
Coalgebra and Modal Logic:

an introduction

Yde Venema∗

©YV 2019

DO NOT DISTRIBUTE

Abstract

These notes give a first introduction to the theory of universal coalgebra and
coalgebraic modal logic.

∗Institute for Logic, Language and Computation, University of Amsterdam, Science Park 107, NL–1098XG
Amsterdam. E-mail: y.venema@uva.nl.

Contents

1 Introduction 1-1

2 Final Coalgebras and Coinduction 2-1

3 Bisimilarity and Behavioural Equivalence 3-1

4 Covarieties 4-1

5 Coalgebraic modalities via relation lifting 5-1

6 Coalgebraic modalities via predicate liftings 6-1

7 One-step logic 7-1

8 Soundness and completeness 8-1

A Appendix: The Category Set and its Functors A1

B Appendix: Basic mathematical definitions B1

1 Introduction

Starting from concrete examples, this chapter introduces (set-based) coalgebras, together
with some of the most important coalgebraic concepts, including coinduction, behavioural
equivalence and bisimilarity. We then give a first discussion of the relation between coalgebra
and modal logic, and we give some examples of coalgebraic modal logics.

1.1 State-based evolving systems

Example 1.1 Perhaps the simplest example of a computational process is the following
black-box machine with two buttons, h and n. If we press the h-button, the machine displays
some value from a data set C. No matter how many times we press the h-button, this value
remains the same. Each time we push the n-button, however, we may observe a different
value by pushing the h-button.

A natural way to formally describe this device is as a set S of internal states (that are not
visible to the user), together with two maps

h ∶ S → C
n ∶ S → S,

where h(s) indicates the observable value at state s, and n ∶ S → S is a function mapping a
state s ∈ S to its unique next state.

All that we may observe of a state s, is the stream

h(s) ⋅ h(n(s)) ⋅ h(n(n(s))) ⋅ h(n3(s))⋯

of data. This stream will be called the behaviour of s in S = (S,h,n), notation: behS(s).
Two states s and s′ in two black boxes can then be called behaviourally equivalent, notation:

S, s ≃ S′, s′, if they display the same behaviour, that is, if behS(s) = behS′(s′).

Example 1.2 A deterministic finite state automaton or DFA over an alphabet C is a triple
A = (A, δ,F), where A is a finite set of states, δ ∶ A ×C → A is the transition map of A, and
F ⊆ A is the set of accepting states of the automaton.

Let C∗ denote the set of finite words over C, then we may extend δ to a map δ̂ ∶ A×C∗ → A
as follows:

δ̂(a, ε) ∶= a

δ̂(a, cw) ∶= δ̂(δ(a, c),w).

We define, for a state a ∈ A,

LA(a) ∶= {w ∈ C∗ ∣ δ̂(a,w) ∈ F},

as the language accepted by A, initialized at a. Two initialized automata (A, a) and (A′, a′)
are (language) equivalent if they accept exactly the same words, that is, if LA(a) = LA′(a′).

Example 1.3 The key structures featuring in the semantics of modal logic are Kripke frames
and Kripke models. A Kripke frame is a pair (S,R) consisting of a set S of objects called

1-1

states, points or worlds, and an accessibility relation R ⊆ S × S. A Kripke model is a triple
S = (S,R,V) such that (S,R) is a Kripke frame (the underlying Kripke frame of the model),
and V is a valuation, i.e., a map Q→ PS, where Q is some fixed set of proposition letters.

A bisimulation between two Kripke models S and S′ is a binary relation Z ⊆ S × S′ such
that, for all s ∈ S and s′ ∈ S′ with Zss′ the following conditions hold:

(atom) s and s′ satisfy the same proposition letters;

(forth) for all t ∈ S such that Rst there is a t′ ∈ S′ with R′s′t′ and Ztt′;

(back) for all t′ ∈ S′ such that R′s′t′ there is a t ∈ S with Rst and Ztt′.

If there is a bisimulation Z linking s and s′ we say that s and s′ are bisimilar, notation
S, s↔ S′, s′ (or Z ∶ S, s↔ S′, s′ if we want to make the bisimulation explicit).

Given a modal language L, we let ThLS (s) denote the set of L-formulas that are true at
s in S; then two states are called (L-)equivalent (notation: ≡L) if they satisfy the same L-
formulas. A theme in the theory of modal logic is to study the relation between equivalence
and bisimilarity. A class of models C is said to have the Hennessy-Milner property with
respect to a language L if ≡L = ↔ on C.

Example 1.4 The theory of non-well-founded sets provides an alternative to the standard
axiomatic set theories by allowing sets to contain themselves, or otherwise violate the rule of
well-foundedness. More in detail, in non-well-founded set theories, the Foundation Axiom FA
is replaced by axioms implying its negation. For instance, working with the anti-foundation
axiom AFA we may associate, with each so-called apg or accessible pointed graph (that is, a
directed graph such that every node can be reached via a finite path from a specified root of
the graph) a hyperset, that is, a set that is not necessarily well-founded. And, two apgs yield
the same set iff they are bisimilar.

Example 1.5 As a final example of a state-based evolving system we mention Markov chains:
transition systems that evolve probabilistically. Recall that a (discrete) probability distribution
on a set S is a map µ ∶ S → [0,1] such that ∑s∈S µ(s) = 1. Formally, a Markov chain can be
modelled as a pair (S,σ), where σ assigns a probability distribution σs to each state s.

For a concrete example, think of a gambler wagering e1 on a series of fair coin tosses –
this series may be indefinite, or end if the gambler loses his money. This experiment can be
modelled by the Markov chain (S,σ) where S = {sn ∣ n ∈ ω}, with state sn representing the
state where the gambler owns en. For n > 0 we have that σsn assigns a 0.5 probability to
both sn−1 and sn+1 (and a probability 0 to all other states), while σs0 assigns a 1.0 probability
to s0 (and a probability 0 to all other states).

1.2 Coalgebras and their morphisms

As we will see now, the structures described in the previous section all are specimens of
coalgebras. Universal Coalgebra is a theory of state-based evolving systems, formulated in
the language of category theory.1

1See the appendix for some background definitions on category theory.

1-2

Definition 1.6 Given an endofunctor T ∶ C→ C on some category C, a T -coalgebra is a pair
(X,ξ) where X is an object in C and ξ ∶ X → TX is an arrow in C. We will sometimes refer
to T as the type of (X,ξ). If, for an arrow f ∶X ′ →X, the following diagram commutes:

X ′

ξ′
��

f // X

ξ
��

TX ′ Tf // TX

(1)

we call f a (coalgebra) morphism from X′ = (X ′, ξ′) to X = (X,ξ), and write f ∶ X′ → X.

We let CoalgC(T) denote the category with T -coalgebras as objects and T -coalgebra mor-
phisms as arrows; the category C will be called the base category of CoalgC(T). �

We will usually (but not always) confine our attention to systems, that is, coalgebras over
the category Set. Intuitively, a set functor T specifies the one-step dynamics that a system
can engage in.

Definition 1.7 A set functor is an endofunctor T ∶ Set→ Set on the category Set of sets and
functions; given such a set functor T , we will sometimes refer to T -coalgebras as T -systems.
Where X = (X,ξ) is a T -system, we refer to X and ξ as, respectively, the carrier or state
space and the transition map or coalgebra map of X. A pointed or initialized T -system is a
triple (S,σ, s) such that (S,σ) is a T -system and s ∈ S. �

The coalgebraic viewpoint on systems combines wide applicability and mathematical sim-
plicity: since every set functor determines its own type of coalgebra, notions, properties and
results of state-based systems can be uniformly explained just in terms of properties of their
type functors. This applies to systems as diverse as streams, probabilistic transition systems,
automata, Kripke structures and neighbourhood frames. In the appendix we give a list of set
functors; here we give a few examples of the associated coalgebras.

Example 1.8 (a) The black boxes of Example 1.1 are systems of the functor type KC × Id ,
where KC is the constant functor associated with the set C, and Id is the identity functor on
Set.

(b) Deterministic finite automata (Example 1.2) are systems of type 2 × IdC , where 2 is
the set {0,1}. To see this, consider a coalgebra X = (X,ξ) of this type; then ξ determines,
for each state x ∈ X, two things: an element of the set 2, specifying whether x is accepting
or not, and an element ξ1(x) ∈ XC , that is, a map ξ1(x) ∶ C → X providing a successor of x
in X for each letter c ∈ C.

(c) Kripke frames are coalgebras for the powerset functor P , whereas Kripke models are
coalgebras for the functor KPQ × P .

(d) Markov chains are D-systems, where D is the distribution functor (which assigns, to
a set S, a discrete probability distribution on S).

(e) For every set functor T we will allow the empty T -coalgebra (∅,∅).

1-3

1.3 Final coalgebras and coinduction

For many coalgebra types T one may associate with an arbitrary state s in an arbitrary
T -coalgebra S, a natural notion of behaviour. This can often be formalised by defining a
behaviour map and proving that this map is the unique coalgebra morphism from S to some
final or terminal coalgebra Z of type T .

Definition 1.9 Let T be an endofunctor on some category C. A T -coalgebra Z = (Z, ζ) is
final or terminal if it is a final object in the category CoalgC(T); that is, if for every T -
coalgebra X = (X,ξ) there is a unique morphism from X to Z; this morphism will be denoted
as behX ∶ X→ Z. �

Note that final coalgebras, when they exist, are unique modulo isomorphism. For this
reason we will often speak of the final T -coalgebra of a functor T .

Example 1.10 A stream over a set C is a map α ∶ ω → C (where ω is the set of natural
numbers). We may turn the set Cω of C-streams into a KC × Id -coalgebra itself by endowing
it with a coalgebra map γ ∶= (h, t) ∶ Cω → C ×Cω. Here we define the maps h ∶ Cω → C and
t ∶ Cω → Cω by putting, for an arbitrary C-stream α ∶ ω → C:

h(α) ∶= α(0)
t(α) ∶= λn.α(n + 1).

That is, the coalgebra map γ splits an infinite C-stream c0c1c2⋯ into its head c0 and its tail
c1c2c3⋯.

It is then not very hard to prove that the stream coalgebra (Cω, γ) is a final coalgebra for
the functor KC × Id : this boils down to showing that, for an arbitrary ‘black box machine’
S = (S,h,n), the behaviour map beh ∶ S → Cω is the unique coalgebra morphism from S to
(Cω, γ).

Example 1.11 For a second example, fix an alphabet C and define a (C-)language to be
any set of finite words. Further on we will see that we can endow the collection P (C∗) of
C-languages with a very natural coalgebra map for the functor 2× IdC of deterministic finite
C-automata, and prove that the resulting structure is in fact a final 2 × IdC-coalgebra.

Finality is also the key categorical concept underlying the important coalgebraic principle
of coinduction. Here is a first example.

Example 1.12 Take the function zip that merges two streams by taking elements from either
stream in turn. For a coalgebraic definition of this map, define the transition map δ ∶ (Cω ×
Cω) → C × (Cω ×Cω) as follows:

δ(α,β) ∶= (h(α), (β, t(α)),

where h and t are the maps defined in Example 1.10. This defines a KC × Id -coalgebra on
the set (Cω ×Cω), so that by finality of the stream coalgebra (Cω, γ) there is a (unique) map
zip ∶ Cω ×Cω → Cω which is a coalgebra morphism from (Cω ×Cω, δ) to Cω, ⟨h, t⟩):

1-4

Cω ×Cω

δ
��

zip // Cω

⟨h,t⟩
��

C × (Cω ×Cω)
(idC ,zip)

// C ×Cω

One may verify that this coalgebra morphism indeed defines the map that zips two streams
together.

Unfortunately, as we will see further on, final coalgebras do not exist for every functor.

Example 1.13 In the categories of Kripke frames and Kripke models, final objects do not
exist. The canonical model comes close, but to turn this structure into a final coalgebra,
we have to enrich the base category Set with topological structure. As a result that we will
discuss later on, we may see the canonical general frame as a final coalgebra for a suitable
base category and coalgebra functor.

1.4 Behavioural equivalence and bisimilarity

Probably the most intuitive notion of equivalence between systems is that of behavioral, or
observational, equivalence. The idea here is to consider two states to be similar if we cannot
distinguish them by observations, because they display the same behavior. For instance, we
call two deterministic automata (pointed 2× IdC-coalgebras) equivalent if they recognize the
same language. In case the functor T admits a final coalgebra Z, this idea is easily formalized
by making state s in coalgebra S equivalent to state s′ in coalgebra S′ if behS(s) = behS′(s′).
In case the functor does not admit a final coalgebra, we generalize this demand as follows.

Definition 1.14 Let S = (S,σ) and S′ = (S′, σ′) be two systems for the set functor T . Then
s ∈ S and s′ ∈ S′ are behaviorally equivalent, notation: S, s ≃T S′, s′ if there is a T -system
X = (X,ξ) and homomorphisms f ∶ S→ X and f ′ ∶ S′ → X such that f(s) = f ′(s′). �

Remark 1.15 It is easily checked that in case T admits a final coalgebra Z, then indeed
S, s ≃T S′, s′ iff behS(s) = behS′(s′). The direction from right to left is trivial, so assume that s
and s′ are behaviorally equivalent because of the existence of X, f and f ′ as in the formulation
of the definition. Observe that the map behX ○ f is a coalgebra morphism from S to Z, and
likewise for behX ○ f ′ and S′. It then follows from the finality of Z that behS = behX ○ f and
behS′ = behX ○ f ′. Hence, from f(s) = f ′(s′) it follows that behS(s) = behS′(s′), as required.

As we will see further on, in many cases of interest, behavioral equivalence can be char-
acterized via the equally fundamental concept of bisimilarity, which involves the notion of a
coalgebraic bisimulation.

1-5

Definition 1.16 A bisimulation between two coalgebras (S, σ) and (S′, σ′) is a relation B ⊆
S × S′ for which, as in the diagram below,

S

σ
��

B
πoo

β
��

π′ // S′

σ′
��

TS TB
Tπ
oo

Tπ′
// TS′

(2)

there is a (not necessarily unique) coalgebra map β ∶ B → TB such that the two projection
maps from B to S and S′ are coalgebra morphisms. �

That is, a bisimulation is a relation that, seen as a set, can be endowed itself with a
coalgebra structure satisfying some natural conditions.

1.5 Coalgebra and modal logic

Logic comes in when we want to design specification languages for describing the behaviour
of state-based evolving systems, and derivation systems for reasoning about this behaviour.

Definition 1.17 An (abstract) logic for T -coalgebras is a pair (L,⊩) consisting of a set L
of formulas and, for each T -coalgebra S = (S,σ), a satisfaction relation ⊩S ⊆ S × L. In case
(s,ϕ) ∈ ⊩S, we say that ϕ is true or holds at s ∈ S, or that s satisfies ϕ in S; we often write
S, s ⊩ s or even s ⊩ ϕ instead of s ⊩S ϕ.

Given a state s in a coalgebra S, we define ThLS (s) ∶= {ϕ ∈ L ∣ S, s ⊩ ϕ}. Conversely, given
a formula ϕ ∈ L and a coalgebra S, we let [[ϕ]]S denote the set of states in S where ϕ holds,
that is, [[ϕ]]S ∶= {s ∈ S ∣ S, s ⊩ ϕ}. If ThLS (s) = ThLS′(s′), we say that s and s′ are L-equivalent,
and we write S, s ≡L S′, s′ (or simply s ≡L s′ if S and S′ are understood).

Finally, we will call a formula satisfiable if it is satisfied at some state in some coalgebra,
and valid if it holds at every state in every coalgebra. �

In the same way that universal coalgebra tries to give an account of state-based evolving
systems, uniformly in the coalgebra type T , research in coalgebraic logic has been directed
towards a development of logical languages and derivation systems that are similarly uniform
in the parameter T . Apart from uniformity, here are some other desiderata for a coalgebraic
logic.

Definition 1.18 Let (L,⊩) be a logic for a coalgebra type T . We say that this logic is
invariant (for behavioural equivalence) if S, s ≃ S′, s′ implies ThLS (s) = ThLS′(s′), and expressive
if conversely, ThLS (s) = ThLS′(s′) implies that s and s′ are behaviourally equivalent. The logic
is decidable if there is an algorithm that decides, on input ϕ ∈ L, whether there is some pointed
coalgebra satisfying ϕ. �

In addition, for practical purposes one generally wants the logic to be finitary in the sense
that formulas are finite objects. Other desirable properties of a coalgebraic logic include

1-6

good model-theoretic behaviour, and the existence of a derivation system that is sound and
complete for the collection of valid formulas.

With Kripke models as paradigmatic examples of coalgebra, and modal logic providing
the bisimulation-invariant logic for Kripke models, it should come as no surprise that most
coalgebraic logics can be seen as generalisations of basic modal logic in some sense. The
literature on coalgebra witnesses different ways to generalise basic modal logic from Kripke
structures to arbitrary systems; here we mention two approaches.

First, however, we briefly discuss the role of proposition letters in coalgebraic modal logic.
Generalising the relation between Kripke models and Kripke frames, we introduce the notion
of a T -model.

Definition 1.19 Let T be a set functor, and let Q be an arbitrary but fixed set of proposition
letters. A T -model is a triple (S,σ, V) such that (S,σ) is a T -coalgebra, and V ∶ Q → PS is
a valuation. A morphism between T -models S = (S,σ, V) and S′ = (S′, σ′, V ′) is a coalgebra
morphism f ∶ (S,σ) → (S,σ′) such that s ∈ V (p) iff s′ ∈ V ′(p), for all s ∈ S. �

There are two natural ways to think about T -models: either as T -coalgebras extended
with a Q-valuation, or as coalgebras for the functor TQ ∶= KPQ × T . (Clearly, in the latter
case it would be more natural to represent the valuation V as its associated colouring V ♭ ∶
S → PQ given by V ♭(s) ∶= {p ∈ Q ∣ s ∈ V (p)}.) In these notes we will generally take the
first perspective, since it is more compatible with the perspective on proposition letters as
variables. Nevertheless we will apply various coalgebraic definitions to T -models as if they
were indeed KPQ × T -coalgebras.

Let us now take a quick look at two of the approaches towards coalgebraic modal logic.

Example 1.20 In the first approach towards coalgebraic modal logic, which is completely
parametric in the functor T , the set of formulas L is closed under the following clause, which
introduces a modal operator ∇:

if α ∈ TX for some finite set X of formulas, then ∇α is a formula.

In the case of the powerset functor (T = P), we can write, for instance, ∇{ϕ0, ϕ1}, where ϕ0

and ϕ1 are formulas. The formula ∇{ϕ0, ϕ1} will be equivalent to (3ϕ0 ∧3ϕ1) ∧2(ϕ0 ∨ϕ1).
In general, the semantics of ∇ in a Kripke structure S = (S,σ) will be given as

S, s ⊩ ∇α iff (σ(s), α) ∈ P (⊩),

where P (⊩) ⊆ PS × PL is the (Egli-Milner) lifting2 of the binary satisfaction relation ⊩.

As we will see, this approach generalises well to any set functor T that ‘preserves weak
pullbacks’ — the point of this condition being that T preserves weak pullbacks iff its lifting
T preserves relation composition.

2The Egli-Milner lifting of a relation R ⊆ S × S′ is the relation P (R) ⊆ PS × PS′ given by (X,X ′) ∈ P (R)
iff for all x ∈X there is an x′ ∈X ′ such that Rxx′ and for all x′ ∈X ′ there is an x ∈X such that Rxx′.

1-7

The ∇-logic provided by the relation-lifting approach described in Example 1.20 may
provide coalgebraic logics in a completely uniform way, but its unusual syntax makes it not
easy to work with.

The second approach to coalgebraic logic provides coalgebraic logics with a more standard
modal syntax. Here, the modalities of the language correspond to so-called predicate liftings,
where an n-ary predicate lifting is a natural transformation P̆n →̇ P̆ T . Here we confine
ourselves to a few examples of such coalgebraic modalities.

Example 1.21 The standard interpretation of the modalities 3 and 2 in Kripke structures
can be formulated as follows:

S, s ⊩ 2ϕ iff R(s) ⊆ [[ϕ]]
S, s ⊩ 3ϕ iff R(s) ∩ [[ϕ]] ≠ ∅.

Example 1.22 Monotone modal logic is a variant of standard modal logic where formulas
are interpreted in so-called monotone neighbourhood models. These are structures of the
form S = (S,σ, V) where S is a set of states, V is a valuation, and σ is a map S → PPS that
assigns to each state s ∈ S a collection σ(s) ⊆ PS of neighbourhoods. Here, each collection
σ(s) is required to be upward closed in the sense that X ∈ σ(s) implies Y ∈ σ(s) for all Y
with X ⊆ Y ⊆ S.

In these structures we may interpret the modalities 3 and 2 as follows:

S, s ⊩ 2ϕ iff [[ϕ]] ∈ σ(s)
S, s ⊩ 3ϕ iff (S ∖ [[ϕ]]) /∈ σ(s).

Using the upward-closedness of σ(s) ⊆ P (S) it is not hard to show that 2ϕ holds at s iff s
has a neighbourhood U ∈ σ(s) such that S, u ⊩ ϕ, for each u ∈ U , whereas 3ϕ holds at s iff
every neighbourhood U ∈ σ(s) contains some point u where ϕ holds.

To see how monotone modal logic generalises standard modal logic, think of a Kripke
model (S,R,V) as the neighbourhood model (S, σ̂, V), where σ̂(s) ∶= {X ∈ PS ∣ R(s) ⊆X}.

Example 1.23 Let (S,σ) be a Markov chain, that is, a coalgebra for the distribution functor
D . Given a rational number q ∈ [0,1], we introduce a modality 3q, with the following intended
meaning:

S, s ⊩ 3qϕ iff ∑
t∈[[ϕ]]S

µs(t) > q.

That is, the formula 3qϕ holds at s iff the probability that ϕ holds at the next state after s
is bigger than q.

1.6 Literature

Here are some relevant texts on coalgebra and modal logic. First we mention some books:

• J. Barwise and L. Moss, Vicious Circles, CSLI Publications, 1996.

• B. Jacobs, Introduction to Coalgebra: towards mathematics of states and observation,
Cambridge University Press, 2016.

1-8

• J. Rutten, The Method of Coalgebra: exercises in coinduction, CWI, Amsterdam, The
Netherlands, 2019, ISBN 978-90-6196-568-8.

Here is a list of introductory and survey articles:

• B. Jacobs and J. Rutten, A tutorial on (co)algebras and (co)induction, Bulletin of the
European Association for Theoretical Computer Science, 62 (1997), pp. 222–259..

• J.J.M.M Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Sci-
ence 249 (2000), pp. 3-80.

• H.P. Gumm, Universelle coalgebra, appendix to Th. Ihringer: Universelle Algebra, Hel-
dermann Verlag, Berlin, 2003. (available from the web page of H.P. Gumm.)

• A. Kurz, A. Palmigiano and Y. Venema, Coalgebra and logic: an overview, Journal of
Logic and Computation 20 (2010), pp. 985-988.

• C. Kupke and D. Pattinson, Coalgebraic Semantics of Modal Logics: an Overview,
Theoretical Computer Science, 412(38) (2011), pp. 5070-5094.

• C. Ĉırstea, A. Kurz, D. Pattinson, L. Schröder and Y. Venema, Modal logics are coal-
gebraic, The Computer Journal, 54 (2011), pp. 31-41.

1-9

2 Final Coalgebras and Coinduction

In section 1.3 we introduced final coalgebras. In this chapter we study the concept in more
detail, and we see how it relates to the fundamental coalgebraic definition and proof principle
of coinduction.

As a first example of a final coalgebra, it is instructive to look at a base category different
from Set.

Example 2.1 Let C = (C,≤) be an arbitrary poset, that is, ≤ is a reflexive, transitive and
antisymmetric relation on the set C. We may think of C as a category by taking C as the set
of objects and providing a unique arrow between any pair of elements c, d ∈ C for which c ≤ d.
An endofunctor on C is then nothing but a monotone or order-preserving function F ∶ C → C.
Given that arrows between objects are unique if they exist, a coalgebra (c, γ ∶ c→ Fc) for such
a functor can be identified with its carrier c, and conversely, any c ∈ C for which c ≤ Fc is the
carrier of an F -coalgebra. In other words, we may identify F -coalgebras with the prefixpoints
of F .

We leave it for the reader to verify that a final coalgebra for a functor F on C is a greatest
fixpoint of the map F .

2.1 The language coalgebra

As a key example of a final coalgebra we will show how to endow the collection of languages
over some finite alphabet C with coalgebra structure that turns it into the final coalgebra for
the set functor 2 × IdC associated with deterministic automata.

Here we will represent a deterministic automaton over an alphabet C as a triple S =
(S, τ, χ), where τ ∶ S → SC and χ ∶ S → 2 correspond to the transition map and the acceptance
condition, respectively. Note that we drop the condition that the carrier of the automaton is
finite. We will also use the convention that s

a→ t means t = τ(s)(a) and s↓ indicates that s
is accepting, i.e., χ(s) = 1.

As we saw in the introduction, we can identify deterministic automata with coalgebras of
the functor 2 × IdC . It is easy to see that a map f ∶ S → S′ is a coalgebra morphism between
two automata S = (S, τ, χ) and S′ = (S′, τ ′, χ′) if it satisfies, for all s ∈ S and a ∈ C, the
conditions χ(s) = χ′(fs) and f(τ(s)(a)) = τ ′(fs)(a).

Definition 2.2 Consider the following language coalgebra L ∶= (LC , δ, ω), where
● LC ∶= P (C∗) is the collection of all languages over C,
● ω ∶ LC → 2 is given by ω(L) ∶= 1 if ε ∈ L, and ω(L) = 0 if ε ∉ L;
● δ ∶ LC → (LC)C is the map given by δ(L)(a) ∶= La, the so-called a-derivative of L:

La ∶= {u ∈ C∗ ∣ au ∈ L}.

