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1 Introduction

For many years modal model theory mostly consisted of modal frame theory; for
instance, the notion of modal definability was almost exclusively studied on the
level of frames. One important result in this area is a theorem by R. Goldblatt
and S.K. Thomason [3] stating that an elementary class of frames is modally
definable if and only if it has certain closure properties: it should be closed under
taking bounded morphic images, disjoint unions and generated subframes, while
its complement is closed under taking ultrafilter extensions. The first three
concepts are best understood as frame derivatives of bisimulation, while the
notion of an ultrafilter extension is often conceived as a rather esoteric trace of
the duality theory between frames and Boolean algebras with operators. Later
on we will see that taking the ultrafilter extension of a model is in fact a very
natural operation — this is of course known, but it does not seem to be well
known.

Definability results concerning classes of modal models are more recent.
In his dissertation [6], Maarten de Rijke proves a number of results that are
inspired by his ‘equation’ stating that bisimulations are to modal logic what
partial isomorphisms are to first order logic. One of the results that de Rijke
proves is a theorem concerning classes of pointed models (a pointed model is a
modal model together with a designated point): he shows that such classes are
modally definable if and only if they are closed under taking bisimilar pointed
models and ultraproducts, while their complement is closed under ultrapowers.
The key technical result that de Rijke uses here is his Bisimulation Theorem
stating that two models are modally equivalent if and only if they have bisimilar
ultrapowers.

What I want to do here is push this ‘modalizing’ of model definability results
one step further, adding the ‘equation’ that ultrafilter extensions of models are
to modal logic what ultrapowers are to first order logic. The idea is that the
ultrafilter extension of a model modally saturates it, in the same way that the
ultrapower over a free ultrafilter saturates a first order model. To be more
precise, the aim of this paper is to prove the following two results:

Theorem 1 A class of modal models is modally definable if and only if it is
closed under taking disjoint unions, surjective bisimulations and ultrafilter ex-
tensions, while its complement is closed under taking ultrafilter extensions.

Theorem 2 A class of pointed models is modally definable if and only if it is
closed under bisimulation and ultrafilter unions, while its complement is closed
under taking ultrafilter extensions.

All these notions will be defined and explained below, and the paper is
entirely self-contained.

2 Basics

We first review the background material needed to understand Theorem 1 and
its proof. None of this material in this section is original, with the exception of
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Theorem 3 (which is a straightforward consequence of known results).

Modal semantics

Although all of the results in the paper can be proved, with minor and obvi-
ous adaptations, for extended modal languages such as polymodal logic (with
more than one diamond), Priorean tense logic (which has both a forward and a
backward looking operator) or languages with polyadic operators such as arrow
logic, for reasons of notational simplicity I confine myself to the basic modal
language.

Given a fixed set of proposition letters, the set of (modal) formulas is given
by the usual inductive definition stating that (i) proposition letters are formulas,
and (ii) whenever ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ and 3ψ. We
will use the standard abbreviations; in particular, we write 2ϕ for ¬3¬ϕ.

A (modal) model for such a language is a tripleM = (W,R, V ) such that W
is some set; R is a binary relation on W ; and V is a valuation, that is, a function
mapping proposition letters to subsets of W . Given a model M = (W,R, V ),
we inductively define the notion of truth or satisfaction of a formula at a point
of the model:

M, s 
 p if s ∈ V (p),
M, s 
 ¬ϕ if M, s 6
 ϕ,

M, s 
 ϕ ∧ ψ if M, s 
 ϕ and M, s 
 ψ,

M, s 
 3ϕ if M, t 
 ϕ for some t with Rst.

We denote the set of points where a formula ϕ is true by V (ϕ). A formula ϕ is
globally true in or true throughout M, notation: M 
 ϕ, if ϕ is true at every
point of the model. Since we will be comparing the sets of formulas holding
at points in different models, we need the following definition: s in M and s′

in M′ are modally equivalent, notation: M, s
�∼ M′, s′ if for all formulas ϕ,

M, s 
 ϕ iff M′, s′ 
 ϕ.
For sets of formulas and classes we use analogous or obvious definitions and

notation. For instance, a set of formulas Σ is true at or satisfied in a point s
of a model M if every formula in Σ is true at s. Σ is satisfiable in a class of
models if there is some point in some model in the class where Σ is satisfied.

