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Abstract

We introduce the notion of the ultrafilter union of a family of pointed modal
models over an ultrafilter of the index set and we argue that this operation is
the modal analogue of taking ultraproducts in the model theory of first-order
logic. We use this notion to give a structural characterization of the modally
definable classes of pointed models.

1 Introduction

For many years modal model theory mostly consisted of modal frame theory; for in-
stance, the notion of modal definability was almost exclusively studied on the level of
frames. One important result in this area is a theorem by R. Goldblatt and S.K. Thoma-
son (1974) stating that an elementary class of frames is modally definable if and only
if it has certain closure properties: it should be closed under taking bounded morphic
images, disjoint unions and generated subframes, while its complement must be closed
under taking ultrafilter extensions. The first three concepts are best understood as
frame derivatives of bisimulation, while the notion of an ultrafilter extension is often
conceived as a rather esoteric trace of the duality theory between frames and Boolean
algebras with operators. Later on we will see that taking the ultrafilter extension of
a model is in fact a very natural operation — this is of course known, but it does not
seem to be well known.

Definability results concerning classes of modal models are more recent. In his disser-
tation, M. de Rijke (1993) proves a number of results that are inspired by his ‘equation’
stating that bisimulations are to modal logic what partial isomorphisms are to first or-
der logic. One of the results that de Rijke proves is a theorem concerning classes of
pointed models (a pointed model is a modal model together with a designated point):
he shows that such classes are modally definable if and only if they are closed under
taking bisimilar pointed models and ultraproducts, while their complement is closed
under ultrapowers. The key technical result that de Rijke uses here is his Bisimula-
tion Theorem stating that two models are modally equivalent if and only if they have
bisimilar ultrapowers.



What I want to do here is push this ‘modalizing’ of model definability results one step
further, adding the ‘equation’ that ultrafilter extensions of models are to modal logic
what ultrapowers are to first order logic. The idea is that taking the ultrafilter extension
of a model is a way to modally saturate it, in the same way that the ultrapower over
a free ultrafilter saturates a first order model. I will also introduce a new structural
operation, viz., that of taking the ultrafilter union of a family of (pointed) models over
a given ultrafilter of the index set; this operation is in some sense the modal analogue
of forming ultraproducts. Using these operations, one can prove the following result
which is a clear analogue of the well-known (corollary of the) Keisler-Shelah Theorem in
first-order model theory characterizing the elementary and the basic elementary classes
of models.

Theorem 1 Let K be a class of pointed models.

1. K is definable by a set of modal formulas if and only if it is closed under taking
ultrafilter unions and bisimilar models, while its complement is closed under taking
ultrafilter extensions.

2. K is definable by a single modal formula if and only if both it and its complement
are closed under taking ultrafilter unions and bisimilar models.

One can state analogous results for ordinary modal models (i.e., models without a
designated point), but for reasons of space limitations I will not do so here.

2 Basics

We briefly review the background material needed to understand Theorem 1.

Modal semantics We work in the basic modal language having one diamond 3.
Given a fixed set of proposition letters, the set of (modal) formulas is given by the
usual inductive definition stating that (i) proposition letters are formulas, and (ii)
whenever ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ and 3ψ. We will use the
standard abbreviations; in particular, we write 2ϕ for ¬3¬ϕ.

A (modal) model for such a language is a tripleM = (W,R, V ) such that W is some
set; R is a binary relation on W ; and V is a valuation, that is, a function mapping
proposition letters to subsets of W . Given a model M = (W,R, V ), we inductively
define the notion of truth or satisfaction of a formula at a point of the model:

M, s  p if s ∈ V (p),

M, s  ¬ϕ if M, s 6 ϕ,
M, s  ϕ ∧ ψ if M, s  ϕ and M, s  ψ,

M, s  3ϕ if M, t  ϕ for some t with Rst.
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We denote the set of points where a formula ϕ is true by V (ϕ). Given two points s
and s′ in modelsM andM′, respectively, we say that s and s′ are modally equivalent,
notation: M, s