If no confusion concerning the alphabet is likely, we will usually write L rather than LC . �

Recall that for an arbitrary automaton S = (S, τ, χ), we defined the language recognized
by a state s ∈ S by putting

LS(s) ∶= {u ∈ C∗ ∣ χ(τ̂(s)(u)) = 1},

2-1

where τ̂ ∶ S → SC
∗

is inductively defined by putting τ̂(s)(ε) ∶= s and τ̂(s)(cu) ∶= τ̂(τ(s)(c))(u).
We claim that, for any alphabet C, L is the final coalgebra of type 2 × IdC , with the

language maps as the witnessing coalgebra morphisms.

Proposition 2.3 (Finality of L) For any 2 × IdC-coalgebra S, the map LS is the unique
coalgebra morphism LS ∶ S→ L.

Proof. Fix S = (S, τ, χ). We first show that LS is a coalgebra morphism. For acceptance, we
check that χ(s) = ω(LS(s)):

χ(s) = 1 iff ε ∈ LS(s) (definition LS)

iff ω(LS(s)) = 1 (definition ω)

With respect to the transition function, we need to show that LS(τ(s)(c)) = δ(LS(s))(c), for
all s ∈ S and c ∈ C. But this identity holds because of the following chain of equivalences, for
an arbitrary word u ∈ C∗:

u ∈ LS(τ(s)(c)) iff χ(τ̂(τ(s)(c))(u)) = 1 (definition LS)

iff χ(τ̂(s)(cu))) = 1 (definition τ̂)

iff cu ∈ LS(s) (definition LS)

iff u ∈ δ(LS(s))(c) (definition δ)

Second, we prove uniqueness. Assuming that f ∶ S→ L is a coalgebra morphism, we need
to show that f = LS. It suffices to show that any word u ∈ C∗ satisfies the following:

for all s ∈ S ∶ u ∈ LS(s) iff u ∈ f(s). (3)

We will prove (3) by induction on u. In the base case, where u = ε, we have

ε ∈ LS(s) iff ω(LS(s)) = 1 (definition ω)

iff χ(s) = 1 (LS is a morphism)

iff ω(f(s)) = 1 (f is a morphism)

iff ε ∈ f(s) (definition ω)

Now assume that u = cv, for some c ∈ C, then we find

cv ∈ LS(s) iff χ(τ̂(s)(cv)) = 1 (definition LS)

iff χ(τ̂(τ(s)(c))(v)) = 1 (definition τ̂)

iff v ∈ LS(τ(s)(c)) (definition LS)

iff v ∈ f(τ(s)(c)) (induction hypothesis)

iff v ∈ δ(f(s))(c) (f is a morphism)

iff cv ∈ f(s) (definition δ)

This suffices to prove the induction step of (3). qed

2-2

2.2 Properties of final coalgebras

Final coalgebras have various interesting properties. We first show that, if existing, final
coalgebras are unique modulo isomorphism3. Because of this fact we will often speak of ‘the’
final T -coalgebra if T admits final coalgebras.

Proposition 2.4 Let Z = (Z, ζ) and Z′ = (Z ′, ζ ′) be final T -coalgebras for some functor
T ∶ C→ C. Then Z and Z′ are isomorphic.

Proof. By finality of Z there is a coalgebra morphism g ∶ Z′ → Z, and by finality of Z′ there
is a coalgebra morphism f ∶ Z → Z′. But then the composition g ○ f ∶ Z → Z is a coalgebra
morphism as well, and by unicity it must be identical to the identity arrow idZ. Similarly, we
find that g ○ f = idZ′ . Thus Z and Z′ are isomorphic indeed. qed

The following proposition states a key fact about final coalgebras.

Proposition 2.5 (Lambek’s Lemma) Let Z be a final T -coalgebra for some functor T ∶
C→ C. Then the coalgebra map ζ ∶ Z → TZ of Z is an isomorphism in C.

Proof. Applying the functor T to the coalgebra map ζ of Z, we obtain the map Tζ ∶ TZ →
TTZ, and hence, a coalgebra Z2 ∶= (TZ,Tζ). By finality of Z we obtain a coalgebra morphism
! from Z2 to Z, given by a C-arrow ! ∶ TZ → Z. But then the composition ! ○ ζ is a coalgebra
morphism from Z to itself, just like the identity arrow idZ . In a diagram:

Z

ζ
��

ζ //

idZ

''
TZ

Tζ
��

! // Z

ζ
��

TZ
Tζ
// TTZ

T !
// TZ

(4)

It follows by unicity that ! ○ ζ = idZ .
For the reverse composition ζ ○ ! we have that ζ ○ ! = T ! ○Tζ since ! is a morphism, cf. the

right rectangle in the diagram above. But then we easily derive that ζ ○ ! = T (! ○ ζ) = T idZ =
idTZ . In other words, ζ ○ ! is the identity arrow on TZ.

Finally, since ! ○ ζ = idZ and ζ ○ ! = idTZ we see that ζ is an isomorphism indeed, with ! as
its inverse. qed

As an immediate corollary of this, we see that set functors involving the full powerset
functor in a nontrivial way, will generally not admit a final coalgebra.

Corollary 2.6 The categories of Kripke frames and of Kripke models do not admit final
coalgebras.

3See the appendix for the categorical definition of an isomorphism. In the case of coalgebras, two coalgebras
S and S′ are isomorphic if there are coalgebra morphisms f ∶ S→ S′ and g ∶ S′ → S such that g ○ f and f ○ g are
the identity arrows on S and S′, respectively.

2-3

Proof. Recall that Kripke frames are coalgebras for the powerset functor P . Now suppose
for contradiction that P admits a final coalgebra Z = (Z, ζ). It would follow by Lambek’s
Lemma that ζ is a bijection between Z and its powerset; but this is impossible by Cantor’s
theorem. The case of Kripke models can be proved similarly. qed

The following proposition is one way to formalise the proof principle of coinduction — we
shall come back to this.

Proposition 2.7 Let Z be a final T -coalgebra for some set functor T . Then the relation ≃Z
of behavioural equivalence on Z is the identity relation ∆Z on Z:

≃Z = ∆Z . (5)

Proof. Suppose that z and z′ are two states in Z that are behaviourally equivalent. In
Remark 1.15 we saw that this implies that behZ(z) = behZ(z′), and since behZ is the identity
map on Z, it follows that z = behZ(z) = behZ(z′) = z′. qed

2.3 Existence of final coalgebras

If not all set functors admit final coalgebras, which ones do? Some good sufficient conditions
are known.

Definition 2.8 Let T be some set functor, and κ some cardinal. Call T κ-small if

T (S) = ⋃{(TιAS)[T (A)] ∣ ιAS ∶ A↪ S, ∣A∣ < κ},

for all sets S ≠ ∅, where for an arbitrary subset A of S, the arrow ιAS denotes the inclusion
map of A into S. T is small if it is small for some cardinal κ. An ω-small functor is usually
called finitary. �

In words, the definition requires every element of T (S) to be in the range of Tι for an
appropriate inclusion map ι ∶ A ↪ S, where A is of size smaller than κ. In case T preserves
inclusions (meaning that T maps any inclusion ι ∶ A↪ B to an inclusion Tι ∶ TA↪ TB), the
definition boils down to the requirement that

T (S) = ⋃{T (A) ∣ A ⊆ S, ∣A∣ < κ}.

Fact 2.9 Every small set functor admits a final coalgebra.

Examples of small functors abound; for instance, whenever we replace, in a Kripke polyno-
mial functor, the power set functor by a bounded variant such as the finite power set functor,
the result is a small functor.

In particular, the finite power set functor Pω itself is ω-small. As an immediate corollary
of this fact, the categories of image-finite frames and models, which can be represented as
coalgebras for, respectively, the functors Pω and PQ × Pω, both have final objects. More in
general we can prove the following.

2-4

Corollary 2.10 Every finitary Kripke polynomial functor admits a final coalgebra.

For Set-based functors that do not admit a final coalgebra, there are various ‘second-best’
ways to proceed. For instance, one may show that T does have a final coalgebra in an extended
category or modified category.

Example 2.11 If one is willing to allow coalgebras taking a class rather than a set as their
carrier, one may create a final coalgebra, outside the category Set, as follows. Let T be a set
functor for which final coalgebras do not exist; for convenience we assume that all functors
preserve inclusions.

Let SET be the category that has classes as objects, and class functions as arrows, that is,
functions mapping sets to sets that may have a class rather than a set as their (co-)domain.
Call an endofunctor T on SET set-based if for each class C and each X ∈ TC there is a set
S ⊆ C such that X ∈ TS. Now Aczel & Mendler proved that every set-based endofunctor on
SET admits a final coalgebra – the similarity to Fact 2.9 is no coincidence.

This fact can be used as follows. Given an endofunctor T on Set, there is a unique way to
extend T to a set-based endofunctor T+ on SET. (On objects, simply put T+(C) ∶= ⋃{T (S) ∣
S ⊆ C a set}.)

The theorem of Aczel & Mendler then guarantees the existence of a final object Z in
Coalg(T+). This coalgebra will be class-based if T does not admit a final coalgebra, but it
will be final, not only with respect to the set-based coalgebras in Coalg(T+), but also with
respect to the class-based ones. As an important manifestation of this idea, Aczel showed that
the class of non-well-founded sets provides the final coalgebra for (the SET-based extension
of) the power set functor.

Example 2.12 One way to look at Lambek’s Lemma is that final T -coalgebras provide
solutions to the ‘equation’ S ≅ TS. In the case of the powerset functor, Cantor’s theorem
states that this equation does not have a solution in the category Set. This situation is
reminiscent of that in domain theory, which provides solutions to the equation X ≅ XX by
imposing topological structure on sets.

Something similar can be done here. Define a Stone space to be a pair X = (X,τ), where
τ is a zero-dimensional compact Hausdorff space, and let Stone denote the category of Stone
spaces as objects with continuous maps as arrows. As an analog to the powerset functor on
Set, we can define the Vietoris functor V on the category Stone; on objects, the Vietoris space
VX is based on the collection of compact subsets of X. We may then show that, indeed, the
final coalgebra for this functor exists.

Further on we will see that, whereas the canonical model (over a finite set Q of proposition
letters) is not final in the category of coalgebras for the Kripke model functor KPQ × P , we
may identify the canonical general model over Q with the final KPQ ×V -coalgebra. Thus we
can solve the equation S ≅ TS by modifying the base category of our coalgebras.

2.4 The terminal sequence

Whether the functor admits a final coalgebra or not, one may always (try to) approximate it
by considering the so-called final or terminal sequence.

2-5

Example 2.13 Let us first consider an example outside the category Set. Suppose that the
poset C = (C,≤) is in fact a complete lattice, that is, with each subset X ⊆ C we may associate
a meet or greatest lower bound ⋀X; this means in particular that C is bounded: it has a
largest element ⊺ ∶= ⋀∅, and a smallest element � ∶= ⋁∅.

The Knaster-Tarski theorem states that in this setting, every monotone map F ∶ C → C
has both a least and a greatest fixpoint. That is, every endofunctor F on the category C
admits both an initial and a final coalgebra (see Example 2.1).

It is instructive for our purposes to prove this theorem, and in particular, to see how
to find the greatest fixpoint by approximating it from above. We define an ordinal-indexed
sequence ⟨zα⟩ using transfinite induction:

zα ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⊺ if α = 0
Fzβ if α = β + 1 is a successor ordinal

⋀{zβ ∣ β < α} if α is a limit ordinal

Note that in fact, if we take 0 to be a limit ordinal, we can reduce the first clause of the
definition to the third.

It is not hard to prove, for a monotone map F ∶ C → C, the existence of an ordinal α for
which zα = zα+1, and to show that the object zα is in fact the greatest fixpoint of F .

In the case of set functors, we may take inspiration from this example to define the terminal
sequence associated with T .

Definition 2.14 The final or terminal sequence associated with a given set functor T , is
an ordinal indexed sequence of objects ⟨Zα⟩ with maps pαβ ∶ Zα → Zβ for β ≤ α, such that

(i) Zα+1 = TZα and pα+1
β+1 = Tpαβ , (ii) pαα = idZα and pβγ ○ pαβ = pαγ , (iii) if λ is a limit ordinal,

then Zλ with {pλα ∣ α < λ} is a limit4 of the diagram with objects {Zα ∣ α < λ} and arrows
{pαβ ∣ α,β < λ}. (In particular, taking 0 to be a limit ordinal, we find that Z0 = 1 is some final
object of the category Set, i.e., a singleton set.) �

In the diagram below we depict an initial part of this construction:

Z0 = 1 Z1 = T1
p1

0oo Z2 = T 21
p2

1oo

p2
0

jj
oo ⋯ Zω

pω2
ss

pω1

ww

pω0

yy
Zω+1 = TZω

pω+1
ωoo ⋯oo (6)

It is not hard to prove that, modulo isomorphism, the terminal sequence is uniquely
determined by these conditions. Intuitively, it can be seen as an approximation of the final
coalgebra for T . That is, where elements of the final coalgebra represent ‘complete’ behavior,
elements of Zα represent behavior that can be ‘performed in α many steps’.

4See the appendix for the categorical definition of a limit.

2-6

To make this precise and formal, observe that for any T -coalgebra S there is a unique
ordinal-indexed class of functions behα ∶ S → Zα such that beh0 is fixed by the finality of Z0

in Set, behα+1 ∶= (Tbehα) ○ σ:

⋯ Zα Zα+1
pα+1
αoo ⋯

S σ
//

behα

OO

behα+1

<<

TS

Tbehα

OO (7)

while for a limit ordinal λ, behλ is given as the unique map behλ ∶ S → Zλ such that behα =
pλα ○ behλ for all α < λ. It is not hard to prove that, for instance, S, s ≃ S′, s′ implies that
behα(s) = behα(s′) for all α.

The relation with final coalgebras can be made precise, as follows. On the one hand,
if the terminal sequence converges, in the sense that some arrow pα+1

α is a bijection, then
the coalgebra (Zα, (pα+1

α)−1) is a final coalgebra for T . And conversely, under some mild
constraints on T , Adámek & Koubek proved that if T admits a final coalgebra, then the
terminal sequence converges to it.

2.5 Coinduction as a definition principle

Coinduction is an important coalgebraic principle, and just like its algebraic counterpart of
induction, it can be used as a tool to define various operations, but also as a coalgebraic proof
principle.

To see how coinductive definitions work, suppose that Z = (Z, ζ) is the final coalgebra for
some set functor T . Coinduction is based on the observation that, in order to define a map
from some set S to Z, it suffices to turn S into a coalgebra by endowing it with coalgebra
structure: any coalgebra map σ ∶ S → TS canonically induces a map from S to Z, namely the
unique coalgebra morphism !σ ∶ (S,σ) → Z. (In fact, we saw this principle already at work
in the proof of Lambek’s Lemma, where we defined a map from TZ to Z by considering the
coalgebra map Tζ on TZ.)

Example 2.15 Let Z = (Cω,h, t) be the stream coalgebra of Example 1.10 — here we write
h and t rather than head and tail. We already saw that Z is the final KC × Id -coalgebra, we
can now use the finality to define operations on streams.

To start with, consider the coalgebra map ⟨h, t ○ t⟩ ∶ Cω → C × Cω defined as γe(α) ∶=
(h(α), t(t(α))). By finality of Z there is a unique map e ∶ Cω → Cω making the following
diagram commute:

Cω

⟨h,t○t⟩
��

e // Cω

⟨h,t⟩
��

C ×Cω
idC×e

// C ×Cω

(8)

Another way of looking at this definition is that, in order to define e(α), we specfify

h(e(α)) ∶= h(α)
t(e(α)) ∶= t(t(α)).

2-7

In fact, the map e ∶ Cω → Cω is the operation on streams that creates a new stream out of
all items at an even position in the input stream. To prove this, it suffices to show that the
map λα.(λn.α(2n)) makes the diagram (8) commute.

Similary, we can define a map q ∶ Cω → Cω selecting the odd items of an input stream, by
means of the following diagram:

Cω

⟨h○t,t○t⟩
��

q // Cω

⟨h,t⟩
��

C ×Cω
idC×q

// C ×Cω

(9)

Example 2.16 Fix an alphabet C. Recall from Proposition 2.3 that the language coalgebra
L = (L, δ, ω) is the final coalgebra for the ‘automaton’ functor 2 × IdC . We can use this fact
to define operations on languages.

For instance, given a word u = c1⋯ck (with k ≥ 0), we let ⊗u denote its converse, ⊗u ∶=
ck⋯c1, and we set ⊗L ∶= {⊗u ∣ u ∈ L}. Coinductively, we can define this language by imposing
the following structure on L. As the acceptance condition we simply take the same map ω as
for L, while for the transition map τ we put

τ(L)(c) ∶= {u ∈ C∗ ∣ uc ∈ L}.

We leave it as an exercise for the reader to verify that the following diagram commutes:

L
⟨ω,τ⟩

��

⊗ // L
⟨ω,δ⟩
��

2 × LC
id2×⊗C

// 2 × LC

(10)

so that by finality, ⊗ ∶ L → L is the unique coalgebra morphism ⊗ ∶ (L, τ, ω) → L. That means
that (10) can be seen as a coinductive definition of ⊗.

Example 2.17 As a slightly different example, we give a coinductive definition of the shuffle
K ∣∣L of two languages K and L, leaving the inductive definition as an exercise. 5. Recall
that, for a language L ∈ L, we let La denote its a-derivative, La ∶= {u ∈ C∗ ∣ au ∈ L}.

We let the set E of expressions be defined by the following grammar:

E ∶∶= L ∣ E0 +E1 ∣ E0 ∣∣E1

where L ∈ L, i.e., we associate a formal symbol L with every language L.

5Alternatively, the language K ∣∣L can be defined as follows. Define the relation � on finite words by
putting c1⋯ck � d1⋯dn if there is an order-preserving map on the indices f ∶ {1, . . . , k} → {1, . . . , n} such that
ci = dfi, for all i ∈ {1, . . . , k}. Say that w merges u and v if ∣w∣ = ∣u∣ + ∣v∣ and both u � w and v � w. We can
then define K ∣∣L as the collection of all words that merge words from K and L.

2-8

To turn the set E into an automaton E ∶= (E , τ, χ), consider the following axioms and rules
(where we use the notation introduced in the beginning of section 2.1):

L↓ iff ε ∈ L (E + F)↓ iff E↓ or F ↓ (E ∣∣F)↓ iff E↓ and F ↓

L
c→ Lc

E
c→ E′ F

c→ F ′

E + F c→ E′ + F ′
E

c→ E′ F
c→ F ′

E ∣∣F c→ E′ ∣∣F +E ∣∣F ′

It is not hard to see that this deductive system uniquely determines two operations τ ∶ E → EC
and χ ∶ E → 2. Hence by finality of L there is a unique coalgebra morphism f ∶ E→ L. Think
of f(E) as the interpretation of the term E.

We can then define
K ∣∣L ∶= f(K ∣∣L).

To get a feeling for this operation we compute the derivative (K ∣∣L)c:

(K ∣∣L)c = f(K ∣∣L)c (definition ∣∣)
= δ(f(K ∣∣L))(c) (definition δ)

= f(τ(K ∣∣L)(c)) (f is a morphism)

= f(Kc ∣∣L +K ∣∣Lc) (definition τ)

= f(Kc ∣∣L) ∪ f(K ∣∣Lc) (*)

=Kc ∣∣L ∪K ∣∣Lc (definition ∣∣)

Here we use in (*) the observation that f(E + F) = f(E) ∪ f(F), which is easily proved by
coinduction, see Example 2.20.

2.6 Coinduction as a proof principle

As a proof principle, coinduction has two manifestations. In its most direct form, proofs by
coinduction use the uniqueness of coalgebra morphisms to a final coalgebra.

Example 2.18 Consider the maps e and q of Example 2.15. We claim that

q = e ○ t, (11)

as should be clear intuitively. To prove (11) coinductively, it suffices to prove that the map
e ○ t, just like q, is a coalgebra morphism e ○ t ∶ (Cω, ⟨h ○ t, t ○ t⟩) → (Cω, ⟨h, t⟩); that is, the
diagram below commutes:

Cω

⟨h○t,t○t⟩
��

e○t // Cω

⟨h,t⟩
��

C ×Cω
idC×e○t

// C ×Cω

(12)

But for this purpose it suffices to show that the following two equations hold:

h ○ (e ○ t) = h ○ t (13)

t ○ (e ○ t) = (e ○ t) ○ (t ○ t) (14)

2-9

This is not so hard. For (13), we may calculate

h ○ (e ○ t) = (h ○ e) ○ t (associativity)

= (idC ○ h) ○ t (diagram (8))

= h ○ t, (idC ○ h = h)

while we prove (14) as follows:

t ○ (e ○ t) = (t ○ e) ○ t (associativity)

= (e ○ (t ○ t)) ○ t (diagram (8))

= (e ○ t) ○ (t ○ t) (associativity)

Example 2.19 In a similar way we can prove that

zip ○ ⟨e,q⟩ = idCω , (15)

where zip is the map defined in Example 1.12.

By finality it suffices to show that zip ○ ⟨e,q⟩ is a coalgebra morphism on the stream
coalgebra, and since we know that zip is a coalgebra morphism (i.e., the right rectangle below
commutes), we can confine ourselves to proving that the left rectangle in the diagram below
commutes:

Cω

⟨h,t⟩
��

⟨e,q⟩ // Cω ×Cω

δ
��

zip // Cω

⟨h,t⟩
��

C ×Cω
T ⟨e,q⟩
// C × (Cω ×Cω)

T zip
// C ×Cω

Here T ⟨e,q⟩ = idC × ⟨e,q⟩, T zip = idC × zip, and δ is as given in Example 1.12: δ(α,β) ∶=
(h(α), (β, t(α)).

To verify that the left rectangle above commutes we need to check that δ ○⟨e,q⟩ = T ⟨e,q⟩○
⟨h, t⟩, which boils down to proving

(a) h ○ e = h,

(b) q = e ○ t
(c) t ○ e = q ○ t.

But we obtain (a) because h ○ e = idC ○ h (definition of e), and (b) was shown in the previous
example, cf. (11). Finally, for (c), observe that t○e = e○(t○ t) by definition of e (diagram (8)),
and e ○ (t ○ t) = q ○ t by associativity and (11).

Often, coinduction is referred to as the proof principle that uses the fact that behavioural
equivalence is the identity relation on a final coalgebra (Proposition 2.7). More specifically,
given the fact that bisimilarity implies behavioural equivalence (as we will see further on), one
may prove two states in a final coalgebra to be identical if we can link them by a bisimulation.

Example 2.20 In the case of C-automata (coalgebras of type 2 × IdC), a bisimulation on a
coalgebra (S, τ, χ) is a relation B ⊆ S × S such that, whenever (s0, s1) ∈ B, we have

2-10

(acc) χ(s0) = χ(s1) (that is: s0↓ iff s1↓), and
(nxt) (τ(s0)(c), τ(s1)(c)) ∈ B, for all c ∈ C.

Let us now prove the statement that (cf. Example 2.17)

f(L) = L, (16)

for every language L ∈ L. By coinduction, it suffices to show that the relation

B ∶= {(f(L), L) ∣ L ∈ L} (17)

is a bisimulation. We check the two conditions.
For (acc), we observe that f(L)↓ (in L) iff L↓ (in E) since f is a coalgebra morphism. But

we have L↓ in E iff ε ∈ L by definition of acceptance in E, and we have L↓ (in L) iff ε ∈ L by
definition of acceptance in L. This suffices to prove (acc).

For (nxt) we need to show, for an arbitrary language L ∈ L and an arbitrary letter c ∈ C,
that the pair (δ(f(L), c), δ(L, c)) ∈ B. To that aim, observe that δ(f(L), c) = f(τ(L)(c)) =
f(Lc), respectively since f is a morphism and by definition of τ . But since we have δ(L)(c) =
Lc (by definition of δ), it is immediate that (δ(f(L), c), δ(L, c)) = (f(Lc), Lc) ∈ B. This
finishes the proofs of (17) and (16).

Similarly, we can prove that

f(E0 +E1) = f(E0) ∪ f(E1), (18)

for all expressions E0 and E1, by showing that the relation

R ∶= {(f(E0 +E1), f(E0) ∪ f(E1)) ∣ E0,E1 ∈ E}

is a bisimulation on L.

Finally, we can use coinduction to establish, in a relatively straightforward way, various
useful properties of the operation ∣∣, such as commutativity, associativity, or distribution with
respect to +/∪.

2-11

3 Bisimilarity and Behavioural Equivalence

In section 1.4 of the Introduction we defined two coalgebraic notions of equivalence: behavioral
equivalence and bisimilarity. In this chapter we discuss these notions in more detail.

3.1 Basic observations

Obviously, the first question is how the notions of behavioral equivalence and bisimilarity
relate to each other. One direction is clear: bisimilarity is a sufficient condition for behavioral
equivalence.

Proposition 3.1 Let T ∶ Set → Set be some functor, and let s0 and s1 be states of the
T -coalgebras S0 and S1, respectively. Then S0, s0 ↔ S1, s1 implies S0, s0 ≃ S1, s1.

Proof. In the special case that T admits a final coalgebra, a very simple proof obtains.
Assume that S0, s0 ↔ S1, s1, and let B ⊆ S0 × S1 with β ∶ B → TB be a coalgebra witnessing
this. It follows from the definitions that both behS0 ○ π0 and behS1 ○ π1 are coalgebraic
morphisms from (B,β) to the final coalgebra, so from finality it follows that behS0 ○ π0 =
behS1 ○ π1. From this it is immediate that B ⊆ ≃; and so from (s0, s1) ∈ B it follows that
S0, s0 ≃ S1, s1.

