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Abstract

We generalize some of the central results in au-
tomata theory to the abstraction level of coalgebras.

In particular, we show that for any standard, weak
pullback preserving functorF, the class of recogniz-
able languages ofF-coalgebras is closed under tak-
ing unions, intersections and projections. Our main
technical result concerns a construction which trans-
forms a given alternatingF-automaton into an equiv-
alent non-deterministic one.

1. Introduction

An important branch of automata theory, itself
one of the classical subdisciplines of computer sci-
ence, concerns the study of finite automata as de-
vices for classifying infinite, or possibly infinite, ob-
jects. This perspective on finite automata has found
important applications in areas of computer science
where one investigates the ongoing behavior of non-
terminating programs such as operating systems. As
an example we mention the automata-based verifica-
tion method ofmodel checking[4]. This research
also has a long and strong theoretical tradition, in
which an extensive body of knowledge has been de-
veloped, with a number of landmark results. Many
of these link the field to neighboring areas such as
logic and game theory, see [6] for an overview. The
outstanding example here is of course Rabin’s decid-
ability theorem [10] for the monadic second order
logic of trees; to mention a more recent result, Janin
& Walukiewicz [7] identified the modalµ-calculus

as the bisimulation invariant fragment of the monadic
second order logic of labelled transition systems.

An interesting phenomenon in automata theory is
that most (but not all) key results hold for word and
tree automata alike, and that many can even be for-
mulated and proved for automata that operate on yet
other objects such as trees of unbounded branching
degree, or labelled transition systems. This applies
for instance to various closure properties of the class
of recognizable languages, and to the fact that alter-
nating automata can be transformed into equivalent
non-deterministic ones. These observations naturally
raise the question, whether these results can perhaps
be formulated at a more general level of abstraction.
Of course, such a universal approach towards au-
tomata theory would first of all require the introduc-
tion of an abstract notion that generalizes structures
like words, trees and transition systems. Fortunately,
such an abstract notion already exists in the form of
coalgebra.

The theory of universal coalgebra (see [11] for an
overview) seeks to provide a general framework for
the study of notions related to (possibly infinite) be-
havior, such as invariance and observational indistin-
guishability (bisimilarity, in most cases). Intuitively,
coalgebras (as objects) are simple but fundamental
mathematical structures that capture the essence of
dynamics. In this paper we will restrict our atten-
tion tosystems; these are state-based coalgebras con-
sisting of a setS and a mapS → FS, whereF is
some set functor determining thesignatureof the
coalgebra. The general theory of coalgebra has al-
ready developed some general tools for the specifica-
tion of properties of coalgebras. In particular, start-



ing with Moss’ coalgebraic logic [8], several log-
ical languages have been proposed, usually with a
strong modal flavor. Most of these languages are not
designed for talking aboutongoingbehaviour, but
in [13], the second author introduced a coalgebraic
fixed point logic that does enable specifications of
this kind.

The same paper also introduces, for coalgebras
over a standard set functorF that preserves weak
pullbacks, the notion of anF-automaton— we will
recall the definition in section 2. These automata
provide a common generalization of the familiar au-
tomata that operate on specific coalgebras such as
words, trees or graphs. They also come in various
shapes and kinds, the most important distinction be-
ing between alternating, non-deterministic, and de-
terministic ones, respectively.

Basically,F-automata are meant to either accept
or reject pointed coalgebras (that is, pairs(S, s) con-
sisting of anF-coalgebraS together with a selected
states in the carrierS of S), and thusexpress proper-
tiesof states inF-coalgebras. This makes them very
similar to formulas, and explains the close connec-
tion with coalgebraic (fixed point) logic. Another
important aspect ofF-automata involves game the-
ory: the criterion under which anF-automaton ac-
cepts or rejects a pointed coalgebra is formulated in
terms of an infinite two-player parity game which en-
joys history-free determinacy.

The aim of developing this coalgebraic frame-
work is not so much to introduce new ideas in au-
tomata theory, as to provide a common generaliza-
tion for existing notions that are well known from
the theory of more specific automata. Apart from
its general mathematical interest, this abstract ap-
proach may be motivated from various sources. To
start with, the abstract perspective may be of help to
find the right notion of automaton for other kinds of
coalgebras, besides the well known kinds like words
and trees. It may also be used to prove interesting
results on coalgebraic logics — we will briefly come
back to this in section 5.

It is the aim of the present paper to provide fur-
ther motivation for taking a coalgebraic perspective
on automata, by showing that some of the key results
in automata theory can in fact be lifted to this more
abstract level. In particular, this allows foruniform
proofs of these results, which in its turn may lead to a
better understanding of automata theory as such. The

concrete results that we prove concern the relation
between alternating and non-deterministic automata,
and some of the closure properties that one may as-
sociate with automata. For a proper formulation, we
need to develop some terminology.

A class of pointedF-coalgebras will be referred
to as anF-language. Such a languageL is recog-
nized by an F-automaton A if a pointedF-coalgebra
belongs toL if and only if it is accepted byA, and
(non-deterministically) recognizable if it is recog-
nized by some (non-deterministic)F-automaton. Our
main technical result can now be formulated as fol-
lows.

