mathbb{G} is infinite, then it has an infinite path.

Order and lattices A partial order is a structure $\mathbb{P}=\langle P, \leq\rangle$ such that \leq is a reflexive, transitive and antisymmetric relation on P. Given a partial order \mathbb{P}, an element $p \in P$ is an upper bound (lower bound, respectively) of a set $X \subseteq P$ if $p \geq x$ for all $x \in X$ ($p \leq x$ for all $x \in X$, respectively). If the set of upper bounds of X has a minimum, this element is called the least upper bound, supremum, or join of X, notation: $\bigvee X$. Dually, the greatest lower bound, infimum, or meet of X, if existing, is denoted as $\bigwedge X$. Generally, given a statement S about ordered sets, we obtain its dual statement by replacing each occurrence of \leq with \geq and vice versa. The following principle often reduces our work load by half;

Order Duality Principle If a statement holds for all ordered sets, then so does its dual statement.

A partial order \mathbb{P} is called a lattice if every two-element subset of P has both an infimum and a supremum; in this case, the notation is as follows: $p \wedge q:=\bigwedge\{p, q\}, p \vee q:=\bigvee\{p, q\}$. Such a lattice is bounded if it has a minimum \perp and a maximum T. A partial order \mathbb{P} is called a complete lattice if every subset of P has both an infimum and a supremum. In this case we abbreviate $\perp:=\bigvee \varnothing$ and $\top:=\Lambda \varnothing$; these are the smallest and largest elements of \mathbb{C}, respectively. A complete lattice will usually be denoted as a structure $\mathbb{C}=\langle C, \bigvee, \wedge\rangle$. Key examples of complete lattices are full power set algebras: given a set S, it is easy to show that the structure $\langle\wp(S), \bigcup, \cap\rangle$ is a complete lattice.

Given a family $\left\{\mathbb{P}_{i} \mid i \in I\right\}$ of partial orders, we define the product order $\prod_{i \in I} \mathbb{P}_{i}$ as the structure $\left\langle\prod_{i \in I} P_{i}, \leq\right\rangle$ where $\prod_{i \in I} P_{i}$ denotes the cartesian product of the family $\left\{P_{i} \mid i \in I\right\}$,
and \leq is given by $\pi \leq \pi^{\prime}$ iff $\pi(i) \leq_{i} \pi^{\prime}(i)$ for all $i \in I$. It is not difficult to see that the product of a family of (complete) lattices is again a (complete) lattice, with meets and joins given coordinatewise. For instance, given a family $\left\{\mathbb{C}_{i} \mid i \in I\right\}$ of complete lattices, and a subset $\Gamma \subseteq \prod_{i \in I} C_{i}$, it is easy to see that Γ has a least upper bound $\bigvee \Gamma$ given by

$$
(\bigvee \Gamma)(i)=\bigvee\{\gamma(i) \mid \gamma \in \Gamma\}
$$

where the join on the right hand side is taken in \mathbb{C}_{i}.

Ordinals A set S is transitive if $S \subseteq \wp(S)$; that is, if every element of S is a subset of S, or, equivalently, if $S^{\prime \prime} \in S^{\prime} \in S$ implies that $S^{\prime \prime} \in S$. An ordinal is a transitive set of which all elements are also transitive. From this definition it immediately follows that any element of an ordinal is again an ordinal. We let \mathcal{O} denote the class of all ordinals, and use lower case Greek symbols $(\alpha, \beta, \gamma, \ldots, \lambda, \ldots)$ to refer to individual ordinals.

The smallest, finite, ordinals are

$$
\begin{array}{lll}
0 & :=\varnothing & \\
1 & :=\{0\} & (=\{\varnothing\}) \\
2 & :=\{0,1\} & (=\{\varnothing,\{\varnothing\}\}) \\
3 & :=\{0,1,2\} & (=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\})
\end{array}
$$

In general, the successor $\alpha+1$ of an ordinal α is the set $\alpha \cup\{\alpha\}$; it is easy to check that $\alpha+1$ is again an ordinal. Ordinals that are not the successor of an ordinal are called limit ordinals. Thus the smallest limit ordinal is 0 ; the next one is the first infinite ordinal

$$
\omega:=\{0,1,2,3, \ldots\} .
$$

But it does not stop here: the successor of ω is the ordinal $\omega+1$, etc. It is important to realize that there are in fact too many ordinals to form a set: \mathcal{O} is a proper class. As a consequence, whenever we are dealing with a function $f: \mathcal{O} \rightarrow A$ from \mathcal{O} into some set A, we can conclude that there exist distinct ordinals $\alpha \neq \beta$ with $f(\alpha)=f(\beta)$. (Such a function f will also be a class, not a set.)