The central notion in this paper is that of a set of formulas defining a class
of models.

Definition 1 A set ∆ of modal formulas is said to define a class of models K
if any modelM belongs to K if and only if ∆ is true throughoutM. A class of
modal models is modally definable if there is some set of formulas defining it.

Theorem 1 is a structural characterization of the classes of models that are
modally definable. The main concepts that we will be using are those of a
bisimulation between two models, m-saturation, and the ultrafilter extension of
a model. These notions will be discussed now.
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Bisimulation

The notion of a bisimulation, which was introduced in Johan van Benthem’s
dissertation under the name ‘p-relation’, is of fundamental importance in the
model theory of modal logic. It also plays a crucial role in theoretical com-
puter science, as the basic relation of observational indistinguishability between
(graph representations of) processes.

Definition 2 Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two models. A
non-empty relation Z ⊆ W ×W ′ is called a bisimulation between M and M′,
notation: Z :M↔M′, if the following conditions are satisfied:

(prop) if sZs′ then s and s′ satisfy the same proposition letters,

(forth) if sZs′ and Rst then there is a t′ in M′ such that tZt′ and R′s′t′,

(back) if sZs′ and R′s′t′ then there is a t in M such that tZt′ and Rst.

If Z is a bisimulation betweenM andM′, and if wZw′ then we say that w and
w′ are bisimilar, notation: w ↔ w′ (or M, s ↔ M′, s′ if we need to make the
models explicit). We call a bisimulation Z :M↔M′ surjective if every point
in M′ belongs to the range of Z.

The following proposition states that bisimilar points are modally equiva-
lent.

Proposition 1 Let M and M′ be two modal models, and s and s′ two states
in M and M′, respectively. Then s ↔ s′ implies s �∼ s′.

Proof. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two models, and as-
sume that there is a bisimulation Z between M and M′. By an easy formula
induction one can prove that any modal formula ϕ satisfies the property that
for any two points s and s′ with sZs′ we have that M, s 
 ϕ iff M′, s 
 ϕ.
From this the Proposition is immediate. qed

This result can already be used to prove one small part of our main Theorem:

Proposition 2 Modally definable classes of models are closed under surjective
bisimulations.

Proof. Suppose that the class K is defined by the set Σ, and assume that Z is
a surjective bisimulation between the models M, belonging to K, and M′. We
will show that M′ belongs to K as well.

In order to arrive at a contradiction, suppose that this is not the case. Since
Σ defines K, this means that there is some formula σ ∈ Σ and a point s′ in M′
such that M′, s′ 6
 σ. But since Z is surjective, there must be a point s in
M such that sZs′. By Proposition 1, this implies that M, s 6
 σ. But then Σ
cannot be globally true in M, which gives the desired contradiction. qed
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One of the other closure property of modally definable classes, viz. the one
involving disjoint unions, is also proved using bisimulations. Let us first define
what disjoint unions are:

Definition 3 Let {Mi | i ∈ I} be a collection of models, sayMi = (Wi, Ri, Vi).
Assume that the universes of these models are disjoint — if this is not the case,
then we proceed with some canonically defined isomorphic copies that do have
a non-empty intersection. which the universes are disjoint. The disjoint union⊎
i∈IMi of this collection is defined as the model (W,R, V ) with W being the

union
⋃
iWi, R being the union

⋃
iRi, and V being defined by V (p) =

⋃
i Vi(p).

Proposition 3 Modally definable classes are closed under taking disjoint unions.

Proof. Obvious by the observation that for any j ∈ I, the relation {(x, x) |
x ∈Wj} is a bisimulation between Mj and

⊎
i∈IMi. qed

Before we move on to the other closure properties mentioned in Theorem 1,
we discuss another structural operation related to bisimulations, namely that
of a generated subframe.