Theorem 1 Let F be some standard set func-
tor that preserves weak pullbacks. Then every
F-automaton has a non-deterministic equivalent.
Hence, anF-language is recognizable iff it is non-
deterministically recognizable.

In order to discuss closure properties, letO be
some operation onF-languages, then we say that a
class of languages is closed underO if we obtain
a language from this class whenever we applyO to
a family of languages from the class. For example,
one may easily prove that recognizableF-languages
are closed under taking intersection and union; with
some more effort we will show that the class of non-
deterministically recognizableF-languages is closed
under projection. Theorem 1 allows us to strengthen
the above list of closure properties as follows.

Theorem 2 Let F be some standard set functor that
preserves weak pullbacks. Then the class of recog-
nizableF-languages is closed under union, projec-
tions and intersection.

Conspicuously absent in this list is closure under
complementation — we will come back to this in
section 5.

Finally, ourproofs for these results are of course
built on generalizations, to the coalgebraic level, of
(well) known ideas from the theory of specific au-
tomata. This applies in particular to results on graph
automata [7] and the abstract universal algebraic ap-
proach of [2].

2. Preliminaries

We presuppose familiarity with the basic concepts
of universal coalgebra [11] and automata theory [6].
Here we fix some notation and terminology.
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2.1.Set-functors

We let Set denote the category of sets and func-
tions andRel the category of sets and binary rela-
tions. A relator, that is, a functorQ : Rel → Rel,
extends a functorF : Set → Set if QS = FS for
any object (set)S andQ(Gr(f)) = Gr(Ff) for any
arrow (function)f ; hereGr(f) denotes the graph of
f . As shown by Trnkov́a [12], functors that preserve
weak pullbacks can always be extended to a relator.
A second restriction on our functorF is standardness,
i.e., F is assumed to preserve inclusions: ifA′ ⊆ A
thenFA′ ⊆ FA. For proofs of the following facts we
refer to [3] and references therein.

Fact 2.1 Let F : Set → Set be a standard, weak
pullback preserving functor. ThenF has a unique
extensionF : Rel → Rel; this relator satisfies, in
addition:

(1) F(R )̆ = (FR)̆ ((·)̆ denotes converse),
(2) F is monotone: ifR ⊆ S thenF(R) ⊆ F(S),
(3) If A ⊆ A′, B ⊆ B′ andR ⊆ A′ × B′, then

F(R�A×B) = F(R)�FA×FB .

Example 2.2 The power set functorP is weak pull-
back preserving and standard. The filter functorF ,
mapping a setS to the set of all filters overS and a
functionf to the function(f−1)−1, preserves weak
pullbacks but it is not standard. The functor, map-
ping a setS to the set of all upward closed subsets of
(PS,⊆) and a function to(f−1)−1, is neither weak
pullback preserving nor standard.

From now on all functors appearing in the paper
will be standard and preserve weak pullbacks.

2.2. Coalgebra automata

Let F : Set → Set be a standard weak pullback
preserving functor. We will briefly recall the defini-
tion of anF-automaton as introduced in [13].

Definition 2.3 An (alternating) F-automaton is a
quadrupleA = (A, aI ,∆,Ω) with A some finite
set of objects calledstates, aI ∈ A the initial state,
∆ : A → PPFA the transition functionand Ω :
A→ ω a parity map. AnF-automaton is callednon-
deterministicif all members of each∆(a) are single-
ton sets. �

F-automata are designed to accept or reject
pointedF-coalgebras. The acceptance condition is
formulated in terms of a parity game [6].

Definition 2.4 Let A = (A, aI ,∆,Ω) be an F-
automaton, and letS = (S, σ) be anF-coalgebra.
Theacceptance gameG(A,S) associated withA and
S is the parity graph game(B∃, B∀, E,Ω) with

B∃ := S ×A ∪ S × FA
B∀ := S × PFA ∪ P(S ×A),

while E and Ω are given in Table 1. The set of
winning positions for∃ in this game is denoted as
Win∃(G(A,S)), or Win∃ if no confusion is likely.
A acceptsthe pointedF-coalgebra(S, s) if (s, aI) ∈
Win∃. �

Remark 2.5 It is clear from the definition ofΩ that
only thebasic positions of a match, i.e., positions of
the form(s, a) ∈ S × A, are relevant to determine
the winner of the match. Accordingly, in the sequel
we will frequently represent a match of the game
with the sequence of basic positions visited during
the match.

Parity games are known to enjoy a strong form
of determinacy: in any position of the game board
either ∃ or ∀ has a history-free winning strategy.
Therefore we can focus on∃’s history-free strategies.

Definition 2.6 Given anF-coalgebra(S, σ) and an
F-automatonA astrategyof ∃ is a pair of functions

(Φ : S ×A→ PFA, Z : S × FA→ P(S ×A)).

