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Abstract

The atom structure of an atomic boolean algebra with operators is some canonically
defined frame or relational structure that is based on the set of atoms of the algebra. We
discuss the relation between varieties of boolean algebras with operators and the induced
class of atom structures. Our main result states that for a variety V of boolean algebras
with conjugated operators, the corresponding class At V of atom structures is elementary;
moreover, an (infinite) axiomatization of At V can be generated from the equations defining
V.

1 Introduction

The connection between boolean algebras with operators1 (baos for short) and relational
structures (or frames) has been studied rather intensively, starting with the introduction of
the first notion by Jónsson & Tarski in jons:bool51. The most familiar construction in
this field, namely that of taking the full complex algebra F+ of a relational structure F, in
fact provides one of the two prime examples of a bao. (The second example is formed by
Lindenbaum-Tarski algebras of modal logics.) For an example in the other direction, one
could mention the construction of the ultrafilter frame or canonical structure of a bao. Here,
the prime example is that of the canonical frame of a modal logic, which is nothing but
the ultrafilter frame of the Lindenbaum-Tarski algebra of the logic. For an overview of the
duality theory between baos and relational structures the reader is referred to Goldblatt

gold:vari89.
In this paper we will concentrate on atomic baos. For such algebras there is the option

to construct a frame in a different way, viz. by taking the atom structure of the algebra.2

Definition 1.1 Given an n-ary operator f on the atomic boolean algebra A, the n+1-ary
relation Rf on At A is defined by3

Rfab1 . . . bn iff a ≤ f(b1, . . . , bn).

The atom structure of the atomic bao A = (A,+,−, 0, fi)i∈I is the frame AtA = (At A, Rfi)i∈I .
Given a class X of baos, we define At X as the class of atom structures of atomic algebras in
X, in pseudo-set-theoretic notation: At X = {AtA | A is an atomic algebra in X}.
∗Department of Mathematics and Computer Science, Free University, De Boelelaan 1081, 1081 HV Ams-

terdam.
1Most of the unexplained notions are formally defined in section 2.
2One may also find the notion of atom structure defined for non-atomic baos, but we will not do so here.
3Algebraists tend to write Rfb1 . . . bna instead of Rfab1 . . . bn.
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It is obvious from the definition that in some sense, taking the atom structure of an atomic
bao is the converse operation of taking the full complex algebra of a frame. Indeed, if we
start from some arbitrary frame; take its full complex algebra (which is always atomic!); and
then take the atom structure of that algebra: we are back with an isomorphic copy of the
original frame — the isomorphism sends a state s of the original frame to the singleton {s}.
Formally, we have that for any frame F, AtF+ ' F. This observation is already in Jónsson

& Tarski jons:bool51 (be it somewhat implicit — the authors do not explicitly define the
notion of an atom structure).

Equally well-known is the fact that in the other direction, the connection is less smooth.
In particular, it is not the case that taking the full complex algebra of the atom structure of
an arbitrary atomic bao, one arrives back at the algebra that one started from, or even at an
isomorphic copy of it. This is easily seen by a simple cardinality argument: for any countably
infinite atomic algebra A, the algebra (AtA)+ will be uncountable.

This does not indicate however, that in its own right, the construction of taking the atom
structure of an arbitrary atomic bao has received a lot of attention in the literature. Let us
briefly mention the few research directions that have been taken up already. For instance,
there is the question which properties of atomic baos are determined by their atom structures.
In particular, one may investigate for which varieties of baos membership of an atomic bao

is determined by its atom structure. Let us agree to call such varieties atom-determined.
There are a few results known about this concept: for instance, in Hodkinson hodk:atom95
it is proved that the well-known variety RRA of representable relation algebras is not atom-
determined, while in Venema vene:atom96 examples of very simple equations (like fx ≤ gfx)
are given defining a variety that is not atom-determined. It is also proved in the latter paper
that if we confine ourselves to conjugated baos, then all Sahlqvist varieties (that is, varieties
that are axiomatized by Sahlqvist equations) are atom-determined.