Definition 4 LetM = (W,R, V ) be some model. A submodel ofM is a model
(W ′, R′, V ′) such that W ′ is a subset of W , and R′ and V ′ are the restrictions of
R and V to W , respectively. That is, R′ = R∩ (W ×W ) and V ′(p) = V (p)∩W
for each proposition letter p. A submodelM′ = (W ′, R′, V ′) ofM is a generated
submodel if W ′ is R-closed; that is, if a point w belongs to W ′ then each of its
successors must belong to W ′ as well.

Given a point s of W , there is a smallest generated submodel of M con-
taining s; this model is denoted by Ms. It is easy to see that the universe of
Ms consists of all points that can be reached from s via a finite R-path.

The following Proposition, which has a very simple proof, will play a (minor)
role in the proof of Theorem 1.

Proposition 4 1. For any model M and any point s in M, there is a sur-
jective bisimulation between M and Ms.

2. For any model M = (W,R, V ) there is a surjective bisimulation between⋃
s∈WMs and M.

3. Given a modally definable class K, any model M belongs to K if and only
each of its point-generated subframes belong to K.

M-saturation

It is well-known that the converse of Proposition 1 does not hold in general:
points may be modally equivalent without being bisimilar. A class of models
K has the Hennessy-Milner property if any bisimulation between models in K.
This notion was introduced by R. Goldblatt [2] (for single models) and has been
studied further by M. Hollenberg [4]. Many natural classes of models have this
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property, for instance, the class of image finite models in which every point has
a finite number of successors. A more general sufficient condition involves the
notion of m-saturation, which was introduced by K. Fine [1] under the name
modally saturated2. For a formal definition we need to fine-tune the definition
of satisfiability somewhat. Let Σ be a set of modal formulas, M = (W,R, V ) a
model, and A a subset of W . We say that Σ is satisfiable in A if there is a point
s in A where Σ is satisfied, and finitely satisfiable in A if every finite subset of
Σ is satisfiable in A.

Definition 5 We call a model m-saturated if the following holds for every state
s in the model. Suppose that a set of formulas Σ is finitely satisfiable in the
collection R[s] of successors of s; then we require that Σ is also satisfiable in
R[s].

Proposition 5 Let M and M′ be two m-saturated models, and s and s′ two
points in M and M′, respectively. Then w ↔ w′ if and only if w �∼ w′.

Proof. The left to right direction of this proposition has already been proved
in Proposition 1.

For the other direction, suppose that M and M′ are m-saturated models.
We will prove that the relation �∼ itself is a bisimulation. It is easy to see
that �∼ satisfies the propositional clause of the definition of a bisimulation, so
we concentrate on the back clause (the forth clause is of course symmetric).
Suppose that s, s′ and t′ are points in M, M′ and M′ respectively, such that
s
�∼ s′ and that Rs′t′. We have to find a successor t of s such that t �∼ t′. Define

Σ to be the set of formulas true at t′ in M′. We will show that Σ is satisfied
at some successor of s in M. This suffices to prove the Proposition, since any
x that satisfies Σ is modally equivalent to t′.

But by m-saturatedness ofM it suffices to show that Σ is finitely satisfiable
in the set of successors of s. Hence, let Σ0 be some finite subset of Σ; obviously,
M′, t′ 


∧
Σ0. But then by R′s′t′ it follows thatM′, s′ 
 3

∧
Σ0. Hence, from

s
�∼ s′ we may infer that M, s 
 3

∧
Σ0; this in its turn implies the existence

of a point t0 with Rst0 and M, t0 

∧

Σ0. But this clearly means that Σ0 is
satisfiable in t0, a successor of s, as required. qed

Ultrafilter extensions

Since not every model is m-saturated, and we have seen that m-saturated models
have some nice properties, we are looking for a way to ‘modally saturate’ models.
Now the basic defect of an unsaturated model is that states may lack certain
successors. Hence, the basic idea underlying the modal saturation of a model
will be to complete the model by adding certain points to it. To make this more
precise, we need the notion of an ultrafilter.