Such a strategy islegitimate at a position if it maps
the position to an admissible next position. A partial
strategy of the kindΦ : S ×A→ PFA will often be
represented as a mapΦ : S → (PFA)A; values of
this map wil be denoted asΦs, etc. �

In the paper we will also need a slight variation
of an F-automaton. For any setC, aC-coloring of
a coalgebraS is a mapγ : S → C; theC-colored
F-coalgebraS⊕γ := 〈S, γ, σ〉 can be identified with
theC × F-coalgebra〈S, 〈γ, σ〉〉.

Definition 2.7 Let C be a finite set. AC-chromatic
F-automatonis a quintupleA = (A, aI , C,∆,Ω)
such that∆ : A × C → PPFA (andA, aI , and
Ω are as before). Given such an automaton and a
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Position:b P (b) Admissible moves:E[b] Ω(b)

(s, a) ∈ S ×A ∃ {(s,Φ) ∈ S × P(FA) | Φ ∈ ∆(a)} Ω(a)
(s,Φ) ∈ S × P(FA) ∀ {(s, ϕ) ∈ S × FA | ϕ ∈ Φ} 0
(s, ϕ) ∈ S × FA ∃ {Z ∈ P(S ×A) | (σ(s), ϕ) ∈ FZ} 0
Z ∈ P(S ×A) ∀ Z 0

Table 1. Acceptance game for an F-automaton

C ×F-coalgebraS = (S, γ, σ), the acceptance game
GC(A,S) is defined as the acceptance game forF-
automata with the only difference that∃ has to move
from a position(s, a) to a position(s,Φ) such that
Φ ∈ ∆(a, γ(s)). �

Example 2.8 The well-known word, tree and graph
automata are instantiations of this notion. Infi-
nite words over an alphabetC can be seen asC-
colored coalgebras over the identity functorId, so
parity automata for infiniteC-words correspond to
C-chromatic Id-automata. Likewise,C-chromatic
Id × Id-automata correspond to automata on infi-
nite binary trees, andC-chromaticP-automata cor-
respond to amorphous tree or graph automata, with
C in all cases denoting thealphabet.

For each functorF mentioned above, our notion
may also take care of the automata operating on
the correspondingfinite objects. For instance, finite
words overC may be taken asC-colored coalgebras
for the functor{↓}+ Id, with ↓ denoting termination.

We need the following fact from [13].

Fact 2.9 With any C × F-automatonA we may
associate aC-chromatic F-automatonAC , theC-
chromaticF-companionof A, such thatA andAC
accept the sameC × F-coalgebras.

3. Closure properties

In this section we show that the class of non-
deterministically recognizable languages is closed
under taking union and projection, whereas the class
of recognizable languages is shown to be closed un-
der union and intersection. Combined with Theo-
rem 1, this suffices to prove Theorem 2.

3.1. Closure under union and intersection

In this subsection we define the sum and product
of two F-automata, and prove that they recognize, re-

spectively, the union and the intersection of the lan-
guages associated with the original automata.

Definition 3.1 LetA1 = (A1, a
1
I ,∆1,Ω1) andA2 =

(A2, a
2
I ,∆2,Ω2) be twoF-automata. We will define

their sum A∪ andproduct A∩.
Both of these automata will have thedisjoint

union A12 := {∗} ] A1 ] A2 as their collection of
states. Also, the parity functionΩ will be the same
for both automata:

Ω(a) :=
{

0 if a = ∗,
Ωi(a) if a ∈ Ai.

The only difference between the automata lies in the
transition functions, which are defined as follows:

∆∪(a) :=
{

∆1(a1
I) ∪∆2(a2

I) if a = ∗
∆i(a) if a ∈ Ai,

∆∩(a) :=
{
{Φ1 ∪ Φ2 | Φi ∈ ∆i(aiI)} if a = ∗
∆i(a) if a ∈ Ai.

Finally, we putA∪ := (A12, aI ,∆∪,Ω) and
A∩ := (A12, aI ,∆∩,Ω). �

Proposition 3.2 LetA1 andA2 be twoF-automata.
Then for any pointedF-coalgebra(S, s) we have:

1. A∪ accepts(S, s) iff A1 or A2 accepts(S, s),

2. A∩ accepts(S, s) iff both A1 and A2 accept
(S, s).

3. A∪ is non-deterministic ifA1 andA2 are so.

Proof. First suppose that the automatonA∪ accepts
(S, s). Hence by definition,∃ has a winning strategy
f in the gameG := G(A∪,S) starting from position
(s, ∗). Let i be such thatf(∗, s) ∈ ∆(aiI). It is then
straightforward to verify thatf , restricted to∃’s po-
sitions inG(Ai,S), is a winning strategy for∃ from
position(s, aiI). From this it is immediate thatAi ac-
cepts(S, s). The other statements of the proof admit
similarly straightforward proofs. QED
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3.2. Closure under projection

In this subsection allF-automata are assumed to
be non-deterministic. To facilitate the presentation
we will think of the transition function∆ as a map
A → PFA and the first componentΦ of a strategy
(Φ, Y ) for ∃ in an acceptance gameG(A,S) will be
regarded as a function of typeA × S → FA (that
is, we identify singleton sets with their unique ele-
ments).