In the general case the proof of this proposition is similar to the one of Theorem 3.12
below (with an application of pushouts instead of pullbacks), so we omit details. qed

The converse statement of Proposition 3.1 does not hold: in general, bisimilarity is a
strictly stronger notion than behavioral equivalence.

Example 3.2 Consider the so-called ‘3-2-functor’ T 3
2 ∶ Set→ Set given on objects by

T 3
2 (S) ∶= {(s0, s1, s2) ∈ S3 ∣ ∣{s0, s1, s2}∣ ≤ 2},

while for an arrow f ∶ S → S′ we define (T 3
2 f)(s0, s1, s2) ∶= (fs0, fs1, fs2). We leave it as an

exercise to the reader to verify that this indeed defines a set functor.

Now consider the following coalgebra S = (S,σ), where S = {0,1} and σ is given by
σ(0) = (0,0,1) and σ(1) = (1,0,0). Then it is not hard to see that S,0 ≃ S,1, but at the same
time we claim that there is no T 3

2 -bisimulation on S linking 0 and 1. To see this, suppose for
contradiction that R ⊆ S × S would be such a bisimulation, witnessed by the coalgebra map
ρ ∶ R → T 3

2R. If the projection maps π0, π1 ∶ R → S are to be coalgebra morphisms, ρ has to
map the pair (0,1) to some triple ρ(0,1) = ((s0, s1), (t0, t1), (u0, u1)) such that

(s0, t0, u0) = ((T 3
2 π0) ○ ρ)(0,1) = (σ ○ π0)(0,1) = σ(0) = (0,0,1)

(s1, t1, u1) = ((T 3
2 π1) ○ ρ)(0,1) = (σ ○ π1)(0,1) = σ(1) = (1,0,0).

Clearly then we find ρ(0,1) = ((s0, s1), (t0, t1), (u0, u1)) = ((0,1), (0,0), (1,0)). But this
object does not belong to the set T 3

2R, since (s0, s1), (t0, t1) and (u0, u1) are all distinct.

3-1

Example 3.3 A more natural example of a set functor for which behavioural equivalence
and bisimilarity are properly distinct notions, is the monotone neighbourhood functor M . We
will come back to this example later.

In section 3.3 below we will discuss an important class of set functors for which we do
have ≃ = ↔. First, however, we make some basic observations on bisimulations and, in the
next section, we give an alternative characterization of bisimulations.

Example 3.4 For an arbitrary set functor T , it is easy to see that for any coalgebra S,
the diagonal relation ∆S is a bisimulation equivalence on S. Furthermore, the converse of a
bisimulation is again a bisimulation.

As another general example, coalgebra morphisms can be seen as functional bisimulations.
To be more precise, let f ∶ S0 → S1 be a function between the carriers of two T -coalgebras S0

and S1. Recall that the graph of f is the relation Grf ∶= {(s, f(s)) ∣ s ∈ S0}. Then it holds
that

f is a coalgebra morphism iff its graph Grf is a bisimulation. (19)

In order to see why this is so, first suppose that Grf ∶ S0 ↔ S1. Since the projection map
π0 ∶ Grf → S0 is a bijective morphism, its inverse π−1

0 is also a morphism. But then f = π1○π−1
0 ,

as the composition of two morphisms, is also a morphism. For the other direction, suppose
that f is a morphism; then it is straightforward to verify that the map (Tπ0)−1 ○σ ○π0 equips
the set Grf with the required coalgebraic structure.

However, the collection of bisimulations is not in general closed under taking relational
composition, and the relation ↔ of bisimilarity on a given coalgebra is generally not an
equivalence relation.

3.2 Bisimulations and relation lifting

Bisimulations admit an elegant alternative characterization which involves the notion of re-
lation lifting.

Example 3.5 As an example, consider the power set functor P . Recall that a relation
B ⊆ S0 × S1 is a bisimulation between two P -coalgebras (Kripke frames) S0 = (S0,R0[⋅]) and
S1 = (S1,R1[⋅]) iff B satisfies the conditions (back) and (forth) of Example 1.3. Now suppose
that we define, for an arbitrary relation R ⊆ S0 × S1, the relation P (R) ⊆ P (S0) × P (S1) by
putting

P (R) ∶= {(Q0,Q1) ∣ ∀q0 ∈ Q0 ∃q1 ∈ Q1. (q0, q1) ∈ R and ∀q1 ∈ Q1 ∃q0 ∈ Q0. (q0, q1) ∈ R}. (20)

In other words, we lift the relation R to the level of the power sets of S0 and S1. The definition
of a bisimulation between P -coalgebras can now be characterized as follows:

B ∶ S0 ↔ S1 iff (R0[s0],R1[s1]) ∈ P (B) for all (s0, s1) ∈ B.

This nice way of characterizing bisimulation via relation lifting is not limited to the power
set functor — it applies in fact to every set functor.

3-2

Definition 3.6 Let T be some set functor. Given a relation R ⊆ S0 × S1, consider R as a
span

S0 R
π0oo π1 // S1 ,

where πi ∶ R → Si and pi ∶ TS0 ×TS1 → TSi denote the respective projection maps. We define
the relation lifting of R as the relation TR ⊆ TS0 × TS1 given by

TR ∶= {((Tπ0)(u), (Tπ1)(u)) ∣ u ∈ TR}, (21)

that is, TR is the image of TR under the map τR ∶= ⟨Tπ0, Tπ1⟩. �

In other words, we apply the functor T to the relation R, seen as a span. It follows
from the category-theoretic properties of the product TS0 × TS1 that there is a unique map
τR ∶= ⟨Tπ0, Tπ1⟩ from TR to TS0 ×TS1 such that pi ○ τR = Tπi for i = 0,1. Now we define TR
as the image of TR under the map τ obtained from the lifted projection maps Tπ0 and Tπ1.
In a diagram:

TS0 TR
Tπ0oo

����
τR

��

Tπ1 // TS1

TR� _

��
TS0 × TS1

p0

\\

p1

BB

The results listed in the following theorem summarize the most important properties of
bisimulations.

Theorem 3.7 Let S0 and S1 be two coalgebras for some set functor T .

1. B ∶ S0 ↔ S1 iff (σ0(s0), σ1(s1)) ∈ T (B) for all (s0, s1) ∈ B.

2. The collection of bisimulations between S0 and S1 forms a complete lattice under the
inclusion order, with joins given by unions.

3. The bisimilarity relation ↔ is the largest bisimulation between S0 and S1.

Proof. The first part of the theorem is an almost immediate consequence of the definitions.
To see this, recall that B ∶ S0 ↔ S1 iff we can find a coalgebra map β ∶ B → TB such that
(Tπi) ○ β = σ ○ πi for i = 0,1, and that the latter requirement is equivalent to stating that
(Tπi)(β(s0, s1)) = σsi. From this it easily follows that B ∶ S0 ↔ S1 iff for every (s0, s1) ∈ B
there is a u ∈ TB such that (σs0, σs1) = ((Tπ0)(u), (Tπ1)(u)). This suffices by (21).

The crucial observation in the proof of the other two parts is that

T ∶ P (S0 × S1) → P (TS0 × TS1) is a monotone operation. (22)

For a proof, let R ⊆ R′ be two relations between S0 and S1, with ι ∶ R → R′ denoting the
inclusion map. By definition of T , we may without loss of generality represent an arbitrary

3-3

element of T (R) as a pair τR(u) = ((Tπ0)(u), (Tπ1)(u)) for some u ∈ TR. Define u′ ∶=
(Tι)(u), then u′ belongs to TR′, and for each i we find that (Tπ′i)(u′) = (Tπ′i ○ Tι)(u) =
(T (π′i ○ ι)(u) = (Tπi)(u). That is, τR(u) = τR′(u′), which shows that τR(u) belongs to TR′.
This proves (22).

Now for the proof of part 2, recall that a partial order is a complete lattice if it is closed
under arbitrary joins. Hence, it suffices to prove that the union B of a collection {Bj ∣ j ∈ J}
of bisimulations is again a bisimulation. Take an arbitrary pair (s0, s1) ∈ B. Then (s0, s1)
belongs to Bj for some j ∈ J . Hence, by part 1, we find (s0, s1) in T (Bj), so (σ(s0), σ(s1)) ∈
T (B) by the monotonicity of T . But then B is a bisimulation by part 1.

Finally, for part 3, note that it is an immediate consequence of part 2 that ↔, being the
union of all bisimulations between S0 and S1, is a bisimulation itself. Hence, by definition,
it is the greatest bisimulation between S0 and S1. In fact, it follows by the Knaster-Tarski
theorem (on fixed points of monotone operations on complete lattices), that ↔ is in fact the
greatest fixed point of the map Λ ∶ R ↦ {(s0, s1) ∣ (σ0(s0), σ1(s1)) ∈ T (R)}. qed

In the case of Kripke polynomial functors, relation lifting can be characterized using
induction on the construction of the functor.

Proposition 3.8 Let S and S′ be two sets, and let R ⊆ S ×S′ be a binary relation between S
and S′. Then the following induction defines the relation lifting K (R) ⊆ KS ×KS′, for each
Kripke polynomial functor K :

Id(R) ∶= R,

KC(R) ∶= ∆C ,

K0 ×K1(R) ∶= {((x0, x1), (x′0, x′1)) ∣ (x0, x
′
0) ∈ K0(R) and (x1, x

′
1) ∈ K1(R)},

K0 +K1(R) ∶= {(κ0x0, κ0x
′
0) ∣ (x0, x

′
0) ∈ K0(R)} ∪ {(κ1x1, κ1x

′
1) ∣ (x1, x

′
1) ∈ K1(R)},

KD(R) ∶= {(f, f ′) ∣ (f(d), f ′(d)) ∈ K (R) for all d ∈D},
PK (R) ∶= {(Q,Q′) ∣ ∀q ∈ Q∃q′ ∈ Q′. (q, q′) ∈ K (R) and ∀q′ ∈ Q′ ∃q ∈ Q. (q, q′) ∈ K (R)}.

Here κ0 and κ1 are the co-projection maps associated with the coproduct, cf. Definition A.13.

3.3 Bisimilarity and behavioural equivalence: smooth functors

In Example 3.2 we saw that bisimilarity is a strictly weaker notion than behavioural equiva-
lence. Here is a constraint on the functor that guarantees the two notions to coincide.

3-4

Definition 3.9 A weak pullback of two arrows f0 ∶ A0 →
B, f1 ∶ A1 → B in a category C is a pair of arrows p0 ∶
W → A0, p1 ∶ W → A1 such that (i) f0 ○ p0 = f1 ○ p1,
while (ii) for every pair p′0 ∶W ′ → A0, p′1 ∶W ′ → A1 that
also satisfies f0 ○ p′0 = f1 ○ p′1, there is a mediating arrow
w′ ∶W ′ →W such that p0 ○w′ = p′0 and p1 ○w′ = p′1.
We will call a functor T ∶ C → C′ smooth if it preserves
weak pullbacks; that is, if for any weak pullback (p0, p1)
of any (f0, f1) in C, the pair (Tp0, Tp1) is a weak pullback
of (Tf0, T f1) in C′. �

A0
f0 // B

W

p0

OO

p1 // A1

f1

OO

W ′

p′0

HH

w′
==

p′1

44

Note that the mediating arrow w′ need not be unique: adding this requirement to the
definition would give the more familiar, and stronger, notion of a pullback. The category Set
has pullbacks: for f0 ∶ A0 → B and f1 ∶ A1 → B, we can take the projections to A0 and A1

from the set pb(f0, f1) ∶= {(a0, a1) ∈ A0 ×A1 ∣ f0(a0) = f1(a1)}.

Many but not all endofunctors on Set in fact preserve weak pullbacks.

Proposition 3.10 All polynomial functors preserve pullbacks, and all Kripke polynomial
functors preserve weak pullbacks.

The main reason that this prima facie rather exotic property is in fact of great importance
in the theory of universal coalgebra, is the following fact.

Fact 3.11 For any set functor T the following are equivalent:

(1) T is smooth;

(2) T (R ;Q) = TR ; TQ, for all pairs of relations R ⊆X × Y and Q ⊆ Y ×Z;

(3) T is an endofunctor on the category Rel of sets and binary relations.

Theorem 3.12 If T is a smooth set functor, the following hold on the class of T -coalgebras:

(1) the relational composition of two bisimulations is again a bisimulation;

(2) the notions of bisimilarity and behavioral equivalence coincide.

Proof. We leave the proof of the first statement as an exercise for the reader, and concentrate
on the second statement. Let s0 and s1 be states of the T -coalgebras S0 and S1, respectively.
We need to prove that S0, s0 ↔ S1, s1 iff S0, s0 ≃ S1, s1. Because of Proposition 3.1 it suffices
to prove the direction from right to left.

Let f0 ∶ S0 → X and f1 ∶ S1 → X be two coalgebra morphisms such that f0(s0) = f1(s1).
Then in Set, the set B ∶= {(s0, s1) ∈ S0 × S1 ∣ f0(s0) = f1(s1)}, together with the projection
functions π0 ∶ B → S0 and π1 ∶ B → S1 constitutes a pullback of f0 and f1, cf. the square in the
foreground of the picture. Because T preserves weak pullbacks, the square in the background
of the picture is a weak pullback diagram in Set.

3-5

Now consider the two arrows σi ○ πi ∶ B →
T (Si). First observe that Tfi ○ σi = ξ ○ fi for
each i, because each fi is a coalgebra mor-
phism. Hence, chasing the diagram we find
that

Tf0 ○ σ0 ○ π0 = ξ ○ f0 ○ π0

= ξ ○ f1 ○ π1 = Tf1 ○ σ1 ○ π1.

Since Tπ0 and Tπ1 form a weak pullback of
Tf0 and Tf1, this implies the existence of a
mediating function β ∶ B → TB such that
Tπi ○ β = σi ○ π1. In other words, B ∶= (B,β)
is an T -coalgebra, and the projection maps
π0 and π1 are morphisms from B to S0 and
S1, respectively.

TS0
Tf0 // TX

S0

σ0

==

f0 // X

ξ

==

TB

Tπ0

OO

Tπ1

// TS1

Tf1

OO

B

π0

OO

β
==

π1

// S1

f1

OO

σ1

==

qed

3-6

4 Covarieties

In universal algebra an important part is played by varieties: classes of algebras that are closed
under the operations of taking homomorphic images, subalgebras and products of algebras.
In this chapter, we introduce the notion of a covariety as a natural coalgebraic analog of a
variety, and we consider some natural closure operations on classes of coalgebras.

4.1 Homomorphic images

Definition 4.1 Let T be some endofunctor on Set. If f ∶ S → S′ is a surjective coalgebra
morphism between the T -coalgebras S and S′, then we say that S′ is a homomorphic image
of S. �

In universal algebra, one finds a one-one correspondence between homomorphic images
and congruences. Something similar applies here, but the analogy is perfect only in the case
of functors that preserve weak pullbacks.

Proposition 4.2 Let S = (S,σ) be a T -coalgebra for some set functor T .
(1) Given a bisimulation equivalence6 E on S, there is a unique coalgebra structure σ on

S/E such that the quotient map q ∶ S → S/E is a coalgebra morphism.
(2) If T preserves weak pullbacks, then the relation ker(f) ∶= {(s, t) ∈ S2 ∣ fs = ft} is a

bisimulation equivalence for any coalgebra morphism f ∶ S→ S′.

Proof. For part (1), we leave it as an exercise for the reader to show that the set S = S/E of E-
cells, together with the quotient map q, is a coequalizer of the projection maps π0, π1 ∶ E → S:

E
π0 //
π1

// S
q // S

Now assume that, next to being an equivalence relation, E is also a bisimulation on S.
Then by definition there is a coalgebra map η ∶ E → TE such that both πi are coalgebra
morphisms πi ∶ (E,η) → S. It follows that

Tq ○ σ ○ π0 = Tq ○ Tπ0 ○ η (π0 is a morphism)

= T (q ○ π0) ○ η (functoriality)

= T (q ○ π1) ○ η (q is a coequalizer)

= Tq ○ Tπ1 ○ η (functoriality)

= Tq ○ σ ○ π1 (π1 is a morphism)

In other words, the map Tq ○ σ ∶ S → TS is a competitor for the coequalizer map q, so there
is a unique map σ ∶ S → TS such that σ ○ q = Tq ○ σ, in a diagram:

E

η

��

π0 //
π1

// S

σ

��

q // S

σ
��

TE
Tπ0 //

Tπ1

// TS
Tq
// TS

6A bisimulation equivalence is a bisimulation that is also an equivalence relation.

4-1

Clearly then σ is the required coalgebra map on S.

For the second part of the proposition, observe that ker(f) is the relational composition
of the graph of f with its converse. The result then follows from Theorem 3.12. qed

4.2 Subcoalgebras

The next class operation that we consider is that of taking subcoalgebras.

Definition 4.3 Let X = (X,ξ) and S = (S,σ) be two T -coalgebras, such that S is a subset
of X. If the inclusion map ι ∶ S → X is a coalgebra morphism from (S,σ) to (X,ξ), then we
say that S is open with respect to X, and we call the structure (S,σ) a subcoalgebra of X. �

Interestingly enough, the transition map of a subcoalgebra is completely determined by
the underlying open set.

Proposition 4.4 Let S0 = (S,σ0) and S1 = (S,σ1) be two subcoalgebras of the coalgebra X.
Then σ0 = σ1.

Proof. The case of S being empty is trivial, so suppose otherwise. Then from the assumption
that S0 and S1 are subcoalgebras of A, we may infer that (Tι) ○ σ0 = ξ ○ ι = (Tι) ○ σ1, where ι
is the inclusion map of S into X. It follows from the functoriality of T that Tι is an injection,
so that we may conclude that σ0 = σ1. qed

Some further observations concerning subcoalgebras are in order. First of all, the topo-
logical terminology is justified by the following proposition.

Proposition 4.5 Given a coalgebra X for some set functor T , the collection τX of X-open
sets forms a topology.

Proof. Closure of τX under taking (arbitrary) unions follows from Theorem 3.7, together
with the observation that

S ⊆X is open with respect to X iff ∆S is a bisimulation on X, (23)

which in its turn is an immediate consequence of (19).
To prove that τX is closed under taking finite intersections, assume that A = (A,α) and

B = (B,β) are two subcoalgebras of S. The case where A ∩ B = ∅ is trivial, so assume
otherwise. Define C ∶= A ∩B, fix some element c ∈ C, and consider the maps fc ∶ A → C and
gc ∶ S → B, given by

fc(a) ∶= { a if a ∈ C
c otherwise

and gc(s) ∶= { s if s ∈ B
c otherwise

Define the map γ ∶ C → TC by putting

γ ∶= Tfc ○ α ○ ιCA.

We leave it for the reader to verify that (C,γ) is a subcoalgebra of S, using equalities such
as ιCB ○ fc = gc ○ ιAS and gc ○ ιBS = idB. qed

4-2

It follows from the Proposition above that, given a subset S of (the carrier of) a coalgebra
X, there is a largest subcoalgebra of X (of which the carrier is) contained in S: Its universe
is given as the union of all open subsets of S. It also follows from Proposition 4.5 that the
collection τX of open subsets of X forms a complete lattice under set inclusion. Hence, given a
subset S of X, there is an open set U ⊆X which is the meet of the collection {Q ∈ τX ∣ S ⊆ Q}.
However, there is no guarantee that U is also the intersection of this collection, or, indeed, that
S is actually a subset of U . Thus we may not in general speak of the smallest subcoalgebra
containing a given subset, as the following example witnesses.

Example 4.6 Consider the standard Euclidean topology on the real numbers, seen as a coal-
gebra for the filter functor F . This functor is a subfunctor of the (monotone) neighborhood
functor which maps a set S to the collection of all filters on S7 and a function f ∶ S → S′ sim-
ply to the function M f = P̆ P̆ f . Prime examples of F -coalgebras are the topological spaces.
To see this, represent a topology σ on the set S by the function mapping a point s ∈ S to the
collection {U ∈ σ ∣ s ∈ U} of its neighborhoods.

One can show that a set S of reals is open in the topological sense iff it is open in the
sense of Definition 4.3 — in fact, this holds for any topology. Now take an arbitrary point r
in R. Obviously, we have that the meet of all open neighborhoods containing r is the empty
set.

Before we turn to further coalgebraic constructions, consider the following natural link
between homomorphic images and subcoalgebras.

Proposition 4.7 Given a coalgebra morphism f ∶ S → S′, there is a (unique) subcoalgebra
f[S] of S′ such that f ∶ S→ f[S] is a surjective morphism.

Proof. For a proof of this proposition, let X ∶= f[S] be the (set-theoretic) image of S under
f , and let g ∶ X → S be a right inverse of f , that is, f(g(x)) = x for all x ∈ X. Now define
ξ ∶ X → TX by ξ ∶= Tf ○ σ ○ g. It can be shown that the resulting structure X is always a
subcoalgebra of S′, and that f ∶ S → X is a surjective morphism; further details are left for
the reader. qed

4.3 Sums

Our last example of a coalgebraic construction concerns the straightforward generalization
of the disjoint union of Kripke models and frames. The idea is embodied in the following
Proposition.

Proposition 4.8 Let S0 = (S0, σ0) and S1 = (S1, σ1) be two T -coalgebras, and let S ∶= S0⊎S1

be the disjoint union of S0 and S1. Then there is a unique arrow σ ∶ S → TS making the
embeddings κi into coalgebra morphisms.

7Recall that a filter on S is a collection F of subsets of S which is not only upward closed (with respect to
the inclusion relation), but also closed under taking (finite) intersections, that is, X ∩ Y ∈ F if X,Y ∈ F .

4-3

Proof. Consider the diagram below, where S, together with the embedding maps κ0 and κ1,
is the coproduct of S0 and S1. Since the maps Tκ0 ○ σ0 and Tκ1 ○ σ1 provide an alternative
co-cone, there must be a (unique) mediating arrow σ ∶ S → TS, making the two rectangles in
the diagram commute.

S0
κ0 //

σ0

��

S

σ

��

S1
κ1oo

σ1

��
TS0

Tκ0

// TS TS1
Tκ1

oo

(24)

Clearly then this σ meets the requirements stated in the Proposition. qed

For an arbitrary collection {Si ∣ i ∈ I}, the sum or coproduct is defined as follows.

Definition 4.9 The sum ∐I Si of a family {Si ∣ i ∈ I} of coalgebras for some set functor T ,
is defined by endowing the disjoint union S ∶= ⊎I Si with the unique map σ ∶ S → TS which
turns all embeddings κi ∶ Si → S into coalgebra morphisms. �

4.4 Covarieties

We have now gathered all the basic class operations needed to define the notion of a covariety.

Definition 4.10 Let T be some endofunctor on Set. A class of T -coalgebras is a covariety if it
is closed under taking homomorphic images, subcoalgebras and sums. The smallest covariety
containing a class K of T -coalgebras is called the covariety generated by K, notation: Covar(K).
�

As in the case of universal algebra, in order to obtain a more succinct characterization of
the covariety generated by a class of coalgebras, one may develop a calculus of class operations.

Definition 4.11 Let H, S and Σ denote the class operations of taking (isomorphic copies of)
homomorphic images, subcoalgebras, and sums, respectively. �

On the basis of these (and other) operations one may investigate the validity of ‘inequal-
ities’ like HS ≤ SH (meaning that HS(K) ⊆ SH(K) for all classes K of coalgebras). Results
of these kind lead to the following coalgebraic analog of Tarski’s HSP-theorem in universal
algebra.

Theorem 4.12 Let K be a class of T -coalgebras for some set functor T . Then Covar(K) =
SHΣ(K).

Proof. It is straightforward to prove the theorem on the basis of the idempotency of the class
operations H, S and Σ, together with the following three ‘inequalities’: HS ≤ SH, ΣS ≤ SΣ,
and ΣH ≤ HΣ. The proofs of these (and more) inequalities will be supplied later. qed

4-4

5 Coalgebraic modalities via relation lifting

In this chapter we take an approach to coalgebraic logic which is completely uniform in the
type functor T . We introduce a coalgebraic modality ∇ of which the ‘arity’ is the finitary
version Tω of the functor itself. That is, the set L of formulas will be closed under the following
clause:

if α ∈ TX for some finite set X of formulas, then ∇α is a formula.

whereas the semantics of ∇ will be defined by lifting the satisfaction relation ⊩ between states
and formulas to the relation T (⊩).

In the special case where T is the powerset functor P , the nabla operator ∇ is known
under the name of the cover modality ; we discuss this case in some detail before moving on
to the more general case.

Convention 5.1 Throughout this chapter we will assume that T is a smooth and standard
set functor; that is, T preserves both weak pullbacks and inclusions. The first restriction
is to ensure optimal behaviour of the relation lifting T , while the second one is mainly for
convenience. In Fact A.31 we list a number of properties of the operation T (all of which will
be used throughout this chapter).

Furthermore, we will assume that Q is an arbitrary but fixed set of proposition letters.

5.1 The cover modality

As we will see now, there is an interesting coalgebraic alternative for the standard formulation
of basic modal logic in terms of boxes and diamonds. This alternative set-up is based on a
connective ∇, sometimes referred to as the cover modality, which turns a (finite) set α of
formulas into a formula ∇α.

Definition 5.2 Formulas of the language ML∇(Q) are given by the following recursive defi-
nition:

a ∶∶= p ∣ � ∣ ¬a ∣ a0 ∨ a1 ∣ ∇α

where p ∈ Q, and α denotes a finite set of formulas. �

Observe that formulas will be denoted by lower case letters a, b, . . .

For the semantics of the cover modality, observe that we may think of the forcing or
satisfaction relation ⊩ simply as a binary relation between states and formulas. This relation
can thus be lifted to a relation P (⊩) between sets of formulas and sets of states.