We define an ordering relation $<$ on ordinals by:

$$
\alpha<\beta \text { if } \alpha \in \beta .
$$

From this definition it follows that $\alpha=\{\beta$ in $\mathcal{O} \mid \beta<\alpha\}$ for every ordinal α. The relation $<$ is obviously transitive (if we permit ourselves to apply such notions to relations that are classes, not sets). It follows from the axioms of ZFC that $<$ is in fact linear (that is, for any two ordinals α and β, either $\alpha<\beta$, or $\alpha=\beta$, or $\beta<\alpha$) and well-founded (that is, every non-empty set of ordinals has a smallest element).

The fact that < is well-founded allows us to generalize the principle of induction on the natural numbers to the transfinite case.

Transfinite Induction Principle In order to prove that all ordinals have a certain property, it suffices to show that the property is true of an arbitrary ordinal α whenever it is true of all ordinals $\beta<\alpha$.

A proof by transfinite induction typically contains two cases: one for successor ordinals and one for limit ordinals (the base case of the induction is then a special case of a limit ordinal). Analogous to the transfinite inductive proof principle there is a Transfinite Recursion Principle according to which we can construct an ordinal-indexed sequence of objects.

References

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, chapter C.5, pages 739782. North-Holland Publishing Co., Amsterdam, 1977.
[2] A. Arnold and D. Niwiński. Rudiments of μ-calculus, volume 146 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2001.
[3] J. van Benthem. Modal Correspondence Theory. PhD thesis, Mathematisch Instituut \& Instituut voor Grondslagenonderzoek, University of Amsterdam, 1976.
[4] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Number 53 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.
[5] F. Bruse, O. Friedmann, and M. Lange. On guarded transformation in the modal μ-calculus. Logic Journal of the IGPL, 23(2):194-216, 2015.
[6] J.R. Büchi. On a decision method in restricted second order arithmetic. In E. Nagel, editor, Proceedings of the International Congress on Logic, Methodology and the Philosophy of Science, pages 1-11. Stanford University Press, 1962.
[7] A. Chagrov and M. Zakharyaschev. Modal Logic, volume 35 of Oxford Logic Guides. Oxford University Press, 1997.
[8] G. D'Agostino and M. Hollenberg. Logical questions concerning the μ-calculus. Journal of Symbolic Logic, 65:310-332, 2000.
[9] S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science: Finite-State Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2016.
[10] E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of programs (extended abstract). In Proceedings of the 29th Symposium on the Foundations of Computer Science, pages 328-337. IEEE Computer Society Press, 1988.
[11] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (extended abstract). In Proceedings of the 32nd Symposium on the Foundations of Computer Science, pages 368-377. IEEE Computer Society Press, 1991.
[12] D. Janin and I. Walukiewicz. Automata for the modal μ-calculus and related results. In Proceedings of the Twentieth International Symposium on Mathematical Foundations of Computer Science, MFCS'95, volume 969 of $L N C S$, pages 552-562. Springer, 1995.
[13] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional μ-calculus w.r.t. monadic second-order logic. In Proceedings of the Seventh International Conference on Concurrency Theory, CONCUR '96, volume 1119 of LNCS, pages 263-277, 1996.
[14] B. Knaster. Un théorème sur les fonctions des ensembles. Annales de la Societé Polonaise de Mathematique, 6:133-134, 1928.
[15] D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Science, 27:333-354, 1983.
[16] D. Kozen. A finite model theorem for the propositional μ-calculus. Studia Logica, 47:233-241, 1988.
[17] D. Kozen and R. Parikh. A decision procedure for the propositional μ-calculus. In Proceedings of the Workshop on Logics of Programs 1983, LNCS, pages 313-325, 1983.
[18] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information and Control, 9:521-530, 1966.
[19] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277-317, 1999. (Erratum published Ann.P.Appl.Log. 99:241-259, 1999).
[20] A.W. Mostowski. Regular expressions for infinite trees and a standard form of automata. In A. Skowron, editor, Computation Theory, LNCS, pages 157-168. Springer-Verlag, 1984.
[21] D.E. Muller. Infinite sequences and finite machines. In Proceedings of the 4 th IEEE Symposium on Switching Circuit Theory and Logical Design, pages 3-16, 1963.
[22] D. Niwiński. On fixed point clones. In L. Kott, editor, Proceedings of the 13 th International Colloquium on Automata, Languages and Programming (ICALP 13), volume 226 of LNCS, pages 464-473, 1986.
[23] D. Park. Concurrency and automata on infinite sequences. In Proceedings 5th GI Conference, pages 167-183. Springer, 1981.
[24] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. Foundations of Computer Science, pages 46-57, 1977.
[25] V.R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th IEEE Symposium on Computer Science, pages 109-121, 1976.
[26] S. Safra. On the complexity of ω-automata. In Proceedings of the 29th Symposium on the Foundations of Computer Science, pages 319-327. IEEE Computer Society Press, 1988.
[27] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5:285-309, 1955.
[28] T. Wilke. Alternating tree automata, parity games, and modal μ-calculus. Bulletin of the Belgian Mathematical Society, 8:359-391, 2001.
[29] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science, 200:135-183, 1998.

