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Abstract. We give a characterization of the simple, and of the subdirectly irreducible

boolean algebras with operators (including modal algebras), in terms of the dual descrip-

tive frame, or, topological relational structure. These characterizations involve a special

binary topo-reachability relation on the dual structure; we call a point u a topo-root of

the dual structure if every ultrafilter is topo-reachable from u. We prove that a boolean

algebra with operators is simple iff every point in the dual structure is a topo-root; and

that it is subdirectly irreducible iff the collection of topo-roots is open and non-empty in

the Stone topology on the dual structure iff this collection has non-empty interior in that

topology.
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Introduction

The duality theory between modal algebras, or more generally, boolean alge-
bras with operators on the one hand, and (topological) frames or relational
structures on the other, has been well developed, see for instance Sambin &
Vaccaro [5] or Goldblatt [2]. Dualities allow the transfer, from one field
to the other, of concepts, techniques and results alike. For instance, when it
comes to the fundamental algebraic concept of subdirect irreducibility, there
is a nice connection with the frame theoretical notion of rootedness. With-
out too much difficulty one can show that a Kripke frame is rooted iff its
complex algebra is subdirectly irreducible (s.i.).

Unfortunately, there seems to be no such nice connection when we look
at arbitrary (that is, not necessarily complex) algebras: Sambin [4] gives
examples of subdirectly irreducible modal algebras of which the dual ultra-
filter frame is not rooted, and conversely, of non-s.i. modal algebras with a
rooted dual frame. In the same paper, Sambin brings the Stone topology of
the dual structure into the picture, showing that for any modal algebra A:

if IA∗ has non-empty interior, then A is s.i. (i)

Here IA∗ denotes the collection of roots, or initial points, of the dual frame
A∗. Sambin also proves that for K4-algebras the converse of (i) holds as well.
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In the closely related field of intuitionistic logic, similar characterizations of
s.i. Heyting algebras in terms of their dual structures had been known for
some time, cf. Esakia [1]. It is straightforward to verify that the converse
of (i) goes through for all ω-transitive logics, but the general picture, unfor-
tunately, is not so nice: Kracht [3] provides an example of a subdirectly
irreducible (in fact: simple) algebra A with an empty set of roots. Kracht’s
result indicates that in the general case there is no simple characterization
of s.i. algebras in terms of the roots of their dual frames.

In this paper we will show that a fairly transparent characterization
of s.i. algebras is possible once we consider a new kind of relation in the
dual structure. Given a modal algebra A = (A,∧,−,⊥,3), we define the
following topo-reachability relation R? on ultrafilters:

R?uv iff for all a ∈ v there is some n ∈ ω such that 3na ∈ u. (ii)

One may give various alternative characterizations of R?; for instance, it is
not hard to prove that R?uv iff v belongs to the topological closure of the
subframe generated from u. This may explain the name ‘topo-reachability’,
and also why we call an ultrafilter a topo-root of A∗ if every ultrafilter is
topo-reachable from it.

Our characterization of subdirect irreducibility will be in terms of the
collection TA∗ of topo-roots of the dual frame associated with an algebra
A. In fact, we have two distinct dual characterizations, and we believe that
the equivalence between these is of some independent interest. For modal
algebras, we can formulate the main result of this paper, Theorem 2 below,
as follows:

A is s.i. iff TA∗ is open and non-empty
iff TA∗ has non-empty interior.

(iii)

For readers that prefer a formulation in terms of descriptive general frames,
the following is a reformulation of the second characterization in (iii):

A is s.i. iff there is a non-empty admissible set of topo-roots in A∗.

In a similar way, we can characterize simplicity. For a modal algebra A,
Theorem 1 below states that A is simple iff each of its ultrafilters is a topo-
root of the dual structure:

A is simple iff TA∗ = A∗. (iv)

Our results will be formulated in the more general setting of boolean
algebras with operators; for this purpose we will give a definition of the rela-
tion R? which generalizes (ii). Before going into the details, let us mention
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that a number of well known dual characterizations of subdirect irreducibil-
ity for special algebras, such as for ω-transitive ones, can easily be seen as
special cases of our results.

Acknowledgements Thanks are due to Nick Bezhanishvili for valuable
discussions, and to Johan van Benthem and an anonymous referee for a
number of helpful comments.

