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Overview This contribution gives a short introduction to arrow logic. We start by
explaining the basic idea underlying arrow logic and the motivation for studying it
(sections 1 and 2). We discuss some elementary duality theory between arrow logic
and the algebraic theory of binary relations (section 3). In the sections 4 and 5 we give
a brief survey of the theory that has been developed on the semantics (definability),
axiomatics and decidability of various systems of arrow logic. We briefly describe some
closely related formalisms and some extensions and reducts of arrow logic in section 6.
We end with mentioning some promising research lines and open problems, in section
8.
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Seligman. Special thanks are due to Johan van Benthem.

1



1 The basic idea

Summarizing in six words what arrow logic is about, one could say that

arrow logic is the basic modal logic of arrows,

a slogan calling for a few more words to discuss its key words: ‘basic’, ‘modal’ and ‘arrow’.
To start with the latter, the language of arrow logic is designed to talk about all such objects

as may be represented in a picture by arrows. As a concrete representation of an arrow the
mathematically inclined reader might think of a vector, a function or a morphism in some category;
the computer scientist of a program; the linguist of the dynamic meaning of a grammatically well-
formed piece of text or discourse; the philosopher of some agent’s (cognitive) action; etc. Note
that in the last three examples (which will be discussed in some more detail later on) arrows are
transitions related to some space of (information) states.

The essential characteristic of arrow logic is that the entities at which the truth of a formula
is evaluated are arrows, i.e. that the basic statement made in arrow logic is of the form

M, a |= φ,

Here M an arrow model, i.e. a structure of which the universe consists of arrows and arrows
only, and a is an arrow. This is not to say that arrows need always be the primitive entities of the
model. For instance, in the semantics of arrow logic an important rôle is played by two-dimensional
models. Here an arrow a is seen as a pair (a0, a1) of which a0 may be thought of as the starting
point of a and a1 as the endpoint of a.

Having defined the intended models of arrow logic as consisting of objects that are graphically
representable as arrows, we should say something about the structure imposed on these arrows. Let
us consider the question what the basic relations between arrows are. The obvious first candidate
is composition: vector spaces have an additive structure, functions can be composed, language
fragments can be concatenated, etc. Therefore, the central relation of arrows will be a ternary
composition relation C, Cabc denoting the fact that a can be seen as an outcome of the composition
of b and c, or conversely, that a can be decomposed into b and c. Note that in many concrete
examples, C is actually a (partial) function; for instance, in the two-dimensional framework we
have

Cabc iff a0 = b0, a1 = c1 & b1 = c0. (1)

Second, in all the examples listed, the composition function has a neutral element; think for
instance of the identity function or the SKIP-program. So, arrow models will contain degenerate
arrows, transitions that do not lead to a different state. Formally, there will be a designated subset
I of identity arrows; in the pair-representation, I will be (a subset of) the diagonal:

Ia iff a0 = a1. (2)

Slightly more debatable is the presence among the basic arrow relations of the third candidate:
converse. For instance, in linguistic applications it seems to be difficult to imagine what the mean-
ing of a reversed arrow could be. On the other hand, in some theories of cognitive science, reverse
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arrows appear with the clear meaning of ‘undo-ing’ an action; and in many fields of mathematics,
arrow-like objects have converses (vectors) or inverses (bijective functions). Therefore, a generous
viewpoint prevails: an arrow structure will have a binary reverse relation R. Again, in many cases
this relation will be a function; for instance in the two-dimensional picture, the function f given
by

fa = (a1, a0) (if fa is defined). (3)

Now there is a question as to whether this triple of arrow relations really forms the basic set.
A natural further candidate would be some manifestation of iteration, if only because of its funda-
mental importance in computer science. However, it is less obvious how to give a mathematically
simple and transparent definition of a primitive ‘iteration relation’ between arrows than it is for
the other relations; besides that, the notion of iteration can be captured nicely without extending
the signature of arrow frames (cf. section 7). As there are no other plausible candidates1, we can
now give a formal definition of an arrow frame:

Definition 1 An arrow frame is a quadruple F = (W,C,R, I) such that C ⊆ W × W × W ,
R ⊆W ×W and I ⊆W .

A nice aspect of arrow logic is that one can draw quite perspicuous pictures, clarifying the
meaning of the relations:
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Now that we have explained two of the three key words of our slogan, we should discuss the
modal nature of arrow logic. Let us first consider briefly what we understand with the notion
‘modal logic’. The last decade has seen a development in modal logic towards a more abstract and
technical approach. In this perspective of what we will call abstract modal logic, arbitrary relational
structures can be seen as models for an (extended) modal language: any relation is a potential
accessibility relation of some suitably defined modal operator. The essentially modal aspects of
the framework include the following. First, in contrast to what happens in the semantics of first
order logic, the quantification over the model is restricted to an accessible part of the structure.
And second, modal logicians focus on both the structure of the model itself (like in first order
logic) and the power set algebra of the structure (like in algebraic logic).

What this boils down to for arrow logic is that we define a modal operator-language such that
the truth of its formulas can be evaluated at arrows. If one wants to use traditional terminology
from modal logic, this means that the transitions are not links between the possible worlds of the
model; we treat the transitions themselves as the possible worlds. The three modal operators of the

1This is not entirely true: for instance, one could study relations like Rll: Rllab holds between two arrows a and
b iff a and b start at the same point (cf. the discussion on Bulgarian-style arrow logic in section 7). However, in many
classes of arrow frames, these relations can be defined using our ‘basic’ signature, for instance Rllab ≡ ∃x Cabx.
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language are taken such that the composition, converse and identity relation are their accessibility
relations. For instance, the language has a binary operator ◦ for C; intuitively speaking, the truth
definition of ◦ states that φ ◦ ψ is true at an arrow iff it can be decomposed into two arrows at
which φ and ψ hold, respectively.

Now we are ready to give a formal definition of the syntax and semantics of arrow logic:

Definition 2 The alphabet of arrow logic consists of an infinite set of propositional variables,
the boolean connectives ¬ and ∨, and the modal operators ◦ (composition), ⊗ (converse) and δ
(identity).2 Its set of formulas is defined as follows:

(i) every propositional variable is a formula, and so is δ,
(ii) if φ and ψ are formulas, then so are ¬φ, φ ∨ ψ, φ ◦ ψ and ⊗ψ,
(iii) and nothing else is a formula.

We will freely use the standard boolean abbreviations ∧, → and ↔, and also ◦ and ⊗ as duals
of ◦ and ⊗, i.e. φ ◦ ψ = ¬(¬φ ◦ ¬ψ) and ⊗φ = ¬⊗¬φ.

Definition 3 An arrow model is a pair M = (F, V ) such that F = (W,C,R, I) is an arrow frame
and V is a valuation, i.e. a function mapping propositional variables to subsets of W . Truth of a
formula φ at an arrow a of M, notation: M, a  φ, is inductively defined as follows:

M, a  p if a ∈ V (p)
M, a  δ if Ia
M, a  ¬φ if M, a 6 φ
M, a  φ ∨ ψ if M, a  φ or M, a  ψ
M, a  φ ◦ ψ if there are b, c with Cabc, M, b  φ and M, c  ψ
M, a  ⊗φ if there is a b with Rab and M, b  φ.

A formula φ is valid in a class of frames K, notation K |= φ, if for every frame F in K, every
valuation V on F and every arrow a in F, we have F, V, a  φ. A formula φ is valid in a frame F
if it is valid in {F}.

The reader will have noticed that while we fixed the syntax of arrow logic, we are more liberal
concerning its semantics. For instance, any group G = (G, ·, (·)−1, e) counts as an arrow frame, if
we put

C = {(x, y, z) | x = y · z},
R = {(x, y) | y = x−1},
I = {e}.