Definition 3.3 Let C be a set,A = (A, aI ,∆,Ω)
be a (C × F)-coalgebra automaton andAC =
(A, aI , C,∆C ,Ω) itsC-chromaticF-companion, see
Fact 2.9. Then we define theC-projectionπCA :=
(A, aI ,∆π,Ω) where∆π(a) :=

⋃
c∈C ∆C(c, a). �

Lemma 3.4 If A accepts the(C × F)-coalgebra
(S, s) := (S, γ, σ, s) thenπCA accepts(Sπ, s) :=
(S, σ, s).

Proof. The proof is easy. One has to realize that all
the moves of∃ in the game forAC are still legitimate
moves of∃ in theπCA acceptance game. QED

The converse of this lemma however fails in general.
Let A be someC × F-automaton and let(S, σ, r)
be a pointedF-coalgebra that is accepted byπCA.
Then we know that∃ has a winning strategy(Φ, Y )
in G(πCA,S) from position(r, aI). We would like
to ensure that(Φ, Y ) is also a winning strategy in
G(AC ,S) by defining a coloringγ : S → C as fol-
lows: γ(s) := c if there is a match ofG(πCA,S),
starting from position(r, aI) and conform∃’s strat-
egy, in which a position(s, a) occurs andΦs,a ∈
∆C(c, a). In general, however, there may bedistinct
positions(s, a1) and (s, a2) that ∀ may force the
match to pass through, and it may not be possible to
find a singlec ∈ C such that bothΦs,a1 ∈ ∆(c, a1)
andΦs,a2 ∈ ∆(c, a2). To avoid this problem we in-
troduce now the notion ofstrongacceptance.

Definition 3.5 LetA be anF-automaton and(S, r) a
pointedF-coalgebra. A history free strategy(Φ, Y )
for ∃ in the gameG(A,S) initialized at (r, aI) is
calledscattered if the relation

{(r, aI)} ∪
⋃
{Ys,ϕ ⊆ S ×A | (s, ϕ) ∈Win∃}

is the graph of some possibly partial function. Fur-
thermore we say thatA strongly acceptsthe pointed
coalgebra(S, r) if ∃ has a scattered winning strategy
in the gameG(A,S) initialized at position(r, aI). �

Lemma 3.6 Let A be aC × F-automaton, and let
(S, r) be a pointedF-coalgebra that is strongly ac-
cepted byπA. Then there is aC-colouringγ : S →
C of S such thatA accepts(S, γ, σ, r).

Proof. Let (Φ, Y ) be a scattered winning strategy
for ∃ in G(πA,S). According to the definition of
scatteredness we can assign to everys ∈ S a state
as ∈ A such thatar = aI , and if (s, a) ∈ Ys,ϕ for
some winning position(s, ϕ), thena = as. Then we
define a functionγ : S → C as follows. If there is
a c ∈ C such thatΦs,as ∈ ∆C(c, a), then we pick
such ac and putγ(s) := c; if there is no suchc, then
we defineγ(s) := d for some arbitraryd ∈ C. It fol-
lows from these definitions that(Φ, Y ) is a strategy
for ∃ in G(AC ,S ⊕ γ) that guarantees her winning
every match starting from(r, aI). From this it is im-
mediate thatA accepts(S, γ, σ, r). QED

The next lemma shows that if a pointed coalgebra
is accepted by some automaton, but not strongly so,
then we can always find a bisimilar pointed coalgebra
that is strongly accepted.

Lemma 3.7 Let A be an F-automaton, and let
(S, r) = (S, σ, r) be a pointedF-coalgebra that is
accepted byA. Then there is a pointedF-coalgebra
(S̄, σ̄, r̄) such that(S, r) is bisimilar to(S̄, σ̄, r̄) and
A strongly accepts(S̄, σ̄, r̄).

Proof. The coalgebrāS will be based on the set̄S :=
S×A, and as the selected stater̄ of S̄we take the pair
(r, aI). For the definition of the coalgebra structure
σ̄, we need some auxiliary definitions.

First, it is not hard to see that we may endow
the setS̄ with a coalgebra map̃σ which turns the
structure S̃ := (S̄, σ̃) into the A-fold coproduct∐
a∈A S, in such a way that the first projection map

πS : S×A→ S is a coalgebra homomorphism from
S̃ to S. Second, given a relationR ⊆ S × A, define
the relationR̂ ⊆ S̄ ×A by putting

R̂ := {((s, a), a) | (s, a) ∈ R}.