Let W be some set; a collection u of subsets of W is an ultrafilter over W
if it is (i) closed under taking intersections: if A ∈ u and B ∈ u, then A ∩ B
belongs to u as well, (ii) upwards closed: if A ∈ u and A ⊆ B ⊆ W , then B
belongs to u as well; and (iii) contains, for any subset A of W , either A or its
complement W \A.
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Given an element s of W , it is easy to see that the collection

πs := {A ⊆W | s ∈ A}

is an ultrafilter over W . We will refer to this set as the principal ultrafilter
associated with s; ultrafilters that are not principal are called free.

In the sequel we will frequently need to prove the existence of an ultrafilter
satisfying certain properties. We will each time do this by an appeal to the
Ultrafilter Theorem yielding that any collection E of subsets of a set W can
be extended to an ultrafilter u ⊇ E if E has the finite intersection property,
meaning that for any finite number of sets A1, . . . , An ∈ E we have that A1 ∩
· · · ∩An 6= ∅.

The modal saturation M∗ of a model M will be called its ultrafilter exten-
sion. On the level of frames, this concept stems from Goldblatt & Thomason
[3], while the name is due to Johan van Benthem (as far as I know). The uni-
verse of M∗ will consist of the collection Uf W of all ultrafilters over W — the
name extension is appropriate sinceM itself will be (isomorphic to) a submodel
of M∗ via the correspondence s ∼ πs. In order to understand the definition of
the accessibility relation R∗ and the valuation V ∗ ofM∗ it is useful to take as a
guideline our wish to prove the following equivalence (holding for every formula
ϕ):

V (ϕ) ∈ u if and only if M∗, u 
 ϕ.(1)

For, this immediately provides the definition of V ∗:

V ∗(p) := {u ∈ Uf W | V (p) ∈ u},

while it also gives a useful requirement on the definition of R∗. Namely, if R∗uv
holds then we need that for any formula ϕ, V (2ϕ) ∈ u implies V (ϕ) ∈ v. (It
is more convenient to switch to 2-notation here.) Now consider the following
operation lR on the power set P(W ) of W :

lR(A) := {x ∈W | y ∈ A for all y such that Rxy},

that is, a point x ∈ W belongs to lR(A) if each of its R-successors belongs to
A. Clearly, the operation lR corresponds to the truth definition of 2, in the
sense that V (2ϕ) = lR(V (ϕ)). In other words, the requirement that we just
mentioned can be rephrased as follows: R∗uv implies that V (ϕ) ∈ v whenever
lR(V (ϕ)) ∈ u. This inspires the following definition for R∗:

R∗ = {(u, v) ∈ Uf W ×Uf W | for all A ⊆W : lR(A) ∈ u only if A ∈ v}.

Definition 6 Let M = (W,R, V ) be some model. Then the ultrafilter exten-
sion M∗ of M is defined as the model (Uf W , R∗, V ∗).

As we have seen, the concept of an ultrafilter extension is in fact tailored
towards making the following proposition true.
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Proposition 6 Let M = (W,R, V ) be some model. Then (1) holds for any
ultrafilter u over W and any formula ϕ. Hence, for every state s of M we have
that s (in M) and πs (in M∗) are modally equivalent:

M, s
�∼M∗, πs.

Proof. The second part of the Proposition follows immediately from the first
part, which is proved by formula-induction. We will only treat the case of the
inductive step in which ϕ is of the form 3ψ.

First assume that M∗, u 
 3ψ. By definition then, there is an ultrafilter v
over W such that R∗uv andM∗, v 
 ψ. It follows from the inductive hypothesis
that V (ψ) ∈ v; but then it can be easily proved from R∗uv and the defining
properties of ultrafilters that V (3ψ) ∈ u.