1. Preliminaries

Notation and terminology

We assume that the reader is familiar with basic concepts from universal
algebra, with boolean algebras with operators, or baos for short, with frames
and Kripke frames, and in particular, with the duality between the categories
of baos and algebraic homomorphisms on the one hand, and descriptive
frames with bounded morphisms on the other hand. Nevertheless, we review
some of the terminology and notation.

First, let R be a binary relation on a set S. Inductively we define R0 =
{(s, s) | s ∈ S} and Rn+1 = R ◦ Rn. The reflexive-transitive closure of R is
denoted as Rω. For a point s, define R[s] = {t ∈ S | Rst}. For a subset T of
S, define [R]T = {s ∈ S | R[s] ⊆ T} and 〈R〉T = {s ∈ S | Rst for some t ∈
T}.

A boolean algebras with operators is denoted as A = (BA, (fi)i∈I) where
BA is the boolean reduct of the algebra and the fi are the operators; unary
operators are called diamonds. We speak of modal algebras in the case that
there is exactly one operator, and this operator is a diamond; such algebras
are denoted A = (BA,3). Inductively we define the notion of a compound
diamond ; first, given an n-ary operator ∇, define (for 1 ≤ k ≤ n) its k-
th induced diamond as the operation λx.∇(>, . . . ,>, x,>, . . . ,>) : A → A;
(that is, all arguments are > except for the i-th). The collection CD(A) of
compound diamonds is then defined as the smallest collection of operations
containing the identity map, such that if �1 and �2 are in CD(A), and ♦ is an
induced diamond, then λx.♦�1x and λx.�1x∨�2x are compound diamonds.
(For instance, in the case of a modal algebra (B,3), the compound diamonds
are the maps of the form λx.

∨
k∈K 3kx for some finite K ⊆ ω.) It is easy

to see that compound diamonds are indeed diamonds, i.e., unary operations
preserving all finite joins. The boolean dual map of a compound diamond
� is denoted by �; that is, �a = −�−a.
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Given a bao A = (BA, (fi)i∈I), the dual structure of A is denoted as
A∗ = (A∗, (Ri)i∈I , Â). Here A∗ is the set of ultrafilters of A (that is, of the
boolean reduct BA of A), the relations Ri are defined as usual, and Â is the
image of the domain A of A under the Stone isomorphism a 7→ â := {u ∈
A∗ | a ∈ u}. We may use the notation A+ when referring to the underlying
Kripke frame (A∗, (Ri)i∈I) of A∗; when it comes to concepts involving the
accessibility relations we may be sloppy concerning the difference between
A+ and A∗. The set Â is the set of clopens of, and thus forms a basis for,
the Stone topology, and we will use standard facts concerning this topology
without warning. A subset X ⊆ A∗ is said to have non-empty interior if
it has a non-empty open subset; in our context this is equivalent to saying
that X contains a non-empty clopen/admissible subset. The closure of a set
X ⊆ A∗ is denoted as X; recall that X =

⋂{â | a ∈ A,X ⊆ â}.
Given a frame S = (S, (Ri)i∈I), we define the one step reachability rela-

tion RS as follows:

RSst iff for some i ∈ I there are t1, . . . , tn such that
Rist1 . . . tn and t occurs among t1, . . . , tn.

When no confusion arises we will write R instead of RS. The reflexive
transitive closure Rω

S
of RS will be called the reachability relation of S. A

subset X ⊆ S is hereditary if s ∈ X and RSst imply t ∈ X; obviously, X ⊆ S
is hereditary iff Rω

S
[s] ⊆ X for all s ∈ X. Notice that the hereditary subsets

of S correspond to the generated subframes of S. An point s is called a
root of S if every point is reachable from s; that is, if Rω

S
[u] = S. Given an

algebra A, the collection of roots of the dual structure is denoted as IA∗ .
Without warning we will also employ the correspondence between

boolean filters of A and closed subsets of A∗, and the correspondence be-
tween (i) congruences on A, (ii) closed, hereditary subsets of A∗ and (iii)
modal filters on A (that is, boolean filters which are closed under induced
boxes).

It is well known that subdirect irreducibility of a bao can be character-
ized nicely using the notion of an opremum introduced by Rautenberg. An
opremum of a bao A = (BA, (fi)i∈I) is an element o ∈ A such that o < >
while for all a ∈ A such that a < > we can find a compound diamond �
such that o ≥ �a. The characterization of s.i. baos in terms of oprema is
given by the fact below (cf. Kracht [3] or Sambin [4] for proofs and further
information).