(4)

We agree that such examples may stretch one’s intuitions concerning ‘arrows’ to the limit3. Nev-
ertheless, the generality of our semantics reflects the opinion that there is no such thing as the
proper semantics for arrow logic: different applications invoke different kinds of model. It is the
task of the logician to clarify the choices that are to be made, to investigate the relations between
the various options and to search for logical patterns in the landscape.

2There are other notations in the literature as well, e.g. • or ; for ◦, φ̆ for ⊗φ and id for δ.
3Note that groups exist of which the elements do have a natural representation as arrows, consider for instance

the bijective functions on a given set.
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This is not to say that discussions concerning the ontology of arrows are not interesting or
important. Consider for instance the problem whether arrows should be primitive entities or
constructed from more basic material (for instance, as pairs of states). These matters touch upon
the philosophical question whether dynamic or static aspects of knowledge and action should have
primacy. Technically speaking however, the two-dimensional frames form just another special
subclass of the class of arrow frames.

As a last remark, let us mention some other dimensions along which the semantics of arrow
logic may be varied. As an example, one might consider arrow models in which the valuations
are subjected to certain restrictions. For instance, in the two-dimensional case one might think
of the so-called flat models, in which the truth of atomic propositions is not dependent on both
coordinates, but perhaps only on the first one. Or, having some informational interpretation in
mind, we may need a many-valued semantics to formalize reasoning with incomplete information.
As these options have not yet been explored, we will not go into detail here.

2 Some intuitive examples

Let us now consider those examples of arrow frames that have been studied most intensively in
the literature: squares, graphs (or relativized squares) and multigraphs.

To start with the latter, a multigraph is defined as a quadruple (E,P, l, r) of which E is a set
of directed edges, P is a set of points and l and r are total functions mapping edges to points
Intuitively we understand an edge a as an arrow leading from its left point l(a) to its right point
r(a):

q
l(a)

q
r(a)

-a

In a most natural way, we can define the following relations on the set E of edges of a multi-
graph:

Cabc iff a leads from l(b) to r(c) and r(b) = l(c),
Rab iff a leads from r(b) to l(b),
Ia iff l(a) = r(a).

thus creating a multigraph arrow frame with universe E4 Now an arrow model arises if we label
the edges of the multigraph with sets of propositions, consider the example below:

4Although we will not treat category frames in detail, it is easy to imagine how one may change the definition
of a multigraph frame into that of a category frame. We may see a (small) category as a multigraph endowed with
a binary composition function on arrows; this composition function will give the ternary accessibility relation C of
the arrow frame. Note that we cannot define a reverse relation R on category frames, hence we can only interpret
the ⊗-free arrow formulas in category frames. This is different for allegories (cf. Freyd & Scedrov [21]), where
arrows do have reverses; the reader is invited to investigate the connections between arrow logic and allegories.
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If we label the edges of this multigraph by the following valuation:

V (p) = {a, b, e, i}
V (q) = {i, g}
V (r) = {h},

we obtain that
d  p ◦ q
g  ⊗p ∧ ⊗¬p
h  r ◦ (δ ∧ q)
etc.

Note that in a multigraph frame, there may be various arrows leading from one point to
another, as in the picture above. This implies that neither C nor R needs to be functional in a
multigraph frame.

This is different in graph frames: a graph is a multigraph with at most one edge between each
pair of points. So we arrive at the two-dimensional semantics mentioned earlier on, as we may
identify an arrow a with the pair (l(a), r(a)). From this perspective, a graph frame is a structure
F = (E,C,R, I) such that E is a subset of a cartesian square P ×P ; C and I are defined as in (1)
resp. (2); and R is the function f satisfying (3). This viewpoint also explains the other names in
use for graph frames: pair frames, two-dimensional frames and relativized squares (in this paper,
we will mainly use the latter name).

Note that in a graph model, the modal clauses of the truth definition boil down to the following:

M, (x, y)  φ ◦ ψ iff there is a z such that M, (x, z)  φ and M, (z, y)  ψ,
M, (x, y)  ⊗φ iff M, (y, x)  φ,
M, (x, y)  δ iff x = y.

Relativized squares can be depicted as graphs, but we can also draw them in a way that reflects
their two-dimensional aspects more clearly:
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The identity relation I consists of the diagonal elements of the universe; f is the operation of
mirroring in the diagonal. C consists of all triples (a, b, d) with the property that we can draw a
rectangle abcd such that: b lies on the vertical line through a; d lies on the horizontal line through
a; and c (which does not have to belong to the universe of the model) lies on the diagonal.

We can narrow down the class of graphs further by demanding that the universe E of ‘available’
arrows satisfies certain properties, like reflexivity (if (x, y) is available, then so are its starting arrow
(x, x) and its ending arrow (y, y)) or symmetry (if (x, y) is available, then so is its converse (y, x)).
A particularly interesting condition is that all pairs of points are present as arrows. In the setting
of multigraphs, this means that there is precisely one arrow running between every pair of points.
With this constraint we arrive at the class of square frames or full graphs having a full cartesian
square as their universe.

Definition 4 An arrow frame is called a two-dimensional frame, a pair frame, a relativized square
or a graph frame, if for some base set U , W is a subset of U × U , C and I are given as in (1)
and (2) and R is a partial function f satisfying (3). If W is a reflexive and symmetric binary
relation, we call the arrow frame locally square; if W is equal to the full cartesian product over
U , i.e. W = U × U , the frame is called a square. The classes of squares, relativized squares and
locally square arrow frames are denoted by SQ, SQr and SQrs, respectively.

3 The motivation

As we have already hinted in the introduction, arrow logic is a widely applicable system: many
different notions from various disciplines like mathematics, computer science, linguistics and cog-
nitive science can be formalized in it. Here we will briefly discuss the possible applications of arrow
logic in some more detail, first focusing on the notion of dynamic semantics, which unifies insights
from computer science, linguistics and philosophy, and then describing the position of arrow logic
with respect to other parts of (mathematical) logic.

So let us start with a brief explanation of the dynamic perspective on semantics; for more
detailed information we refer the reader to van Benthem [6]. Traditionally, the central notion
of semantics in logic is a static one: a proposition is interpreted as a declarative statement over a
model. In recent years however, alternative viewpoints have been proposed in which not only the
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information content, but also the use of this information forms an object of study. In particular,
the basic idea underlying dynamic semantics is that part of the meaning of a proposition is formed
by its potential to change the information that a given agent has about the model. Let us give a
few examples.

Consider for instance the meaning of anaphora in natural language. Comparing the texts a man
walks in the park; he whistles with he whistles; a man walks in the park, the reader will notice that a
purely truth-conditional approach to semantics cannot explain the difference in meaning. Clearly,
the meaning of the pronoun he has an active component, in that it passes information concerning
the anaphoric linkage. In Groenendijk & Stokhof [27], the system of Dynamic Predicate Logic
is introduced, with the intention of formalizing this dynamic view on the semantics of anaphora;
an essential characteristic of this formalism is that the formulas of ordinary first order logic are
interpreted as sets of transitions over a state space. To be more precise: the objects at which the
evaluation of formulas takes place, are pairs consisting of an input- and an output-state.

Related to the anaphora problem in natural language is the philosophical notion of presuppo-
sition; the intuitive idea to see a presupposition as a condition to be fulfilled in order to enable
the agent to process some piece of information, turns presupposition into an undeniably dynamic
notion (cf. van Eijck [20], Visser [74]).

Similar proposals have been made in the literature on Categorial Grammar, cf. van Benthem

[9]. The paradigm that parsing a sentence is performing a logical deduction, has been combined
with the observation that these processes require an activity from the agent. A surprising insight
resulting from this connection is that Lambek’s Syntactic Calculus, in fact the main Categorial
Grammar in use, allows a dynamic, procedural interpretation, and as such can be taken as a
generalized reduct of arrow logic (we will give more details in section 7).