Then clearly we have thatR = Gr(πS )̆ ◦ R̂, and
hence,

FR = Gr(FπS )̆ ◦ FR̂. (1)

Now, for the definition ofσ̄ : S̄ → FS̄, con-
sider an arbitrary element(s, a) ∈ S̄, and distinguish
cases. If(s, a) is a winning position in the game
G(A,S), then using (1), it follows from(σ(s), ϕ) ∈
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FY , that we may definēσ(s, a) to be some object
in FS̄ satisfying (σ(s), σ̄(s, a)) ∈ Gr(FπS )̆ and
(σ̄(s, a), ϕ) ∈ FŶ . If, on the other hand,(s, a) 6∈
Win∃, then we simply put̄σ(s, a) := σ̃(s, a).

It is completely straightforward to check that the
mapπS is in fact anF-coalgebraic homomorphism
from S̄ ontoS. From this, the first statement of the
proposition follows immediately.

For the second statement, define the strategy
(Φ̄, Ȳ ) with Φ̄ : S̄ × A → A and Ȳ : S̄ × FA →
P(S̄ ×A) as follows:

Φ̄ : ((s, a), b) 7→ Φs,b
Ȳ : ((s, a), ϕ) 7→ Ŷs,ϕ.

Since all relations chosen by∃ are of the formR̂,
and all elements of such relations are of the form
((s, a), b) with a = b, it is obvious that the set
{((s, aI), aI)} ∪

⋃
{Ŷs,ϕ | (s, ϕ) ∈ Win∃} is func-

tional. In other words, the strategy is scattered.
Thus it is left to prove that(Φ̄, Ȳ ) guarantees∃

to win any match ofG(A, S̄) starting from(r̄, aI).
To see why this is the case, consider an arbitrary
position ((s, a), a) with (s, a) ∈ Win∃(G(A,S)),
and abbreviateϕ := Φs,a. Then by definition,
Φ̄((s, a), a) = ϕ and Ȳ ((s, a), ϕ) = Ŷs,ϕ =
{((t, b), b) | (t, b) ∈ Ys,ϕ}. From this obser-
vation it is easy to derive that for anyG(A, S̄)
match (r̄, aI)((s1, a1), a1)((s2, a2), a2) . . . that is
conform the strategy(Φ̄, Ȳ ), the corresponding
G(A,S) match(r, aI)(s1, a1)(s2, a2) . . . is conform
(Φ, Y ). And since this strategy was supposed to be
winning for∃ from (r, aI), it follows that theG(A, S̄)
match is, indeed, a win for∃. This proves the second
statement of the proposition. QED

Proposition 3.8 LetA be some(C × F)-automaton.
Then the following are equivalent, for every pointed
F-coalgebra(S, s):

1. πA accepts(S, s),

2. A accepts a(C × F)-coalgebra(S′, γ, σ′, s′)
such that(S′, σ′, s′) and(S, s) are bisimilar.

Proof. The implication (1 ⇒ 2) is immediate by
the Lemmas 3.7 and 3.6. The other implication
follows from Lemma 3.4 and the observation [13]
that F-automata do not distinguish between bisimi-
lar pointedF-coalgebras. QED

4. From alternating automata to non-
deterministic ones

In this section we prove the main technical result
of the paper, Theorem 1. That is, we will construct,
for an arbitrary, alternatingF-automaton an equiv-
alent non-deterministic F-automaton. Throughout
this section we will be working with a fixed (but ar-
bitrary) F-automatonA = 〈A, aI ,∆,Ω〉.

Before going into the technical details of the con-
struction, let us first provide some of the intuitions
behind our approach. These intuitions ultimately
go back to ideas of Muller and Schupp, see for in-
stance [9], but in particular, our proof generalizes
work by Janin and Walukiewicz [7], using the ap-
proach of Arnold and Niwínski [2]. (In fact, with
some effort, it would be possible to prove our result
here as acorollary of the work mentioned, but that
would be to miss our point that a uniform,coalge-
braic proof is possible.)

The main idea is to bring the players’ interaction
pattern∃∀∃∀ in one round of the acceptance games
forA, into the ‘strategic form’∃∀ (or more precisely:
∃∃∀). Concretely, consider a basic position(s, a) ∈
S × A in the acceptance gameG(A,S) for someF-
coalgebraS. From this position, play proceeds as
follows:

• ∃ picksΦ ∈ ∆(a), moving to position(s,Φ);

• ∀ picksϕ ∈ Φ, moving to position(s, ϕ);

• ∃ picksYϕ ⊆ S × A with (σ(s), ϕ) ∈ FYϕ —
thisYϕ is the new position;

• ∀ picks(t, b) ∈ Yϕ as the next basic position.

Now the crucial point is that∃maygatherher family
{Yϕ ⊆ S × A | ϕ ∈ Φ} into one singlerelation
YΦ ⊆ S ×PA, and that we may modify the game in
such a way that this is an appropriate answer for∃.
This approach would suggest to take (representations
of) subsets ofA as the states of the new automaton
A
d.
However, as is well-known from the literature,

such a straightforward subset construction may work
for automata that operate on finite objects, in the
case of automata for (possibly) infinite objects this
approach fails to make some subtle but crucial dis-
tinctions. The remedy, which brings us to the sec-
ond fundamental idea underlying our construction,
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is to usebinary relations onA, rather than subsets
of A, to bring the acceptance game into some kind
of ‘layered-strategic’ form. Then, using the notion
of a trace through a sequence of such relations, we
have an established tool at our disposal for bringing
the interaction pattern of the acceptance game into
the required format. Our contribution here is to show
that all of this can be done in the abstract context of
coalgebras for an arbitrary standard, weak pullback
preserving functor.