Another line of research is to investigate whether (and if so, how) this operation of taking
atom structures might shed new light on familiar concepts and questions in the area of boolean
algebras with operators. This road is taken in for instance Goldblatt gold:elem95; one of
the main results in that paper is a partial answer to a famous open problem in modal logic,
viz. the question whether every canonical variety V of baos is generated by an elementary
class K of frames, in the sense that V = H S P Cm K. Goldblatt provides a positive answer
to this question for varieties that are not only canonical but also atom-canonical, that is,
(AtA)+ belongs to the variety for every atomic A in the variety. Another example is the
paper Givant giva:univ96; this author involves the notion of atom structure in his result
concerning classes X of algebras for which S P X is a variety.

Both of these research lines seem to be interesting and promising. It seemed to me how-
ever, that concerning the relation between (varieties of) boolean algebras with operators and
their (classes of) atom structures, some of the very basic issues have not yet been addressed
properly. Consider for instance questions like the following. Given a variety V of baos, what
does the class At V of associated atom structures look like? Is it always an elementary class?
Or, to give a second example: given an atomic bao A with atom structure F, it is tempting
to view A as a complex algebra over F, but is this a justifiable perspective?

It is the aim of this paper to address a number of such basic questions. In order to do
so, we define a number of natural properties of varieties of baos, all of which concern the
relation between the variety and its associated class of atom structures; then, we discuss the
relation between these properties.
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Definition 1.2 Let V be a variety of boolean algebras with operators. We say that V is

AE atom-elementary if At V is an elementary class,

AD atom-determined if for any two atomic algebras A and B, if AtA ' AtB, then A is in
V iff B is in V,

AC atom-canonical if (AtA)+ is in V for every atomic A in V, or equivalently, if At V ⊆
Str V.4

AX atom-complex if every atomic algebra in V is isomorphic to a complex algebra over its
atom structure.

AO atom-corresponding if there is a set ∆ of first order sentences in the frame language such
that for all atomic baos A, A is in V iff AtA |= ∆.

Interestingly enough, there is a striking difference between the general picture and the
landscape of conjugated varieties. For the general case, we can only prove the following
relations between the concepts introduced in the previous definition.

Theorem 1.3 The properties AE, AD, AC, AX and AO of varieties of baos are related as
follows:

1. AO = AD ≤ AC < AE

2. AD 6≤ AX 6≤ AC

This theorem should be read as follows. The statement ‘AO = AD’ means that an ar-
bitrary variety V of boolean algebras with operators is atom-corresponding if and only if it
is atom-determined. ‘AC < AE’ stands for the conjunction of two statements, viz. that V
is atom-canonical only if it is atom-elementary (this result was proved first in Goldblatt

gold:elem95); and the proposition that on the other hand, there are varieties that are atom-
elementary but not atom-canonical.

In the second part of the paper we turn to the case of conjugated varieties. As we
mentioned before, conjugated varieties display a much nicer behavior.

Theorem 1.4 The properties AE, AD, AC, AX and AO of conjugated5 varieties of baos are
related as follows:

1. AO = AD = AC, but not all varieties have this property.

2. All varieties are atom-complex and atom-elementary. Moreoever, given the equational
theory of V there is a recursive definition of the set of axioms defining the class At V.

4Here Str V denotes the class of structures for V, that is, all frames F with F+ in V.
5An inspection of the proof of Theorem 2 reveals that the result can be truely stated for every variety of

baos in which all operators are completely additive. Since conjugacy is the only equational property implying
complete additivity that we are aware of, we have refrained from a more general formulation along these lines.
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For an overview of the paper: in the next section we briefly define all the notions that we
assume as background knowledge in the paper. In section 3 we make some basic observations
concerning atom structures, thus proving the easy parts of Theorem 1. In section 4 we
concentrate on the class of weak structures for a given variety; these are the frames of which
the so-called singleton algebra belongs to the variety. The main result of the section, and
in fact the main technical result of the paper, states that for any variety, the class of weak
structures is an elementary class. In section 5 we treat the case of conjugated algebras; this
section contains the rather short proof of Theorem 2. We finish the paper with mentioning
some open problems, in section 6.

Acknowledgements The research of the author has been made possible by a fellowship
of the Royal Netherlands Academy of Arts and Sciences. Personally, I would like to thank
H. Andréka, I Németi and S. Givant for asking enough questions to make me write this note.
Thanks are also due to I. Hodkinson for stimulating discussions, and to him, Sz. Mikulás and
A. Simon for comments on an earlier version of this paper.