These ideas have also been investigated in the wider context of cognitive science, cf. for instance
Gärdenfors [25] or Veltman [68]. Here the old philosophical idea of cognition as activity
is molded into a formal framework, in which information processing is modeled by epistemic
operations for changing information states, e.g. by updating or revising them.

The central idea emerging from the literature is that propositions are interpreted as sets of
transitions. Because of this, dynamic semantics forms a bridge from formalisms developed in
linguistics and philosophy towards approaches followed in computer science, such as process algebra
(cf. Milner [48], Bergstra & Klop [14]) or dynamic logic (cf. Harel [28]). Note that in the
denotational semantics of programming languages, the standard meaning of a program α is a set
of input-output pairs.

It seems as if a research field of modal transition logics is arising, i.e. modal formalisms designed
to talk about transition structures, and as we saw in the previous section, arrow logic occupies a
central position in this landscape.

Finally, within the field of mathematics and logic arrow logic is of interest because of its
intimate and important ties with algebraic logic and with the predicate calculus.

The program of algebraic logic (cf. Németi [53] for an overview) is to study logical formalisms
with algebraic tools. A familiar example is the use of Boolean Algebras to study classical proposi-
tional logic. Several kinds of algebras of relations have been studied in the literature of algebraic
logic, one of the most important ones is formed by the Relation Algebras defined in Tarski [64].
One of the motivations for developing arrow logics was to investigate the theory of Relation Alge-

8



bras from an abstract modal point of view. In section 4 we will see how Relation Algebras emerge
as the modal or complex algebras of arrow logic.

With respect to the predicate calculus, arrow logic is interesting from the viewpoint of corre-
spondence theory (cf. van Benthem [7]), the field of modal logic in which the expressive power of
modal logic is compared to that of first order logic and other formalisms. One of the motivations
for breaking out of the traditional modal framework was to increase the expressive power of modal
languages. An interesting aspect of arrow logic is that over the class of square models, arrow logic
is equally expressive as the three-variable fragment of the predicate calculus: everything that can
be said about binary relations using three variables (and first order quantifiers) only, is expressible
in arrow logic as well, and vice versa. For more details we refer to Venema [70]. yde4.tex

4 The algebras

As we already mentioned in the previous section, arrow logic has intimate connections with alge-
braic logic; the insights and tools obtained in the literature on Relation Algebras have played an
important rôle in the development of arrow logic. Therefore, we feel it might be useful to provide
the reader with a brief introduction to the algebraic theory of binary relations and its connections
with arrow logic. As a starting point, consider the following picture, due to C. Brink (cf. [16]):
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It has manifestations for a manifold of logical formalisms; for instance, in the case of classical
propositional logic (which we may see as a degenerate kind of modal logic) the relational frames
are just unstructured sets, and the algebras are boolean algebras without extra operators.

Let us now mention some key words to explain the connections in the picture. The relation
(a) between abstract modal logic and boolean algebras with operators5 (BAOs) is very tight; for
instance, BAOs appear as the Lindenbaum-Tarski algebras of extended modal logics. As we saw in
the introductory section, (b) relational frames are the central structures in the semantics of modal
logic, and this is so since the work of Kripke. Note however that, years before the terminology of

5A boolean algebra with operators is a structure A = (A,+,−, fi)i∈I where (A,+,−) is a boolean alge-
bra and every operator fi is normal (fi(a0, . . . , 0, . . . , an−1) = 0) and additive (fi(a0, . . . , ai + a′i, . . . , an−1) =
fi(a0, . . . , ai, . . . , an−1) + fi(a0, . . . , a′i, . . . , an−1)).
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‘possible worlds’ connected by ‘accessibility relations’ was introduced, Jónsson and Tarski (cf. [32])
had already investigated the relation (c) between BAOs and relational frames — in particular, they
had already studied arrow frames. For a recent overview of the duality theory which was started
by the Jónsson-Tarski paper we refer to Goldblatt [26]. From a mathematical perspective, the
development of arrow logic can be seen as filling in the modal part of the picture above, where
the structural and algebraic sides already existed.

So it seems to be time to say something about the algebras involved. The basic idea is that one
starts with algebras consisting of a set of binary relations, together with some natural operations
on them. The next step is to abstract away from this class of concrete algebras to the class of
all boolean algebras with operators of the appropriate similarity type. One aim of the algebraic
theory is then to find necessary and sufficient conditions for the representability of an abstract
algebra as a concrete algebra of relations.

Definition 5 Let U be a set; consider the following operations on P(U × U):

R | S = {(u, v) ∈ U × U | ∃w((u,w) ∈ R & (w, v) ∈ S)}
R−1 = {(u, v) ∈ U × U | (v, u) ∈ R}
Id = {(u, v) ∈ U × U | u = v}.

Any algebra of the form A = (P(U × U),∪,−, |, (·)−1, Id) is called a full relational set algebra;
the class of such algebras is denoted by FRA. The class RRA of representable relation algebras
is defined as the class ISPFRA, i.e., isomorphic copies of subalgebras of direct products of full
relational set algebras.

A relational type algebra is a boolean algebra augmented with the following operators: a binary
;, a unary ˘ and a constant 1’.

A full relational set algebra contains all binary relation on a given set U . RRA consists of all
‘real’ relation algebras: algebras in which the elements can be seen as binary relations, and the
operations behave in the expected manner. In order to enumerate the equational theory of the
class RRA, which happens to be a variety, Tarski proposed the following:

Definition 6 A relation algebra is a relation type algebra A = (A,+,−, ;, ,̆ 1’) satisfying the
following axioms:
(RA0) Axioms stating that (A,+,−) is a Boolean Algebra
(RA1) (x+ y);z = x;z + y;z
(RA2) (x+ y)̆ = x̆ + y̆
(RA4) (x;y);z = x;(y;z)
(RA5) x;1’ = x
(RA6) (x̆ )̆ = x
(RA7) (x;y)̆ = y̆ ;x̆
(RA8) x̆ ;− (x;y) ≤ −y.

The class of relation algebras is denoted by RA.

For an introduction to the theory of relation algebras we refer to Jónsson [30, 31] or Maddux

[41]. It soon turned out that the RA-axioms do not exhaustively generate all valid principles
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governing binary relations, in other words: RA is only an approximation of RRA. In fact, RRA is
not axiomatizable by a finite (purely equational) axiomatization, as was shown by Monk (cf. [50]).
This negative result has been considerably strengthened by various authors, cf. Andréka [1] for
the most recent version. Infinite axiomatizations of RRA are known, cf. for instance Lyndon [38].

One way to overcome the negative results is to allow derivation systems that are not in equa-
tional form, cf. Wadge [75], Maddux [40] or Or lowska [55] where Gentzen-type axiomatizations
are given in which variables referring to elements of the base set U occur, or Venema [70]. An-
other possibility is to widen the class of representable relation algebras, for instance by starting
with power set algebras where the top set is not necessarily a full cartesian square, but a subset
of it, and to relativize the operations to this subset:

Definition 7 Let W be a subset of the cartesian square U × U , for some set U . The operations
−W , ∪W , |W , (·)−1:W and IdW are defined as the relativizations to W of −, ∪, |, (·)−1 and Id
respectively, i.e.,

−WR = −R ∩W
R |W S = (R | S) ∩W

Any algebra of the form A = (P(W ),−W ,∪W , |W , (·)−1:W , IdW ) with P(W ) and the operations
as defined above, is called a relativized relational power set algebra; the class of such algebras is
denoted by FRAr; FRArs is the subclass of FRAr in which the algebras have a reflexive, symmetric
relation W as their top element. The class RRAr of relativized representable relation algebras is
defined as ISFRAr (isomorphic copies of subalgebras of relativized relational power set algebras),
RRArs as ISFRArs.