Definition 5.3 The semantics of this modality in a Kripke model S = (S,R,V) is given by

S, s ⊩ ∇α iff (R(s), α) ∈ P (⊩),

where P (⊩) denotes the Egli-Milner relation lifting of the relation ⊩. �

5-1

In words: ∇α holds at s iff every successor of s satisfies some formula in α, and every
formula in α holds at some successor of s. The modality ∇ is sometimes called the cover
modality : it holds at a state s if the set {[[a]]S ∣ a ∈ α} covers the collection R(s) of successors
of s, in the sense that R(s) ⊆ ⋃{[[a]]S ∣ a ∈ α}, while at the same time R(s) ∩ [[a]]S ≠ ∅, for
every a ∈ α.

Remark 5.4 It is not so hard to see that the cover modality can be defined in the standard
modal language:

∇α ≡ 2⋁α ∧⋀3α, (25)

where 3α denotes the set {3a ∣ a ∈ α}. Things start to get interesting once we realize that
both the ordinary diamond 3 and the ordinary box 2 can be expressed in terms of the cover
modality (and the disjunction):

3a ≡ ∇{a,⊺},
2a ≡ ∇∅ ∨∇{a}. (26)

Here, as always, we use the convention that ⋁∅ = � and ⋀∅ = ⊺.

Given that ∇ and {3,2} are mutually expressible, we arrive at the following proposition.
Here we say that two languages are effectively equi-expressive if there are effectively definable
truth-preserving translations from one language to the other, and vice versa. Recall that ML
is the language of standard modal logic.

Proposition 5.5 The languages ML and ML∇ are effectively equi-expressive.

A remarkable observation about the cover modality is that we can do far better than
this: based on the following modal distributive law, we can almost completely eliminate the
Boolean connective of conjunction from the language ML∇.

Proposition 5.6 Let α and α′ be two sets of formulas. Then the following two formulas are
equivalent:

∇α ∧∇α′ ≡ ⋁
Z∈α&α′

∇{a ∧ a′ ∣ (a, a′) ∈ Z}, (27)

where α & α′ is the set of all binary relations Z ⊆ α × α′ such that (α,α′) ∈ P (Z).

Proof. For the direction from left to right, suppose that S, s ⊩ ∇α ∧ ∇α′. Let Z ⊆ α × α′
consist of those pairs (a, a′) such that the conjunction a ∧ a′ is true at some successor t of s.
It is then straightforward to verify that Z is full on α and α′, that is: (α,α′) ∈ P (Z), and
that S, s ⊩ ∇{a ∧ a′ ∣ (a, a′) ∈ Z}.

The converse direction is a fairly direct consequence of the definitions. qed

As a corollary of Proposition 5.6 we can restrict the use of conjunction in modal logic
to that of a special conjunction connective ● which may only be applied to a propositional
formula and a ∇-formula.

5-2

Definition 5.7 We first define the set CL(Q) of literal conjunctions by the following gram-
mar:

π ∶∶= p ∣ ¬p ∣ � ∣ ⊺ ∣ π ∧ π,

and then let the following grammar define the set DML∇(Q) of disjunctive modal formulas
in Q:

a ∶∶= p ∣ ¬p ∣ � ∣ ⊺ ∣ a0 ∨ a1 ∣ π ● ∇α.

Here p ∈ Q, π ∈ CL(Q) and α ∈ PωDML∇(Q). �

As mentioned, the bullet connective is semantically equivalent to conjunction:

S, s ⊩ π ● ∇α iff S, s ⊩ π and S, s ⊩ ∇α.

Note however, that this conjunction is special in the sense that it combines ‘local’ information
about s itself with information about the unfolding of s.

Theorem 5.8 The languages ML and DML∇ are effectively equi-expressive.

Proof. We will show how to rewrite a formula a ∈ ML into an equivalent formula in DML∇.
Start by rewriting a into negation normal form:

a ∶∶= p ∣ ¬p ∣ � ∣ ⊺ ∣ a0 ∨ a1 ∣ a0 ∧ a1 ∣ 3a ∣ 2a,

then by (26) we can find an equivalent formula a′ in the language given by

a ∶∶= p ∣ ¬p ∣ � ∣ ⊺ ∣ a0 ∨ a1 ∣ a0 ∧ a1 ∣ ∇α.

Finally, the modal distributive law (27) allows us to push down nabla’s to the propositional
level, and so using the propositional distributive law (a∧(b0 ∨ b1) ≡ (a∧ b0)∨(a∧ b1)), we can
rewrite a′ into an equivalent disjunctive modal formula. qed

Theorem 5.8 can be used to prove various interesting results about modal logic, such as
the finite model property, or the decidability of the satisfiability problem — in linear time,
once the formula is in disjunctive normal form. Rather than proving these corollaries here,
we will prove these results in the far more general setting of the coalgebraic cover modality.

5.2 Moss’ coalgebraic cover modality

We will now generalise the cover modality from the case where T = P to the setting where T
is an arbitrary smooth and standard functor. We are eager to keep our language finitary, in
the sense that formulas will be finitary objects, with for instance finitely many subformulas.
For this reason we will work with the finitary version of the functor T .

Recall that since T preserves inclusions, we may define its finitary version Tω ∶ Set → Set
by putting

Tω(S) ∶= ⋃{TX ∣X ⊆ω S},
Tω(f ∶ S → S′) ∶= (Tf)↾TωS .

It is easy to verify that Tω also preserves inclusions; given the definition of Tω on functions,
we may write Tf instead of Tωf without causing confusion.

5-3

Definition 5.9 Formulas of the language MLT (Q) are given by the following recursive defi-
nition:

a ∶∶= p ∣ � ∣ ¬a ∣ a0 ∨ a1 ∣ ∇α

where p ∈ Q, and α ∈ Tω(MLT)(Q). We will often write MLT instead of MLT (Q) if the set Q
of proposition letters is either understood or irrelevant. �

The semantics of MLT is defined as follows. Recall that a T -model is a triple (S,σ, V), where
(S,σ) is a T -coalgebra and V ∶ Q→ PS is a valuation.

Definition 5.10 Let S = (S,σ, V) be a T -model. Then by induction on the complexity of
MLT -formulas we define the satisfaction relation ⊩:

S, s ⊩ p iff s ∈ V (p)
S, s ⊩ � ∶ never
S, s ⊩ ¬a iff S, s /⊩ a
S, s ⊩ a0 ∨ a1 iff S, s ⊩ a0 or S, s ⊩ a1

S, s ⊩ ∇α iff (σ(s), α) ∈ T (⊩).

A formula a ∈ MLT is satisfiable iff a is satisfiable in some state of some T -model, and valid
if its negation is not satisfiable.

Furthermore, we say that two pointed T -models are MLT -equivalent or (modally) equiva-
lent if they satisfy the same MLT -formulas, notation: S, s ≡T S′, s′. �

Remark 5.11 Before we consider the instantiations of this logic for some set functor T , we
argue that the semantics of MLT is well defined. The reader might have some worries about
the inductive clause for the ∇ modality, since the definition refers to the lifting of the full
satisfaction relation.

The point is that because of our assumptions on T , its associated relation lifting T com-
mutes with restrictions, cf. Fact A.31. This means that

(σ(s), α) ∈ T (⊩) iff (σ(s), α) ∈ T (⊩↾S×X), (28)

where X is any finite set of formulas such that α ∈ TωX. Thus, in order to determine whether
∇α holds at s or not, we only have to know the interpretation of the formulas used in the
justification that ∇α is a formula. Below we shall see that in fact there is a unique set Base(α)
which is the smallest (finite) set X such that α ∈ TX. In other words, we may replace the
‘quasi-inductive’ clause for ∇ in Definition 5.10 with the following, properly inductive one:

S, s ⊩ ∇α iff (σ(s), α) ∈ T (⊩↾S×Base(α)). (29)

Example 5.12 In this example we look at the interpretation of the coalgebraic cover modal-
ity instantiated for various coalgebra types T . That is, let S = (S,σ, V) be a T -model and
consider an element α ∈ Tω(MLT); below we will explain what it means for the formula ∇α
to hold at s.

(a) In case T = KC is a constant functor, α ∈ T (MLT) = C is just a colour α ∈ C. In this
case we find S, s ⊩ ∇α iff σ(s) = α.

5-4

(b) If T = Id is the identity functor, α ∈ T (MLT) = MLT is just a formula. We obtain the
next-time operator of linear temporal logic: S, s ⊩ ∇α iff S, σ(s) ⊩ α.

(c) For the binary tree functor T = Id × Id , the semantics of nabla is as follows: given
α = (a0, a1) ∈ MLT × MLT = T (MLT), we have S, s ⊩ ∇(a0, a1) iff S, t0 ⊩ a0 and S, t1 ⊩ a1,
where t0 and t1 are the ‘left’ and ‘right’ successor of s, respectively, given by σ(s) = (t0, t1).

(d) For the automata functor T = 2 × IdC , an element α ∈ T (MLT) is of the form (i, a)
with i ∈ {0,1} and a = (ac)c∈C , with each ac ∈ MLT . With σ = ⟨χ, τ⟩ we have S, s ⊩ ∇(i, a) iff
χ(s) = i and S, σ(s)(c) ⊩ ac.

(e) Where T = P is the power set functor, it is easy to verify that ∇P is the cover modality
discussed in the previous section.

Example 5.13 In this example we study the ∇-logic of the distribution functor D in some
detail.

First of all, observe that defined as in Example A.6, D does not preserve inclusions. We
can remedy this by taking a variant D′ of D which takes a set S to the collection D′S of partial
maps from S to (0,1]. We will not pursue this road further, but we may use it to observe
that an element α ∈ Dω(MLD) can be represented as a finite set {(a1, pn), . . . , (an, pn)} such
that pi > 0 for all i, and Σipi = 1.

For the definition of relation lifting D , consider a relation R ⊆ X0 ×X1. We claim that
the relation DR ⊆ DX0×DX1 consists of those pairs (µ0, µ1) for which there is a distribution
ρ ∶ R → [0,1] such that

for all x0 ∈X0. µ0(x0) = ∑y1∈X1
ρ(x0, y1),

and for all x1 ∈X1. µ1(x1) = ∑y0∈X0
ρ(y0, x1).

Now let S = (S,σ, V) be a D-model, and consider a formula ∇α with α = {(a1, pn), . . . , (an, pn)}.
Then we find that

S, s ⊩ ∇α iff there is a relation R ⊆ ⊩ and a map ρ ∶ R → [0,1] such that

for all i ∶ ∑
{t∣S,t⊩ai}

ρ(t, ai) = pi,

and for all t ∈ S ∶ ∑
{i∣S,t⊩ai}

ρ(t, ai) = σ(s)(t).

5.3 Basic properties of ∇

In this section we prove some of the basic properties of the coalgebraic cover modality. We
start with showing that MLT is a finitary logic indeed, i.e., that every formula has only finitely
many subformulas. The key property of finitary functors that will make this possible is that
for every α ∈ TωA there is a smallest subset A′ ⊆ A such that α ∈ TωA′.

Definition 5.14 Given a finitary functor T and an element α ∈ TX, we define

BaseTX(α) ∶= ⋂{Y ⊆ω X ∣ α ∈ TY }.

We write BaseT rather than BaseTω , and in fact omit the superscript whenever possible. �

5-5

Example 5.15 The following examples are easy to check: BaseId
X ∶X → PωX is the singleton

map, BasePX ∶ PωX → PωX is the identity map on PωX, BaseId2

X ∶ X ×X → PωX maps the
pair (x1, x2) to the set {x1, x2}, and BaseD maps a finitary distribution µ to its support
{s ∈ S ∣ µ(s) > 0}.

Fact 5.16 Let T ∶ Set→ Set preserve inclusions.
(1) For any α ∈ TωX, BaseTX(α) is the smallest set Y such that α ∈ TY .
(2) If T is smooth as well, then BaseT provides a natural transformation Base ∶ Tω →̇ Pω.

Recall that BaseT being a natural transformation means that the following diagram com-
mutes.

X

f
��

TωX

Tf
��

BaseTX // PωX

Pωf
��

Y TωY
BaseTY

// PωY

(30)

for any map f ∶X → Y .
By Fact 5.16(1) we may find for any formula ∇α a smallest (and finite) collection X of

formulas such that α ∈ TωX, namely, the set X = Base(α). This means that we can define a
natural notion of subformula.

Definition 5.17 We define the set Sfor(a) of subformulas of a formula a ∈ MLT by the
following induction:

Sfor(a) ∶= {a} if a ∈ {p,�}
Sfor(¬a) ∶= {¬a} ∪ Sfor(a)
Sfor(a0 ∨ a1) ∶= {a0 ∨ a1} ∪ Sfor(a0) ∪ Sfor(a1)
Sfor(∇α) ∶= {∇α} ∪ ⋃{Sfor(a) ∣ a ∈ Base(α)}

The elements of Base(α) will be called the immediate subformulas of ∇α. �

The next properties that we consider are invariance and expressivity.

Theorem 5.18 For any smooth and standard functor T , the language MLT is invariant:
Given any two pointed T -models (S, s) and (S′, s′) we have

(S, s) ≃T (S′, s′) implies (S, s) ≡T (S′, s′). (31)

Proof. Given the smoothness of T , it suffices to prove that bisimilarity implies modal
equivalence. Assuming that Z ∶ S ↔ S′, we will prove by induction on the complexity of
MLT -formulas that, for every MLT -formula a:

S, s ⊩ a iff S′, s′ ⊩ a, (32)

for every pair of states (s, s′) ∈ Z. Clearly this suffices to prove the proposition.

5-6

Skipping the routine parts of the proof (i.e., the base step and boolean cases of the
inductive step), we focus on the case where a = ∇α. We only prove the direction from right
to left of (32).

So, assume that (s, s′) ∈ Z and S′, s′ ⊩ ∇α, and let ⊩ ⊆ S × MLT and ⊩′ ⊆ S′ × MLT
denote the satisfaction relations on S and S′, respectively. It follows from (s, s′) ∈ Z that
(σ(s), σ′(s′)) ∈ TZ, and from S′, s′ ⊩ ∇α that (σ′(s′), α) ∈ T (⊩′); but from the latter
fact, together with the observation that α ∈ TBase(α), we may derive that (σ′(s′), α) ∈
T (⊩′↾S×Base(α)) (cf. Fact A.31). Putting these observations together with the fact that T
preserves relation composition, we find that

(σ(s), α) ∈ T(Z ;⊩′↾S×Base(α)),

But by the inductive hypothesis we obtain that Z ; ⊩′↾S×Base(α) ⊆ ⊩. so that it follows by

the monotonicity of relation lifting that (σ(s), α) ∈ T (⊩). From this it is immediate by the
semantics of ∇ that S, s ⊩ ∇α, as required. qed

As could be expected, the converse of this proposition only holds if we restrict attention
to image-finite coalgebras.

Definition 5.19 A T -coalgebra S = (S,σ) is image-finite if σ(s) ∈ TωS, for all s ∈ S. �

Theorem 5.20 For any smooth and standard functor T , the language MLT is expressive on
the class of image-finite T -models: Given any two pointed Tω-models (S, s) and (S′, s′) we
have

(S, s) ≡T (S′, s′) implies (S, s) ≃T (S′, s′). (33)

Proof. It suffices to show that the relation of modal equivalence is itself a bisimulation, when
restricted to the class of image-finite coalgebra models.

Fix two T -models S = (S,σ, V) and S′ = (S′, σ′, V ′), and let ≡ ⊆ S ×S′ denote the relation
of modal equivalence between S and S′. (That is, we avoid notational clutter and write ≡
instead of ≡T .) We will use Theorem 3.7 in order to prove that ≡ is a bisimulation, and
suppose for contradiction that s ≡ s′, while (σs, σ′s′) /∈ T (≡).

It follows by image-finiteness that we may consider the (finite) sets B ∶= Base(σs) and
B′ ∶= Base(σ′s′). This implies that for every t ∈ B there is a formula ct such that, for all
t′ ∈ B′,

S′, t′ ⊩ ct iff t ≡ t′,

as the reader can easily verify. In other words, with H ∶= {ct ∣ t ∈ B}, we may think of c as a
surjection c ∶ B →H satisfying Gr(c) ⊆ ⊩ and

≡↾B×B′ = Gr(c) ; (⊩B′×H)̆

From this we may derive, using the properties of relation lifting (Fact A.31), that

T (≡)↾TB×TB′ = Gr(Tc) ; (T⊩B′×H)̆ (34)

5-7

But since (σs, σ′s′) /∈ T (≡) this can only mean that the object γ ∶= (Tc)(σs) is such that
(γ, σ′s′) /∈ (T⊩B′×H)̆ . Because Gr(Tc) ⊆ T (⊩) this means that (σs, γ) ∈ T (⊩), while
(γ, σ′s′) /∈ (T⊩B′×H)̆ implies (σ′s′, γ) /∈ T⊩, or, in other words: s ⊩ ∇γ but s′ /⊩ ∇γ. We have
arrived at the desired contradiction. qed

The last basic property that we mention is that of satisfiability reduction.

Proposition 5.21 Let ∇α be a formula in MLT . Then ∇α is satisfiable iff every a ∈ Base(α)
is satisfiable.

Proof. For the direction from right to left, assume that every a ∈ Base(α) is satisfiable.
That is, assume that for every a ∈ Base(α) there is a pointed model (Sa, sa), with Sa =
(Sa, σa, Va) and such that S, sa ⊩ a, for each a. We define a new model S = (S,σ, V), where
S ∶= {r} ⊎⊎{Sa ∣ a ∈ Base(α)}. For the valuation V we simply define V (p) ∶= ⋃a Va(p), while
on an element s ∈ Sa the coalgebra map σ ∶ S → TS is defined by putting σ(s) ∶= σa(s). For
the definition of the unfolding σ(r) of the ‘root’ r, consider the map f ∶ Base(α) → S given
by a ↦ sa, and simply put σ(r) ∶= (Tf)(α). It is then immediate by the definition of f that
(Grf)̆ ⊆ ⊩, so that we find, using various properties of relation lifting (cf. Fact A.31):

(σr,α) ∈ (Gr(Tf))̆ = T ((Grf)̆) ⊆ T (⊩),

from which it follows that S, r ⊩ ∇α indeed.

For the opposite direction, we need the following little fact about the functor T :

for any f ∶ A→ B and any α ∈ TA we have (Tf)(α) ∈ T (f[A]). (35)

To see why (35) holds, factorize f as the unique composition f = ι○f ′ of a surjection f ′ ∶ A↠
f[A] and an inclusion ι ∶ f[A] ↪ B. From this factorization it follows that Tf = (Tι) ○ (Tf ′),
where f ′ ∶ TA ↠ Tf[A] is surjective since every set functor preserves surjections, and Tι ∶
Tf[A] ↪ TB is an inclusions by assumption on T . From these observations (35) is easy to
derive.

Now assume that ∇α is satisfiable, then there is a T -model S = (S,σ, V) such that S.s ⊩ ∇α
for some state s ∈ S. Then by definition of the semantics of ∇ we have that (σs,α) ∈ T (⊩),
and so by definition of T there is an object ρ ∈ T (⊩) such that Tπ0(ρ) = σ(s) and Tπ1(ρ) = α,
where π0 ∶ ⊩ → S and π1 ∶ ⊩ →MLT are the projection functions on the relation ⊩. But then
it follows by (35) that α ∈ T (π1[⊩]) = T (Ran(⊩)), so that Base(α) ⊆ Ran(⊩). In other words,
for every a ∈ Base(α) there is an s ∈ S where a holds. In particular, this means that every
a ∈ Base(α) is satisfiable. qed

5.4 Coalgebraic modal distributive laws

In this section we will formulate three coalgebraic modal distributive laws (CMDLs) describ-
ing the interaction between the coalgebraic modality ∇ on the one hand, and the boolean
operations on the other. For a concise formulation of these principles it will be convenient to
slightly rearrange the coalgebraic modal language, working with the finitary versions ⋀ and

⋁ of the binary connectives for conjunction and disjunction. That is, in this section we will
be working with the following variant of the language.

5-8

Definition 5.22 The language LT is given by the following grammar:

a ∶∶= p ∣ � ∣ ¬a ∣ ⋀A ∣ ⋁A ∣ ∇α

where p ∈ Q, A ∈ PωLT and α ∈ TωLT . �

The semantics of ⋀ and ⋁ is as expected:

S, s ⊩ ⋀A iff S, s ⊩ a for all a ∈ A
S, s ⊩ ⋁A iff S, s ⊩ a for some a ∈ A

In particular, we have ⋀∅ ≡ ⊺ and ⋁∅ ≡ �.
A key aspect of the formulation of the CMDLs is the observation that we may think of the

connectives ⋀,⋁ and ¬ as maps of the respective types ⋀,⋁ ∶ PωLT → LT and ¬ ∶ LT → LT . In
particular, this perspective allows us to apply the functor T to these connectives, obtaining
maps T⋀, T ⋁ ∶ TωPωLT → TωLT , and T¬ ∶ TωLT → TωLT . Thus, for any object Φ ∈ TωPωLT
we find (T ⋁)Φ ∈ TωLT , which means that ∇(T ⋁)Φ is a well-formed formula.

Convention 5.23 Since we will be dealing here with formulas and similar objects in various,
closely related sets, incuding Q,LT , TωLT , PωLT , PωTωLT and TωPωLT , it will be convenient
to use some kind of naming convention, see Table 1.

Set Elements

Q p, q, . . .
LT a, b, . . .
TωLT α,β, . . .
PωLT A,B, . . .
PωTωLT Γ,∆, . . .
TωPωLT Φ,Ψ, . . .

Table 1: Naming convention

In order to formulate the modal distributive laws we need some auxiliary definitions.

Definition 5.24 Given a smooth and standard set functor T , we define, for every set X, a
function λTX ∶ TPX → PTX by putting

λTX(Φ) ∶= {α ∈ TX ∣ (α,Φ) ∈ T (∈X)},

where ∈X denotes the membership relation ∈, restricted to X × PX. Elements of λTX(Φ)
will be referred to as lifted members of Φ. The family λT = {λTX}X∈Set will be called the
T -transformation.

A set Φ ∈ TPX is a redistribution of a set Γ ∈ PTX if Γ ⊆ λTX(Φ), that is, every element
of Γ is a lifted member of Φ. In case Γ ∈ PωTωX, we call a redistribution Φ slim if Φ ∈
TωPω(⋃γ∈Γ Base(γ)). The set of slim redistributions of Γ is denoted as SRD(Γ). �

5-9

Definition 5.25 Let T be a smooth and standard set functor which restricts to finite sets.
Consider the following coalgebraic modal distributive laws:

(DL⋁) ∇(T ⋁)(Φ) ≡ ⋁{∇α ∣ (α,Φ) ∈ T (∈LT)}
(DL⋀) ⋀{∇γ ∣ γ ∈ Γ} ≡ ⋁{∇(T⋀)(Φ) ∣ Φ ∈ SRD(Γ)}
(DL¬) ¬∇α ≡ ⋁{∇T (⋀ ○ P¬)Ψ ∣ Ψ ∈ TωPωBase(α) and (α,Ψ) /∈ T (/∈)} �

Proposition 5.26 Let T be a smooth and standard set functor which restricts to finite sets.
All three coalgebraic modal distributive laws are valid.

Proof. In order to understand the validity of these laws, fix some T -model S = (S,σ, V).
We first consider (DL⋁), proving the direction from left to right. First observe that for

any A ⊆ω LT we have S, s ⊩ ⋁A iff S, s ⊩ a, for some a ∈ A. Putting it differently, the relations
⊩ ; ∈ and ⊩ ;⋁˘ coincide8. From this it follows that

T (⊩ ; ∈) = T (⊩ ; ⋁̆). (36)

Now fix some object Φ ∈ TωPωL, and suppose that s is a state in S such that s ⊩ ∇(T ⋁)Φ. By
the truth definition, the pair (σ(s), (T ⋁)(Φ)) belongs to the relation T (⊩), and so (σ(s),Φ)
belongs to (T⊩) ; (T ⋁)̆ = T (⊩ ;⋁)̆. But then by (36), we find (σ(s),Φ) ∈ T (⊩ ; ∈) = T⊩ ;T ∈.
In other words, there is some object β such that (σ(s), β) ∈ T (⊩) and (β,Φ) ∈ T (∈). Clearly
then s ⊩ ∇β, and so we have s ⊩⋁{∇β ∣ β T ∈ Φ}, as required.

For the validity of (DL⋀), we also confine attention to the direction from left to right.
Assume that S, s ⊩ ∇γ for all γ ∈ Γ. We need to come up with some slim redistribution Φ of
Γ such that S, s ⊩ ∇(T ⋀)Φ. For this purpose we associate, with any state t ∈ S, the finite set

At ∶= {a ∈ ⋃
γ∈Γ

Base(γ) ∣ S, t ⊩ a}.

Taking A to be the map A ∶ S → PωLT , we may define Φ ∶= (TA)(σ(s)) ∈ TωPωLT .

First we show that S, s ⊩ ∇(T ⋀)Φ. Observe that by definition of the map A ∶ S → PωLT ,
the function ⋀○A ∶ S → LT is such that

Gr(⋀○A) ⊆ ⊩.

From this we obtain

Gr((T⋀) ○ (TA)) ⊆ T (⊩)

by the properties of the operation T . But that means that for every element τ ∈ TS,
we have that (τ, ((T ⋀) ○ (TA))(τ)) ∈ T⊩. In particular, we find that (σs, (T ⋀)Φ) =
(σs, (T ⋀)(TA)(σ(s)) ∈ T⊩, showing that S, s ⊩ ∇(T ⋀)Φ as required.

It is left to prove that Φ is a slim redistribution of Γ. Observe that by definition of the
map A, we have that

Gr(A) ; ∈˘= ⊩↾S×B ,
8Here we write ⋁ instead of Gr(⋁)

5-10

where B ∶= ⋃γ∈Γ Base(γ). From this it follows by the properties of relation lifting that

Gr(TA) ; (T ∈)̆ = T (⊩)↾TS×TB .