2 Terminology and notation

In this paper we assume familiarity with boolean algebras and some standard notions per-
taining to them, such as the induced ordering relation or infinite sums. We denote the power
set of a set W by P(W ), the power set algebra (P(W ),∪,−,∅) by P(W ).

Now let A = (A,+,−, 0) and A′ = (A′,+′,−′, 0′) be two boolean algebras; a map r :
A → A′ is said to preserve infinite sums if Σ′i∈Ir(ai) exists and is identical to r (Σi∈Iai)
whenever Σi∈Iai exists. In the case of preservation of finite sums, it is sufficient to require
that r (Σi∈Iai) = Σ′i∈Ir(ai) — if I is finite, the mentioned sums always exist.

An operation on a boolean algebra A = (A,+,−, 0) is nothing but a function f : An → A
for some n ∈ ω. The dual of an operation f : An → A is defined as fδ(a1, . . . , an) =
−f(−a1, . . . ,−an). An operation f is normal if f(a1, . . . , an) = 0 whenever ai = 0 for one of
the arguments ai; additive if it preserves (finite) sums in each of its arguments; completely
additive if it preserves arbitrary sums in each of its arguments; and monotonic if it is increasing
in each of its arguments. An operator is a normal and additive operation.

A similarity type is a pair τ = (I, ρ) such that I is a set of operation symbols and
ρ : I → ω is a map assigning to each operation symbol a finite rank. A boolean algebra
with τ -operators, short: a τ -bao, is an algebra A = (A,+,−, 0, fi)i∈I such that each fi is a
ρ(i)-ary operator on the boolean algebra (A,+,−, 0). A relational τ -structure or τ -frame is
a structure F = (W,Ti)i∈I such such that each Ti is a ρ(i)+1-ary relation on W . Elements of
(the universe of) a frame will sometimes be called states.

Notions concerning atoms pertain to a bao as to its underlying boolean algebra. An atom
of a boolean algebra A = (A,+,−, 0) is a element 0 6= a ∈ A for which there is no element
x satisfying 0 < x < a; a boolean algebra is atomic if there is an atom below each non-zero
element. The set of atoms of an atomic bao A is denoted by At A.

Any n+1-ary relation T on a set W induces an n-ary operation mT on P(W ):

mT (X1, . . . , Xn) = {w ∈W | Tww1 . . . wn for some wi ∈ Xi }.

Then, given a relational τ -structure F = (W,Ti)i∈I , the full complex algebra F+ of F is defined
as the structure (P(W ),∪,−,∅,mTi)i∈I ; in other words, it is the power set algebra P(W )
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endowed with all operations mTi corresponding to the relations Ti. A complex algebra over F

is just any subalgebra of F+. (Note the difference between the full complex algebra of F, which
is unique, and a complex algebra over F!) Operations of the form mT are always completely
additive operators; hence, every complex algebra is a bao.

Given a class K of τ -frames, we define Cm K as the class of full complex algebras of K, in
pseudo-set-theoretic notation: Cm K = {F+ | F ∈ K}. Similar, or familiar, definitions apply
to the class operations H , S and P , corresponding to the operations of taking homomorphic
images, subalgebras and direct products. For a class X of algebras, Str X := {F | F+ ∈ X} is
the class of structures for X.

Now we turn to the algebraic language to describe τ -baos. Besides the boolean symbols,
this language has a ρ(i)-adic function symbol for each element i of I. We may write fA for
the interpretation of the function symbol f in the algebra A, but usually we will be sloppy
concerning the distinction between symbols and their interpretations. From these symbols
and a set of variables, τ -terms and τ -equations are defined as usual; the set of τ -terms is
denoted by Ter(τ), or by Ter if τ is clear from context.

For a modal similarity type τ , the (corresponding) frame language is the first order pred-
icate language which has an n+ 1-ary relation symbol Rf for each n-ary modal operator f in
τ . Given a set Π of algebraic variables, the (corresponding) model language is the extension
of the frame language with unary predicates P0, P1, P2, . . . corresponding to the proposition
letters p0, p1, p2, . . . in Π. Given such a set Π, we let (F, a1, . . . , an) denote the expansion
of the structure F with subsets ai of the universe of F; it is our convention that a1 interprets
P1, etc.