Now we are ready for the technical details of the
construction.

Definition 4.1 Given a finite wordρ = R1R2 . . . Rn
over the setRel(A) of binary relations overA, a
trace throughρ is anA-wordα = a0a1a2 . . . ak with
k ≤ n such thata0 = aI is the initial stateaI of the
automaton, andaiRi+1ai+1 for all i < k. Similar
definitions apply to (finite or infinite) traces on infi-
nite Rel(A)-words.

A traceα is a trap for ∃ if ∆(ai) = ∅ for some
stateai onα; a traceα is bad if it is a trap for∃ or,
in caseα is infinite, if max{Ω(ai) | i ∈ Ω} is odd.

�

As we will see, traces may be associated with
matches of the acceptance game forA, bad traces
with the ones that are lost by∃. Let us look at this in
a bit more detail. As a consequence of the great gen-
erality that we aim for, there are two different ways in
which∃may loose a match. She may either get stuck
at some finite stage of the match (either at a basic po-
sition or at a position of the form(s, ϕ) ∈ S × FA),
or survive for infinitely many rounds but fail to es-
tablish the winning condition. Now the traces that
are traps for∃ will correspond to matches in which
she gets stuck in abasicposition, whereas the other
kind of badness will turn out to be an encoding of∃
failing to win an infinite match. For finite matches
that∃ looses because of getting stuck in a non-basic
position, we do not need a corresponding notion for
traces.

The first proposition that we need is a variation on
well-known results. It concerns the existence of a de-
terministicword automaton that accepts those words
over Rel(A) which contain no bad traces. Since
there are two kinds of bad traces, this automaton
needs to perform a double task: it needs to recognize
traps for∃, and it needs to take proper care of the infi-
nite words. It will be convenient to have the automa-
ton perform these two jobs more or less separately.

That is, the automaton will have a special statem∀
signalling that∃ has been trapped. In order to for-
mulate the proposition we need some notation: given
a deterministic automatonD = 〈D, dI ,Σ, δ,ΩD〉
with alphabetΣ and transition functionδ, we let
δ̂ : D × Σ∗ → D denote theiterated transition
function, inductively defined bŷδ(d, ε) = d and
δ̂(d, αa) = δ(δ̂(d, α), a).

Proposition 4.2 There is a deterministic word au-
tomatonM0 = 〈M,mI ,Rel(A), µ0,Ω0〉, operating
onRel(A)-words, and containing a special statem∀,
such that:

1. µ0(m∀, R) = m∀ for all R ∈ Rel(A),

2. for any finiteRel(A)-word ρ: µ̂(ρ) = m∀ iff ρ
contains a trap for∃,

3. for any infiniteRel(A)-word ρ: M0 acceptsρ
iff ρ contains no bad traces.

In the remainder of this section wefix the au-
tomatonM0 = 〈M,mI ,Rel(A), µ0,Ω0〉 and state
m∀ as given in Proposition 4.2. We leave the proof
of Proposition 4.2 as an exercise for the reader, and
move on to the main construction of the proof. Below
we define a non-deterministic automatonM1 which
operates on(PFA)A-coloredF-coalgebras,S ⊕ Φ,
that is,F-coalgebrasS = 〈S, σ〉 that are colored by
the mapΦ : S → (PFA)A. Such a mapΦ represents
a (potential)strategyof ∃ in the gameG(A,S) that
is partial in the sense of dealing with basic positions
only. More precisely, for any position(s, a) ∈ S×A,
we let the valueΦs,a ∈ PFA encode the move
(s,Φs,a) ∈ S × PFA. Our aim with the automaton
M1 is that it will recognize precisely those pointed
(PFA)A-coloredF-coalgebras〈S, σ,Φ, s〉 of which
Φ forms the basic part of a winning strategy in the
gameG(A,S). Towards the end of this section we
will see that this suffices to prove Theorem 1.

For the definition ofM1 we need some prelimi-
nary definitions.

Definition 4.3 An objectΞ ∈ FP(A) is called anF-
redistribution of a subsetΦ ⊆ FA if (ϕ,Ξ) ∈ F(∈A)
for all ϕ ∈ Φ.