�∼M′, s′, if for all formulas ϕ, M, s  ϕ iff M′, s′  ϕ.
In some applications, such as process theory, pointed models rather than plain models

are studied. A pointed model is simply a model M together with a designated point
r in M; formally, such a structure is denoted as (M, r). A formula ϕ is said to hold
of a pointed model M if M, r  ϕ; a set of formulas holds of a pointed model if each
formula of the set holds of it. Two pointed models are called modally equivalent if
M, s

�∼M′, s′. A set ∆ of modal formulas is said to define a class of pointed models K
if any pointed model belongs to K if and only if ∆ holds of it. In case ∆ is a singleton
{δ} we will say that δ rather than {δ} defines K. A class of pointed models is modally
definable if there is some set of formulas defining it.

Bisimulations We first define the notion of a bisimulation between two models.
Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two models. A non-empty relation
Z ⊆ W ×W ′ is called a bisimulation between M and M′, notation: Z :M↔M′, if
the following conditions are satisfied:

(prop) if sZs′ then s and s′ satisfy the same proposition letters,

(forth) if sZs′ and Rst then there is a t′ in M′ such that tZt′ and R′s′t′,

(back) if sZs′ and R′s′t′ then there is a t in M such that tZt′ and Rst.

Truth of modal formulas is invariant under bisimulations, that is:

Proposition 2 Let Z be a bisimulation between the models M and M′. Then Z ⊆ �∼.

We say that two pointed models (M, s) and (M′, s′) are bisimilar if there is a bisim-
ulation linking the respective designated points, notation: (M, s) ↔ (M′, s′). A class
K of pointed models is closed under bisimilar models if every pointed model that is
bisimilar to a model in K belongs to K itself. It is immediate from Proposition 2 that
modally definable classes are closed under bisimilar models.

Disjoint unions and generated submodels For ordinary models we can define
the notion of the disjoint union of a family of models. Let {Mi | i ∈ I} be a collection
of models, say Mi = (Wi, Ri, Vi). Assume that the universes of these models are
pairwise disjoint — if this is not the case, then we proceed with some canonically
defined isomorphic copies that do have this property. The disjoint union

⊎
i∈IMi of

this collection is defined as the model (W,R, V ) with W =
⋃
iWi, R =

⋃
iRi, and V

being defined by V (p) =
⋃
i Vi(p).

It is easy to see that the identity relation between one of the models Mi and the
disjoint union

⊎
i∈IMi is in fact a bisimulation. From this the following proposition is

immediate.
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Proposition 3 Let {Mi | i ∈ I} be a collection of models. Then for each i ∈ I and

each point si in Mi we have that (Mi, s)
�∼ (
⊎
i∈IMi, si).

For pointed models the notion of disjoint union seems to be inappropriate since there
is no natural way to single out a designated point.

A model M′ = (W ′, R′, V ′) is a submodel of M = (W,R, V ) if W ′ ⊆ W , while R′

and V ′ are the restrictions of R and V , respectively, to W ′. It is a generated submodel
if W ′ satisfies in addition that R[w′] ⊆ W ′ for all w′ ∈ W ′, that is, W ′ is closed under
taking R-successors. It is easy to see that the identity between a generated submodel
and the big model is in fact a bisimulation. From this the following is immediate.

Proposition 4 Let M′ be a generated submodel of the model M, and let s′ be a point
in M′. Then M′, s′

�∼M, s′.

Ultrafilter extensions The ultrafilter extension of a modal model can be seen as a
kind of modal completion or saturation of it. In order to define this notion, we assume
familiarity with the concept of an ultrafilter over a set.

Given a model M = (W,R, V ), its ultrafilter extension M∗ will be defined as the
model (Uf W , R

∗, V ∗). In this definition, Uf W is the set of ultrafilters over W , V ∗ is
given by V ∗(p) = {u ∈ Uf W | V (p) ∈ u}, and R∗ is defined by putting R∗uv iff
mR(X) ∈ u for all X ∈ v. Here the operation mR on the power set of W is given as
mR(X) = {s ∈ W | Rst for some t ∈ W}.