It is an easy and instructive exercise to prove that RRA ⊆ RRAr by showing that any rep-
resentable relation algebra is (isomorphic to) a subalgebra of a relativized relational power set
algebra where the top set W is an equivalence relation.

The variety RRAr does allow a finite axiomatization, cf. Kramer [35], or Marx [42] for a
simpler system. A nice result by Maddux (cf. [39]) states that RRArs is precisely the class WA
of weakly associative algebras which arises if we replace the associativity axiom (RA4) in the
definition of RA by its weaker variant

(WA) (1’;x);1;1 = (1’;x);1.

Now one of the most important connections with arrow logic lies in the fact that relation type
algebras are the complex algebras of arrow frames; complex algebras form one of the fundamental
structural operations in the duality theory of relational frames and BAOs. To explain what a
complex algebra is, consider a relational frame F = (W,Ri)i∈I . With each n + 1-ary relation Ri
we associate an n-ary operation fRi on the power set P(W ):

fRi(X1, . . . , Xn) = {x0 | ∃x1 . . . xn(Rix0x1 . . . xn &
∧

1≤i≤n

xi ∈ Xi)}.

The complex algebra CmF of F is given as

CmF = (P(W ),∪,−, fRi)i∈I ;
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for a class K of relational structures, we let CmK denote the class of its complex algebras. In the
case of arrow logic we find that the full relation algebras are the complex algebras of the square
arrow frames, and a similar result applies to the relativized squares:

Proposition 8

FRA = CmSQ
FRAr = CmSQr

FRArs = CmSQrs

Proof.
Straightforward; note for instance that

R | S = {(u,w) ∈ U × U | ∃v[(u, v) ∈ R & (v, w) ∈ S]}
= {(u,w) ∈ U × U | ∃v[C(u,w)(u, v)(v, w) & (u, v) ∈ R & (v, w) ∈ S]}
= {(u,w) ∈ U × U | ∃rs[C(u,w)rs & r ∈ R & s ∈ S]}
= fC(R, S).

2

These observations have important consequences for the axiomatics of arrow logic. First,
observe that, modulo a trivial translation τ (with clauses like τ(φ∨ψ) = τφ+τψ, τ(φ◦ψ) = τφ; τψ,
etc.), the formulas of arrow logic are the terms of the algebraic language for relation type algebras.
Now the following proposition is almost immediate:

Proposition 9

SQ |= φ ⇐⇒ RRA |= τφ = 1
SQr |= φ ⇐⇒ RRAr |= τφ = 1
SQrs |= φ ⇐⇒ RRArs |= τφ = 1.

These propositions form a basic reason for the applicability of techniques from algebraic logic
in arrow logic (and vice versa!): axiomatizing the modal theory of SQ and the equational theory
of RRA are two sides of the same coin. However, note that axiomatics is not the only area in which
duality theory proves it use; in fact, almost all properties of logics have an algebraic counterpart.

5 Characterization results

In this section we discuss some basic model theory of arrow logic. First we work on the level
of arrow models, for which we define arrow bisimulations as the fundamental notion of similarity
between two arrow models. In the second part of the section we move to the level of frames,
considering the question, how classes of arrow frames resp. properties of arrow frames can be
defined in the language of arrow models.

So let us start with considering the notion of a bisimulation between structures. Bisimulations
are the key tools to compare (labeled) transition systems, cf. van Benthem & Bergstra [11],
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van Benthem, van Eijck & Stebletsova [12], and thus of fundamental importance to com-
puter science, cf. Park [56] for a first reference. It is interesting to note that in the latter area,
a bisimulation is usually defined as a relation between states, whereas in arrow logic, we need to
compare transitions:

Definition 10 Let M = (W,C,R, I, V ) and M′ = (W ′, C ′, R′, I ′, V ′) be two arrow models. A
relation Z ⊆W ×W ′ is an arrow bisimulation if it satisfies, for any propositional variable p:

if aZa′, then a ∈ V (p) iff a′ ∈ V ′(p),

the following ‘forth’-conditions (a, b, c ∈W and a′ ∈W ′):

(ZZ)→C
(ZZ)→R
(ZZ)→I

Cabc and aZa′ only if there are b′, c′ ∈W ′ such that bZb′, cZc′ and C ′a′b′c′,
Rab and aZa′ only if there is a b′ ∈W ′ such that bZb′ and Ra′b′,
Ia and aZa′ only if I ′a′

and the converse ‘back’-conditions (ZZ)←C , (ZZ)←R and (ZZ)←I (with the obvious definition).
We write M, a↔M′, a′ if there is an arrow bisimulation Z between M and M′ such that aZa′.

In de Rijke [59], the crucial rôle of bisimulations in the model theory of modal logic is
investigated, the slogan being that bisimulations are to modal logic what partial isomorphisms
are to first order logic. For instance, a nice result of de Rijke (in terms of arrow logic) states that
two rooted6 arrow models have the same arrow theory iff they have bisimilar ultraproducts. In
particular, the existence of a bisimulation between two arrow models is an indication of the fact
that the two models are very much alike. The following theorem states that the modal language
of arrow logic cannot distinguish two bisimilar arrows:

Theorem 11 Assume that M, a↔M′, a′. Then for every arrow formula φ:

M, a  φ ⇐⇒ M′, a′  φ.

This theorem has an easy proof by induction on the complexity of arrow formulas. Now another
manifestation of the fundamental importance of bisimulations lies in the fact, that a (restricted)
kind of converse of Theorem 11 holds as well: a property of arrows that is first-order definable,
can be expressed by a modal formula if and only if it is invariant under bisimulations. To be a bit
more precise:

Theorem 12 Let α(x) be a formula in the first order language over arrow models7. Assume that
truth of α(x) is invariant under arrow bisimulations, i.e. M0, a0 ↔M1, a1 implies that

M0 |= α[x 7→ a0] ⇐⇒ M1 |= α[x 7→ a1].

Then α(x) is equivalent to an arrow formula, i.e. there is a formula φ in the modal language of
arrow logic such that for every arrow model M and every arrow a in M

M |= α[x 7→ a] ⇐⇒ M, a  φ.

6A rooted arrow model is an arrow model with a distinguished arrow, as in the definition of M, a↔M′
, a′; the

theory of a rooted arrow frame is the set of formulas holding at its root.
7This is to say that α(x) may use the following fixed predicate symbols: a ternary C, a binary R and a unary

I, and further arbitrary unary predicate symbols P0, P1, . . ..
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A proof of Theorem 12 (for the ordinary modal case with one diamond 3) can be found in
van Benthem [7].

Let us now move on to the level of arrow frames. As a corollary of Theorem 11 we find that
the validity of arrow formulas is preserved under certain operations on frames. As an example, we
consider zigzag morphisms:

Definition 13 Let F0 = (W0, C0, R0, I0) and F1 = (W1, C1, R1, I1) be two arrow frames. A
function z : W0 7→ W1 is a zigzag morphism from F0 to F1 if its graph8 satisfies the back & forth
conditions of Definition 10. We call F1 a zigzagmorphic image of F0, if there is a total, surjective
zigzag morphism from F0 to F1.

Theorem 14 Let F1 be a zigzagmorphic image of F0. Then for every arrow formula φ:

F0 |= φ ⇒ F1 |= φ.

As an example of a zigzag morphism, consider the square frame F over the set ζ of integers,
and the arrow frame Z of the additive group over ζ, cf. (4). We invite the reader to check that the
map q : ζ × ζ 7→ ζ defined by

q(y, z) = z − y,
is a zigzag morphism from F onto Z 9.