[^0]: ${ }^{1}$ Strictly speaking, this condition is not needed. In particular, as a separate atomic case of our inductive definition, we could define the outcome of the substitution $\bar{p}[\psi / p]$ to be the negation of the formula ψ (suitably defined). However, we will only need to look at substitutions $\varphi[\psi / z]$ where we happen to know that φ is positive in z. As a result, our simplified definition does not impose a real restriction.

[^1]: ${ }^{2}$ Readers lacking this background may take abstract complete lattices to be concrete power set algebras.

[^2]: ${ }^{3}$ Observe that by (38) and the definition of N, there will always be sufficiently many nodes in N such that at least one element of N is left as a 'spare' node, possibly to be used at a later stage.

[^3]: ${ }^{4}$ For the time being, we take a simple perspective on subgames. Given a parity game $\mathcal{G}=\left(B_{0}, B_{1}, E, \Omega\right)$, every subset $A \subseteq B$ induces a subgame $\mathcal{G}_{A}:=\left(B_{0} \cap A, B_{1} \cap A, E \upharpoonright_{A}, \Omega \upharpoonright_{A}\right)$ where $E \upharpoonright_{A}$ and $\left.\Omega \upharpoonright_{A}\right)$ are simply the restrictions of E and Ω to A.

[^4]: ${ }^{5}$ When discussing disjunctive parity formulas we will drop this requirement, allowing $E[v]$ to be of arbitrary finite size.

[^5]: ${ }^{6}$ Note that the formulation of the boolean clause of our definition (i.e., the case where $L(v)=\odot \in\{\wedge, \vee\}$) is a bit sloppy, since our language only has binary conjunctions and disjunctions, no conjunctions or disjunctions over finite sets. A more precise definition can be given as follows; assume that $\odot=\wedge$, the case where $\odot=\vee$ is treated analogously. Assume that we have some arbitrary but fixed ordering of the vertices in \mathbb{G}. We put $\operatorname{tr}_{\mathbb{G}}(v)=\top$ if $E(v)=\varnothing, \operatorname{tr}_{\mathbb{G}}(v)=\operatorname{tr}_{\mathbb{G}}(u)$ if $E(v)=\{u\}$, and $\operatorname{tr}_{\mathbb{G}}(v)=\operatorname{tr}_{\mathbb{G}}\left(u_{0}\right) \wedge\left(\ldots \wedge\left(\operatorname{tr}_{\mathbb{G}}\left(u_{k-1}\right) \wedge \operatorname{tr}_{\mathbb{G}}\left(u_{k}\right)\right)\right.$ if $E(v)=\left\{u_{0}, \ldots, u_{k}\right\}$ where each u_{i} comes before u_{i+1} in the mentioned ordering.

[^6]: ${ }^{6}$ We restrict to the monomodal case in this section.

[^7]: ${ }^{7}$ In a later version of the notes, this construction will be defined in Chapter 1.