An object Π ∈ FRel(A) is called an F-
redistributive relational representation of an element
Φ ∈ (PFA)A, or shortly: anF-relation for Φ, if
(Feva)(Π) is a redistribution ofΦ(a) for all a ∈ A.
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Here eva : Rel(A) → P(A) is the map given by
eva : R 7→ R[a]. The collection ofF-relations for
Φ ∈ (PFA)A is denoted asRF(Φ). �

The intuitions on these notions are as follows.
Concerning redistributions, the point is that for any
F-coalgebraS = 〈S, σ〉, any points ∈ S and any set
Φ ∈ PFA, there is a 1-1 correspondence between:

• families {Yϕ ⊆ S × A | ϕ ∈ Φ} of relations
such that(σ(s), ϕ) ∈ FYϕ for all ϕ ∈ Φ, and

• pairs(YΦ,Ξ) consisting of a relationYΦ ⊆ S×
PA, and anF-redistributionΞ ∈ FPA of Φ,
such that(σ(s),Ξ) ∈ FYΦ.

In brief, redistributions enable us to gather the infor-
mation of a family{Yϕ ⊆ S×A | ϕ ∈ Φ} of relation
moves of∃ into one single relationYΦ ⊆ S × PA.

However, this regrouping of information on∃’s
strategy in terms of redistributions has one shortcom-
ing: it is based onsubsetsof A whereas we already
pointed out that such an encoding will not suffice
to encode the full flow of information when trans-
forming alternating automata into non-deterministic
ones. This is where the notion of anF-relation for
Φ comes in. The important observation is that any
elementΠ of the setFRel(A) has the right shape
to represent a family{Φa ∈ PFA | a ∈ A}: the
point is that we may use, for everya ∈ A, the
map Feva : FRel(A) → FPA to provide an el-
ement(Feva)(Π) in the right setFPA of (poten-
tial) F-redistributions ofΦ. Thus, the definition of
a Π ∈ FRel(A) being anF-redistributive relational
representation ofΦ ∈ (PFA)A forms, at least poten-
tially, an adequate formalization of the requirement
thatΠ andΦ ‘fit well together’. As we will see be-
low, it also forms the key to lead the flow of infor-
mation in acceptance games for alternating automata
into a non-deterministic channel.

Definition 4.4 Let M1 be the non-
deterministic (PFA)A-chromatic F-automaton
〈M,mI , (PFA)A, µ,Ω0〉, where µ : M ×
(PFA)A → PPFM is the map defined by

µ(m,Φ) :={ {
{(Fµm)(Π)} | Π ∈ RF(Φ)

}
if m 6= m∀,

∅ if m = m∀.

Hereµm : Rel(A) → M is given byµm(R) :=
µ0(m,R). �

Remark 4.5 LetM1 be as above, andS = 〈S, σ,Φ〉
some(PFA)A-coloredF-coalgebra. Note that the
acceptance gameG(M1,S) is summarized in Table 2.

Given the definition ofµ, it is not hard to see that,
from a position(s,m) ∈ S ×M , with subsequent
moves of∃, say,(s, {K}) ∈ S × PFM andY ⊆
S ×M , we may associate an elementΠ ∈ FRel(A)
and a relationZ ⊆ S × Rel(A) such thatΠ is an
F-relation forΦs, (Fµm)(Π) = K and(σ(s),Π) ∈
FZ.

To start with, it is obvious from the defini-
tions that there is someΠ ∈ RF(Φs), such that
(Fµm)(Π) = K. Now define the relationZ :=
{(t, R) ∈ S × Rel(A) | (t, µm(R)) ∈ Y }. Clearly,
this relation is the composition ofY with the con-
verse relationGr(µm)̆ of the graph of the func-
tion µm. From this it follows thatFZ = FY ◦
F(Gr(µm)̆ ). Also, rewriting (Fµm)(Π) = K,
we obtain that(Π,K) ∈ Gr(Fµm) = FGr(µm),
so that (K,Π) ∈ (FGr(µm))̆ = F(Gr(µm)̆ ).
Hence, from(σ(s),K) ∈ FY it is immediate that
(σ(s),Π) ∈ FZ.

Proposition 4.6 For any pointed F-coalgebra
〈S, rootS〉 and any(PFA)A-coloring Φ of S, the
following are equivalent:

1. Φ is part of a winning strategy for∃ in G(A,S)
initialized atrootS;

2. M1 accepts(S⊕ Φ, rootS).

Proof. Recall that every infinite game may be repre-
sented as a tree, and that strategies of either player,
limiting the possible course of actions, can be rep-
resented assubtreesof this game tree. Thus, both
with a Φ-extending strategy of∃ in G = G(A,S),
and with a strategy of∃ in the acceptance game
G′ = G(M1,S ⊕ Φ), we may associate such sub-
trees of the game trees ofG andG′, respectively. As
it turns out, these two trees turn out to be rather sim-
ilar, and in fact, may be coded up into one and the
same structure. This observation forms the basis of
our proof of the proposition.

More specifically, we will show the equivalence
of both (1) and (2) to the statement (3) below.

3. There is a labelled tree

X = 〈X, rootX, ξ, u,Π, Q〉,

whererootX ∈ X andξ : X → P(X) denote,
respectively, the root and the successor function
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Position:b Type P (b) Admissible moves:E[b] Ω0(b)
(s,m) S ×M ∃ {(s, {K}) ∈ S × PFM | K ∈ µ(m,Φ(s))} Ω0(m)
(s, {K}) S × PFM ∀ {(s,K)} 0
(s,K) S × FM ∃ {Z ∈ P(S ×M) | (σ(s),K) ∈ FZ} 0
Z P(S ×M) ∀ Z 0

Table 2. Acceptance game for M1

of the tree, andu : X → S, Π : X → FRel(A),
andQ : X → Rel(A) are labellings.