But then for each γ ∈ Γ we may derive from the fact that (σs, γ) ∈ T (⊩) ↾TS×TB that there
is some object Ψ such that (σs,Ψ) ∈ Gr(TA) and (Ψ, γ) ∈ (T ∈)̆ . It then easily follows that
Ψ = (TA)(σs) = Φ and so (γ,Φ) = (γ,Ψ) ∈ T (∈). In other words, each γ ∈ Γ is a lifted member
of Φ, and so Φ is a redistribution of Γ; but then by its definition it is slim.

Finally, the validity of (DL¬) is left as an exercise to the reader. qed

5.5 Coalgebraic Logic

We will now see that the coalgebraic modal distributive laws that we proved in the previous
section are in fact quite strong principles, with important applications.

We start with the coalgebraic generalisation of the disjunctive normal form result on the
cover modality, Theorem 5.8.

Definition 5.27 We let the following grammar:

a ∶∶= p ∣ ¬p ∣ � ∣ ⊺ ∣ a0 ∨ a1 ∣ π ● ∇α.

define the set DMLT (Q) of disjunctive T -modal formulas in Q. �

The proof of the following theorem is completely analogous to that of Theorem 5.8.

Theorem 5.28 Let T be a smooth and standard set functor which restricts to finite sets.
The languages MLT and DMLT are effectively equi-expressive.

For the following result recall that a modal logic (L,⊩) has the finite model property if
every satisfiable L-formula is satisfiable in a finite model.

Theorem 5.29 Let T be a smooth and standard set functor which restricts to finite sets.
Then MLT has the finite model property.

Proof. By Theorem 5.28 it suffices to prove the finite model property for disjunctive formulas.
We leave it as an exercise for the reader to establish this result — this goes by a straightforward
proof by induction on the complexity of DMLT -formulas, of which the inductive case for the
∇ modality uses the observation underlying the proof of our satisfiability reduction result,
Proposition 5.21. qed

Remark 5.30 Theorem 5.28 can also be used to obtain decidability results for logics MLT .
For instance, it can be proved that the satisfiability problem for the language MLP = ML∇
can be solved in linear time. However, since these results depend on the functor, or more
specifically: on the representation of formulas of the form ∇α, we refrain from going into
detail here.

5-11

Remark 5.31 As another corollary of Theorem 5.28 we can show that for any smooth and
standard set functor T which restricts to finite sets, the logic ML has uniform interpolation,
a strong version of Craig’s interpolation property.

Finally, we briefly mention a sound and complete derivation system for the set of valid
ML-formulas.

Definition 5.32 Let T be a smooth and standard set functor which restricts to finite sets.
For the derivation system M, we start with fixing an arbitrary sound and complete set of
axioms and rules for classical propositional logic; we extend this with the following derivation
rule:

{a→ b ∣ (a, b) ∈ Z}
∇α → ∇β

(α,β) ∈ TZ,

together with the one-sided versions of the coalgebraic modal distributive laws:
(A⋁) ∇(T ⋁)(Φ) → ⋁{∇α ∣ (α,Φ) ∈ T (∈X)}
(A⋀) ⋀{∇γ ∣ γ ∈ Γ} →⋁{∇(T⋀)(Φ) ∣ Φ ∈ SRD(Γ)}
(A¬) ¬∇α →⋁{∇T (⋀ ○ P¬)Ψ ∣ Ψ ∈ TωPωBase(α) and (α,Ψ) /∈ T (/∈)} �

5-12

6 Coalgebraic modalities via predicate liftings

In this chapter we take an approach to coalgebraic modal logic where the modalities are in 1-1
correspondence with so-called predicate liftings for the functor T . That is, with each set Λ of
such predicate liftings we will associate a modal formalism MLΛ for T -coalgebras. As a result
this set-up is not completely uniform in the coalgebra type T , but it has some advantages
over the approach based on relation lifting. First of all, the language of MLΛ is completely
standard, with a syntax that adds to the language of propositional logic an n-ary modality
7λ for each n-ary predicate lifting λ ∈ Λ. Second, there is no reason to restrict attention to
functors that are smooth (preserve weak pullbacks). And finally, predicate liftings provide a
uniform framework to many well-known variants of standard modal logic (including monotone
and probabilistic modal logic, which were already mentioned in section 1.5).

Before we introduce the approach in full generality, we briefly discuss a few other concrete
variants of standard modal logic that are covered by the approach.

6.1 Variants of modal logic

Example 6.1 (1) The next-time operator ◯ of linear time logic is perhaps the most simple
example. For its definition, consider models of the form (ω,V), where V ∶ Q → P (ω) is a
valuation on the set ω of natural numbers; the modality ◯ is interpreted as follows:

ω,V,n ⊩ ◯ϕ iff ω,V,n + 1 ⊩ ϕ.

Clearly the semantics of this operator can be generalised to arbitrary T -models for the identity
functor T = Id .

(2) Similarly, on the binary tree 2ω we can interpet two modalities ◯0 and ◯1, with the
following interpretation:

2ω, V, u ⊩ ◯iϕ iff 2ω, V, u ⋅ i ⊩ ϕ,

where i ∈ {0,1} and V ∶ Q→ P (2ω) is a valuation on the set of finite words over the alphabet
2 = {0,1}.

The semantics of these operators can be generalised to arbitrary models for the binary
tree functor T = Id × Id .

(3) Graded modal logic is a version of modal logic that allows statements about the
number of successors that satisfy a certain formula. Formally, interpreted in Kripke models,
the modality 3≥k has the following semantics:

S, n ⊩ 3≥kϕ iff s has at least k ϕ-successors,

where a ϕ-successor of s is a state t ∈ R(s) where ϕ holds. If we restrict attention to image-
finite Kripke models, it also makes sense to introduce the following ‘majority modality’ M :

S, n ⊩M(ϕ,ψ) iff s has more ϕ-successors than ψ-successors.

Note that these modalities are not bisimulation invariant if we consider Kripke frames as
coalgebras for the powerset functor. However, as we will see below, we may also see Kripke

6-1

frames as coalgebras for the bag functor B (see the appendix for its definition), and for that
functor both modalities will turn out to be invariant.

As we will see in this section, the common semantic pattern in many of these formalisms
can be captured rather nicely in a coalgebraic framework by the notion of a predicate lifting.

6.2 Modalities via predicate liftings

To introduce the notion of a predicate lifting, we consider the example of probabilistic modal
logic. In Example 1.8 we defined the semantics of the modality 3q (with q a rational number
in [0,1]) in a model S = (S,σ, V) for the distribution functor D, as follows:

S, s ⊩ 3qϕ iff ∑
u∈[[ϕ]]

σ(s)(u) > q, (37)

where we recall that [[ϕ]] denotes the extension of ϕ, i.e., the set [[ϕ]] = {t ∈ S ∣ S, t ⊩ ϕ} of
states in S where ϕ is true. The way that we will be thinking of this definition now is as

S, s ⊩ 3qϕ iff σ(s) ∈ {µ ∈D(S) ∣ ∑
u∈[[ϕ]]

µ(u) > q}, (38)

or, in fact, as
S, s ⊩ 3qϕ iff σ(s) ∈ θqS([[ϕ]]), (39)

where θqS ∶ PS → PDS is defined by

θqS ∶ U ↦ {µ ∈D(S) ∣ ∑
u∈U

µ(u) > q}.

In other words, we may think of the semantics of the modality 3q as being indexed by a
family θq of maps θqS ∶ PS → PDS, where each θqS lifts a predicate on S (i.e., a subset of S)
to a predicate on DS.

Now in principle we may associate a modality with each such family θ. However, as we
will see below, it will make a lot of sense to impose the following uniformity condition on
the family of maps: We will require that, for each map f ∶ S′ → S, the following diagram
commutes:

S′

f
��

PS′
θS′ // PDS′

S PS

P̆ f

OO

θS
// PDS

P̆Df

OO

That is, we will require a ‘proper’ predicate lifting for the distribution functor to be a
natural transformation θ ∶ P̆ →̇ P̆D , where P̆ is the contravariant powerset functor. In
general, for an arbitrary set functor T we introduce the concept of a predicate lifting of some
arbitrary but fixed finite arity, as follows.

Definition 6.2 A predicate lifting is a natural transformation of the form λ ∶ P̆n →̇ P̆ T , for
some number n ∈ ω which we shall refer to as the arity of λ, notation: n = arλ. �

6-2

Recall that the naturality condition on predicate liftings means that the following diagram
commutes, for every function f ∶ S′ → S:

S′

f

��

(PS′)n
λS′ // PTS′

S (PS)n
(P̆ f)n

OO

λS
// PTS

P̆ Tf

OO (40)

Definition 6.3 Let Λ be a set of predicate liftings for the set functor T . The formulas of
the modal logic MLΛ(Q) are given by the following grammar:

ϕ ∶∶= p ∣ � ∣ ¬ϕ ∣ ϕ0 ∨ ϕ1 ∣ 7λ(ϕ0, . . . , ϕn−1),

where p ∈ Q, and λ is an n-ary predicate lifting for T . We will sometimes refer to Λ as the
signature of the language MLΛ(Q). �

The semantics of the languages MLΛ is defined in a uniform way, with the modality 7λ
being interpreted ‘by λ itself’.

Definition 6.4 Let S = (S,σ, V) be a T -model for some set functor T . We define the sat-
isfaction relation ⊩S ⊆ S × MLΛ(Q) by induction on the complexity of MLΛ(Q)-formulas.
With all other clauses of this definition being standard, we only mention the clause for the
coalgebraic modalities:

S, s ⊩ 7λ(ϕ0, . . . , ϕn−1) iff σ(s) ∈ λ([[ϕ0]]S, . . . , [[ϕn−1]]S). (41)

The notions of satisfiability, validity, and MLΛ-equivalence are all defined in the obvious way;
the latter relation will usually be denoted as ≡Λ rather than as ≡MLΛ

. �

Remark 6.5 A succinct way of defining the semantics of the modality 7λ (41) is as follows:

[[7λ(ϕ0, . . . , ϕn−1)]]S ∶= (P̆ σ)(λ([[ϕ0]]S, . . . , [[ϕn−1]]S)). (42)

Example 6.6 (1) The box and diamond modalities of standard modal logic can be seen as
the coalgebraic modalities associated with the unary predicate liftings λ2, λ3 ∶ P̆ →̇ P̆P given
by

λ2 ∶ U ↦ {X ∈ PS ∣X ⊆ U},
λ3 ∶ U ↦ {X ∈ PS ∣X ∩U ≠ ∅}.

We quickly verify that λ2 satisfies the naturality condition (40). In order to show that
λ2
S′ ○ P̆ f = (P̆Pf) ○ λ2

S , it suffices to show that the following identies hold, for every U ∈ PS:

λ2
S′(P̆ f(U)) = {X ′ ∈ PS′ ∣X ′ ⊆ P̆ f(U)} (definition λ2

S′)

= {X ′ ∈ PS′ ∣ fx′ ∈ U, all x′ ∈X ′} (obvious)

= {X ′ ∈ PS′ ∣ Pf(X ′) ⊆ U} (obvious)

= {X ′ ∈ PS′ ∣ Pf(X ′) ∈ λ2
S(U)} (definition λ2

S′)

= (P̆Pf)(λ2
S(U)). (definition P̆Pf)

6-3

(2) In the case of monotone modal logic, the box and diamond modalities are induced by
the following predicate liftings µ2, µ3 ∶ P̆ →̇ P̆M :

µ2
S ∶ U ↦ {σ ∈ MS ∣ U ∈ σ},
µ3
S ∶ U ↦ {σ ∈ MS ∣ (S ∖U) /∈ σ}.

(3) The next-time operator ◯ of linear temporal logic is obtained from the identity lifting

λ
◯ ∶ P̆ → P̆ :

λ
◯
S ∶ U ↦ U.

Example 6.7 Similarly to the case of probabilistic modal logic, for each k ∈ N we can define
a predicate lifting λ≥k ∶ P̆ → P̆B for the bag functor B :

λ≥kS ∶ U ↦ {µ ∶ S → N∞ ∣ ∑
u∈U

µ(u) ≥ k}.

Now consider a Kripke model S = (S,σ, V), with σ ∶ S → PS. We may think of σ as a
coalgebra map σ○ ∶ S → BS for the functor B , by putting

σ○(s)(t) ∶= { 1 if t ∈ σ(s),
0 if t /∈ σ(s).

It is then straightforward to verify that for any Kripke model S we have

S, n ⊩ 7λ≥kϕ iff s has at least k ϕ-successors,

so that we can indeed think of graded modal logic as a coalgebraic logic.
Similarly, the ‘majority modality’ M can be seen as the coalgebraic modality that is

induced by the binary predicate lifting λM ∶ P̆ 2 →̇ P̆Bω given by

λMS ∶ (U0, U1) ↦ {µ ∶ S → N ∣ ∑
u∈U0

µ(u) > ∑
u∈U1

µ(u)}.

Remark 6.8 Nullary predicate liftings exist. To unravel their meaning, note that we may
think of any set of the form (PS)0 as a singleton (more precisely, as the singleton consisting
of the unique map !S ∶ 0→ PS, where 0 = ∅ is the empty set). Hence, we may identify a map
λS ∶ (P̆S)0 → P̆ TS with a distinguished element λS(!S) of the set P̆ TS, i.e., a subset of TS,
and the naturality condition states that

(PTf)(λS′(!S′) = λS(!S),

for any map f ∶ S → S′.
Now suppose that λ is such a nullary predicate lifting, then the nullary modality 7λ

associated with λ can be seen as a modal constant :

S, σ, s ⊩ 7λ iff σ(s) ∈ λS(!S).

Below we give two natural examples of this phenomenon.

6-4

Example 6.9 A natural example of a nullary modality is the constant
√

that is sometimes
used to indicate that a state in a finite deterministic automaton is accepting. Recall that
these devices are coalgebra for the functor 2 × IdC , and consider the nullary predicate lifting
λ
√
∶ P̆ 0 →̇ P̆ (2 × IdC) given by

λ
√

S (!S′) ∶= {(i, f) ∈ 2 × SC ∣ i = 1}.

We obtain, for any state s in a deterministic automaton S = (S,σ), that s is accepting iff

σ(s) ∈ λ
√

S (!S), so that we may think of the predicate lifting λ
√

as inducing the modality
√

.

Example 6.10 Let T be a functor, and Q a set of proposition letters. Recall that we may
see a T -model (S,σ, V) over Q as a coalgebra (S,σV) for the functor TQ = KPQ × T , where
σV ∶ S → PQ × TS is defined by putting

σV (s) ∶= (V ♭(s), σ(s)).

Now fix a proposition letter q ∈ Q, and consider the following nullary predicate lifting λq ∶
P̆ 0 →̇ P̆ TQ for this functor:

λqS(!S) ∶= {(c, τ) ∈ PQ × TS ∣ q ∈ c}.

Furthermore, observe that the modality associated with this predicate lifting is also nullary,
that is, a constant; its semantics in a TQ-coalgebra (X,ξ) is given by

X, ξ, x ⊩ 7λq iff q ∈ π0(λqX(!X)).

In particular, this means that if (X,ξ) is of the form (S,σV) for some T -model (S,σ, V), we
obtain that

(S,σ, V), s ⊩ q iff (S,σV), s ⊩ 7λq . (43)

Based on this equivalence, we may think of proposition letters as modalities associated with
nullary predicate liftings.

Remark 6.11 Given a set functor T and a set Q of proposition letters, we can now make
the connection explicit between modal languages for T -models over Q on the one hand, and
for TQ-coalgebras on the other.

Based on Example 6.10, we see that there is a 1-1 connection between proposition letters
in Q and nullary predicate liftings for TQ that disect the ‘PQ-part’ c of an arbitrary object
(c, τ) ∈ TQS.

To finish the picture, we now associate with an arbitary n-ary predicate lifting λ ∶ Pn →̇ PT
for T , an n-ary predicate lifting λ′ ∶ Pn →̇ PTQ for TQ as follows:

λ′S(X0, . . . ,Xn−1) ∶= {(c, τ) ∈ TQ ∣ τ ∈ λS(X0, . . . ,Xn−1)}.

Then, given a modal signature Λ for T and a set Q of proposition letters, we define the
signature Λ +Q for the functor TQ by putting

Λ +Q ∶= {λ′ ∣∈ Λ} ∪ {λq ∣ q ∈ Q},

and we leave it for the reader to verify that with this definition, we can see the language
MLΛ(Q) (for T -models over Q) and MLΛ+Q(∅) (for TQ-coalgebras) as notational variants of
one another. In the sequel we will use this observation and use the language MLΛ(Q) for
TQ-coalgebras; in particular, we will always simply write q instead of 7λq .

6-5

6.3 Predicate liftings as coalgebra type changers

This short section presents a slightly different perspective in which predicate liftings pro-
vide natural ways to transform T -coalgebras to neighbourhood frames. We first consider a
simplified version.

Example 6.12 Define a natural relation for T to be a natural transformation µ ∶ T →̇ P .
Given such a natural relation µ ∶ T →̇ P , we can transform a T -coalgebra S = (S,σ)

into a Kripke frame Sµ ∶= (S,µS ○ σ). By naturality of µ, any T -homomorphism f ∶ S → S′
is also a bounded morphism f ∶ Sµ → (S′)µ. To check this, one may easily verify that
Pf ○ (µS ○ σ) = (µS′ ○ σ′) ○ f by chasing the diagram below:

S

f
��

σ // TS

Tf
��

µS // PS

Pf
��

S′ σ′ // TS′
µS′ // PS′

Connecting this to logic, with any natural relation µ we may associate a modality ⟨µ⟩ for
T -coalgebras, with the following interpretation:

S, s ⊩ ⟨µ⟩ϕ iff [[ϕ]]S ∩ µSσ(s) ≠ ∅.

As an example, recall from Fact 5.16(2) that for smooth and standard functors T , we have a
natural transformation BaseT ∶ Tω →̇ Pω. Hence, we may take the Base operation as a way to
transform Tω-coalgebras into Pω-coalgebras, that is, image-finite Kripke frames. Naturality
ensures that every morphism between T -coalgebras is also a bounded morphism between the
underlying Kripke frames.

As we will see now, predicate liftings can be seen as generalisations of this phenomenon,
where we move from Kripke frames to the more general setting of neighbourhood frames.
For this general setting we introduce the transpose of a predicate lifting. This notion is
based on the correspondence between maps A → PB and maps B → PA — we have seen
this correspondence already in the coalgebraic presentation of a valuation V ∶ Q → PS as a
colouring V ♭ ∶ S → PQ.

Definition 6.13 Given a map α ∶ A → PB we define its transposed map α♭ ∶ B → PA by
putting α♭(b) ∶= {a ∈ A ∣ b ∈ α(a)}.

Extending this definition, given an n-ary predicate lifting for the set functor T , we define
its transpose λ♭ as the set-indexed family of maps

λ♭S ∶ TS → P (Pn(S))

given by λ♭S(σ) ∶= (λS)♭(σ). �

By the naturality of predicate liftings we obtain the following proposition, which shows
that predicate liftings indeed generalise the natural relations of Example 6.12.

6-6

Proposition 6.14 If λ ∶ Pn →̇ PT then λ♭ is a natural transformation

λ♭ ∶ T →̇ P̆ ○ P̆n.

It follows from this proposition that any predicate lifting λ induces a transformation of
T -coalgebras to n-ary neighbourhood frames. We confine attention to the unary case.

Definition 6.15 Let λ ∶ P̆ →̇ P̆ T be a unary predicate lifting for the set functor T . Given a
T -coalgebra S = (S,σ), we let Sλ denote the neighbourhood frame Sλ ∶= (S,λ♭ ○ σ); given a
function f ∶ S → S′ we define fλ ∶= f . �

The following proposition is easy to verify.

Proposition 6.16 Let λ ∶ P̆ →̇ P̆ T be a unary predicate lifting for the set functor T . Then
the construction (⋅)λ is a functor from the category of T -coalgebras to the category of neigh-
bourhood frames (N -coalgebras).

6.4 Basic properties of MLΛ

In this subsection we make some first observations about the modal logic of predicate liftings.
First we show how the naturality condition (40) implies bisimulation invariance.

Theorem 6.17 Let Λ be a set of predicate liftings for the set functor T . Then the language
MLΛ is invariant: Given any two pointed T -models (S, s) and (S′, s′) we have

(S, s) ≃T (S′, s′) implies (S, s) ≡Λ (S′, s′). (44)

Proof. Given the definition of behavioural equivalence, it suffices to prove that for any
coalgebra morphism f ∶ S → S′, and any state s ∈ S, we have (S, s) ≡Λ (S′, fs). So fix
f ∶ S→ S′; we will show that every formula ϕ ∈ MLΛ(Q) satisfies the following:

S, s ⊩ ϕ iff S′, fs ⊩ ϕ, for all states s ∈ S,

or equivalently,
[[ϕ]]S = (P̆ f)[[ϕ]]S

′
. (45)

We will prove (45) by a straightforward formula induction. Leaving the routine cases as an
exercise to the reader, we focus on the case where ϕ = 7λ(ψ0, ..., ψn−1). Our proof makes use
of the fact that the diagram below commutes. This should be obvious for the left rectangle,
witnessing the naturality of λ; observe that the right rectangle is obtained by applying the
(contravariant!) functor P̆ to the diagram indicating that f ∶ S → S′ is a coalgebra morphism.

(PS)n λS // PTS
P̆ σ // PS

(PS′)n
(P̆ f)n

OO

λS′
// PTS′

P̆ Tf

OO

P̆ σ′ // PS′

P̆ f

OO (46)

6-7

Now consider the following calculation:

[[7λ(. . . , ψi, . . .)]]S = (P̆ σ)λS(. . . , [[ψi]]S, . . .) (semantics 7λ in S, as in (42))

= (P̆ σ)λS(. . . , (P̆ f)[[ψi]]S
′
, . . .) (induction hypothesis)

= (P̆ σ)(P̆ Tf)λS′(. . . , [[ψi]]S
′
, . . .) (naturality of λ, (46) left)

= (P̆ f)(P̆ σ)λS′(. . . , [[ψi]]S
′
, . . .) (f is a morphism, (46) right)

= (P̆ f)[[7λ(. . . , ψi, . . .)]]S
′

(semantics 7λ in S′, as in (42))

showing that (45) holds for ϕ = 7λ(ψ0, ..., ψn−1) indeed. qed

Concerning the property of expressiveness, we find that a general result can be obtained
if we put some constraints on the signature Λ.

Definition 6.18 Let Λ be a set of predicate liftings for a set functor T . We say that Λ is
separating for T , if for all sets S and all pairs of distinct objects σ0, σ1 ∈ TS there is a λ ∈ Λ
and a tuple (A0, . . . ,An−1) such that exactly one of the two objects σi belongs to the set
λS(A0, . . . ,An−1). �

Example 6.19 (1) The box relation lifting λ2 is separating on its own, for the powerset
functor P . To see this, consider two subsets X,Y ∈ PS. If X and Y are distinct, suppose
without loss of generality that Y /⊆X, so that Y /∈ λ2(X) = {U ∈ PS ∣ U ⊆X}.

(2) The predicate liftings associated with the graded modalities are jointly separating.
To see this, consider two bags β0, β1 ∶ S → N∞ over some set S. If β0 and β1 are distinct,
then we must have β0(s) ≠ β1(s), for some s ∈ S. Without loss of generality we may assume
that β0(s) < β1(s), so that in particular, β0(s) belongs to N, say, β0(s) = m. Recall that
λm+1
S ({s}) = {β ∈ BS ∣ β(s) ≥m + 1}, so that we find β0 /∈ λm+1

S ({s}) but β1 ∈ λm+1
S ({s}).

The following proposition, which is easy to verify, provides a slightly different perspective
on the concept of separation.

Proposition 6.20 Let Λ be a set of predicate liftings for a set functor T . Then Λ is separating
iff, for every set S, the collection (λ♭S)λ∈Λ of transposed functions is jointly injective (i.e., for
any pair of distinct objects τ0, τ1 ∈ TS there is a λ ∈ Λ such that λ♭S(τ0) ≠ λ♭S(τ1)).

Theorem 6.21 Let Λ be a separating set of predicate liftings for the set functor T . Then the
language MLΛ is expressive on the class of image-finite T -coalgebras: Given any two pointed
Tω-models (S, s) and (S′, s′) we have

(S, s) ≡Λ (S′, s′) implies (S, s) ≃T (S′, s′). (47)

Proof. For notational simplicity we will confine ourselves to a setting where all predicate
liftings in Λ are unary, leaving the (routine) generalisation to an arbitrary signature as an
exercise. It will also convenient to assume that T preserves inclusions. Furthermore, we will
only treat the special case where the coalgebras S and S′ coincide (i.e., S = S′); the general

6-8

case, where the two coalgebras are distinct, can easily be reduced to this by considering their
disjoint union.

So let Λ be a separating set of unary predicate liftings for some set functor T , and let
S = (S,σ, V) be an image-finite T -model, that is, σ ∶ S → TωS. To avoid notational clutter we
will simply write ≡ for the equivalence relation ≡Λ.

Our aim is prove that s0 ≡ s1 implies s0 ≃ s1, for all s0, s1 ∈ S. Clearly then it suffices to
show that the relation ≡ is contained in the kernel of some coalgebra morphism. We will show
that in fact we may define coalgebra structure σ ∶ S → TS on the set S of ≡-cells in such a
way that the quotient map q ∶ S → S becomes a coalgebra morphism:

S

σ

��

q // S

σ
��

TS
Tq
// TS

Now suppose that we can show that

q(s0) = q(s1) implies (Tq)(σs0) = (Tq)(σs1), (48)

then putting

σ(s) ∶= (Tq)(σs)

would give a correctly defined map, for which the quotient map q is trivially a coalgebra
morphism.