Two unary operations f and g on A are called conjugates if for all a, b in A it holds that
a · f(b) = 0 iff g(a) · b = 0. An equivalent characterization is that a ≤ fδ(b) iff ga ≤ b for all a
and b. The notion of conjugation extends to operations of arbitrary rank, but we only mention
the binary case here: three binary operations f1, f2 and f3 are called conjugates if for all a1, a2

and a3, we have: a1 ·f1(a2, a3) = 0 iff a2 ·f2(a3, a1) = 0 iff a3 ·f3(a1, a2) = 0. Conjugation can
also be expressed equationally; for unary operations, the two axioms x ≤ fgδx and x ≤ gfδx
suffice. A very nice property of conjugated operations is that they are completely additive. A
bao is conjugated if for each of its operators there are conjugates in the clone of operations
generated by the operators; in this paper we always assume to be dealing with the special
case in which the operators themselves already come in conjugated tuples.

All results and definitions in this paper are understood to be indexed by a similarity type
τ mentioning of which will be suppressed from now on.

3 Some basic observations

In this section we make some basic observations concerning atom structures; and in doing so,
we will prove the easy parts of Theorem 1.

To start with, it is convenient to have an explicit reference to the following simple fact
that was already mentioned in the introduction.

Proposition 3.1 For any frame F, AtF+ ' F.

In the introduction we also mentioned that on the other hand, there are atomic algebras
A such that A 6' (AtA)+. It may be instructive to give a concrete example; consider the
frame N = (N, <) where < is the usual ordering on the set N of natural numbers. It is not
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difficult to show that the set P∗(N) of finite and cofinite sets of natural numbers is closed
under the operation m< given by m<(X) = {n ∈ N | n < x for some x ∈ X }. Hence, the
structure N◦ = (P∗(N),∪,−,∅,m<) is a bao. It is easy to see that N◦ is atomic and that
its atom structure is isomorphic to the frame N. In fact, N◦ and N+ are two distinct atomic
baos with the very same atom structure.

It is not very difficult to check that the equation M : fδfx ≤ ffδx holds in N◦, but not
in N+. This shows that the variety VM defined by M is not atom-canonical. In Goldblatt

gold:elem95 this example is worked out to show that in fact, there is a canonical variety that
is not atom-canonical.

The algebra N◦ is a bao of a rather special kind. We defined it as that complex algebra
over N which has as its carrier the set of all finite or cofinite subsets of N. Another way of
looking at N◦ is that it is the subalgebra of N+ that is generated by the atoms of N+, that
is, by the singletons of P(N). Put in that way, the construction can be generalized to every
frame.

Definition 3.2 Given a relational structure F = (W,Ti)i∈I , the singleton algebra F◦ is the
subalgebra of F+ that is generated by the atoms of F+, that is, by the singletons of P(W ).

For the particular similarity type of relation algebra, this concept was introduced in Hod-

kinson hodk:atom95 under the name ‘term algebra’.
There are two caveats in order here, showing that one should not make rash generalizations

from the theory of boolean algebras. First, it is wrong to think that every singleton algebra
has only finite or cofinite subsets as elements of its universe. For instance, let T be the binary
tree T = ({0, 1}∗,≥) where {0, 1}∗ is the set of all strings of 0’s and 1’s, and s ≥ t is t is
a proper initial segment of s. Then m≥({0}) is the set of all strings that start with an 0.
Obviously, m≥({0}) belongs to the universe of T◦, but it is neither finite nor cofinite.

The second tempting mistake is to assume that every atomic algebra is a complex algebra
over its atom structure. In order to see why this is not the case, consider the algebra C =
(P∗(Z),∪,−,∅, f) where Z is the set of all integer numbers and f is defined by

f(X) =
{
{x− 1 | x ∈ X} if X is finite
Z if X is cofinite.

We leave it to the reader to verify that C is a bao, i.e., that f is an additive function. C

is clearly atomic; its atom structure can be identified with the frame Z = (Z, S) with Syz
iff z = y + 1. However, C cannot be isomorphic to a complex algebra over Z; for, consider
a cofinite set X 6= Z. Then f(X) = Z, while in Z+, and hence, in each of its subalgebras,
mS(X) = Z would imply that X = Z. In fact, we have exhibited an example of an algebra
C and a frame Z such that Z ' AtC, while Z◦ 6� C 6� Z+. In Proposition 5.1 we will see
that the problem with C is that its operator f is not completely additive. Obviously, such
examples show that not every variety is atom-complex.