This example takes us to the second part of the section, where we consider characterization
results in arrow logic. We say that a set Γ of arrow formulas defines or characterizes a class K of
arrow frames if for any arrow frame F, validity of Γ in F is equivalent to membership of F in K.
Then it follows from Theorem 14 that a class of frames is not modally definable if it is not closed
under taking zigzagmorphic images. So, the previous example shows that the class of (relativized)
squares cannot be characterized in the language of arrow logic. We will come back to this point
later on.

Let us first consider some positive results: it turns out that many natural properties of arrow
frames do allow a modal characterization. We say that a modal formula φ defines or characterizes
a property P of arrow frames if it defines the class of frames having this property. Now consider
the following list of formulas:10

(A1) ¬⊗p → ⊗¬p
(A2) ⊗¬p → ¬⊗p
(A3) ⊗⊗p → p
(A4) ⊗(p ◦ q) → ⊗q ◦ ⊗p
(A5) p ◦ ¬(⊗p ◦ q) → ¬q
(A6) δ → ⊗δ
(A7) δ ◦ p → p
(A8) p → δ ◦ p
(A9) p ◦ (q ◦ r) ↔ (p ◦ q) ◦ r

8The graph of a function f : W0 7→W1 is the relation {(x0, x1) ∈W0 ×W1 | x1 = f(x0)}.
9In fact, the Cayley representation of an arbitrary group induces a zigzag morphism from the square over the

carrier of the group to the group itself.
10Note that all of these formulas are in so-called Sahlqvist form; thus it is immediate that they correspond to

first-order properties of frames (cf. Sahlqvist [62]).
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A1 defines the arrow frames F in which the reverse relation R is serial, i.e. F |= ∀x∃yRxy. For,
let R be serial and suppose that M, x  ¬⊗p for some model M based on F. By assumption, x
has an R-successor y, and as p cannot be true at y, we have y  ¬p. So M, x  ⊗¬p. Conversely,
suppose that R is not serial; then there is an x in F without an R-successor. Consider the valuation
V with V (p) = ∅, then x  ¬⊗p, but not x  ⊗¬p.

Likewise, we can show that A2 characterizes the arrow frames in which R is functional, i.e. F |=
∀xyz((Rxy ∧ Rxz) → y = z), and that among these functional frames, A3 defines the ones with
idempotent functions, i.e. ffx = x. Let us call a frame F an f -frame if R is serial, functional and
idempotent. In the sequel it will be convenient to represent such frames as F = (W,C, f, I), i.e., in
the signature we replace the relation R by the function f .

Now consider a C-triple (a, b, c) in an f -frame F:

-a��
�
��
�
���*

b
@
@
@
@@R

c

It seems to be a very natural property that given this C-triangle, all of the triples of the
following set CY Ca,b,c should be in C:

CY Ca,b,c = {(a, b, c), (fa, fc, fb), (b, a, fc), (fb, c, fa), (c, fb, a), (fc, fa, b)}. (5)

This property is well known from the theory of relation algebras; in Lyndon [38] triples (a, b, c)
satisfying CY Ca,b,c ⊆ C are called cycles. The property “CY Ca,b,c ⊆ C for all arrows a, b and c
with Cabc” is taken care of by A4 and A5:

F |= A4 ⇐⇒ F |= ∀xyz (Cfxyz → Cxfzfy)
F |= A5 ⇐⇒ F |= ∀xyz (Cxyz → Czfyx)

To show the equivalence for A5 first assume that F |= ∀xyz (Cxyz → Czfyx), and that in
some model over F there is an arrow x at which p◦¬(⊗p◦q) is true. We will derive a contradiction
from the assumption that x  q. Note that there must be y and z such that Cxyz, y  p and
z  ¬(⊗p ◦ q). So fy  ⊗p, whence by Czfyx and our assumption we find z  ⊗p ◦ q: the desired
contradiction. Conversely, if F 6|= ∀xyz (Cxyz → Czfyx), then there must be x, y and z such that
Cxyz and not Czfyx. Now consider a valuation V with V (p) = {y} and V (q) = {x}; the crucial
observation is that now fy is the only arrow at which ⊗p is true, and x the only one with x  q.
So ⊗p ◦ q must be false at z, whence x  p ◦ ¬(⊗p ◦ q). As we also have x  q, this gives F 6|= A5.

Of the formulas involving the identity, and in the class of f -frames, A6 characterizes the arrow
frames in which reverses of identity arrows are identity arrows (∀x(Ix→ Ifx)), A8 defines those
frames in which every arrow has a starting arrow (∀x∃y(Ix∧Cxyx)), and A7 defines the following
(perhaps most essential) property of an identity arrow y: ∀xyz ((Cxyz ∧ Iy)→ x = z).

Now we turn to the associativity axiom A9, which plays a very interesting rôle in arrow logic,
as we will see in the next section. It has a first order correspondent on the class of arrow frames
as well:

F |= A9 ⇐⇒ F |= ∀xyuv ( ∃z(Cxyz ∧ Czuv) ↔ ∃w(Cxwv ∧ Cwyu) ),

viz. the picture below:
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The formulas A1 . . .A9 have been chosen for a special reason; taken together, they constitute
the arrow-counterpart of Tarski’s relation algebras:

Proposition 15 Let F be an arrow frame. Then

F |= A1 . . . A9 ⇐⇒ CmF in RA.

Now we return to the question of what to do with classes of frames which are not modally
definable. Even when in modal logic characterizations of frame classes do not lead automatically
to complete axiomatizations, this issue is of importance. We will only treat the cases of the squares
and the relativized squares.

The non-definability of SQr leaves open the possibility that one can find a set of formulas
characterizing the class Pf SQr of zigzagmorphic images of relativized squares. And indeed, this
aim can be achieved, as a result by Marx shows:

Theorem 16 Let F be an arrow frame. Then F is a zigzagmorphic image of a relativized square
iff the following formulas are valid in F:
(Ar1) ⊗¬p → ¬⊗p
(Ar2) ⊗⊗p → p
(Ar3) p ∧ δ → ⊗p
(Ar4) δ → δ ◦ δ
(Ar5) δ ◦ p → p
(Ar5′) p ◦ δ → p
(Ar6) p ◦ ¬⊗p → ¬δ
(Ar7) ⊗p ◦ ¬(p ◦ q) → ¬q
(Ar7′) ¬(p ◦ q) ◦ ⊗q → ¬p
(Ar8′) ((p ∧ δ) ◦ q) ◦ r ↔ (p ∧ δ) ◦ (q ◦ r)
(Ar8′′) (p ◦ (q ∧ δ)) ◦ r ↔ p ◦ ((q ∧ δ) ◦ r)
(Ar8′′′) (p ◦ q) ◦ (r ∧ δ) ↔ p ◦ (q ◦ (r ∧ δ))

Note that the formulas listed above all have first-order correspondents, as each of them is in
Sahlqvist form. We refer the reader to Marx e.a. [46] for the precise form of these first-order
correspondents as well as for the proof of the theorem.

The situation for the squares is rather different, because the modal theory of SQ is not finitely
axiomatizable by standard means (cf. the results by Monk and Andréka in the previous section).
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Therefore, we have to look for a different kind of characterization. First, define the operator D as
the following abbreviation:

Dφ ≡ ¬δ ◦ (φ ◦ >) ∨ (> ◦ φ) ◦ ¬δ. (6)

For an arbitrary frame F, we can define an accessibility relation RD for D by setting

RD = {(a, b) | F |= ∃x1x2y ( (Cax1x2 ∧ ¬Ix1 ∧ Cx2by) ∨ (Cax1x2 ∧ ¬Ix2 ∧ Cx1yb) ), }

i.e. we have in every arrow model M:

M, a  Dφ iff there is a b with RDab and M, b  φ.

The reader is invited to check that in a square model we have:

M, a  Dφ iff there is a b with a 6= b and M, b  φ.