The ultrafilter extension of a pointed model (M, s) is the pointed model (M∗, πs),
where πs denotes the principal ultrafilter generated by s. Since we have Rst iff R∗πsπt,
we can indeed consider M∗ as an extension of (an isomorphic copy of) M. As a
corollary of the following property, modally definable classes of pointed models are
invariant under taking ultrafilter extensions.

Proposition 5 Let M be a model. Then

1. for any modal formula ϕ and any ultrafilter u, V (ϕ) ∈ u iff M∗, u  ϕ;

2. hence, M, s
�∼M∗, πs for any state s in M.

3 Ultrafilter unions

In order to give a structural characterization of the modally definable classes of pointed
models we need an operation that amalgamates a family of pointed modal models, in
the same way that ultraproducts take together a collection of first-order structures.

For a precise definition, we need some auxiliary notions. Fix an index set I and a
family {(Mi, si) | i ∈ I} of pointed models. Write Mi = (Wi, Ri, Vi) and let M =
(W,R, V ) be the disjoint union of these models; in order not to clutter up notation we
assume once more that the universes of the models are mutually disjoint.

Also fix an ultrafilter F over I. A subset A of the disjoint union W =
⊎
iWi is

called F -compatible if the set of indices i for which A ∩Wi is non-empty belongs to
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F . An ultrafilter u over the set W is called F -compatible if each of its elements is an
F -compatible subset of W . As an example of an F -compatible ultrafilter, let s̄ = (si)i∈I
be the sequence of designated points, and consider the set

πF (s̄) = {A ⊆ W | {i ∈ I | si ∈ A} ∈ F}.

The ultrafilter union of {(Mi, si) | i ∈ I} over F is defined as the pair

(
⊎

F
Mi, πF (s̄)).

Here
⊎
FMi, the ultrafilter union of the models without designated points, is defined

as the structure (WF , RF , VF ), where WF denotes the set of F -compatible ultrafilters
over W and RF and VF denote the restriction of R∗ and V ∗ to WF respectively.

Note that if F is the principal ultrafilter over I generated by the index i, then the
ultrafilter union of the family {(Mi, si) | i ∈ I} over F is isomorphic to the ultrafilter
extension of Mi. It is also fairly obvious that any ultrafilter union of a collection of
models is a submodel of the ultrafilter extension of the disjoint union of the collection.
In fact, it is a generated submodel, a fact of which we will make good use.

Proposition 6 Let {Mi | i ∈ I} be a family of models, and let F be an ultrafilter over
I. Then

⊎
FMi is a generated submodel of (

⊎
i∈IMi)

∗.

Proof. Obviously,
⊎
FMi is a submodel of (

⊎
Mi)

∗. In order to prove that it is a
generated submodel, suppose that u is an F -compatible ultrafilter and that R∗uv. We
have to show that v is F -compatible as well, so take an arbitrary element A of v and
assume for contradiction that A is not F -compatible. Write Ai = A ∩Wi (where Wi

is the universe of Mi. F -incompatibility of A means that the set {i ∈ I | Ai 6= ∅}
does not belong to F . Since F is an ultrafilter this implies that {i ∈ I | Ai = ∅} ∈ F .
From the fact that for any relation R we have mR(∅) = ∅ and the fact that ultrafilters
are upwards closed we may conclude that {i ∈ I | mRi(Ai) = ∅} ∈ F , so {i ∈ I |
mRi(Ai) 6= ∅} 6∈ F .

However, it is easy to see that mR(A)∩Wi = mRi(Ai), so we have proved that mR(A)
is not F -compatible. But mR(A) belongs to u since R∗uv and A ∈ v. Thus we have
proved that u is not an F -compatible ultrafilter which gives the desired contradiction.
qed

The following proposition can be seen as the modal analogue of  Los’ Lemma.