We now turn to proving the positive statements of Theorem 1.

Proposition 3.3 (AO ⇒ AD) A variety of boolean algebras with operators is atom-corre-
sponding only if it is atom-determined.

Proof. Assume that the variety V is atom-corresponding; then there is a set Σ of formulas
in the first-order frame language such that for any atomic algebra A, A is in V iff AtA |= Σ.
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Now consider two atomic algebras A and B such that AtA ' AtB. Then we have the
following equivalences:

A in V ⇐⇒ AtA |= Σ
⇐⇒ AtB |= Σ
⇐⇒ B in V,

from which it is immediate that V is atom-determined. qed

Proposition 3.4 ((AD & AE) ⇒ AO) A variety of boolean algebras with operators is atom-
determined and atom-elementary only if it is atom-corresponding.

Proof. Assume that V is a variety that is both atom-determined and atom-elementary. By
the latter property, there is a set Σ of formulas in the first-order frame language such that
for any frame F, (∗) F |= Σ iff F is isomorphic to the atom structure of some atomic algebra
B in V.

Now let A be an arbitrary atomic algebra. We will show that A is in V iff AtA |= Σ — this
suffices to show that V is atom-corresponding. The direction from left to right is immediate
by (∗). For the other direction, assume that AtA |= Σ. Then by (∗) there is an atomic algebra
B in V such that AtA ' AtB. But then by (AD) A is in V as well. qed

The next proposition is almost trivial.

Proposition 3.5 (AD ⇒ AC) A variety of boolean algebras with operators is atom-deter-
mined only if it is atom-canonical.

Proof. Assume that A is an atomic algebra in the atom-determined variety V. By Fact 3.1,
At (AtA)+ ' AtA. Hence, by (AD) (AtA)+ is in V, showing that V is atom-canonical. qed

Now we turn to some less trivial observations, namely concerning the conditions under
which a variety has an elementary class of atom structures. In order to prove that atom-
complex and atom-canonical varieties are atom-elementary, it will be very convenient to use
an intermediate property that involves the singleton algebras.

Definition 3.6 Given a variety V, a frame F is called a weak structure for V if F◦ belongs
to V; Wst V denotes the class of weak structures for V.

An easy proof shows the following to hold for every variety V:

Str V ⊆Wst V ⊆ At V.

Definition 3.7 A variety V is called

AS atom-sensitive if (AtA)◦ belongs to V for every atomic algebra A in V, or equivalently,
if At V ⊆Wst V.

In other words, V is atom-sensitive iff at least some complex algebra over the atom struc-
ture of each of its atomic algebras is in V. We will first show that both atom-canonicity and
atom-complexity imply atom-sensitivity.
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Proposition 3.8 (AC ≤ AS) Let V be a variety of boolean algebra with operators that is
atom-canonical or atom-complex. Then V is is atom-sensitive.

Proof. If V is atom-canonical, then atom-sensitivity of V follows immediately by the obser-
vation that F◦ is a subalgebra of F+ for every frame F. qed

From Proposition 3.8 it will be clear that in order to show that ‘AC ≤ AE’, it suffices to
prove that ‘AS ≤ AE’.

Proposition 3.9 (AS ≤ AE) A variety of boolean algebras with operators is atom-sensitive
only if it is atom-elementary.

Proof. Let V be an atom-sensitive variety; by definition, this gives that At V is included in
Wst V. Since the converse inclusion holds for every variety, this gives At V = Wst V. But then
the proposition follows immediately from Theorem 3 below, stating that for every variety V,
Wst V is an elementary class. qed

So for a proof of Theorem 1 we now have all the ingredients (apart from Theorem 3, that
will be discussed in the next section).

Proof of Theorem 1. We first prove part ??. The part ‘AO ≤ AD’ was proved in Propo-
sition 3.3. For the other direction, observe that AD ≤ AE by the Propositions 3.5, 3.8 and
3.9. Hence, AD ≤ (AD & AE), so by Proposition 3.4, AD ≤ AO.

The statement ‘AD ≤ AC’ is the content of Proposition 3.5, while it follows from the
Propositions 3.8 and 3.9 that AC ≤ AE. Finally, the variety RRA of representable relation
algebras is an example of a variety that has AE, but not AC; for a proof of this rather deep
result, the reader is referred to Hodkinson hodk:atom95.