The other implication requires a bit more work. Assume that V (3ψ) ∈ u;
we will show that the set

E = {V (ψ)} ∪ {A | lR(A) ∈ u}

has the finite intersection property. Since the collection {A | lR(A) ∈ u} is
closed under taking intersections, it suffices to prove that V (ϕ) ∩ A 6= ∅ for
any A ⊆ W satisfying lR(A) ∈ u. Take an arbitrary such A: it follows from
V (3ψ) ∈ u and lR(A) ∈ u that V (3ψ)∩ lR(A) 6= ∅. Let s be some point in this
intersection. From s ∈ V (3ψ) it follows that there is some point t with Rst
and t ∈ V (ψ). But then s ∈ lR(A) implies that t ∈ A, whence V (ϕ) ∩A 6= ∅.

But if E has the finite intersection property, we can extend it to some
ultrafilter v. Clearly {A | lR(A) ∈ u} ⊆ v implies that R∗uv, and from V (ψ) ∈ v
it follows by the inductive hypothesis that M∗, v 
 ψ. This shows that indeed
M∗, u 
 3ψ. qed

Proposition 6 paves the way for establishing the remaining closure properties
of modally definable classes.

Proposition 7 Modally definable classes of models and their complements are
closed under taking ultrafilter extensions.

Proof. This proof follows immediately from the following observation, which
in its turn is a consequence of the previous Proposition:

for any formula ϕ and any model M: M 
 ϕ iff M∗ 
 ϕ.(2)

For a proof of (2), first assume that M 
 ϕ; this means that V (ϕ) = W .
But W is a member of every ultrafilter over W , so it follows from Proposition 6
that M∗, u 
 ϕ for every ultrafilter u. That is, M∗ 
 ϕ.

In order to prove the other direction, we reason by contraposition: assume
that ϕ is not true throughout M. That is, there is some point s in M where
ϕ is false; but then it follows from Proposition 6 that ϕ is false at πs in M∗ as
well, so M∗ 6
 ϕ. qed

The next proposition, due to Goldblatt, states that ultrafilter extensions
can indeed be seen as modal completions or saturations of models.
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Proposition 8 For any model M, the model M∗ is m-saturated.

Proof. LetM = (W,R, V ) be a modal model. We will prove that its ultrafilter
extension M∗ = (Uf W , R∗, V ∗) is m-saturated.

Consider an ultrafilter u over W , and a set Σ that is finitely satisfiable in
the set of R∗-successors of u. We will show that the set

Q = {V (σ) | σ ∈ Σ} ∪ {A | lR(A) ∈ u}.

has the finite intersection property. For this it suffices to prove that for an
arbitrary formula σ in Σ and an arbitrary A in u we have that V (σ) ∩ A 6= ∅,
since both {V (σ) | σ ∈ Σ} and {A | lR(A) ∈ u} are closed under taking
intersections. But if σ belongs to Σ, then by definition of Σ there is an R∗-
successor w of u such that σ holds at w, or, equivalently, such that V (σ) ∈ w.
But lR(A) ∈ u implies that A ∈ w, by definition of R∗. Hence, w belongs to
the intersection of V (σ) and A, and therefore this intersection cannot be the
empty set.

But if Q has the finite intersection property, by the Ultrafilter Theorem we
can extended it to some ultrafilter v over W . For this v we have thatM∗, v 
 Σ
because V (σ) ∈ v for every σ ∈ Σ, and R∗uv because A ∈ v whenever lR(A) ∈ u.
Hence, we have satisfied Σ in some successor of u; since u and Σ were arbitrary,
this means that indeed, M∗ is m-saturated. qed

As a digression, we mention that using the above two Propositions, we can
prove the following alternative to de Rijke’s Bisimulation Theorem. Like that
result, Theorem 3 below identifies modal equivalence as ‘bisimilarity somewhere
else’, but now this ‘somewhere else’ is not situated in some ultrapowers of the
models, but in the respective ultrafilter extensions.

Theorem 3 Let M and N be two models, and s and t two points in M and
N , respectively. Then s and t are modally equivalent if and only if their corre-
sponding principal ultrafilters are bisimilar:

M, s
�∼ N , t if and only if M∗, πs ↔ N ∗, πt.

Proof. Let M, N , s and t be as in the statement of the Theorem. It follows
from Proposition 6 that

M, s
�∼ N , t iff M∗, πs

�∼ N ∗, πt,

and since both M∗ and N ∗ are m-saturated by Proposition 8, it follows from
Proposition 5 that

M∗, πs
�∼ N ∗, πt iff M∗, πs ↔ N , πt.