In other words, over the class of squares we have defined the difference operator. Now our char-
acterization theorem below states that this property (viz. that the defined difference operator has
the inequality relation as its accessibility relation), precisely characterizes the squares among the
RA-frames (a proof could be distilled from Venema [70]):

Theorem 17 SQ consists precisely of the arrow frames F satisfying
(i) F |= A1 . . . A9,
(ii) F |= ∀xy(RDxy ↔ x 6= y).

6 Completeness and Decidability

The axiomatics and decidability aspects of arrow logics have been investigated intensively; in this
section we will try to give a sketchy overview of what is known.

Completeness

To start with axiomatics, let us first define the kinds of derivation systems that have been consid-
ered in the literature.

Definition 18 A derivation system for arrow logic is a pair (A,R) with A a set of axioms and R
a set of derivation rules. A derivation system is called normal if A contains the following axioms:
(CT ) all classical tautologies
(DB) (p→ p′) ◦ q → (p ◦ q → p′ ◦ q)

p ◦ (q → q′)→ (p ◦ q → p ◦ q′)
⊗(p→ q)→ (⊗p→ ⊗q)

and R contains the rules of Modus Ponens, Universal Generalization and Substitution:
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(MP ) φ, φ→ ψ / ψ
(UG) φ / φ ◦ ψ,ψ ◦ φ

φ / ⊗φ
(SUB) φ / σφ

where σ is a map uniformly substituting formulas for propositional variables in formulas.
A normal derivation system is called orthodox if (MP ), (UG) and (SUB) are the only deriva-

tion rules of the system. For a set Σ of formulas, we let Ω(Σ) denote the orthodox logic generated
by Σ, i.e. Ω is the orthodox derivation system having as axioms Σ, (CT ) and (DB). A formula
is a theorem of the derivation system ∆ = (A,R), notation: ∆ ` φ, if φ is the last item φn of a
sequence φ0, . . . , φn of formulas such that each φi is either an axiom or the result of applying a
rule to formulas of {φ0, . . . , φi−1}. A derivation system ∆ is sound with respect to a class K of
frames if every theorem of ∆ is valid in K, complete if every K-valid formula is a theorem of ∆.

The notion of a normal arrow logic is the straightforward generalization to the similarity
type {◦,⊗, δ} of the notion of a normal modal logic in the similarity type with one diamond
3. Orthodox modal logics are the direct modal correspondents of standard algebraic equational
axiomatizations for varieties of boolean algebras with operators. For instance, if the orthodox
modal logic generated by the set of axioms Σ is sound and complete with respect to a class K of
frames, then the set {τσ = 1 | σ ∈ Σ} 11 completely axiomatizes the class CmK (and, equivalently,
the variety generated by it).

A nice aspect of arrow logic is that almost all interesting modal formulas are in Sahlqvist form
— for instance, all formulas that we encountered in section 5. Therefore, many easy completeness
results are obtainable:

Proposition 19 Let Σ be a subset of the formulas occurring in section 5. Then Ω(Σ) is sound
and complete with respect to the class of frames that is characterized by (the first order equivalents
of the formulas in) Σ.

The proof of Proposition 19 follows from the completeness part of Sahlqvists theorem, cf. Sahl-

qvist [62].
For the two-dimensional semantics the situation is more complicated. For instance, the squares

are not finitely axiomatizable by an orthodox system (this follows from the non-finite axiomati-
zability result for Representable Relation Algebras mentioned in section 4). Fortunately, many
classes of relativized squares allow finite orthodox axiomatizations. For instance, the following the-
orem is an immediate consequence of Proposition 19 and the result by Maddux that WA = RRArs

(cf. section 3):

Theorem 20 Let Σ be the set of axioms A1 . . .A8 and
(A10) (δ ◦ p) ◦ > ◦ > ↔ (δ ◦ p) ◦ >;

The Ω(Σ) is sound and complete with respect to the class SQrs of locally square arrow frames.

In a similar way, the next theorem (due to M. Marx, cf. [42]), follows from Proposition 19 and
Theorem 16:

11τ is the trivial translation from arrow logic formulas to relation algebraic terms, cf. the paragraph preceding
Proposition 9.
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Theorem 21 Let Σ be the set of axioms Ar1 . . .Ar8′′′ from Theorem 16. Then Ω(Σ) is sound
and complete with respect to SQr.

If one allows unorthodox derivation rules, full square validity can be axiomatized by a finite
system too. The proof of the following result can be found in Venema [70].

Theorem 22 Let f be the derivation system having as its axioms the formulas A1 . . .A9 of
section 4, and as its rules the orthodox derivation rules and

(p ∧ ¬Dp)→ φ / φ
provided p does not occur in φ. (7)

where D is the operator defined in (6). Then f is sound and complete with respect to SQ.

The use of rather odd looking derivation rules like (7) to axiomatize theories lacking a finite
orthodox axiomatization originates with Gabbay [23], and is discussed in detail in Venema [72].

Decidability

With one exception, we will be rather sketchy concerning decidability and related matters, as most
of the known results can be found in other contributions to this volume. The watershed in the
hierarchy of arrow logics seems to be the associativity axiom12:

p ◦ (q ◦ r)↔ (p ◦ q) ◦ r. (A9)

From results in Andréka e.a. [3] and Kurucz e.a. [37] we can distil the following theorem:

Theorem 23 Let Λ be any non-trivial13 arrow logic containing A9. Then it is undecidable whether
a given formula is derivable in Λ.

As the proof of Theorem 23 contains some nice arguments of which the central ideas are not
too difficult to follow, we will give a proof sketch here:

Proof.
Assume that Λ is the orthodox arrow logic axiomatized by (A9). Recall that a semigroup is an
algebra G = (G, ·) such that · is an associative operation on G, and that a quasi-equation is an
expression of the form

s1 = t1 ∧ . . . ∧ sn = tn → s0 = t0, (8)
12Recent results have shown that undecidability already occurs under weaker conditions than associativity of ◦.

We refer the reader to XXXX .
13We prefer to keep this notion informal, referring to Andréka e.a. [3] for a precise formulation; as an example

of a sufficient condition for the theorem to hold, one might demand that every theorem of Λ is valid on squares of
arbitrary size.
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where the si’s and ti’s are terms. We will show that Λ is undecidable by reducing the (undecidable!)
quasi-equational theory of semigroups to it14.

Now let Q be a quasi-equation in the language of semigroups; we will first show that

SG |= Q ⇐⇒ BA◦A9 |= Q, (9)

where SG is the variety of semigroups and BA◦A9 is the class of boolean algebras with an associative,
normal and additive operator ◦. Note that by duality, the equational theory of BA◦A9 is decidable
iff Λ is decidable.

To prove (9), the direction ⇒ is trivial, as the ◦-reduct of any algebra in BA◦A9 is a semigroup.
For the other direction, let G be a semigroup such that G 6|= Q. Without loss of generality we may
assume that G is a monoid, i.e. that G has a designated element e such that G |= ex = xe = x.
(For, if G is not a monoid, we can embed it in a monoid G′; if G 6|= Q, then Q will fail to hold in
G′ as well). Now we will embed G in a complex algebra A = (P(W ), ◦) in BA◦A9. A is defined by

W = {(u, uv) | u, v ∈ G},
X ◦ Y = X |W Y,

i.e. A is the {+,−, ; }-reduct of a power set algebra of a relativized square over G. Note that |W is
identical to the relational composition |, as W is a transitive relation over G. So ◦ is associative,
and hence A is in BA◦A9.

Now to embed G in A, we define a map h reminiscent of the Cayley representation of groups:

h(u) = {(v, vu) | v ∈ G}.