This tree is supposed to satisfy the conditions
3a–3d below. Here, and in the sequel, we abbre-
viateΦux asΦx, and defineWx := {(uy, Qy) |
y ∈ ξ(x)}. Branches of the tree start at the root,
and thus induce (finite or infinite) words over
Rel(A).

(a) urootX = rootS andQrootX = {(aI , aI)},

(b) for all x ∈ X, Πx is anF-relation forΦx,

(c) for all x ∈ X, (σ(ux),Πx) ∈ FWx.

(d) X has no bad traces (that is, no branch ofX

induces aRel(A)-word containing a bad
trace).

As hinted at above, our intuition aboutX is that it
represents a winning strategy for∃ both inG and in
G′ (in the case ofG, of course, a strategy completing
the partial strategyΦ). Counterstrategies of∀ in G′
correspond tobranchesof X, while his strategies in
G appear astracesonX. Further details of the proof
are left for the full version of this paper. QED

In the final step of the construction we have to
transformM1 into a non-deterministicF-automaton
A
d that is equivalent toA. This last transforma-

tion is in fact easy — relatively that is: we need an
application of the closure under projection of non-
deterministically recognizable languages.

Definition 4.7 Let A
d be the F-automaton

〈M,mI , µ
d,Ω0〉 where M , mI and Ω0 are as

in Definition 4.4, while

µd(m) :=
⋃

e∈(PFA)A

µ(m, e)

defines the transition mapµd : M → P(FM). �

It is easy to check thatAd is indeed non-
deterministic, so clearly, the following proposition,
which is a straightforward corollary of the Proposi-
tions 3.8 and 4.6, suffices to prove Theorem 1.

Proposition 4.8 The automataA andAd accept ex-
actly the same pointedF-coalgebras.

Remark 4.9 Although we do not go into the algo-
rithmic details of our construction, we want to stress
here that complexity theoretically, our results match
known results in automata theory. If we define the
size of an automaton as its number of states, the main
observation is that the size ofAd is equal to the size
ofM0 and, in particular, does not depend on the func-
tor F. In fact, combining well known results about
word automata, one may show that basically, the size
ofM0 is exponential in the size ofA.

5. Conclusions & Questions

There is a long list of issues that need some further
discussion, but for reasons of space limitations we
confine ourselves to a very brief discussion of the
following four items.

To start with, we believe that this paper pro-
vides evidence for the claim that universal coalge-
bra forms an appropriateabstraction levelfor study-
ing automata theory. Our results show that important
automata-theoretic phenomena have a natural exis-
tence at the coalgebraic level of abstraction.

Second, although we have hardly mentioned logic
at all, the results in the paper have in fact signifi-
cant logical corollaries. For instance, generalizing
results in [5], we can show that the coalgebraic fixed
point logics of [13] all haveuniform interpolation.
We hope to report on this in future work.

Probably the most important issue to be addressed
concerns the closure of the class of recognizable lan-
guages undercomplementation. For our coalgebraic
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automata it is not so easy to prove a complementa-
tion lemma, even for alternating or deterministic au-
tomata. The reason for this is that the acceptance
game for coalgebraic automata has some crucialnon-
symmetricinteraction between the two players, with
∃ choosing relations and∀ picking elements of such
relations. The fact that for many well-known func-
tors (including the ones that yield simple coalgebras
such as trees and transition systems), this game can
be brought into a symmetric form, simply reveals the
existence of an interestingproperty that some func-
tors have, and others may not. We have to leave this
matter as an intriguing area for further research, how-
ever. Should there be a strong need for closure of
recognizable languages under complementation, one
may always consider to move to a different notion of
coalgebra automaton that is tailored towards a more
symmetric acceptance game. This is also a matter
that we leave for future investigations.

In any case, closure under complementation may
be a less important property than it appears to be at
first sight. Explained in logical terms, the point is
that coalgebraic logics (with or without fixed points)
without negationalready have considerable expres-
sive power. For instance, A. Baltag (private commu-
nication) has shown that any state in afinite coalge-
bra can be completely characterized (modulo bisimi-
larity) by a negation free coalgebraic fixed point for-
mula.

Finally, we are quite interested to see whether
the conditions on the functor are really needed. It
seems that the condition of standardness can be lifted
without too much difficulty — note also that every
set functor is ‘almost’ standard [1, Theorem III.4.5].
However, we believe that our main result crucially
depends on the fact the functor preserves weak pull-
backs. This is in line with results by Trnková [1]
indicating that for a related class of functorial au-
tomata, nondeterministic and deterministic recogniz-
ability coincide if and only if the functor preserves
weak pullbacks. The precise connection with these
results clearly needs to be investigated.
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