From these two observations the Theorem is immediate. qed
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3 Modal definability

The aim of this section is to provide a proof of Theorem 1.

Proof of Theorem 1. The easy, left to right, direction of the Theorem is
immediate by the Propositions 2, 3 and 7 above. For the other direction of the
Theorem, assume that K has all the closure properties specified in the statement
of the Theorem. We will prove that the modal theory ΘK of K, consisting of
the formulas that are true throughout each model in K, in fact defines K. That
is, we will show that for any model M:

M |= ΘK iff M belongs to K.(3)

Obviously, the right to left direction of this equation follows trivially from
the definitions. The remainder of the proof is devoted to establishing the other
direction of (3), for an increasingly wide range of models.

Case 1 We first consider the case that M = (W,R, V ) is an m-saturated
and point-generated model in which ΘK is globally true. Assume that M is
generated from the point s; that is, M = Ms. Let Σ be the set of formulas
true in M at s:

Σ = {σ | M, s 
 σ}.

We claim that Σ is satisfiable in some m-saturated model in K.
We first show that for every σ ∈ Σ there is some model Nσ in K in which σ

is satisfied. This is in fact rather easy to see, for suppose that it were not the
case for some σ0 ∈ Σ. This would imply that ¬σ0 is true throughout all models
in K, whence ¬σ0 would belong to the theory of K. But by our assumption on
M this would mean that M, s 
 ¬σ0, contradicting the fact that σ0 ∈ Σ.

Now define
N =

⊎
σ∈Σ

Nσ,

say N = (X,P,U). Obviously, N belongs to K since it is the disjoint union of
models in K. We will prove that the ultrafilter extension N ∗ of N is in fact the
model that we are looking for.

For each σ ∈ Σ, recall that U(σ) = {x ∈ X | N , x 
 σ} denotes the
extension of σ in N , and define the set E ⊆ P(X) by

E = {U(σ) | σ ∈ Σ}.

It is not difficult to prove that E does not contain the empty set and that it
is closed under intersections; for the latter, it suffices to observe that U(σ1) ∩
U(σ2) = U(σ1 ∧ σ2). But then E has the finite intersection property and thus
it follows from the Ultrafilter Theorem that E is contained in some ultrafilter
u over X. It follows from Proposition 6 and the fact that U(σ) ∈ u for each
σ ∈ Σ, that N ∗, u 
 Σ. But by Proposition 8, N ∗ is m-saturated, and by the
assumption that K is closed under taking ultrafilter extensions, N ∗ belongs to
K.
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Hence, we have found our m-saturated model N ∗ in K in which Σ is satisfi-
able, namely at the point u. It easily follows that s (in M) and u (in N ∗) are
modally equivalent; but then by the fact that bothM and N ∗ are m-saturated,
Proposition 5 guarantees the existence of a bisimulation Z between N ∗ andM
linking u and s. Hence, if we can prove that Z is in fact surjective, we are
finished, since N ∗ belongs to K and we have assumed that K is closed under
surjective bisimulations. But the surjectivity of Z is a straightforward conse-
quence of the fact that M is generated from s: a rather easy inductive proof
on the distance of a point from s will reveal that any point in M belongs to
the range of Z.

Case 2 Now we consider the case thatM is an arbitrary m-saturated model in
which ΘK is globally true. It follows from Proposition 4 that ΘK is globally true
in every point-generated submodel ofM. But also, an easy argument shows that
each such model is m-saturated. Hence, the argument of the previous, special,
case reveals that every point-generated submodel ofM belongs to K. But then
by Proposition 4 and the fact that K is closed under generated subframes and
disjoint unions we may infer that M itself also belongs to K.