Proposition 7 Let {Mi | i ∈ I} be a family of models, and let F be an ultrafilter over
I. Furthermore, let ϕ be a modal formula and let {si | i ∈ I} be a collection of states
such that {i ∈ I | Mi, si  ϕ} belongs to F . Then

⊎
FMi, πF (s̄)  ϕ.

Proof. It follows from Proposition 3 that the set {i ∈|
⊎
iMi, si  ϕ} belongs to F , so

(with U denoting the valuation on the disjoint union) we can write this as {i ∈ I | si ∈
U(ϕ)} ∈ F . From the definition of πF (s̄) it then follows that U(ϕ) belongs to πF (s̄).
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Now Proposition 5 yields that ϕ holds at πF (s̄) in the ultrafilter extension (
⊎
i∈IMi)

∗

of the disjoint union. But the ultrafilter union over F is a generated submodel of this
model by Proposition 6, so since πF (s̄) is a point of this generated submodel, we may
use Proposition 4 to conclude that indeed

⊎
FMi, πF (s̄)  ϕ. qed

4 M-saturation

It is well-known that the converse of Proposition 2 does not hold in general: points may
be modally equivalent without being bisimilar. A class of models K has the Hennessy-
Milner property if any bisimulation between models in K. This notion was introduced
by R. Goldblatt (1995) (for single models). Many natural classes of models have this
property, for instance, the class of image finite models in which every point has a
finite number of successors. A more general sufficient condition involves the notion
of m-saturation, which was introduced by K. Fine (1975) under the name ‘modally
saturated2’.

Let Σ be a set of modal formulas,M = (W,R, V ) a model, and A a subset of W . We
say that Σ is satisfiable in A if there is a point s in A where Σ is satisfied, and finitely
satisfiable in A if every finite subset of Σ is satisfiable in A. We call M m-saturated
if the following holds for every state s in the model. Suppose that a set of formulas Σ
is finitely satisfiable in the collection R[s] of successors of s; then we require that Σ is
also satisfiable in R[s]. A pointed model (M, s) is m-saturated if M is m-saturated.

Proposition 8 Let M and M′ be two m-saturated models, and s and s′ two points in
M and M′, respectively. Then s↔ s′ if and only if s

�∼ s′.

The reason why we call the ultrafilter extension M∗ the modal saturation of M is
that ultrafilter extensions are m-saturated. This result can be generalized to ultrafilter
unions.

Proposition 9 Let {(Mi, si) | i ∈ I} be a family of models, and let F be an ultrafilter
over I. Then the ultrafilter union (

⊎
FMi, πF (s̄)) is m-saturated. In particular, the

ultrafilter extension M∗ of any model M is m-saturated.

Proof. The fact that ultrafilter extensions are m-saturated, is due to Goldblatt (1995).
The easiest way to prove that ultrafilter unions are m-saturated is then by observing
that any generated submodel of an m-saturated model is itself m-saturated, and using
Proposition 6. qed

5 Proof of Theorem 1

In this section we will prove Theorem 1. For both parts, the easy direction, that is, the
one from left to right, can easily be derived from the Propositions 2, 5 and 7.

For the other direction of part 1, assume that K has all the closure properties specified
in the statement of the Theorem. We will prove that the modal theory ΘK of K,
consisting of the formulas that hold of each pointed model in K, in fact defines K. That
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is, we will show that for any pointed model (M, s):

(M, s)  ΘK iff (M, s) belongs to K.(1)

Obviously, the right to left direction of this equation follows trivially from the defi-
nition of ΘK. The remainder of the proof is devoted to establishing the other direction
of (1). Hence, suppose that (M, s) is a pointed model such that M, s  ΘK; write
M = (M,R, V ).

Let Σ be the set of formulas true in M at s:

Σ = {σ | M, s  σ}.