To show that h is a homomorphism, first assume (x, y) ∈ h(uu′). Then y = x(uu′) = (xu)u′,
so by (x, xu) ∈ h(u) and (xu, (xu)u′) ∈ h(u′) we obtain (x, y) ∈ h(u) | h(u′). Thus we find
h(uu′) ⊆ h(u) | h(u′). For the other direction, assume that there is a z with (x, z) ∈ h(u) and
(z, y) ∈ h(u′). By definition of h, z = xu and y = zu′, so y = (xu)u′ = x(uu′), implying that
(x, y) ∈ h(uu′). Therefore, h(u) | h(u′) ⊆ h(uu′). So to show that h is an embedding it suffices to
prove injectivity. Assume h(u) = h(u′); then (e, u) ∈ h(u′), and as u′ is the only element x ∈ G
such that (e, x) ∈ h(u′), this gives u = u′. This proves (9).

The second part of the proof consists in showing that over BA◦A9, the validity problem of
quasi-equations is reducible to that of equations, by defining a (recursive!) translation E from
quasi-equations to equations such that

BA◦A9 |= Q ⇐⇒ BA◦A9 |= E(Q). (10)

It would go too far to define the translation which works for BA◦A9 itself; to capture the essential
idea, let us look at classes K ⊆ BA◦A9 for which there is a term c(x) satisfying, for all A in K15:

A |=
{
c(a) = 0 if a = 0,
c(a) = 1 if a 6= 0,

14Note that this is a very strong simplification of the proof method used in the cited papers. The ‘core’ of
the undecidability of arrow logic with associativity is not (just) the undecidability of the quasi-equational theory
of semigroups itself, but (also) the fact that various classes of (semi-)groups have recursively inseparable quasi-
equational theories.

15As an example of a term satisfying this condition, take the term c(x) = 1;x; 1, then (10) holds for every FRA.
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In other words, we are in a discriminator variety of boolean algebras with operators. Now for such
a class K, we can define the equation E(Q) as

c(s0 ⊕ t0) ≤ c(s1 ⊕ t1) · . . . · c(sn ⊕ tn)

where Q is as in (8) and ⊕ is the the symmetric difference operation given by x⊕y = x·−y + −x·y.
We leave it to the reader to prove (10) by showing that for all A in K, A |= Q iff A |= E(Q);

the crucial observation is that in any A in K, c(s⊕ t) is either 0 or 1, according to whether s 6= t
or s = t. 2

Many logics not containing A9 are decidable, cf. [46], as are many theories in simpler languages,
cf. the literature mentioned in section 7. Two quite interesting examples of decidable logics are
formed by the Dynamic Arrow Logic of van Benthem [10] and the modal theory of relativized
squares, cf. Marx [42]. The most common method to prove that a logic Λ is decidable is to show
that it has the finite model property (fmp), i.e. to prove that every non-theorem of the logic is
falsifiable in a model based on a finite frame on which Λ is valid (and to show that it is decidable
whether this condition is met by the frame). For instance, this method is used to prove the two
results mentioned above.

It is interesting to note that for pair arrow logics, one can define an even stronger property that
we will call the finite base property (fbp), which applies to a logic Λ if each of its non-theorems
is falsifiable in a two-dimensional Λ-frame based on a finite base set16. This property is strictly
stronger than the fmp, as a relatively simple example involving a dense linear ordering will show.

Interpolation

Let us finish this section by noting that with respect to other logical properties, the landscape of
arrow logic still seems to be terra incognita. An exception concerns interpolation properties; in
Sain [61] and Venema [70] negative results can be found for logics with the associativity axiom.
For many classes of relativized frames, positive results are proved by Sain, Németi and Marx; an
overview of known results is given in [45].

7 The family

In this section we briefly discuss, or just mention a number of systems that are closely related to
the basic arrow logic, and/or fragments or extensions of it.

Dynamic Arrow Logic

In many of the application areas of arrow logic, e.g. linguistics, computer science or the algebraic
theory of binary relations, iteration plays an essential rôle; therefore the Kleene star would be the
first candidate to add to the language of arrow logic. Van Benthem introduces the system of
dynamic arrow logic, as a proposal for the ‘computational core calculus’ of dynamic logics (cf. van

16Recently, it was shown by H. Andréka that non-square arrow logics have this fbp.
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Benthem [10]). Here the focus is on abstract arrow semantics; the truth definition of ∗ is given
by

M, a  ∗φ ⇐⇒ a can be C-decomposed into some finite sequence
of arrows, each satisfying φ in M,

where C-decomposition means that there is at least one way of successive composition of the
arrows in the sequence so as to obtain a. As axioms van Benthem proposes, besides A1 . . .A8 of
section 5, the following:

φ → ∗φ
∗φ ◦ ∗φ → ∗φ

and the induction principle can be found in the rule

φ→ α, α ◦ α→ α / ∗ φ→ α.

Both a completeness result and a decidability result are proved by van Benthem.

Arrow Logic, Bulgarian style

In Vakarelov [65] systems are studied that are closely related to the arrow logics discussed
in this introduction, and that are also called arrow logics. Here the universe of a model consists of
arrows as well, but the signature of these arrow models is different, and so is the similarity type
of the modal language. The basic system has frames of the form F = (W,Rij)i,j∈{l,r} with every
Rij a binary relation on the set W of arrows. In the intended frames, W is the set of edges in a
multigraph (cf. section 2) and the accessibility relations are defined by

Rijab iff i(a) = j(b),

for instance Rlrab holds if the left point of a is the right point of b. The modal language has a
diamond 3ij for every relation Rij . Note that in the full square semantics, these operators are
definable in the language of ordinary arrow logic, for instance 3lrφ as ⊗φ◦>. Vakarelov introduces
an interesting construction called copying, and proves several completeness and decidability results
(cf. also Venema [71] for a completeness result for the full square semantics). In Vakarelov &

Arsov [67] the connection between the two approaches to arrow logic are investigated; one of the
main results of the paper is a completeness result with respect to the class of multigraphs, for a
language combining the operators of the two approaches.

Modal Transition Logics

Arrow logic occupies an interesting position in the landscape of what we will call modal tran-
sition logics. With a modal transition logic we understand (informally) a modal formalism (in the
sense of abstract modal logic, cf. the discussion in the first section) with an intended semantics
in which at least part of the well-formed expressions are interpreted as sets of transitions. To
classify such systems, the main criteria seem to be (i) the relation of states versus transitions in
the intended semantics, and (ii) the set of modal operators governing transitions, states and their
connection. The extremity of arrow logic in this landscape lies in the fact that its models consists
of transitions only. This goes too for Dynamic Implication Logic (Blackburn & Venema [15])

22



which considers a relatively poor fragment of arrow logic, and for Action Logic (Pratt [57]0,
which deals with the connectives ∗, ∨, ◦ and the residuals / and \ of ◦ (to be discussed below).

Note that the ‘classical’ dynamic logic, Propositional Dynamic Logic (PDL, cf. Harel [28]) is a
modal transition logic as well: although the formulas of PDL are evaluated at states, the programs
are evaluated at transitions. (It is interesting to note that the decidability of PDL depends on
the impossibility to express the equivalence of two programs, cf. Németi [52].) The system of
Dynamic Modal Logic (DML, cf. de Rijke [58]) is similar to PDL in that it has an algebra of
diamonds as well; the main difference being that the algebra of diamonds is not dynamic but
relational.

Finally, there are hybrid systems: languages with two sorts of formulas, referring to states and
transitions respectively, and a rich set of operators including modalities that relate the two sorts.
We refer the reader to van Benthem [10] for an abstract approach, Marx [44] for results on
concrete one- and two-dimensional interpretation of sorted transition systems, and de Rijke [59]
for a very rich language, and completeness results for the full square case.