Fact 1.1. The following are equivalent for any boolean algebra with operators
A:
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1. A is subdirectly irreducible;

2. A has an opremum;

3. A∗ has a largest nontrivial, closed and hereditary subset.

Topo-reachability

We can pretend that each compound diamond � of a bao A comes with its
own accessibility relation R� ⊆ A∗ × A∗ given by R�uv iff �a ∈ u for all
a ∈ v. It is then easy to verify that the reachability relation Rω is the union
of the accessibility relations of all compound diamonds:

Rω =
⋃

�∈CD(A)

R�.

In other words, Rω can be characterized as follows:

Rωuv iff there is a compound diamond � with �a ∈ u for all a ∈ v. (v)

Our definition of the topo-reachability relation is obtained by swapping the
universal and the existential quantifier in (v).

Definition 1.2. Given a boolean algebra with operators A, define the topo-
reachability relation R? ⊆ A∗ × A∗ as follows:

R?uv iff for all a ∈ v there is a compound diamond � with �a ∈ u. (vi)

We let TA∗ denote the set of topo-roots of A∗; that is, the collection of those
ultrafilters u such that R?[u] = A∗.

We leave it for the reader to verify that for a modal algebra A = (BA,3),
the above definition boils down to

R?uv iff for all a ∈ v there is some n ∈ ω such that 3na ∈ u. (ii)

Example 1.3. It is instructive to have a somewhat closer look at Sambin’s
example of an s.i. algebra of which the dual Kripke frame is not rooted. First
consider the frame Z = (Z,N,C) with Z the set of integers, N the neighbour
relation (sNt iff s = t + 1 or s = t − 1), and C the collection of finite and
cofinite subsets of Z. We leave it to the reader to verify that the algebra
C = (C,∪,−, ∅, 〈N〉) is subdirectly irreducible (a proof can be found in
Sambin [4]). The dual structure C+, based on the collection C∗ of ultrafilters
of C, consists of (an isomorphic copy of) the structure (Z,N) together with
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a single ultrafilter ∞ containing all and only the cofinite subsets of Z. This
point ∞ is reflexive, but not related to any other point, and hence, C+ has
no roots at all.

On the other hand, using (ii) the reader can easily verify that every
principal ultrafilter of C is a topo-root of C∗.

The following proposition shows that the relation R? has some interesting
properties. In particular, it follows from item 5 below that for any ultrafilter
u, the set R?[u] is the topological closure of the subframe generated by u.

Proposition 1.4. Let A be a boolean algebra with operators. The operation
R? satisfies the following properties:

1. R? is transitive;

2. Rω ⊆ R?;

3. R?[u] is hereditary for all ultrafilters u;

4. R?[u] is closed for all ultrafilters u;

5. R?[u] = Rω[u] for all ultrafilters u.

Proof. The first two items are almost immediate from the definitions and
(v); taken together, they readily imply the third one. Concerning item 4,
we leave it for the reader to verify that

R?[u] =
⋂

{â | �a ∈ u for all � ∈ CD(A)}. (vii)

Finally, in order to prove part 5 of the Proposition it suffices to show that
R?[u] ⊆ Rω[u], since the opposite inclusion is immediate from the items 2
and 4.

Consider an arbitrary element a ∈ A such that Rω[u] ⊆ â. We claim
that R?[u] ⊆ â. Suppose for contradiction that �a 6∈ u for some compound
diamond �. Hence, we obtain �−a ∈ u, so we can find some v ∈ R�[u] with
−a ∈ v. Thus we find on the one hand, by definition of Rω, that Rωuv while
on the other hand −a ∈ v implies a 6∈ v and hence, v 6∈ â. Taking these
facts together, we obtain the desired contradiction with our assumption that
Rω[u] ⊆ â. Hence, we may assume that �a belongs to u for all compound
diamonds �, so, by (vii) we obtain R?[u] ⊆ â. This shows that

R?[u] ⊆
⋂

{â | Rω[u] ⊆ â} = Rω[u],

since a was arbitrary.
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Recall that, for a bao A, the map [R?] : P(A∗) → P(A∗) is given by
[R?]U = {s ∈ A∗ | R?[s] ⊆ U}. This map has some nice properties that we
list for future use.