That is, we have reduced our problem to finding a proof for (48), and to this aim we
reason by contraposition: Assuming that

(Tq)(σs0) ≠ (Tq)(σs1), (49)

we will show that q(s0) ≠ q(s1). It follows by separation from (49) that there is some λ ∈ Λ
and some A ⊆ S such that (without loss of generality) we have

(Tq)(σs0) ∈ λS(A), but (Tq)(σs1) /∈ λS(A). (50)

Our purpose is now is find a formula witnessing this, in the sense that this formula holds at
s0 but not at s1: this would show indeed that s0 /≡ s1, and so q(s0) ≠ q(s1). Note that A ⊆ S
simply means that A is a collection of equivalence classes.

But since S is a Tω-coalgebra, and T preserves inclusions, there is a finite subset X ⊆ S
such that both σs0 and σs1 belong to the set TX. We leave it for the reader to verify that
there is a formula ϕ ∈ MLΛ that characterizes, within X, the union ⋃A, in the sense that

for all x ∈X ∶ S, x ⊩ ϕ iff x ∈ ⋃A,

or equivalently, since x ∈ ⋃A is another way of saying that q(x) ∈ A:

X ∩ [[ϕ]] = X ∩ (P̆ q)A. (51)

6-9

We now claim that, for this formula ϕ, we have

S, s0 ⊩ 7λϕ but S, s1 /⊩ 7λϕ. (52)

To prove this, we first observe that by the semantics of 7λ we have that S, si ⊩ 7λϕ iff σ(si) ∈
λS([[ϕ]]), while it follows from (50) that σ(s0) ∈ (P̆ T q)λS(A) but σ(s1) /∈ (P̆ T q)λS(A).
Hence, because both σ(s0) and σ(s1) belong to TX, it suffices to show that

TX ∩ (P̆ T q)λS(A) = TX ∩ λS[[ϕ]]. (53)

We will establish this by chasing the diagram below, where we use a trick to interpret the
intersection with X in (51) and with TX in (53) using the inclusion map ι ∶ X ↪ S. That
is, we observe that P̆ ι ∶ PS → PX is given by U ↦ X ∩ U ; as a consequence another way of
formulating (51) is:

(P̆ ι)([[ϕ]]) = (P̆ ι)(P̆ q)(A). (54)

Similarly, since T preserves inclusions we have that Tι ∶ TX → TS is the inclusion map
witnessing that TX ⊆ TS, and so P̆ T ι ∶ PTS → PTX is given by Σ↦ (TX) ∩Σ.

S PS

P̆ q
��

λ
S // PTS

P̆ T q
��

S

q

OO

PS

P̆ ι
��

λS // PTS

P̆ T ι
��

X

ι

OO

PX
λX // PTX

TX ∩ (P̆ T q)λS(A)
= (P̆ T ι)(P̆ T q)λS(A) (just discussed)

= λX(P̆ ι)(P̆ q)(A) (naturality of λ)

= λX(P̆ ι)([[ϕ]]) (see (54))

= (P̆ T ι)λS([[ϕ]]) (naturality of λ)

= TX ∩ λS[[ϕ]] (just discussed)

This proves (53), and therefore (52). That is, we have shown that s0 /≡ s1, on the assumption
that (Tq)(σs0) ≠ (Tq)(σs1). This means that (48) holds, and as we argued already, this
suffices to prove the Theorem. qed

6.5 Finite model property

In this subsection we will show that the coalgebraic modal logic MLΛ has the (strong) finite
model property. That is, we will show that any satisfiable MLΛ-formula ϕ can in fact be
satisfied in a finite coalgebra of which the size (number of states) is exponentially bounded
by the size of ϕ. We will prove this result by adapting the method of filtration, which is well
known in the theory of standard modal logic, to the more general coalgebraic setting.

First we need some preliminary definitions.

Definition 6.22 The collection Sfor(ϕ) of subformulas of a MLΛ-formula ϕ is defined in the
standard way. The size ∣ϕ∣ of a ϕ is defined as its number of subformulas: ∣ϕ∣ ∶= ∣Sfor(ϕ)∣.

A set of formulas Σ is called subformula-closed if it is closed under taking subformulas,
that is, if Sfor(ϕ) ⊆ Σ for all ϕ ∈ Σ. �

6-10

The idea behind the method of filtration is fairly simple: given a subformula-closed set
Σ and a T -model S = (S,σ, V), define on S a suitable equivalence relation ≡Σ of finite index,
build a new T -model S on the finite set of ≡Σ-cells, and show that any state s ∈ S satisfies the
same formulas in S as its cell s does in the filtrated model S.

Definition 6.23 Let Σ be a finite, subformula closed set of formulas in MLΛ(Q), and let
S = (S,σ, V) be a T -model. We define ≡Σ ⊆ S × S as the equivalence relation given by

s ≡Σ t iff for all ϕ ∈ Σ ∶ S, s ⊩ ϕ ⇐⇒ S, t ⊩ ϕ,

and denote the ≡Σ-cell of a state s as s. We also let S ∶= {s ∣ s ∈ S} denote the set of cells,
and let q ∶ s↦ s denote the quotient map q ∶ S → S. �

In order to define a coalgebra map σ ∶ S → TS, we may pick any choice function c ∶ S → S,
and define σ ∶= Tq ○ σ ○ c, cf. the diagram below:

S
σ //

c
��

TS

S
σ //

q

VV

TS

Tq

OO

Here we call c ∶ S → S a choice function if c picks an element from each ≡Σ-cell; in other
words, we require that q ○ c = idS and ker(c ○ q) ⊆ ≡Σ.

Note that while the ‘outer’ rectangle of the above diagram commutes by definition, the
‘inner’ one need not commute: it will generally not be possible to define a coalgebra map on
S for which the quotient map q is a coalgebra morphism. Fortunately, for our purposes we
don’t need such a coalgebra map.

Definition 6.24 Let Σ be a finite, subformula closed set of formulas in MLΛ(Q), and let
S = (S,σ, V) be a T -model. A Σ-filtration of S is any T -model S = (S,σ, V) such that
(1) S = S/≡Σ is the class of ≡Σ-cells,
(2) σ = Tq ○ σ ○ c for some choice function c ∶ S → S, and
(3) V (q) = {s ∣ s ∈ V (q)} for q ∈ Σ ∩Q. �

Observe that filtrations are not unique, they depend in particular on the choice of the
choice function c.

We can now prove the following Filtration Lemma.

Theorem 6.25 (Filtration Lemma) Let Λ be a modal signature for a set functor T , and
let Σ ⊆ MLΛ be a finite subformula-closed set of formulas. Furthermore, let S = (S,σ, V) be a
T -model, and let S = (S,σ, V) be a Σ-filtration of S. Then

S, s ⊩ ϕ iff S, s ⊩ ϕ, (55)

for all formulas ϕ ∈ Σ and all states s ∈ S.

6-11

Proof. The proof of the filtration lemma proceeds via a straightforward formula induction,
where we will use the fact that (55) is equivalent to

[[ϕ]]S = (P̆ q)[[ϕ]]S (56)

for all formulas, and to

[[ϕ]]S = (P̆ c)[[ϕ]]S (57)

for formulas ϕ ∈ Σ.
We only consider the inductive step where ϕ = 7λ(ψ0, . . . , ψn−1), and for notational sim-

plicity we confine ourselves to the case where λ is unary, i.e, ϕ = 7λψ for some formula ψ to
which the inductive hypothesis applies. Now consider the following diagram:

PS

P̆ q
��

λ
S // PTS

P̆ T q
��

P̆ σ // PS

PS
λS
// PTS

P̆ σ

// PS

P̆ c

VV (58)

[[7λψ]]S = (P̆ σ)λS([[ψ]]
S) (semantics of 7λ)

= (P̆ c)(P̆ σ)(P̆ T q)λS([[ψ]]
S) (definition σ)

= (P̆ c)(P̆ σ)λS(P̆ q)([[ψ]]S) (naturality of λ)

= (P̆ c)(P̆ σ)λS([[ψ]]S) (induction hypothesis (56))

= (P̆ c)[[7λψ]]S (semantics of 7λ)

In other words, we have established (57) for ϕ = 7λψ, as required. qed

Corollary 6.26 (Strong Finite Model Property) Let ϕ be a formula in MLΛ, where Λ
is a modal signature for a set functor T . If ϕ is satisfiable in some T -model, then it is
satisfiable in a finite T -model (S,σ, V) such that ∣S∣ ≤ 2∣ϕ∣.

Proof. Fix an MLΛ-formula ϕ, and let Σ ∶= Sfor(ϕ). Then it follows by the filtration lemma
that ϕ, if satisfiable in some pointed T -model (S, s), also holds at the state s, in any filtration
S of S. This proves the theorem, since it easily follows from the definion of the relation ≡Σ

that ∣S∣ ≤ ∣PΣ∣ = 2∣ϕ∣. qed

6.6 Predicate liftings and the Yoneda lemma

In the final subsection of this chapter we take a slightly different perspective on the modalities
that are given by predicate liftings, seeing them as describing certain admissible patterns. This
perspective will also reveal how many predicate liftings of each different arity there are.

The key observation here is that there is a natural bijection between PS (subsets of S)
and 2S (characteristic functions on S).

6-12

Definition 6.27 Given a subset X ⊆ S, we define the characteristic function of X as the
map χSX ∶ S → 2 given by χSX(s) = 1 iff s ∈ X; in case S is understood, we may drop the
superscript ‘S’. Conversely, given a map χ ∶ S → 2, we shall call χ−1(1) ∈ PS the subset
determined by χ. �

Remark 6.28 This correspondence reaches far enough for us to think of the contravariant
power set functor as the functor 2− that associates with a set S the collection 2S of functions
from S to 2 = {0,1}, and with an arrow f ∶ S′ → S the ‘precomposition map’ that assigns to
an arbitrary characteristic function χ ∶ S → 2 the function χ ○ f ∶ S′ → 2.

From this point of view, a unary predicate lifting is a way of transforming arrows S → 2
into arrows TS → 2. In particular, any arrow γ ∶ T2 → 2 (that is, any characteristic function
χΓ corresponding to a subset Γ ⊆ T2), induces a unary predicate lifting: Given an arrow
χ ∶ S → 2, simply consider the arrow γ ○ Tχ, as in the diagram below:

S
χ // 2

TS
Tχ //

γ○Tχ

&&
T2

γ // 2

Formulated in terms of subsets rather than characteristic functions, we arrive at the following
definition.

Definition 6.29 Given an object Γ ⊆ T2, let Γ̂ be the following set-indexed family of opera-
tions. For a set S, we define

Γ̂S ∶ PS → PTS,

by putting
Γ̂S(X) ∶= {σ ∈ TS ∣ (TχSX)(σ) ∈ Γ},

where χSX ∶ S → 2 is the characteristics map associated with X. Where Γ̂ is a predicate lifting,
we shall denote its associated modality as 7Γ rather than as 7Γ̂. �

Remark 6.30 Taking a glance at the modalities that are induced by subsets of the set T2, we
consider the interpretation of the formula 7Γϕ in the T -model S = (S,σ, V). If we represent
the set [[ϕ]] with its characteristic function χS[[ϕ]], applying the functor T to this arrow we
obtain

TS
TχS[[ϕ]] // T2 .

Now think of the elements of T2 as ‘T -patterns’, then the above arrow associates a T -pattern
with each object τ ∈ TS. We can say that the formula 7Γϕ holds at s if the pattern
(TχS[[ϕ]])(σ(s)) associated with σ(s) ∈ TS is admissible, i.e., belongs to the set Γ, or, equiva-

lently, that (χT2
Γ ○ TχS[[ϕ]])(σ(s)) = 1.

Example 6.31 As an example, consider the binary tree functor Id × Id . The set T2 con-
sists of four patterns: T2 = {(0,0), (0,1), (1,0), (1,1)}. As an example, take the set Γ =

6-13

{(0,0), (1,1)}; it is not hard to see that it induces the predicate lifting Γ̂ ∶ P →̇ P ○ (Id × Id)
given by

Γ̂S(X) ∶=X ×X ∪ (S ∖X) × (S ∖X).

The associated modality 7Γ has the following semantics:

S, s ⊩ 7Γϕ iff the two successors of s either both satisfy or both falsify ϕ.

Proposition 6.32 For any Γ ⊆ T2, the collection Γ̂ of maps constitutes a predicate lifting
Γ̂ ∶ P̆ →̇ P̆ T .

Proof. Given a map f ∶ S′ → S, we need to check that the following diagram commutes:

S′

f
��

PS′
Γ̂S′ // PTS′

S PS

P̆ f

OO

Γ̂S

// PTS

P̆ Tf

OO

This follows by the following chain of identities, for an arbitrary subset X ⊆ S:

(Γ̂S′ ○ P̆ f)(X) = Γ̂S′(P̆ f(X)) (obvious)

= {σ′ ∈ TS′ ∣ (TχS
′

P̆ f(X))(σ
′) ∈ Γ} (definition Γ̂S′)

= {σ′ ∈ TS′ ∣ (T (χSX ○ f))(σ′) ∈ Γ} (*)

= {σ′ ∈ TS′ ∣ (TχSX)((Tf)(σ′)) ∈ Γ} (functoriality of T)

= {σ′ ∈ TS′ ∣ (Tf)(σ′) ∈ Γ̂S(X)} (definition Γ̂S)

= (P̆ Tf)(Γ̂S(X)) (definition P̆ Tf)

= (P̆ Tf ○ Γ̂S)(X) (obvious)

Here the identity (*) is immediate by the observation that

χSX ○ f = χS
′

P̆ f(X)

as is revealed by a straightforward verification, for an arbitrary element s′ ∈ S′: χSX ○f(s′) = 1

iff f(s′) ∈X iff s′ ∈ f−1(X) = (P̆ f)(X) iff χS
′

P̆ f(X)(s
′) = 1. qed

Interestingly, we may prove that all unary predicate liftings are of this form, and this
result generalises to predicate liftings of arbitrary arity. This is the main content of the
following theorem, which is in fact the instantiation of the well-known Yoneda Lemma to the
setting of predicate liftings.

Theorem 6.33 For any set functor T there is a natural bijection between the set of n-ary
predicate liftings for T and the power set of T (Pn).

6-14

The key observations underlying the proof of this theorem are the natural correspondences

(PS)n ∼ (2S)n ∼ (2n)S ∼ (Pn)S

between n-tuples of subsets of S, n-tuples of characteristic functions, maps from S to 2n, and
maps from S to Pn.

Proof. We confine the proof of this result to providing an n-ary predicate lifting for each
subset of TPn, and vice versa.

So let Γ ⊆ T (Pn) be a set of admissible n-ary T -patterns. The associated predicate lifting
Γ̂ ∶ P →̇ PT is obtained by a straightforward generalisation of Definition 6.29. For the details,
take an arbitrary tuple X = (X0, . . . ,Xn−1) ∈ (PS)n of subsets of S, and represent this tuple as
the map χX ∶= (χ0, . . . , χn−1) of associated characteristic functions, then we have χX ∶ S → 2n,
and so TχX ∶ TS → T (2n). Now put

Γ̂S(X0, . . . ,Xn−1) ∶= {τ ∈ TS ∣ (TχX)(τ) ∈ Γ}.

We leave it for the reader to verify that this collection of maps indeed provides a natural
transformation Γ̂ ∶ P̆n → P̆ T .

For the opposite direction, let λ ∶ P̆n →̇ P̆ T be an n-ary predicate lifting. Our aim is to
find a subset Θλ ⊆ T (2n) such that λ = Θ̂λ.

The easiest way to proceed is by thinking of λS as a way to transform arrows S → 2n into
arrows TS → 2, that is, λS ∶ (2n)S → 2TS . To find the object Θλ, we take a special set S, viz.,
the set 2n itself, and, as input for λ, a special arrow, viz., the identity arrow id2n ∶ 2n → 2n.
Then we let Θλ ⊆ T (2n) be the subset of T (2n) that is determined by the image of this arrow
id2n under λ.

If we think of λ as a set-indexed family of maps λS ∶ (PS)n → PTS, we may define

Θλ ∶= λ(U),

where U is the distinguished element of the set Pn(Pn) corresponding to the identity map
id2n , that is, U = (U0, . . . ,Un−1) with

Ui ∶= {U ⊆ n ∣ i ∈ U}.

As mentioned, we leave it for the reader to verify that the maps just defined are each
other’s inverse, i.e., that λ = Θ̂λ for all predicate liftings λ, and that Γ = ΘΓ̂ for all Γ ∈ PTn,
some n ∈ ω. qed

6-15

7 One-step logic

In this chapter we will zoom in on a micro-version of coalgebraic modal logic that we call one-
step logic. For this purpose we introduce one-step frames; intuitively, these are windows over
a T -coalgebra, only allowing access to the coalgebraic unfolding of one single state. Formally,
however, one-step frames are simply defined as pairs (S,σ) with σ ∈ TS; that is, no coalgebra
map is assumed, and one-step frames should be seen rather as ‘potential’ one-step unfoldings.

Then, given a modal signature Λ, we will introduce a very simple modal language 1MLΛ

for describing properties of one-step frames; we will refer to 1MLΛ as the one-step language
associated with Λ, and to formulas of 1MLΛ as one-step formulas. Characteristic of one-step
formulas is the syntactic restriction that all occurrences of variables are in the scope of exactly
one modality; thus the one-step formalism can be seen as a very simple fragment of the full
modal language.

The point of focussing on this ‘local’, one-step version of coalgebraic modal logic is that,
while we do not even need coalgebras to interpret this one-step language, many properties of
coalgebraic modal logic are in fact already determined at this one-step level.

Before turning to the details, we need to discuss the role of the propositional letters of
the language. The one-step language 1MLΛ will use propositional variables, but these should
be seen as place-holders for proper MLΛ(Q)-formulas rather than as proposition letters. In
particular, they will be different from the familiar proposition letters of the languages. For
this reason it will be convenient to ‘hide’ these ‘proper’ proposition letters, by encoding them
as constants. In other words, here we will take a perspective on T -models as coalgebras for
the functor TQ = KPQ × T , and of proposition letters as modalities associated with nullary
predicate liftings as in Example 6.10.

7.1 One-step syntax and semantics

We can now turn to the formal definitions of one-step logic. We start with syntax.

Definition 7.1 Fix a set Λ of predicate liftings, and a set V of propositional variables. We
define the set PL(V) of propositional or rank-0 formulas over V as follows:

π ∶∶= a ∣ � ∣ ⊺ ∣ π0 ∨ π1 ∣ π0 ∧ π1 ∣ ¬π,

where a ∈ V. We will denote the negation-free fragment of PL(V) as PL+(V) and refer to its
elements as lattice formulas over V.

Given any set Φ of formulas, we define

Λ(Φ) ∶= {7λ(ϕ0, . . . , ϕn−1 ∣ λ ∈ Λ, ar(λ) = n,ϕ0, . . . , ϕn−1 ∈ Φ},

and
1MLΛ(V) ∶= PL(Λ(PL(V))).

We shall call 1MLΛ the one-step language for Λ over V, and refer to formulas α,β ∈ 1MLΛ

as one-step or rank-1 Λ-formulas. For both PL(V) and 1MLΛ(V) we will use standard
propositional abbreviations such as the connectives → and ↔.

7-1

In case all predicate liftings in Λ are monotone, we define the positive fragment of
1MLΛ(V), denoted 1ML+Λ(V), as the set of those formulas in 1MLΛ(V) in which no a ∈ V
appears in the scope of a negation, i.e., 1ML+Λ(V) ∶= PL+(Λ(PL+(V)). �

A more direct characterisation of the language 1MLΛ(V) is that it consists of those
MLΛ(V)-formulas in which every variable a ∈ V occurs in the scope of exactly one modality.
As yet another alternative, the set 1MLΛ(V) can be characterised by the following grammar:

α ∶∶= 7λ(π0, . . . , πn−1) ∣ � ∣ ⊺ ∣ α0 ∨ α1 ∣ α0 ∧ α1 ∣ ¬α

where λ ∈ Λ and πi ∈ PL(V)..

Example 7.2 (1) With V = {a, b, c} and Λ = {2,3}, examples of one-step formulas are
3(a ∧ b), (2((a ∨ a) ∧ �) ∨ ⊺. The formulas 33a and a ∨2� are not one-step formulas.

One-step formulas are naturally interpreted in one-step models, which consist of a one-step
frame together with a marking. As mentioned, a one-step T -frame can be seen as a window
over a T -coalgebra, or as a potential unfolding of a state in a T -coalgebra.

Definition 7.3 A one-step T -frame is a pair (S,σ) with σ ∈ TS. A one-step T -model over a
set V of variables is a triple (S,σ,m) such that (S,σ) is a one-step T -frame and m ∶ S → PV
is a V-marking on S. �

Definition 7.4 Given a marking m ∶ S → PA, we define the 0-step interpretation [[π]]0
m ⊆ S

of π ∈ PL(A) by the obvious induction:

[[a]]0
m ∶= m♭(a) = {s ∈ S ∣ a ∈m(s)}

[[⊺]]0
m ∶= S

[[�]]0
m ∶= ∅

[[¬π]]0
m ∶= S ∖ [[π]]0

m

[[π0 ∧ π1]]0
m ∶= [[π0]]0

m ∩ [[π1]]0
m

[[π0 ∨ π1]]0
m ∶= [[π0]]0

m ∪ [[π1]]0
m.

If s ∈ [[π]]0
m, we will say that π is true or satisfied at s under m, and sometimes write

S,m, s ⊩0 π.
Similarly, the 1-step interpretation [[α]]1

m of α ∈ 1MLΛ(V) is defined as a subset of TS,
with

[[7λ(π0, . . . , πn−1)]]1
m ∶= λS([[π0]]0

m, . . . , [[πn−1]]0
m),

and standard clauses applying for �,∧,∨ and ¬. Given a one-step model (S,σ,m), we write
S,σ,m ⊩1 α for σ ∈ [[α]]1

m. �

Remark 7.5 The semantics of the one-step formulas defined above show that, indeed, one-
step logic is a way of ‘doing coalgebraic logic without coalgebras’. The link with the interpre-
tation of coalgebraic modal logic in coalgebras should be clear — nevertheless we spell out
the details.

7-2

Suppose that S = (S,σ,U) is a T -model over the set V of variables/proposition letters,
then we can interpret one-step formulas α ∈ 1MLΛ(V) ⊆ MLΛ(V) in S in the usual way of
coalgebraic modal logic. On the other hand, recall that with the valuation U ∶ V → PS we
may associate its transpose marking U ♭ ∶ S → PV given by U ♭(s) ∶= {a ∈ V ∣ s ∈ U(a)}, and
so for every s ∈ S, the triple (S,σ(s), U ♭) forms a one-step model over V in the sense of
Definition 7.3. Then the link between coalgebraic modal logic and one-step logic is given by
the following equivalence (which is mathematically trivial):

(S,σ,U), s ⊩ α iff (S,σ(s)), U ♭ ⊩1 α.

Notions like one-step satisfiability, validity and equivalence are defined in the usual way.

Definition 7.6 Let α and α′ be one-step formulas. The formula α is one-step satisfiable if
there is a one-step model (S,σ,m) such that S,σ,m ⊩1 α, and one-step valid if S,σ,m ⊩1 α
for all one-step models (S,σ,m). We say that α′ is a one-step consequence of α (written
α ⊧1 α′) if S,σ,m ⊩1 α implies S,σ,m ⊩1 α′, for all one-step models (S,σ,m), and that α
and α′ are one-step equivalent, notation: α ≡1 α′, if α ⊧1 α′ and α′ ⊧1 α. �

We also need morphisms between one-step frames and models.

Definition 7.7 A one-step frame morphism between two one-step frames (S′, σ′) and (S,σ)
is a map f ∶ S′ → S such that (Tf)σ′ = σ. In case such a map satisfies m′ = m ○ f , for some
markings m and m′ on S and S′, respectively, viz.,

S′

m′ !!

f // S

m~~
PV

then we say that f is a one-step model morphism from (S′, σ′,m′) to (S,σ,m). �

The following proposition, stating that the truth of one-step formulas is invariant under
one-step morphisms, is fundamental. We will occasionally refer to this proposition as natu-
rality, since this invariance essentially boils down to the naturality of the predicate liftings in
Λ.

Proposition 7.8 Let f ∶ (S′, σ′,m′) → (S,σ,m) be a morphism of one-step models over V.
Then for every formula α ∈ 1MLΛ(V) we have

S′, σ′,m′ ⊩1 α iff S,σ,m ⊩1 α.

Formulating it differently, for any one-step frame (S′, σ′), any marking m ∶ S → PV, and any
map f ∶ S′ → S, we have

S′, σ′,m ○ f ⊩1 α iff S, (Tf)σ′,m ⊩1 α.

7-3

As a specific instance of this invariance result we obtain the following corollary which we
mention explicitly for future reference.

Corollary 7.9 Assume that the functor T preserves inclusions. Let (S,σ,m) be a one-step A-
model, and let X ⊆ S be a subset of S such that σ ∈ TX. Then for every formula α ∈ 1MLΛ(V)
we have

S,σ,m ⊩1 α iff X,σ,m↾X ⊩1 α.

Proof. Immediate from Proposition 7.8 by the observation that the inclusion map ι ∶X ↪ S
is a one-step model morphism. qed

The following proposition states that the meaning of a one-step formula only depends on
the variables occurring in it.

Proposition 7.10 Let (S,σ,m) be a one-step model over V, and let α ∈ 1MLΛ(V) be a
one-step formula which belongs to the set 1MLΛ(W), for some subset W ⊆ V. Then we have

S,σ,m ⊩1 α iff S,σ,mW ⊩1 α,

where mW is the W-marking given by mW(s) ∶=m(s) ∩W.

For positive one-step formulas we have the following monotonicity property.