We will show that Σ is satisfiable in some m-saturated model in K. First we observe
that for every σ ∈ Σ there is some pointed model Nσ in K of which σ holds. This is
in fact rather easy to see, for if it were not the case for some σ0 ∈ Σ, then ¬σ0 would
be true at the designated point of each model in K and hence would belong to ΘK; but
then by our assumption on (M, s) this would mean thatM, s  ¬σ0, contradicting the
fact that σ0 ∈ Σ.

Assume that Σ is enumerated as {σi | i ∈ ω}, and define ψn as the formula σ0∧. . .∧σn,
for any n ∈ ω. Note that every ψi belongs to Σ; hence, there is a family of pointed
models {(Mi, ti) | i ∈ ω} in K such that each ψi holds at ti inMi. Now let F be some
non-principal ultrafilter over ω; define

N :=
⊎

F
Ni, t := πF (t̄).

Obviously, (N , t) belongs to K since it is an ultrafilter union of models in K.
We will now prove that Σ holds of (N , t). Fix some n ∈ ω; we will show that
N , t  σn. It follows from the definition of the ψ formulas and our assumption that
Ni, ti  ψi for each i, that Ni, ti  σn holds for co-finitely many i. Hence, the set
{i ∈ I | Ni, ti  σn} belongs to F since F is non-principal. But then it is immediate
from Proposition 7 that N , t  σn; since this applies to all n we may conclude that
N , t  Σ.

From N , t  Σ we may infer that (M, s)
�∼ (N , t): let ϕ be an arbitrary formula. If

M, s  ϕ, then ϕ ∈ Σ and thus, N , t  ϕ. If, on the other hand, M, s 6 ϕ, then the
negation of ϕ belongs to Σ, and thus, N , t  ¬ϕ whence N , t 6 ϕ.

But now we are almost finished: since both M and N are m-saturated, it follows
from Proposition 8 that the relation

�∼ is a bisimulation between N andM which links
t to s. From the closure of K under bisimulation we may then deduce that indeed, the
pointed model (M, s) belongs to K. This proves the first part of the theorem.

In order to prove the second part of Theorem 1, assume that K is a class of pointed
models such that both K and its complement K are closed under bisimulations and
ultrafilter unions. We will show that K is definable by a single modal formula.
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To start with, it follows from the first part of the theorem that K is definable by a set
of modal formulas. Assume for contradiction that K is not definable by a single formula.
Then we may assume that there is a defining set Σ for K which can be enumerated as
a collection Σ = {σi | i ∈ ω} of ever stronger axioms in the sense that σi → σj is a
modal validity if and only if i is strictly larger than j. From the fact that no σi → σi+1

is a modal validity it follows that there is a family of pointed models {(Ni, si) | i ∈ I}
such that for each i we have that σi ∧ ¬σi+1 holds at si in Ni. Note that this means
that each Ni belongs to K.

Now let i be an arbitrary index. From the fact that σj → σi is a modal validity for all
j > i we may derive that σi holds of co-finitely many of the pointed models. Reasoning
in a similar way as before we can show that if we take a non-principal ultrafilter F over
I, we will find that σi will hold of the ultrafilter union (N , t) = (

⊎
F gNi, πF (s̄)). Since

i was arbitrary this means that in fact N , t  Σ, whence N belongs to K. This gives
the desired contradiction to the fact that the class K should be closed under taking
ultrafilter unions — these results have a somewhat more involved formulation.

6 Conclusion

The construction of taking ultrafilter unions seems to be a natural way of amalgamating
a family of (pointed) modal models. In this paper, I used it to give a purely ‘modal’
structural characterization of the classes of pointed modal models that are modally
definable. I have similar results for the modally definable classes of ordinary modal
models, but these have a slightly more involved formulation. In the future I hope to
put this construction to further use, for instance to prove modal interpolation results.

Generalizing these characterization results to extended modal formalisms like multi-
modal logic, tense logic or modal logic with polyadic operators are straightforward. It
seems to be much harder to find a structural characterization of the classes of (pointed)
modal models that can be defined using (sets of) formula(s) of dynamic logic; it would
be nice if some version of the ultrafilter union construction could be of help here.
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