Proposition 1.5. Let A be a boolean algebra with operators. For any a ∈ A,
we have that

[R?]â =
⋂

�∈CD(A)

�̂a. (viii)

Hence, [R?]C is closed for an arbitrary closed set C ⊆ A∗.

Proof. Fix an element a of the bao A. First assume that u is an ultrafilter
that belongs to �̂a for all compound diamonds �. That is, we have �a ∈ u
for all �. Now consider an arbitrary ultrafilter v such that R?uv. By (vii)
we find that a ∈ v, whence v ∈ â. Since v was arbitrary, this gives that
u ∈ [R?]â, and thus shows that [R?]â ⊇ ⋂{�̂a | � ∈ CD(A)}.

For the other inclusion, suppose that u does not belong to the right hand
side of (viii). Then for some compound diamond � we have that �a 6∈ u;
that is, �−a ∈ u. Thus we can find an ultrafilter v such that R�uv and
−a ∈ v. Clearly then, by Proposition 1.4.2 we have that R?uv and v 6∈ â,
revealing that u does not belong to the left hand side of (viii) either.

The second part of the Proposition is immediate from the first part and
the observation that any map [R] distributes over arbitrary intersections.

2. Results

Our first main result characterizes the simple algebras as the ones of which
the dual frame is topo-generated from each point:

Theorem 1. Let A be a boolean algebra with operators. Then A is simple if
and only if TA∗ = A∗.

Proof. For the direction from left to right, we leave it for the reader to
verify that if s 6∈ TA∗ , then R?[s] 6= A∗ corresponds to a non-trivial modal
filter of (A∗)∗ ∼= A. This shows that if not every ultrafilter of A is a topo-root
of A∗, then A is not simple.

For the other direction, suppose that A is not simple. Then A∗ has a
closed, hereditary subset B 6= A∗. Take an arbitrary point s ∈ B. Then
Rω[s] ⊆ B since B is hereditary, whence R?[s] = Rω[s] ⊆ B since B is
closed. It follows that R?[s] 6= A∗, so s is not a topo-root of A∗.

Our second result gives a similar characterization of the subdirectly ir-
reducible algebras.
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Theorem 2. Let A be a boolean algebra with operators. Then the following
are equivalent:

1. A is subdirectly irreducible;

2. TA∗ is open and non-empty;

3. TA∗ has non-empty interior;

4. there is a clopen/admissible set of topo-roots in A∗.

Proof. The equivalence of (3) and (4) is standard, and the implication (2
⇒ 3) is trivial; hence, it is left to prove that the first two statements are
equivalent, and that the third one implies the second. In this proof we let
KA∗ = A∗ \ TA∗ denote the complement of TA∗ .

For the implication (1 ⇒ 2), assume that A is s.i., then by Fact 1.1 we
may assume that A has an opremum c.

We will first prove that A+ is topo-rooted. Take an arbitrary point
u ∈ KA∗ ; that is, we have that R?[u] 6= A∗, and since R?[u] is closed, there
must be a clopen â 6= A∗ with R?[u] ⊆ â. Then from a 6= > and the
properties of the opremum c it follows that �a ≤ c for some compound
modality �. But as R?[u] ⊆ â it holds that u ∈ [R?]â, so using (viii) we
find that u ∈ �̂a. Thus by �̂a ⊆ ĉ we obtain that u ∈ ĉ. Since u was an
arbitrary element of KA∗ , this shows that

KA∗ ⊆ ĉ. (ix)

But c is an opremum, and hence, smaller than the top element of A. This
means that KA∗ is a proper subset of A∗, and thus its complement TA∗ is
non-empty.

Our second aim is to prove that TA∗ is open, or, equivalently, that KA∗
is closed. We will first show that

KA∗ = [R?]KA∗ . (x)

By reflexivity of R? it is immediate that [R?]KA∗ ⊆ KA∗ . For the other
inclusion, suppose that u belongs to KA∗ , and take an arbitrary ultrafilter
v such that R?uv. Suppose for contradiction that v is a topo-root of A∗,
that is, suppose that every ultrafilter is R?-reachable from v. From this and
the results in Proposition 1.4 it would follow immediately that u is a topo-
root of A∗ as well, which contradicts the fact that u ∈ KA∗ . It follows that
no R?-successor of u can be a topo-root of u; in other words, we see that
R?[u] ⊆ KA∗ , and thus that u ∈ [R?]KA∗ . This proves (x).
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Now we claim that in fact,

KA∗ = [R?]ĉ. (xi)