Proposition 7.11 Assume that all predicate liftings in Λ are monotone, let (S,σ) be a one-
step frame, and let m,m′ ∶ S → PV be two markings such that m(s) ⊆ m′(s), for all s ∈ S.
Then for any formula α ∈ 1ML+Λ(V) we have that

S,σ,m ⊩1 α implies S,σ,m′ ⊩1 α.

Finally, an important role in one-step logic is played by the following rather special one-
step models.

Definition 7.12 Given a variable set V, we define the canonical marking for V as the V-
marking nV ∶= idPV ∶ PV → PV. We say that a one-step model is V-canonical if it is of the
form (PV,Γ, nV), for some Γ ∈ TPV. �

The term ‘canonical’ model is justified by the following proposition.

Proposition 7.13 Let α ∈ 1MLΛ(V) be a one-step formula. Then α is one-step valid iff α
holds at every V-canonical one-step model.

Proof. The direction from left to right is obvious. For the opposite direction, suppose for
contradiction that the one-step model (S,σ,m) falsifies α, i.e., S,σ,m /⊩1 α. The point is
that we may consider the map m as a one-step morphism

m ∶ (S,σ,m) → (PV, (Tm)(σ), idPV).

Then by Proposition 7.8 we find that

S,σ,m ⊩1 β iff PV, (Tm)(σ), idPV ⊩1 β,

for every one-step formula β ∈ 1MLΛ(V). In particular, it follows that α is falsified at the
canonical one-step modal (PV, (Tm)(σ), idPV), which gives the desired contradiction. qed

7-4

7.2 One-step derivation systems

In this subsection we will develop some natural logic at the level of one-step formulas; that is,
we will introduce one-step derivation systems and discuss the notions of one-step soundness
and completeness pertaining to such systems. Before turning to the one-step setting, however,
we develop a general framework for derivation systems in coalgebraic modal logic, starting
with the notion of a derivation rule. Throughout this section we fix a countably infinite set
V of propositional variables.

Definition 7.14 A derivation rule is a pair R = (ΠR, γR) (often denoted as R = ΠR/γR),
where ΠR is a set of formulas, the premises of R, and γR is a formula, the conclusion of R.
If ΠR = ∅ we say that γR is an axiom.

A derivation rule R is called propositional if ΠR ∪ {γR} ⊆ PL(V), and a one-step rule
(relative to a modal signature Λ) if ΠR ⊆ PL(V) and γR ∈ 1MLΛ(V). �

Thus a derivation rule is propositional if all of its premises and its conclusion are propo-
sitional formulas, whereas a one-step rule is given by a set of propositional premises and a
conclusion which is a one-step formula. In particular, one-step axioms are one-step formulas.

Example 7.15 Examples of propositional rules are Modus Ponens ({a, a → b}, b) and Ex
Falso Quodlibet ({�}, a).

Examples of one-step rules are the congruence rule Cλ:

a0 ↔ b0 ⋯ an−1 ↔ bn−1 Cλ7λ(a0, . . . , an−1) ↔ 7λ(b0, . . . , bn−1)

and the monotonicity rule Mλ

a0 → b0 ⋯ an−1 → bn−1 Mλ7λ(a0, . . . , an−1) → 7λ(b0, . . . , bn−1)

that we will associate with an n-ary modality 7λ.

To introduce derivations, we need to say how we can use substitutions to define instances
of derivation rules.

Definition 7.16 A substitution is a map ρ ∶ V → MLΛ(V). We will use the notation ϕ/a
for the substitution that maps the variable a to the formula ϕ (and is the identity on the
set of remaining variables). A substitution ρ naturally induces a translation [ρ] mapping
MLΛ(V)-formulas to MLΛ(V)-formulas. For this translation we shall use postfix notation,
ϕ[ρ] denoting the result of applying the substitution ρ to the formula ϕ. For a set of formulas
Φ we will write Φ[ρ] ∶= {ϕ[ρ] ∣ ϕ ∈ Φ}.

A substitution ρ is propositional or rank-0 if ρ ∶ V → PL(V), and rank-1 if ρ ∶ V →
1MLΛ(V). �

Remark 7.17 It is easy to see that if ρ is a propositional substitution, we obtain [ρ] ∶
PL(V) → PL(V) and [ρ] ∶ 1MLΛ(V) → 1MLΛ(V). On the other hand, if ρ is rank-1, then it
is easy to see that [ρ] maps rank-0 formulas to rank-1 formulas, [ρ] ∶ PL(V) → 1MLΛ(V). In
the sequel we will use these observations without explicit notice.

7-5

Definition 7.18 An instance of a derivation rule R = (Π, γ) is a pair (Π[ρ], γ[ρ]), where ρ
is some substitution. More specifically, we say that (Π[ρ], γ[ρ]) is a propositional instance of
R if ρ is a propositional substitution, and a rank-1 instance if R is a propositional rule and
ρ is a rank-1 substitution. �

Definition 7.19 Let H be a derivation system. A derivation in H is a structure (W,C,L, r),
where (W,C, r) is a well-founded tree9 with root r, and L ∶ W → (PL(V) ∪ 1MLΛ(V)) is a
labelling such that for every inner node t ∈W , the pair ({L(u) ∣ u ∈ C(t)}, L(t)) is an instance
of a derivation rule in H.

Given an H-derivation D = (W,C,L, r), we call a formula ϕ an assumption of D if ϕ = L(t)
for some leaf t, but ϕ is not an instance of an axiom; we denote the set of assumptions of D
by Ass(D). We refer to the formula L(r) labelling the root of the tree as the result of D.

A formula α ∈ 1MLΛ(V) is derivable from a set Φ in a derivation system H, notation:
Φ ⊢H α if α is the result of an H-derivation D with Ass(D) ⊆ Φ. If ∅ ⊢H α we simply write
⊢H α and we say that α is derivable; α is called consistent if its negation is not derivable. �

We now turn to the specific kind of derivation systems that is tailored towards one-step
logic.

Convention 7.20 Throughout this text we will assume an arbitrary but fixed derivation
system C (consisting of propositional axioms and rules) which is sound and complete for
classical propositional logic.

Definition 7.21 A one-step derivation system for a modal signature Λ is a set H of one-step
derivation rules. A one-step axiomatization is a derivation system of which all derivation rules
have an empty set of premises; we will identify an axiomatisation H with the set {γR ∣ R ∈ H}
of its axioms.

Given a derivation system H, we let H+ denote the extension of H with (1) all axioms
and rules from C and (2) the congruence rule (Cλ), for every λ ∈ Λ. �

Remark 7.22 Derivations of one-step formulas in one-step derivation systems have a rather
specific shape. The tree of such a derivation can be partitioned into an ‘upper’ and a ‘lower’
part, where the nodes of the uppper (lower) part are all labelled with rank-0 (respectively,
rank-1) formulas. Formulated differently, on every branch t0t1⋯tk from the root r = t0 to a
leaf l = tk of the tree, we either have L(ti) ∈ 1MLΛ(V), for every i, or else there is a (necessarily
unique) index k ≥ 0 such that L(ti) ∈ 1MLΛ(V) for all i with 0 ≤ i ≤ k, while L(ti) ∈ PL(V) for
all i with k < i ≤ n. In the latter case, the formula L(tk) is the only formula on the mentioned
branch that is obtained by the application of a one-step rule — all other formulas are the
conclusion of an application of a (rank-0 or rank-1) application of a propositional rule.

Definition 7.23 Let Λ be a set of predicate liftings for a set functor T . A one-step rule
R = Π/γ for Λ is one-step sound if

⋂
π∈ΠR

[[π]]0
m = S implies [[γR]]1

m = TS,

9Trees and related notions are defined in Definition B.3.

7-6

for all sets S and all markings m ∶ S → PV. A derivation system H is one-step sound if all of
its derivation rules are one-step sound. �

Remark 7.24 It is not difficult to verify that if a one-step rule is sound, then so are all of
its propositional instances.

Definition 7.25 Let Λ be a set of predicate liftings for a set functor T . We say that π ∈
PL(V) is a true (propositional) fact of a marking m ∶ S → PV if [[π]]0

m = S; we let TPF(m)
denote the collection of all these facts.

A one-step derivation system H for Λ is one-step complete if for every markingm ∶ S → PV,
and every α ∈ 1MLΛ(V) we have that

[[α]]1
m = TS implies TPF(m) ⊢1

H+ α,

i.e., all formulas that are one-step true with respect to m are derivable from the true propo-
sitional facts of m in the extended derivation system H+. �

Convention 7.26 We will sometimes be sloppy and write ⊢1
H instead of ⊢1

H+ .

Remark 7.27 A simpler definition of one-step completeness would require that

every valid one-step formula is derivable. (59)

It is not hard to see that (59) follows from the definition that we will use.
To see this, let α ∈ 1MLΛ(V) be valid. It follows from Proposition 7.13 that α holds

in every canonical one-step model for V. Hence, by one-step completeness, we obtain that
TPF(nV) ⊢1

H α. Now observe that the canonical marking nV admits only classical tautolo-
gies as true propositional facts. Thus it follows that α is derivable from the empty set of
assumptions, that is: derivable simpliciter.

Example 7.28 As an example of a one-step complete derivation system, consider the modal
signature {2} for the powerset functor P (i.e., we look at standard modal logic where we take
the 2modality as primitive). In the sequel we will continue writing T instead of P , however,in
order to clarify the role of the functor in the argument. We claim that the axiomatisation

K ∶= {2⊺,2(a ∧ b) ↔ 2a ∧2b}

is one-step sound and complete. Leaving soundness as an exercise for the reader, we prove
one-step completeness here.

Letm be a V-marking on some set S, and let α be a one-step formula such that [[α]]1
m = TS.

We will show that α is derivable from the true propositional facts of m:

TPF(m) ⊢1
K α.

Since we have the full power of classical propositional logic at our disposal, we may without
loss of generality assume that α is in conjunctive normal form, i.e., α = ⋀β∈B β for some finite
set B, where each β is of the form

β = ⋁
i∈I
2πi ∨ ⋁

j∈J
¬2ρj

7-7

for some finite index sets I and J , and where all πi, ρj ∈ PL(V). Clearly it suffices to prove
that we can derive each conjunct of α from the true propositional facts of m, so fix such a
conjunct β ∈ B. Obviously it follows from [[α]]1

m = TS that [[β]]1
m = TS.

We first claim that
I ≠ ∅. (60)

To see this, assume for contradiction that I = ∅, so that β = ⋁j∈J ¬2ρj . Consider the empty
set ∅ ∈ TS, and observe that S,m,∅ ⊩1 2π for all rank-0 formulas π ∈ PL(V); so in particular,
S,m,∅ ⊩1 2ρj for all j ∈ J . But this means S,m,∅ /⊩1 β, which clearly contradicts the earlier
observation that [[β]]1

m = TS. This finishes the proof of (60).
Our second claim is that

at least one of the formulas ξi is a true propositional fact of m, (61)

where we define
ξi = πi ∨ ⋁

j∈J
¬ρj .

To prove (61), assume for contradiction that none of formulas ξi belongs to the set TPF(m).
Then there are states (si)i∈I such that si ∉ [[ξi]]0

m for each i ∈ I. So S,m, si /⊩0 πi, while
S,m, si ⊩0 ρj for all j. Now consider the set σ ∶= {si ∣ i ∈ I} ∈ PS. It is immediate by the
semantics of 2 that S,m,σ /⊩1 2πi for any i ∈ I, while at the same time S,m,σ ⊩1 2ρj for all
j ∈ J . Clearly then we find that S,m,σ /⊩1 β, which provides the desired contradiction with
our assumption that S,m,σ ⊩1 α. This proves (61).

To finish the one-step completeness proof, assume ξi = πi ∨⋁j∈J ¬ρj ∈ TPF(m), then so is
the (propositionally equivalent) formula

⋀
j∈J

ρj → πi.

Our third claim is that from the above formula we can derive its ‘boxed version’

⋀
j∈J
2ρj → 2πi,

by some propositional reasoning, applications of the congruence rule and of the axioms 2(a∧
b) ↔ 2a ∧2b and 2⊺, followed by further propositional reasoning. We leave the details for
the reader.

Finally, we can use propositional reasoning to show that the formula ⋀j∈J 2ρj → 2πi is
equivalent to

2πi ∨ ⋁
j∈J

¬2ρj ,

and therefore implies
β = ⋁

i∈I
2πi ∨ ⋁

j∈J
¬2ρj .

In other words, we have established that

TPF(m) ⊢1
K β.

And since β ∈ B was an arbitrary conjunct of α, this means that we can also derive α = ⋀β∈B β
from the true propositional facts of m, as required.

7-8

Example 7.29 Similar axiomatizations can be given to monotone and graded one-step logic.
(1) The derivation system M, consisting of the monotonicity rule for the modality 2 of

monotone modal logic:
M ∶= {a→ b/2a→ 2b}

is one-step and complete.
(2) We write 3k for the counting modality 7λ≥k associated with the predicate lifting λ≥k

for the bag functor, cf. Example 6.7. One may show that the following provides a one-step
sound and complete axiomatisation for the signature consisting of all these modalities:

a. 3n+1a→ 3na
b. 21(a→ b) → (3na→ 3nb)
c. ¬31(a ∧ b) ∧3k1!a ∧3k2!b → 3(k1+k2)!(a ∨ b)
d. 21⊺

Here we abbreviate 2kπ ∶= ¬3k¬π and 3k!π ≡ 3kπ ∧ ¬3k+1π.

Finally, the following result, of which we omit the proof, states that there always exists
some one-step complete derivation system.

Theorem 7.30 Let Λ be a modal signature for a set functor T . Then the set of all one-step
sound one-step derivation rules is in fact a one-step sound and complete derivation system
for Λ and T .

7-9

8 Soundness and completeness

In this chapter we will see how to find sound and complete derivation systems for the formulas
in MLΛ that are valid in the class of all coalgebras (of the appropriate type). In a slogan,
what we want to show here is

completeness of coalgebraic logic is determined at the one-step level.

To make proper sense of this slogan, we need to introduce some terminology and notation.
Throughout this chapter we fix a set functor T , a modal signature Λ, and a countably in-
finite set V of variables. We think of the elements of V as variables indeed, and assume
that proposition letters, if any, have been encoded as modal constants, cf. the discussion in
Remark 6.11.

Definition 8.1 A modal derivation system for MLΛ is nothing but a set H of modal axioms
and modal derivation rules for MLΛ, where a modal derivation rule is any pair R = (ΠR, γR)
such that ΠR ⊆ MLΛ(V) and γR ∈ MLΛ(V). ΠR and γR are called the set of premises and the
conclusion of the rule, respectively. A modal axiom is a modal derivation rule with an empty
set of premises.

An instance of a modal derivation rule (Π, γ) is a pair (Π[ρ], γ[ρ]), where ρ ∶ V →MLΛ(V)
is some substitution. �

Convention 8.2 As in section 7.2 we will base our modal derivation systems on an arbitrary
but fixed propositional derivation system C that is sound and complete with respect to the
set of classical tautologies.

The notion of a derivation in a modal derivation system H is defined as in section 7.2,
while we explicitly note that in such a derivation, besides the modal derivation rules from H,
we may always use the propositional rules from C and the congruence rule10 (Cλ) for each of
the modalities. Formally, we need the following definition (again, analogous to the previous
chapter).

Definition 8.3 Given a modal derivation system H, we let H+ denote the extension of H
with (1) all axioms and rules from C and (2) the congruence rule (Cλ), for every λ ∈ Λ. �

We can now define the notions of derivation, assumptions, derivability and consistency
exactly as in Definition 7.19. Note that in an H-derivation we may use all derivation rules in
H+. Recall that a formula ϕ ∈ MLΛ is valid if it holds at every state of every T -coalgebra.

Definition 8.4 Let H be a modal derivation system. We say that H is sound if all H-
derivable formulas are valid, and complete if, conversely, all valid formulas are H-derivable.
�

10Note that in many Hilbert-style derivation systems for standard modal logic and some of its variants, the
congruence rule for the modalities is not mentioned explicitly since it is derivable from the other axioms. For
instance, this is particularly easy to see in the case of the monotonicity rule (Mλ).

8-1

In these notes we shall be exclusively interested in so-called rank-1 derivation systems.

Definition 8.5 A modal derivation system H is a rank-1 system if each of its derivation
rules is of the form R = (Π, γ) where Π ⊆ PL(V) and γ ∈ 1MLΛ(V) (and so, in particular, all
of its axioms are formulas in 1MLΛ(V)). �

As a result of this definition, a rank-1 modal derivation system, which is designed to
derive validities in the full language MLΛ, can also be seen and used as a derivation system
for the one-step language, in the sense of Definition 7.21. This also means that concepts that
we defined for one-step derivation systems apply to rank-1 derivation systems for the full
language as well. It is in this sense that we may understand the slogan formulated at the
beginning of this Chapter. In fact, we can now make the slogan precise in the formulation of
the following Theorem, which is the main result of this chapter.

Theorem 8.6 Let Λ be a modal signature for the set functor T , and let H be a rank-1
derivation system for Λ which is one-step sound and complete for T . Then H provides a
sound and complete derivation system for the set of MLΛ-validities on Coalg(T).

We will prove Theorem 8.6 by showing, as usual, that any H-consistent formula is satis-
fiable in a T -coalgebra. Before we can give some further intuitions about our proof strategy,
we need some auxiliary definitions.

Definition 8.7 Given a formula ϕ ∈ MLΛ, we define the single negation of ϕ as the formula
∼ϕ given by

∼ϕ ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⊺ if ϕ = �
� if ϕ = ⊺
ψ if ϕ = ¬ψ for some formula ψ
¬ϕ otherwise.

The collection Sfor(ϕ) of subformulas of ϕ is defined in the standard way.

A set of formulas Σ is called closed if it contains the formulas � and ⊺, and it is closed
under taking subformulas and single negations, that is, if Sfor(ϕ) ∪ {∼ϕ} ⊆ Σ for all ϕ ∈ Σ.
The closure Cl(ϕ) of a formula ϕ ∈ MLΛ is defined as the smallest closed set that contains ϕ.
�

As before, one may think of Cl(ϕ) as the set of formulas that are relevant for ϕ. It is
easy to see that for any formula ϕ, this set will be finite (and closed).

Definition 8.8 Let Σ be a finite, closed set of MLΛ-formulas. A (Σ-)atom is a maximally
consistent subset of Σ, that is, s ⊆ Σ is a Σ-atom if it is consistent, but every t such that
s ⊂ t ⊆ Σ is inconsistent. We let SΣ denote the set of Σ-atoms.

Given a formula ϕ ∈ Σ, we define [ϕ]Σ ∶= {s ∈ SΣ ∣ ϕ ∈ s}, and write [ϕ] if no confusion is
likely. �

We leave it as an exercise for the reader to verify the following basic properties of atoms.

8-2

Proposition 8.9 Let s ∈ SΣ be an atom relative to some finite, closed set Σ. Then
(1) ⊺ ∈ s and � /∈ s;
(2) if ϕ ∈ Σ, then ϕ ∈ s iff ∼ϕ /∈ s;
(3) if ϕ0 ∧ ϕ1 ∈ Σ, then ϕ0 ∧ ϕ1 ∈ s iff ϕ0 ∈ s and ϕ1 ∈ s;
(4) if ϕ0 ∨ ϕ1 ∈ Σ, then ϕ0 ∨ ϕ1 ∈ s iff ϕ0 ∈ s or ϕ1 ∈ s.

Proposition 8.10 Let Σ be some finite, closed set. Then
(1) ⊢H ⋁

s∈SΣ

⋀
ϕ∈s

ϕ;

(2) ⊢H ¬(⋀
ϕ∈s

ϕ ∧ ⋀
ϕ∈s′

ϕ), if s and s′ are distinct atoms.

Proof. For part (1), we obviously have ⊢H ϕ ∨ ∼ϕ, for every formula ϕ, and so we easily
find ⊢H ⋀

ϕ∈Σ
(ϕ∨∼ϕ). Using propositional reasoning (in particular, the distributive law), from

this we obtain the derivability of ⋁
s⊆Σ

(⋀
ϕ∈s

ϕ ∧ ⋀
ϕ/∈s

∼ϕ). By the definition of atoms as maximal

consistent subsets of Σ, part (1) then follows with some further propositional reasoning.
Part (2) is immediate by the observation that if s and s′ are distinct atoms, there must

be a formula ϕ ∈ s such that ∼ϕ ∈ s′.
qed

The following lemma can be seen as the appropriate (finitary) version of the Lindenbaum
Lemma in this setting. It states that every consistent formula ϕ can be extended to an atom
in its closure. We omit the proof, which is a routine exercise.

Proposition 8.11 (Lindenbaum Lemma) Let ϕ be an H-consistent formula, and let Cl(ϕ)
be the closure of ϕ. Then there is a Cl(ϕ)-atom s such that ϕ ∈ s.

Our strategy to prove Theorem 8.6 will be to define, for a given finite, closed set Σ,
a coalgebra structure σ ∶ SΣ → TSΣ on the set of Σ-atoms, in such a way that

[[ϕ]](SΣ,σ) = [ϕ]Σ, (62)

for all ϕ ∈ Σ. It is not difficult to see why this suffices to prove the theorem — we will spell
out the details below.

To find a coalgebra map σ for which (62) holds, we will use the one-step completeness of
the derivation system H. More in detail, we will introduce a one-step language

VΣ ∶= {aϕ ∣ ϕ ∈ Σ}

that is in 1-1 correspondence with Σ; that is, we introduce a new propositional variable aϕ
for every formula ϕ ∈ Σ. We shall then be interested in the following VΣ-marking on SΣ:

m ∶ s↦ {aϕ ∈ VΣ ∣ ϕ ∈ s}. (63)

Observe that for this marking we find that

[[aϕ]]0
m = [ϕ],

for every ϕ ∈ Σ.

8-3

Definition 8.12 Where VΣ ∶= {aϕ ∣ ϕ ∈ Σ}, we let [ϕ/aϕ ∣ ϕ ∈ Σ] denote the natural
substitution replacing any variable aϕ with the ‘real’ formula ϕ. As abbreviations we will
use, for π ∈ PL(VΣ), and α ∈ 1MLΛ(VΣ), the formulas π̂, α̂ ∈ MLΛ respectively, to denote
π̂ ∶= π[ϕ/aϕ ∣ ϕ ∈ Σ], and α̂ ∶= α[ϕ/aϕ ∣ ϕ ∈ Σ]. �

The following lemma provides the main link between the one-step logic and the full system.

Proposition 8.13 (Stratification Lemma) (1) For any formula π ∈ PL(VΣ):

⊢H π̂ iff (SΣ,m) ⊩0 π. (64)

(2) For any formula α ∈ 1MLΛ(VΣ):

⊢H α̂ iff (SΣ,m) ⊩1 α. (65)

Proof. For part (1), without loss of generality we may assume that π is in conjunctive normal
form (why?). That is, we may assume that π ∈ PL(VΣ) is of the form π = ⋀i πi, where each
πi is a disjunction πi = ⋁Πi for some set

Πi = {aϕ ∣ ϕ ∈ Φi} ∪ {¬aψ ∣ ψ ∈ Ψi}

for some collections Φi,Ψi ⊆ Σ.

For the implication ‘⇒’, suppose that ⊢H π̂, then obviously ⊢H π̂i for all i. Fix an
arbitrary i, and take an arbitrary state s ∈ SΣ, then π̂i is propositionally equivalent to the
formula ⋁(Φi ∪ ∼Ψi) (where we write ∼Ψ ∶= {∼ψ ∣ ψ ∈ Ψ}). It follows from the consistency of

s and the fact that ⊢H ⋁(Φi ∪ ∼Ψi) that there is a formula χ ∈ Φi ∪ ∼Ψi such that s ∪ {χ}
is consistent, and since this formula χ must be an element of Σ, we find that, in fact, χ ∈ s.
That is, we have established that every atom s ∈ SΣ contains a formula χs ∈ Φi ∪ ∼Ψi, and
from this we easily derive that s ∈ [χs] = [[aχs]]0

m ⊆ [[πi]]0
m, so that (SΣ,m), s ⊩0 πi. But since

this applies to all s and i, we find that (SΣ,m) ⊩0 π.

For the opposite implication ‘⇐’, suppose that /⊢H π̂, then there is some i with /⊢H π̂i. That
is, the formula ¬π̂i ≡ ¬(⋁Φi∨⋁∼Ψi) is consistent. From this it easily follows by propositional
reasoning that the formula ⋀∼Φi ∧ ⋀Ψi is consistent, and so by Proposition 8.10(1) there
must be an atom si such that the formula

⋀
χ∈si

χ ∧⋀∼Φi ∧⋀Ψi

is consistent. Since ∼Φi ∪ Ψi ⊆ Σ, it is not difficult to see that this can only be case if
∼Φi ∪Ψi ⊆ si. In other words, we have si /∈ [ϕ] for any ϕ ∈ Φi, while si ∈ [ψ] for each ψ ∈ Ψi.
From this it is immediate by the definition of the marking m that SΣ,m, si /⊩0 aϕ for all ϕ ∈ Φi,
SΣ,m, si ⊩0 aψ for all ψ ∈ Ψi. Thus we see that SΣ,m, si /⊩0 πi, which implies SΣ,m, si /⊩0 π,
and so SΣ,m /⊩0 π, as required.

Turning to part (2) of the Stratification Lemma, we only consider the direction from right
to left. (The other direction is not needed in the remainder of the completeness proof.)

8-4

Suppose that SΣ,m ⊩1 α. Then by one-step completeness, there is a one-step derivation
of α from the true facts of (SΣ,m). We will show by a routine induction on the complexity
of derivations in the system H, that this implies ⊢H α̂.