Residuals and Conjugates

In section 3 we already mentioned the dynamic interpretation of the Lambek calculus due
to van Benthem (cf. [9]); in this semantics, the connectives of categorial logic (\, / and ◦) are
interpreted in two-dimensional models (with a transitive and irreflexive universe W ⊆ U × U) as
follows:

M, (x, y)  φ ◦ ψ if there are (x, z), (z, y) ∈W with M, (x, z)  φ and M, (z, y)  ψ,
M, (x, y)  φ/ψ if for all (y, z) ∈W : M, (y, z)  ψ implies M, (x, z)  φ,
M, (x, y)  φ\ψ if for all (z, x) ∈W : M, (z, x)  φ implies M, (z, y)  ψ.

In other words, the slashes are the residuals of ◦ — the following derivation rules form the basis
of the Lambek calculus:

φ→ χ/ψ ⇐⇒ φ ◦ ψ → χ ⇐⇒ ψ → φ\χ

Note that the residuals can be defined in the language of arrow logic, e.g. / by φ/ψ ≡ ¬(¬φ◦⊗ψ).
Van Benthem observed that with the interpretation defined above, the Lambek calculus is

sound with respect to the class of relativized squares where the universe is a transitive binary
relation. In Andréka & Mikulás [4] completeness is proved, via an algebraic representation
theorem (cf. also Kurtonina [36] for a derivation system related to the Gentzen calculus for RRA
discussed in Wadge [75]).

In his contribution [47] to this volume, Mikulás studies the composition operator ◦ together
with its conjugates, i.e. connectives ◦1 and ◦2 with the following truth definition on arrow models:

M, b  φ ◦1 ψ if there are a, c with Cabc, M, a  φ and M, c  ψ,
M, c  φ ◦2 ψ if there are a, b with Cabc, M, a  φ and M, b  ψ.

Multi-Dimensional Modal Logic

Let us call an abstract modal system multi-dimensional if it has an intended semantics in
which the ‘possible worlds’ are tuples over some base set, cf. Venema [70] for an overview. Then
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arrow logic is an example of a two-dimensional logic, as part of its intended semantics is formed
by the (relativized) squares. Therefore it is interesting to see which phenomena of arrow logic
are shared by other multi-dimensional modal logics. We give a few examples: to start with, in
Venema [73] a formalism of cylindric modal logic is developed which can be seen as the modal
version of a restricted kind of first order logic. The main result of that paper, an axiomatization of
the class of cubes (higher-dimensional analogues of squares) is closely related to Theorem 22. Our
second example is the paper Németi [54]; the author shows how the undecidability of first-order
logic vanishes if we generalize the class of models in the same way that the relativized squares
form a generalization of the class of full squares. In Andréka, van Benthem & Németi [2]
the model theory of this ‘restricted first-order logic’ is developed. Finally, in Vakarelov [66] a
higher-dimensional version of the Bulgarian-style arrow logic is studied.

8 Questions

We finish this introduction with indicating some lines for further research, and listing a few
technical open problems. There are still a lot of areas to be explored in the landscape of arrow
logic.

Recall that in the introduction, we mentioned a list of possible entities that arrows might
represent. One direction of research could be to extend this list with other application areas for
arrow logic, and to develop the arrow-logical theory of various applications; for instance, what
can be said about the arrow logic of various kinds of categories? Note that one need not only
think here of questions concerning axiomatics or decidability; it would also be very interesting to
see some (more) general results on other logical properties like interpolation, Beth definability,
functional completeness, etc. In particular, we mentioned in section 1, that notions like partiality
or constraints on the valuations might be needed for applications of arrow logic in for instance
dynamic semantics. These are areas which have not yet been exploited.

These question can also be approached from a more theoretical perspective: the general ques-
tion would be to study the lattice of arrow logics. In particular, it would be nice to have more
results along the lines of Theorem 23 — it is interesting to know exactly where in the lattice of
arrow logics the right combinations of complexity and expressiveness are situated.

Another area in which quite general questions can be asked, is given by the connections between
arrow logics and substructural logics. In section 7 we mentioned the connections between arrow
logic and the Lambek Calculus. Now the Lambek Calculus is only one particular spot in the
landscape of substructural logics (cf. Došen [17]), i.e. Gentzen-style calculi where the ordinary
structural rules are absent. It would be interesting to establish more general connections between
the hierarchy of substructural logics and formalisms of arrow logics.

Mentioning Gentzen-style derivation systems takes us to an undeveloped area of arrow logic
— its proof theory. It would be nice to have complete sequent calculi for logics which allow finite
Hilbert-style axiomatizations (like the relativized squares or the locally square arrow frames),
in particular calculi with nice properties like cut-elimination and decidability. For some known
derivation systems in the Gentzen-style, the reader is referred to Wadge [75], Maddux [40] or
Or lowska [55]; of these, the second paper reveals some nice connections between various varieties
of relation (type) algebras and the number of variables needed in a proof.
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A huge research field opens up if we shift some of the parameters underlying the similarity type
of arrow logic. For instance, we may study languages for arrow frames having modal operators
different from ◦, ⊗ and δ. We already encountered the difference operator D, the residuals / and \,
and the conjugates ◦1 and ◦2, but there is of course an infinite hierarchy of modal languages that
can be interpreted in arrow frames. Another parameter shift would be to study other (almost)
basic arrow relations besides C, R and I. For instance, the parallel composition operator of
processes in process algebra might be generalized into a ternary relation of arrows, for which a
binary operator could be added to the language.

An even further generalization of the arrow logic ideology would be the following. Recall from
section 3 that over the class of square models, arrow logic is equivalent to the three variable
fragment of the predicate calculus of binary relations. The general arrow semantics can then be
seen as an abstraction of the usual semantics for first order logic: dyadic predicates are interpreted
as sets of arrows which may but need not be identified with pairs. This abstraction from concrete
pairs to abstract arrows can just as well be made in the higher-dimensional case: n-ary relations
may be interpreted as sets of n-dimensional arrows instead of as sets of n-tuples over some domain.
Some first exercises in this area have been made17, but as yet, the questions outnumber the answers
by far.

Finally, there are some technical nuts to crack:

1. Axiomatize the square logic of {◦, δ,∧,⊥}!
For various fragments of the language of arrow logics, axiomatizations have been found, or
non-finite axiomatizability results obtained (cf. [46]). For the fragment listed above, the
question is still open whether there is a finite axiomatization of the set of formulas that are
valid in the class SQ. This problem is interesting because the fragment plays an important
rôle in situation theory, cf. Moss & Seligman [51].

2. Does the Lambek Calculus have the finite base property?
Recall from section 6 that the fbp of a logic states that any non-theorem of the logic can be
falsified in a two-dimensional model based on a finite base set. For the associative Lambek
Calculus the problem is the following: given two formulas φ and ψ, built up using only /,
\ and ◦ and such that φ → ψ is not a theorem of the Lambek Calculus, is there a finite
two-dimensional model (with a transitive universe) in which φ → ψ can be falsified? For
more information, cf. Andréka & Mikulás [4].

3. Is the class RF of representable arrow frames elementary?
We call an arrow frame F representable if its complex algebra CmF is representable, i.e. if
CmF is in SP(FRA). Note that if an arrow frame F is not representable, then this fact is
witnessed by a formula φ from the modal theory of squares, which is not valid in F. So the
class of non-representable arrow frames is closed under taking ultrapowers. Therefore, to
solve this open problem, it suffices to answer the question whether RF itself is closed under
taking ultrapowers. A positive solution would be given by finding a (necessarily infinite)
orthodox axiomatization of the class SQ using only Sahlqvist axioms. For more information,
cf. Venema [70].

17Cf. the part on multi-dimensional modal logics in the previous section; note however that most of these authors
concentrate on non-standard, but still multi-dimensional models.
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