For part ??, we can use the same example: RRA has AX — this follows from Theorem 2 —
but not AD. Finally, we already saw that not every atomic algebra is isomorphic to a complex
algebra over its atom structure (this was the second ‘caveat’); this shows that for instance,
the variety of all baos (in a given similarity type) is atom-determined but not atom-complex.

qed

4 Weak structures

In this section we will prove the main technical result of the paper, viz., that for any variety
of baos, the associated class of weak structures forms an elementary class. More precisely
formulated, we have the following theorem, which generalizes a result by Hodkinson for the
variety RRA.

Theorem 4.1 For any variety6 V, the class Wst V is elementary. Moreover, given the equa-
tional theory of V, there is a recursive definition of the set of axioms axiomatizing the class
Wst V.

6In this paper I only consider properties of varieties of baos. However, many of the questions also apply
to larger classes like quasi-varieties or universal classes, and many of the results go through. For instance, the
proof of Theorem 3 can easily be adapted to the case of V being a universal class instead of a variety.
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This is not very difficult to see if we take a perspective from modal correspondence theory;7

we basically need to combine the following two observations. First, it is not difficult to see
that every element of (the universe of) F◦ is a parametrically first order definable subset of
F — where the parameters are taken from the elements of F. And second, the truth of an
equation in a complex algebra over a frame under a given assignment V , can be expressed
by first order means over the expansion (F, V (p1), . . . , V (pn)) of the frame F — a model in
modal terminology.

Definition 4.2 Given a set P = {p0, p1, . . . , . . .} of algebraic variables, the standard trans-
lation σt of a term t is a first order formula in the model language that is given by the following
inductive definition:

σpi := Pix

σ0 := x 6= x

σ−t := ¬σt
σt1·t2 := σt1 ∧ σt2

σf(t1,...,tn) := ∃x1 . . . xn (Rfxx1 . . . xn ∧ σt1〈x1/x〉 ∧ . . . ∧ σtn〈xn/x〉).

The atomic standard translation αt is defined like the standard translation, with the
exception of the atomic clause for the algebraic variables:

αpi := x = yi.

Now let ψ be a formula in the model language, and let P be a predicate symbol occurring
in ψ that does not belong to the frame language; furthermore, let ϕ be a formula in the
frame language in which the variable x occurs free. Then ψ〈ϕ/P 〉 is the formula obtained by
replacing each occurrence of a atomic formula Pz by the formula ϕ〈z/x〉.

Let k be some natural number, and consider some terms s(p1, . . . , pn) and t1(q1,1, . . . , q1,m1),
. . . , tn(qn,1, . . . , qn,mn); as αkti we abbreviate the formula αti with each variable yj replaced by
the variable yk,j. Then δ(s,~t) is given by

δ(s,~t) := ∀xy1,1 . . . yn,mn σs〈α1
t1/P1〉 . . . 〈αntn/Pn〉

Finally, for a given term s(p1, . . . , pn), we let ∆s denote the set

∆s := {δ(s,~t) | t1, . . . , tn ∈ Ter}.

Another way of looking at the atomic standard translation is as follows. Given a term t,
we have

αt = σt〈x = y1/P1〉 . . . 〈x = yn/Pn〉,

as a straightforward proof shows.
The following Lemma is the crucial one in the proof of Theorem 3. In this Lemma, we let

s+ denote the operation on F+ induced by the term s; for s◦ we have a likewise convention
(now with respect to the algebra F◦).

7The definitions and proofs of this section can be understood without prior exposion to modal correspon-
dence theory.
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Lemma 4.3 Let s(p1, . . . , pn) be a term, F be some frame and u an arbitrary state in F.
Then the following hold.

1. For arbitrary subsets a1, . . . , an of (the universe of) F:

u ∈ s+(a1, . . . , an) ⇐⇒ (F, a1, . . . , an) |= σs[x 7→ u].

2. Let ϕ1, . . . , ϕn be formulas in the frame language such that x, yi,1, . . ., yi,mi are the
free variables of ϕi, and let v1,1, . . . , vn,mn be a sequence of states in F. Suppose that
for each i,

ai = {w | F |= ϕi[x 7→ w, ~yi 7→ ~vi]}.