In fact, the only thing to worry about in this inductive proof is the base case, where we are
considering a rank-0 formula π ∈ PL(VΣ) which is a true propositional fact about S. But here
we can use the first part of this Stratification Lemma, which guarantees that ⊢H π̂. qed

Proposition 8.14 (Existence Lemma) There is a map σ ∶ SΣ → TSΣ such that for all
atoms s ∈ SΣ and all formulas of the form 7λ(ψ0, . . . , ψn−1) ∈ Σ we have

7λ(ψ0, . . . , ψn−1) ∈ s iff σ(s) ∈ λS([ψ0], . . . , [ψn−1]). (66)

Proof. In order to keep our notation simple we confine attention to the setting where
all predicate liftings are unary — it is easy to generalise this proof to an arbitrary modal
signature. We will write S instead of SΣ to avoid clutter.

Suppose for contradiction that for some s ∈ S there is no unfolding σ(s) satisfying (66).
In other words, we have

⋂{λS([ψ]) ∣ 7λψ ∈ s} ∩⋂{S ∖ λS([ψ]) ∣ 7λψ /∈ s} = ∅.

Define the following formula α ∈ 1MLΛ(VΣ)

α ∶= ⋀{7λaψ ∣ 7λψ ∈ s} ∧⋀{¬7λaψ ∣ 7λψ /∈ s}

For this formula we may derive, with m the marking given by (63), that

[[α]]1
m = [[⋀{7λaψ ∣ 7λψ ∈ s} ∧⋀{¬7λaψ ∣ 7λψ /∈ s}]]1

m (definition α)

= ⋂{[[7λaψ]]1
m ∣ 7λψ0 ∈ s} ∩⋂{S ∖ [[7λaψ]]1

m ∣ 7λψ0 /∈ s} (semantics ⋀,¬)

= ⋂{λS([[aψ]]0
m) ∣ 7λψ ∈ s} ∩⋂{S ∖ λS([[aψ]]0

m) ∣ 7λψ /∈ s} (semantics 7λ)

= ⋂{λS([ψ]) ∣ 7λψ ∈ s} ∩⋂{S ∖ λS([ψ]) ∣ 7λψ /∈ s} (definition m)

= ∅ (assumption)

From this it is immediate by the Stratification Lemma that the formula α̂ is H-inconsistent.
But this is absurd, since all conjuncts of α̂ belong to the atom s. qed

Proposition 8.15 (Truth Lemma) Let Σ be a finite, closed set of formulas, let SΣ be the
collection of Σ-atoms, and let σ ∶ SΣ → TSΣ) be any map satisfying (66). Then we have

(SΣ, σ), s ⊩ ϕ iff ϕ ∈ s, (67)

for all s ∈ S and ϕ ∈ Σ.

Proof. Clearly it suffices to show that (62) holds for all ϕ ∈ Σ. We will prove this by a
straightforward formula induction, abbreviating S = SΣ, [[ϕ]] = [[ϕ]](SΣ,σ) and [ϕ] = [ϕ]Σ.

8-5

The base case of the proof, where the formulas under consideration are of the form ϕ = ⊺
and ϕ = �11, is taken care of by a straightforward application of Proposition 8.9. For the
inductive step of the proof, the cases where ϕ = ¬ψ, ϕ = ψ0 ∧ψ1 or ϕ = ψ0 ∨ψ1, are also easily
dealt with on the basis of the properties of atoms given in Proposition 8.9. This leaves the
inductive case where ϕ is a modal formula of the form ϕ = 7λ(ψ0, . . . , ψn−1); but in this case
we reason as follows:

[[7λ(ψ0, . . . , ψn−1)]] = (P̆ σ)λS([[ψ0]], . . . , [[ψn−1]]) (semantics of 7λ)

= (P̆ σ)λS([ψ0], . . . , [ψn−1]) (induction hypothesis)

= [7λ(ψ0, . . . , ψn−1)] (assumption (66) on σ)

qed

Finally, on the basis of the preceding lemmas, the proof of the completeness theorem is
now straightforward.

Proof of Theorem 8.6. We leave the soundness proof as an exercise for the reader.
For completeness, is suffices to prove that every H-consistent formula ϕ is satisfiable. So

let ϕ be an H-consistent formula. It follows by the Lindenbaum Lemma that ϕ belongs to
some Σ-atom sϕ, where Σ ∶= Cl(ϕ) is the closure of ϕ. Now by the Extension Lemma there
is some map σ ∶ SΣ → TSΣ satisfying (66); but then it follows by the Truth Lemma that
SΣ, σ, sϕ ⊩ ϕ. In other words, ϕ is satisfiable indeed. qed

11Recall that proposition letters are treated as nullary modalities, and thus covered by the modal case of
the inductive step.

8-6

A Appendix: The Category Set and its Functors

The theory of coalgebra is categorical in nature. In this appendix we summarize the back-
ground knowledge on category theory that is required for understanding the notes; we place
a special emphasis on the category Set of sets and functions, since this is the base category
of most of the coalgebras that we consider.

For a proper introduction to category theory, the reader is referred to standard text-
books such as Mac Lane’s Categories for the Working Mathematician, or Awodey’s Category
Theory12 on which we based parts of this appendix.

A.1 Categories, functors and natural transformations

Definition A.1 A category C consists of a class Ob(C) of objects, and for each pair of objects
A,B, a family C(A,B) of arrows. If f belongs to the latter set, we write f ∶ A→ B, and call
A the domain and B the codomain of the arrow. The collection of arrows is endowed with
some algebraic structure: for every object A of C there is an identity arrow idA ∶ A→ A, and
every pair f ∶ A → B, g ∶ B → C can be uniquely composed to an arrow g ○ f ∶ A → C. These
operations are supposed to satisfy the associative law for composition, while the appropriate
identity arrows are left- and right neutral elements. �

An arrow f ∶ A → B is an iso if it has an inverse, that is, an arrow g ∶ B → A such that
f ○ g = idB and g ○ f = idA.

Example A.2 (a) We let Set denote the category with sets as objects and functions as
arrows, with identity arrows and the composition of two arrows defined in the familiar way.

(b) The category Rel has the same objects as Set, but for the set of arrows Rel(S′, S) we
take the collections of all binary relations between S′ and S, with the identity arrows and the
composition of two arrows defined in the obvious way.

(c) The opposite category Cop of a given category C has the same objects as C, while
Cop(A,B) = C(B,A) for all objects A,B from C, and the operations on arrows are defined in
the obvious way.

Definition A.3 A functor F ∶ C → D from a category C to a category D consists of an
operation mapping objects and arrows of C to objects and arrows of D, respectively, in such
a way that Ff ∶ FA → FB if f ∶ A → B, F (idA) = idFA and F (g ○ f) = (Fg) ○ (Ff) for
all objects and arrows involved. A functor F ∶ C → Dop is sometimes called a contravariant
functor from C to D. An endofunctor on C is a functor F ∶ C→ C. �

Definition A.4 Let F,G ∶ C → D be two functors. A natural transformation α ∶ F →̇ G
consists of a family of maps αA ∶ FA → GA, indexed by the collection of objects of C, such
that Gf ○ αA = αB ○ Ff , for every arrow f ∶ A→ B in C. In a diagram:

A

f
��

FA

Ff
��

αA // GA

Gf
��

B FB αB
// GB

(68)

12S. Awodey, Category Theory (2nd edition), Oxford University Press, 2010.

A1

�

A.2 Set functors

Definition A.5 A set functor is a (covariant) endofunctor T on the category Set. �

Below we give some examples of set functors and of operations on set functors.

Example A.6 (a) Given a set C, we let KC denote the constant functor which maps every
set S to the set C, and every map f ∶ S → S′ to the identity map on C. The functor KC is
often simply denoted as C.

(b) The identity functor Id is the set functor that maps every object to itself, and similarly
maps every arrow to itself.

(c) The powerset functor P maps any set S to its power set PS, and any function f ∶ S → S′

to the direct image map Pf ∶ PS → PS′ given by Pf ∶ X ↦ {fx ∣ x ∈ X}. The finitary power
set functor Pω is defined similarly, with the difference that PωS only takes the finite subsets
of S.

(d) The contravariant powerset functor P̆ also maps a set S to its power set P̆S = PS,
but it maps a function f ∶ S → S′ to the inverse image map P̆ f ∶ PS′ → PS given by
P̆ f ∶X ′ ↦ {x ∈ S ∣ fx ∈X ′}.

(e) Define the covariant set functor N ∶ Set→ Set as the composition of the contravariant
power set with itself, N ∶= P̆ ○ P̆ . Restricting this example somewhat, we may obtain various
interesting functors. For instance, take the functor M given by MS ∶= {U ∈ NS ∣ U is upward
closed with respect to ⊆ } and, for f ∶ S → S′, M f = (N f)↾MS (it requires a short argument
to prove that this defines a functor indeed). N and M are called the neighbourhood and the
monotone neighbourhood functor, respectively.

(f) The distribution functor D assigns to a set S the collection D(S) of (discrete) proba-
bility distributions over S, i.e., the set of all maps µ ∶ S → [0,1] such that ∑s∈S µ(s) = 1. On
arrows, D acts as follows: given a map f ∶ S → S′ and a probability distribution µ ∈ D(S),
we define the map (Df)µ on S′ by putting

(Df)(µ)(s′) ∶= ∑{µ(s) ∣ s ∈ S, fs = s′}.

We leave it for the reader to verify that D is indeed a set functor. The main points to check
are (i) that (Df)(µ) is indeed a probability distribution on S′, for any µ ∈ D(S), and that
(ii) D(g ○ f) = (Dg) ○ (Df).

The finitary distribution functor Dω is defined as the restriction of D to probability
distributions that have finite support, that is, Dω(S) ∶= {µ ∈ DS ∣ ∣S ∖ µ−1(0)∣ < ω}. On
functions, Dω is defined as D .

(g) The bag functor B is defined analogously. Let N∞ be the set N ∪ {∞} of natural
numbers extended with the ‘number’ ∞. We extend the standard addition operation on N to
N∞ by putting n +∞ = ∞+ n = ∞+∞ = ∞ and defining the sum of infinitely many non-zero
numbers to be ∞ as well.

Then we define BS ∶= (N∞)S as the set of weight functions µ ∶ S → N∪{∞}. On arrows, B
acts similarly as D : given a map f ∶ S → S′ and a weight function µ on S, we define (Bf)(µ)

A2

as the weight function on S′ defined by putting

(Bf)(µ)(s′) ∶= ∑{µ(s) ∣ s ∈ S, fs = s′}.

Similarly to the finitary distribution functor, the finitary bag functor Bω is the restriction
of B to bags with finite support, i.e., BωS ∶= {µ ∶ S → N ∣ Σs∈Sµ(s) < ω}.

(h) The binary tree functor is the functor Id2 ∶= Id × Id .

There are various ways to obtain new functors from old.

Example A.7 Let F , F0 and F1 be set functors.
(a) The composition of F0 and F1, denoted as F1 ○ F0, is defined in the obvious way, e.g.

on objects we put (F1 ○ F0)(S) ∶= F1(F0(S)).
(b) The product F0×F1 of F0 and F1 is given (on objects) by (F0×F1)S ∶= F0S×F1S, while

for f ∶ S → S′, the map (F0 ×F1)f is given as ((F0 ×F1)f)(σ0, σ1) ∶= ((F0f)(σ0), (F1f)(σ1)).
(c) The co-product F0+F1 of F0 and F1 is defined in a similarly straightforward way (note

that on Set we may think of co-product as disjoint union).
(d) Given a set D, we let the D-exponent functor FD be defined as follows. Given a set S,

we put FD(S) ∶= (F (S))D, that is, the set of maps from D to FS. Given an arrow f ∶ S → S′

and a function h ∶D → FS, we simply define the arrow FDf as the function (Ff) ○ h.

Of specific interest in the context of coalgebra and modal logic is the following operation
on set functors, which generalises the relation between Kripke frames and Kripke models
to the level of arbitrary coalgebras over Set. Think of Q as an arbitrary but fixed set of
proposition letters.

Definition A.8 Given a set functor T and a set Q of proposition letters, we define TQ as the
functor TQ ∶=KPQ × T . We may refer to TQ as the T -model functor associated with Q. �

Definition A.9 The collection of Kripke polynomial set functors or KPF is defined by the
following ‘grammar’:

K ∶∶= KC ∣ Id ∣ K0 ×K1 ∣ K0 +K1 ∣ KD ∣ P ○K , (69)

where C and D are sets. The polynomial set functors are the ones obtained by the same
grammar without the powerset functor, and the finitary KPFs are obtained by the version of
(69) where P is replaced with Pω. �

Apart from the operations described in Example A.7, in the context of coalgebras there is
(at least) one other way of interest to obtain new set functors from old, namely, to take the
finitary version of a functor. For this we need to introduce some notation and terminology
concerning inclusions.

Definition A.10 Given two sets A,B with A ⊆ B, we let ιAB ∶ A → B denote the associated
inclusion map, i.e., ιAB ∶ a ↦ a; we will also write f ∶ A ↪ B to denote that f = ιAB (and so, in
particular, this means that A ⊆ B). We say that a set functor T preserves inclusions if, for
every pair of sets A,B with A ⊆ B, we have that TA ⊆ TB and TιAB = ιTATB. �

A3

Definition A.11 Given a set functor T , we define the following operation Tω on an arbitrary
set S and an arbitrary function f ∶ S → S′:

Tω(S) ∶= {(TιXS)(ξ) ∣ ξ ∈ TX for some X ⊆ω S},
Tω(f) ∶= (Tf)↾TωS .

Here we let, for X ⊆ S, the arrow ιXS ∶X ↪ S denote the inclusion map from X to S, that is:
ιXS ∶ x↦ x, for all x ∈X. �

Given the definition of Tω on functions, we may write Tf instead of Tωf without causing
confusion. Observe that we obtain TωS ⊆ TS, and that, in case T preserves inclusions, the
definition of TωS simplifies to TωS = ⋃{TX ∣ X ⊆ω S}. Whether this is the case or not, we
always have that Tω is a functor.

Proposition A.12 (1) If T is a set functor, then so is Tω.
(2) If T preserves inclusions, then so does Tω.

Proof. We only prove part (1) of the proposition, where the key property to establish is that
for any map f ∶ S → S′, the arrow Tf is well-typed; that is, σ ∈ TωS implies (Tf)σ ∈ TωS′.
To see why this is the case, take an arbitrary object σ ∈ TωS, and let X ⊆ω S and ξ ∈ TX be
such that σ = (Tι)(ξ), where we write ι = ιXS to simplify notation.

Now consider the following two diagrams, where we let ι′ denote the inclusion arrow
ι′ ∶ f[X] ↪ S′:

X

f↾X
��

� � ι // S

f
��

f[X] �
�

ι′
// S′

TX

T (f↾X)
��

// Tι // TS

Tf
��

Tf[X] //
Tι′

// TS′

Since the left diagram commutes, so does the right one. From this it follows that (Tωf)(σ) =
(Tf)(σ) = (Tf)(Tι)(ξ) = (Tι′)(Tf↾X)(ξ) and since f[X] is a finite subset of S′, with
inclusion map ι′, this suffices to show that (Tf)(σ) ∈ TωS′ indeed. qed

A4

A.3 Limits and colimits in Set

Definition A.13 The product of two objects A0 and A1 in a category C is an object A0×A1,
together with two projection arrows πi ∶ A0 × A1 → Ai, such that for any pair of arrows
fi ∶X → Ai there is a unique arrow ∶X → A0 → A1 such that the following diagram commutes:

A0 A0 ×A1
π0oo π1 // A1

X
f0

dd

u

OO

f1

:: (70)

We will often denote the arrow u as ⟨f0, f1⟩.
Dually, the co-product of two objects A0 and A1 in a category C is an object A0 + A1,

together with two insertion arrows κi ∶ Ai → A0 × A1, such that for any pair of arrows
fi ∶ Ai → X there is a unique arrow v ∶ A0 → A1 → X such that the following diagram
commutes:

A0
κ0 //

f0 $$

A0 +A1

v
��

A1
κ1oo

f1zz
X

(71)

The mediating arrow v will usually be denoted as [f0, f1]. �

Example A.14 In the category Set, we take for the product of two sets S0 and S1 their
cartesian product S0×S1 ∶= {(s0, s1) ∣ si ∈ Si}, with the obvious projection maps πi ∶ (s0, s1) ↦
si. For a concrete representation of the co-product of S0 and S1 we take the sum or disjoint
union S0 + S1 ∶= ({0} × S0) ∪ ({1} × S1), with the insertion maps κi ∶ s→ (i, s).

Definition A.15 The binary (co-)product of Definition A.13 is easily generalised to (co-
) products over an arbitrary index set I; we omit the details, but introduce the notation

∏i∈I Ai and ∐i∈I Ai for the product and co-product of the family {Ai ∣ i ∈ I}. Products and
co-products of the empty family are called final respectively initial objects of the category.
�

Definition A.16 Given two ‘parallel’ arrows fi ∶ A → B in a category C, we define an
equalizer of f0 and f1 as an arrow g ∶X → A that satisfies the equality f0 ○ g = f1 ○ g, and the
following condition. For every arrow g′ ∶ X ′ → A such that f0 ○ g′ = f1 ○ g′, there is a unique
arrow u ∶X ′ →X such that g′ = g ○ u, cf. the diagram on the left:

X
g // A

f0 //

f1

// B

X ′

u

OO

g′

>> A
f0 //

f1

// B
h //

h′

Y

v
��
Y ′

Dually, a co-equalizer of f0 and f1 is an arrow h ∶ B → Y satisfying h ○ f0 = h ○ f1 and the
universal property as indicated in the diagram to the right. �

A5

Example A.17 In the category Set, as the equalizer of two functions fi ∶ S → S′, we can
take the set eq(f0, f1) ∶= {s ∈ S ∣ f0s = f1s}, together with the inclusion map ι ∶ eq(f0, f1) ↪ S.

Definition A.18 Given two arrows fi ∶ Ai → B in a category C, a pullback of f0 and f1 is
an object P , together with two arrows pi ∶ P → Ai which satisfy f0 ○ p0 = f1 ○ p1, together
with the following condition. Given any ‘competitor’ P ′, with arrows p′i ∶ P ′ → Ai such that
f0 ○ p′0 = f1 ○ p′1, there is a unique arrow u ∶ P ′ → P such that p′i = pi ○ u, in a diagram:

A0
f0 // B

P

p0

OO

p1 // A1

f1

OO

P ′

p′0

II

u

>>

p′1

44

Dually we define the notion of a pushout of two arrows fi ∶ B → Ai. �

Example A.19 In the category Set we can define, given two functions fi ∶ Si → S, the set
pb(f0, f1) ∶= {(s0, s1) ∈ S0 × S1 ∣ f0(s0) = f1(s1)}, and show that this set, together with the
projection maps πi ∶ pb(f0, f1) → Si, is the pullback of f0 and f1.

The concepts of product, equalizer and pullback are not independent.

Fact A.20 The following are equivalent, for any category C:

(1) C has finite products and equalizers;

(2) C has pullbacks and a final object.

More in general we can define the notion of a limit or colimit of a diagram.

Definition A.21 Let J and C be categories, and assume that J is small, that is, its collection
of objects forms a set (rather than a proper class). A diagram of type J in C is a functor
D ∶ J → C. We refer to J as the index of D, and write Di rather than D(i), where i is an
arbitrary object or index in J. �

Example A.22 Here are three examples of diagrams (where we do not draw identity arrows):

A0 A1 ∣ A
f0 //

f1

// B ∣ A0
f0 // B

A1

f1

OO

A6

Definition A.23 A cone to a diagram D ∶ J→ C consists of an object C in C, together with
an arrow cj ∶ C →Di for each object i in J, such that for each arrow e ∶ i→ j in J, the following
diagram commutes:

C

ci
��

cj

Di

D(e)
// Dj

(72)

A morphism of cones γ ∶ (C, ci)i∈J → (C ′, c′i)i∈J is an arrow γ ∶ C → C ′ in C such that ci = c′i ○γ
for each index i:

C
γ //

ci

C ′

c′i
��
Di

The notion of a cone dualizes to that of a co-cone in the obvious way. We let Cone(D) and
CoCone(D) denote the emerging categories of cones and co-cones, respectively. �

Definition A.24 Let D ∶ J → C be a diagram. A limit for D is a terminal object in the
category Cone(D), and a colimit for D is an initial object in the cateogry CoCone(D). A
(co-)limit is called finite if the index category J is finite. �

Spelled out, the limit of a diagram D ∶ J → C is a cone to D, that is, an object C in
C, together with a family pi ∶ C → Di of arrows in C for which the cone condition (72)
is satisfied, and such that for any D-cone (C ′, c′i)i∈J there is a unique cone morphism u ∶
(C ′, c′i)i∈J → (C, ci)i∈J.

Example A.25 Limits for the three diagrams in Example A.22 may easily be identified with
respectively products, equalizers and pullbacks of the objects and morphisms displayed. The
respective colimits are co-products, co-equalizers and pushouts.

Limits and colimits do not always exist; if limits (for a certain type of diagram) always
exist in a category C, we say that C has limits (of that type).

Fact A.26 For any category C the following are equivalent.
(1) C has all (finite) limits;
(2) C has all (finite) equalizers and products.

Fact A.27 The category Set has all limits and colimits.

A7

A.4 Properties of set functors

A.4.1 Properties of set functors

In this section we gather some properties that all set functors have, and we define some
important properties that set functor may or may not have, and that are of interest in the
setting of coalgebra.

Proposition A.28 Let T be a set functor. Then T preserves injections and surjections.
That is, Tf ∶ TX → TY is injective (surjective) if f ∶X → Y is injective.

The following proposition states that all set functors preserve intersections.

Proposition A.29 Let T be a set functor T that preserves inclusions. Then T preserves
non-empty intersections, i.e., for any pair of sets X,Y with X ∩ Y ≠ ∅, we have

T (X ∩ Y) = TX ∩ TY. (73)

Definition A.30 Let T be a set functor.
(1) T restricts to finite sets if TS is finite whenever S is finite.
(2) T is smooth if its preserves weak pullbacks.
(3) T is standard if it is smooth and preserves inclusions. �

A.4.2 Properties of relation lifting

Recall that a set functor is called smooth if it preserves weak pullbacks, and standard if in
addition it preserves inclusions. Recall also that the concept of relation lifting was introduced
in Definition 3.6.

Fact A.31 Let T be a set functor that preserves inclusions. Then the relation lifting T
satisfies the following properties:

(1) T extends T : T (Grf) = Gr(Tf) for all functions f ∶X0 →X1,
(2) T preserves the diagonal: T∆X = ∆TX for any set X;
(3) T is monotone: R ⊆ Q implies TR ⊆ TQ for all relations R,Q ⊆X0 ×X1;
(4) T preserves converse: TR˘= (TR)̆ for all relations R ⊆X0 ×X1;
(5) T preserves domain: Dom(TR) = T (DomR), for all relations R ⊆X0 ×X1;
(6) T preserves range: Ran(TR) = T (RanR), for all relations R ⊆X0 ×X1;
(7) T is semi-functorial: TR ; TQ ⊆ T (R ;Q), for all relations R ⊆X0 ×X1,Q ⊆X1 ×X2.

If in addition T is smooth, then
(8) T preserves composition: T (R;Q) = TR;TQ, for all relations R ⊆X0×X1,Q ⊆X1×X2;
(9) T preserves restrictions:

T (R↾Y0×Y1) = (TR)↾TY0×TY1

for all relations R ⊆X0 ×X1, and all sets Y0 ⊆X0 and Y1 ⊆X1;
(10) TωR = TR ∩ (TωX0 × TωX1), for all relations R ⊆X0 ×X1.

A8

B Appendix: Basic mathematical definitions

In this second appendix we fix notation and terminology for some basic mathematical con-
cepts.

Definition B.1 Let f ∶ X → Y be a function. We let Grf ∶= {(x, y) ∈ X × Y ∣ y = fx} denote
the graph of f , and define f[X] ∶= {fx ∣ x ∈X}. �

Definition B.2 Given a relation R ⊆ X0 × X1, we denote the domain Dom(R) ⊆ X0 and
range Ran(R) ⊆X1 of R by the followings sets:

Dom(R) ∶= {x0 ∈X0 ∣ (x0, x1) ∈ R for some x1 ∈X1}
Ran(R) ∶= {x1 ∈X1 ∣ (x0, x1) ∈ R for some x0 ∈X0},

respectively, and we denote by πR0 ∶ R →X0 and πR1 ∶ R →X1 the projection maps associated
with R. Given subsets Y0 ⊆X0, Y1 ⊆X1, the restriction of R to Y0 and Y1 is given as

R↾Y0×Y1 ∶= R ∩ (Y0 × Y1).

The converse of R is defined as the relation R˘⊆X1 ×X0 given by

R˘ ∶= {(x1, x0) ∈X1 ×X0 ∣ (x0, x1) ∈ R}.

The composition of two relations R ⊆ X0 ×X1 and R′ ⊆ X1 ×X2 is denoted by R ; R′ and
defined as

R ;R′ ∶= {(x0, x2) ∈X0 ×X2 ∣ (x0, x1) ∈ R and (x1, x2) ∈ R′, for some x2 ∈X2}.

Finally, we let
∆X ∶= {(x,x) ∈X ×X ∣ x ∈X}

denote the diagonal relation on a set X. �

Definition B.3 A tree is a structure W = (W,C, r) such that W is a set of nodes; C ∶W →
PW is a map assigning a (possibly empty) collection C(t) of children to each node t ∈ W ;
and r is the root of the tree, that is, r is an element of W , such that for every node t ∈ W
there is exactly one path from the root r to t.

Here a path from s to t is a sequence t0 . . . tk (with k ≥ 0) such that s = t0, t = tk and
ti+1 ∈ C(ti) for all i, 0 ≤ i < k. Similarly, an infinite path from s is a sequence (ti)0≤i<ω such
that s = t0 and ti+1 ∈ C(ti) for all i, 0 ≤ i < k.

A leaf of W is a node t ∈W such that C(t) = ∅; nodes that are not leaves are called inner
nodes. A tree is well founded if it has no infinite paths. �

B1