Case 3 Finally, we can consider the general case in which ΘK is true through-
out some arbitrary modelM. It follows from Proposition 7 and the assumption
thatM 
 ΘK thatM∗ 
 ΘK. But we have just seen that this implies the mem-
bership of M∗ in K, since M∗ is m-saturated. And since K reflects ultrafilter
extensions, this means that M must belong to K as well. qed

4 Pointed models

In some applications, such as process theory, pointed models rather than or-
dinary models simpliciter are studied. A pointed model is simply a model M
together with a designated point r in M; formally, such a structure is denoted
as (M, r). A formula ϕ is said to hold of a pointed model M if M, r 
 ϕ; for
sets of formulas, and classes of pointed models, the obvious analogues apply. A
bisimulation between two pointed models is simply a bisimulation between the
models that links the designated points. The ultrafilter extension of a pointed
model consists of the ultrafilter extension of the model, together with the prin-
cipal ultrafilter associated with the designated point of the original model.

In the last section of this paper we consider the question which classes of
pointed models are modally definable. This problem is on the one hand simpler
and on the other hand more complex than the version for ordinary models.
Simpler because we do not need the surjectivity condition on bisimulations,
but more complex since we cannot work with simple disjoint unions. This
is because there is no obvious definition of the disjoint union of a collection
of pointed models: what would be the designated point of such a structure?
Fortunately, when searching for the appearance of disjoint unions in the proof
of Theorem 1, we find only one crucial use. This is in the construction of a
model in which a certain set Σ is satisfiable, from a collection of models in
which each finite part of Σ is satisfiable. Since this construction is essentially
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a combination of a disjoint unions and ultrafilter extensions, why not combine
these two operations into a new, more complex one?

Definition 7 Let {(Mi, si) | i ∈ I} be a set of pointed models (with disjoint
universes). An ultrafilter u over the set W =

⋃
i∈IWi is called point evening

if every cofinite subset of S = {si | i ∈ I} belongs to u (or, equivalently, if
u is a superset of some free ultrafilter over S). Any structure of the form
((
⋃
i∈IMi)

∗, u) with u a point evening ultrafilter is called an ultrafilter union
of {(Mi, si) | i ∈ I}.

Observe that by taking as the designated point of the ultrafilter union an
ultrafilter containing all cofinite subsets of the set of designated points of the
individual models, we obtain indeed some kind of amalgamation of the pointed
models. In particular, suppose that some formula σ holds of cofinitely many
pointed models of the set {(Mi, si) | i ∈ I}. Then V (ϕ) belongs to u for any
point-evening ultrafilter u (where V is the valuation of the disjoint union of
the models), so using Proposition 6 we may infer that σ holds of any ultrafilter
union of the models.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We only prove the hard direction (from right to left).
Suppose that K has the mentioned closure properties and define ∆ as the set
of formulas holding of any pointed model in K. We claim that ∆ defines K.

Following the same proof strategy as before, we take an arbitrary pointed
model (M, s) satisfying M, s 
 ∆, and prove that it belongs to K. We may
assume that M is m-saturated — as in the proof of Theorem 1, the more
general case can be reduced to this one, using the fact that the complement of
K is closed under taking ultrafilter extensions.

Let Σ = {σn | n ∈ N} be the set of formulas true in M at s, and define for
every n, ψn to be the formula σ0∧· · ·∧σn. It is easy to see that for every n, the
formula ψn holds of some pointed model (Nn, tn) in K. This means that every
formula σ ∈ Σ is true at cofinitely many of these, so by the argument given
above, we conclude that Σ holds of the ultrafilter union of the models. Since K
is closed under taking ultrafilter unions, this shows that there is an m-saturated
model N and a point t such that such that (N , t) belongs to K and Σ is true
at t in N . From the fact that both M and N are m-saturated it then follows
thatM, s↔ N , t. But then it is immediate by the closure properties of K that
(M, s) belongs to K. qed

From the proof of Theorem 1 it is seen that indeed, ultrafilter extensions
are to modal logic what ultrapowers are to first order logic, and analyzing the
proof of Theorem 2 I would conclude that ultrafilter unions play the role of
ultraproducts. Perhaps these operations can be put to other use in the model
theory of modal logic — certainly in answering the question, when a class of
models is definable by a single modal formula.
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