Then
u ∈ s+(a1, . . . , an) ⇐⇒ F |= σs〈ϕ1/P1〉 . . . 〈ϕn/Pn〉[x 7→ u,~~y 7→ ~~v].

3. Let v1, . . . , vn be a sequence of states in F. Then

u ∈ s+({v1}, . . . , {vn}) ⇐⇒ F |= αs[x 7→ u, ~y 7→ ~v].

Proof. By a tedious but straightforward term induction on s. Note that part 1 of the Lemma
is nothing but the familiar correspondence theorem on the model level. Part 2 follows from
part 1; part 3 can be proved directly, but it is also a corollary of part 2, since for each i,

{vi} = {w | F |= x = yi[x 7→ w, yi 7→ vi]}.

qed

Lemma 4.4 For any term s,

F◦ |= s = 1 ⇐⇒ F |= ∆s.

Proof. We first prove the direction from right to left, and reason by contraposition. Assume
that F◦ 6|= s = 1; then for some u in F, and some a1, . . . , an in (the universe of) F◦, we have
u 6∈ s◦(a1, . . . , an). Since F◦ is a subalgebra of F+, this gives

u 6∈ s+(a1, . . . , an).

By definition of F◦, all elements of F◦ are generated in F+ by the singleton sets. Hence,
for each i there are a term ti(qi,1, . . . , qi,mi) and states vi,1, . . . , vi,mi in F such that ai =
t+i ({vi,1}, . . . , {vi,mi}). By Lemma 4.2(3) it follows that for each i and all w in F,

w ∈ ai ⇐⇒ F |= αiti [x 7→ w, ~yi 7→ ~vi].

But then by Lemma 4.2(2)

F 6|= σs〈α1
t1/P1〉 . . . 〈αntn/P1〉[x 7→ u,~~y 7→ ~~v].

Now, looking at the definition of δ(s,~t), we clearly have

F 6|= δ(s,~t),
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which implies
F 6|= ∆s.

For the other direction, assume that F 6|= ∆s. It follows that for some terms t1, . . . , tn,
F 6|= δ(s,~t). This implies the existence of elements u, v1,1, . . . , vn,mn such that

F 6|= σs〈α1
t1/P1〉 . . . 〈αntn/P1〉[x 7→ u,~~y 7→ ~~v].

Now for each i define ai by

ai := {w ∈W | F |= αiti [x 7→ w, ~yi 7→ ~vi]}

By Lemma 4.2(3),
ai = t+i ({vi,1}, . . . , {vi,mi}),

whence each ai belongs to the universe of F◦. Furthermore, in the same way as before, we
can use Lemma 4.2(2) to prove that

u 6∈ s◦(a1, . . . , an).

But now it is immediate that F◦ 6|= s = 1, which is what we desired to prove. qed

Proof of Theorem 3. Immediate, by Lemma 4.3 and the fact that varieties can be identi-
fied with equational classes. (Since we are in a boolean context, any equation can be brought
in the form s = 1.) qed

5 Conjugated varieties

In this short section we provide a proof of Theorem 2. The crucial property of conjugated
algebras causing the smooth behavior of conjugated varieties is the fact that their operators
are completely additive. This will be made clear by the following proposition.

Proposition 5.1 Let A be an atomic boolean algebra with operators, and let F be its atom
structure. Then

1. The map r : x 7→ {a ∈ At A | a ≤ x} embeds A into F+ if and only if A is completely
additive.

2. In particular, if A is completely additive then F◦� A� F+.

Proof. First observe that part 2 of the proposition follows from part 1, since F◦ and F+

are the smallest and the largest complex algebra over F, respectively. Of part 1, we leave the
easy left-to-right direction of the proof to the reader.

For the other direction, let A be an atomic, completely additive boolean algebra with
operators. Let r : A→ P(At A) be the map given in the statement of the Theorem. We claim
that r preserves infinite joins and embeds A into AtA+ — this is clearly sufficient.