For the inclusion from left to right, first observe that it follows from (x), (ix)
and the monotonicity of the operation [R?], that KA∗ = [R?]KA∗ ⊆ [R?]ĉ. In
order to establish the converse inclusion of (xi), consider an arbitrary point
u in [R?]ĉ and suppose, for contradiction, that u does not belong to KA∗ .
That is, u is a topo-root of A∗, so, we have that R?uv for every ultrafilter v.
But then u ∈ [R?]ĉ implies that every ultrafilter v belongs to ĉ. This gives
the desired contradiction with the fact that ĉ, being an opremum of (A∗)∗,
must be a proper subset of A∗. Thus we find that indeed, [R?]ĉ ⊆ KA∗ , and
we have proved (xi).

Finally, observe that it immediately follows from (xi) and Proposition 1.5
that KA∗ is closed.

For the converse implication, i.e., (2 ⇒ 1), assume that TA∗ is open and
non-empty. It is not difficult to see that this implies that KA∗ is a nontrivial
closed and hereditary subset of A∗. We claim that it is in fact the largest
such set.

For, let J ⊂ A∗ be closed and hereditary. Suppose for contradiction that
J is not contained in KA∗ , then there is an ultrafilter u ∈ J \ KA∗ . From
u ∈ J and the assumptions on J it easily follows that R?[u] ⊆ J . But then
R?[u] is a proper subset of A∗; from this we infer that u is not a topo-root of
A∗; that is, we find u ∈ KA∗ . This shows that J is a subset of KA∗ after all.
Hence, KA∗ is indeed the largest nontrivial, closed and hereditary subset of
A∗. But then it follows from Fact 1.1 that A is s.i.

Finally, we prove the implication (3 ⇒ 2). Assuming that â is a non-
empty set of topo-roots, we will prove that

TA∗ =
⋃

�∈CD(A)

�̂a, (xii)

which clearly shows that TA∗ is open. For the inclusion ⊆, consider an
arbitrary topo-root u. Since â is non-empty, we may take an ultrafilter v
with a ∈ v. Because u is a topo-root it follows that R?uv, so we have that
�a ∈ u for some compound diamond �. This immediately gives that u ∈ �̂a.

For the converse inclusion, take a compound diamond � and an ultrafilter
u in �̂a. Using standard reasoning in modal duality theory, we can find an
ultrafilter v such that R�uv and v ∈ â. It follows from â ⊆ TA∗ that v is a
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topo-root, so by R� ⊆ R? and transitivity of R? we may infer that u is a
topo-root as well. This finishes the proof of (xii), and thus, the proof of (3
⇒ 2).

As corollaries of the last theorem we obtain some well known results
showing that in some special cases, nicer characterizations are indeed possi-
ble.

We call a boolean algebra with operators ω-transitive if there is some
compound diamond ♦ such that �a ≤ ♦a for all compound diamonds � and
all a in A. (With some authors, this property goes under the name of weak
transitivity). Recall that for an algebra A, we let IA∗ denote the collection
of roots of the dual structure.

Corollary 1. Let A be a ω-transitive boolean algebra with operators. Then
A is simple iff IA∗ = A∗, and subdirectly irreducible iff IA∗ is non-empty and
open iff there is an admissible/clopen set of roots in A∗.

Proof. Suppose that ♦ is a compound diamond of A such that �a ≤ ♦a
for all compound diamonds � and all a in A. It is easy to verify that in
this case we have Rω = R♦; but since R♦[u] is closed for every ultrafilter
u, it follows from Proposition 1.4.5 that R? = R♦ = Rω. This means that
IA∗ = TA∗ , or in words: the roots and the topo-roots of A∗ coincide. Thus
the results follows immediate from the Theorems 1 and 2.

Corollary 2. Let A be a finite boolean algebra with operators. Then A is
subdirectly irreducible iff A∗ is rooted.

Proof. It is easy to see that finite baos are ω-transitive. Hence, the result
follows from Corollary 1 and the observation that if A is finite then any
subset of A∗ is open.

Finally, we show how the earlier mentioned result (i) of Sambin can be
obtained as a corollary to our results.

Corollary 3. Let A be a boolean algebra with operators such that IA∗ has
non-empty interior. Then A is subdirectly irreducible.

Proof. Immediate by Theorem 2 (3 ⇒ 1) and the observation that IA∗ ⊆
TA∗ .
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