The result that r is an embedding seems to be folklore, (cf. Goldblatt gold:elem95),
while Hirsch & Hodkinson hirs:comp94 prove that r preserves arbitrary joins. Let us just
show here that r is a homomorphism with respect to an arbitrary unary operator f , i.e., that

r(fc) = mRf (r(c)). (1)
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First note that
r (fc) = r (f (

∨
c≥b∈At A

b)) = r (
∨

c≥b∈At A

fb), (2)

by the fact that f is completely additive. Second, since r preserves arbitrary joins, we have
that

r (
∨

c≥b∈At A

fb) =
⋃

c≥b∈At A

r(fb). (3)

Combining (5) and (6) yields:

r (fc) = {a ∈ At A | ∃b ∈ At A (b ≤ c & a ∈ r(fb))}.

Thus, using the definitions of the map r and the relation Rf on At A, we obtain

r (fc) = {a ∈ At A | ∃b ∈ At A (b ∈ r(c) & a ≤ fb)}
= {a ∈ At A | ∃b ∈ At A (b ∈ r(c) & Rfab)},

which by definition of mRf is nothing but mRf (c). Thus we have proved (4). qed

From this Proposition the proof of Theorem 2 is more or less immediate:

Proof of Theorem 2. We first prove part 2. Let V be an arbitrary conjugated variety of
baos. From Proposition 5.1 and the fact that all conjugated baos are completely additive it
follows immediately that At V = Wst V, or equivalently, that V is atom-sensitive. Then V is
atom-elementary by Proposition 3.9, while the stronger result concerning the axiomatization
of At V follows by Theorem 3.

Finally, we turn to part 1. By Theorem 1 it suffices to show that AC implies AD for
conjugated varieties. Hence, assume that V is a variety of conjugated baos which is atom-
canonical and consider two atomic algebras A and B with isomorphic atom structures. In
order to prove that V is atom-determined, it suffices to prove that B is in V if A is in V, so
assume the latter. Let F be the atom structure of A; it follows from (AC) that F+ is in V.
But Proposition 5.1 implies that B can be embedded in F+. It is then immediate that B is
in V.

qed

6 Conclusions and questions

Let me finish the paper with briefly mentioning some open problems in the field.

1. Most intrigueing I find the question, whether every variety is atom-elementary. I con-
jecture that this is not the case, but I do not have a counterexample. Note that it
follows by a result of Goldblatt that the class At V of a variety V is always closed under
ultraproducts (cf. Corollary 5.3 in Goldblatt gold:elem95).

2. It also seems worth while to try and find out what the relation is between the concepts
introduced here and the notion of canonicity. In particular, I would like to know whether
every atom-canonical variety is canonical. And, if the answer to this question is negative,
then I would be interested to learn whether every atom-canonical variety with the finite
algebra property is canonical.
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3. There are a number of concepts defined in this paper (including the notion of atom-
sensitivity) of which the precise relation is still unclear. For instance, I do not know
whether:

(a) AC = AD

(b) AX ≤ AE, or AE ≤ AX

4. Is every variety of baos generated by its atomic members? (This question was raised
at the conference.)

5. In this paper we have confined ourselves to the relation between algebraic and rela-
tional structures. One might bring morphisms into the picture as well, and investigate
the property of the operation At as a map between the categories of baos with homo-
morphisms and frames with bounded morphisms.

6. A related question, raised by A. Simon, is how closure properties of a class (not nec-
essarily a variety) of baos are reflected in properties of the associated class of atom
structures.

References

[1] R.. Goldblatt. Varieties of complex algebras. Annals of Pure and Applied Logic, 44:173–
242, 1989.

[2] R. Goldblatt. Elementary generation and canonicity for varieties of boolean algebras with
operators. Algebra Universalis, 34:551–607, 1995.

[3] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras Part I & II. North-Holland,
Amsterdam, 1971 & 1985.

[4] R. Hirsch and I. Hodkinson. Complete representations in algebraic logic. Technical report,
Department of Computing, Imperial College, London, 1994. To appear in Journal of
Symbolic Logic.

[5] I. Hodkinson. Atom structures of relation algebras and cylindric algebras. Submitted.
Available as manuscript from the Department of Computing, Imperial College, London,
1994.

[6] B. Jónsson and A. Tarski. Boolean algebras with operators. Parts I and II. American
Journal of Mathematics, 73:891–939, 1951. and 74:127–162, 1952.

[7] Y. Venema. Atom structures and Sahlqvist equations. Research Report 96-173, Mathemat-
ics Department, Victoria University of Wellington, 1996. To appear in Algebra Universalis.


