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Abstract. Automata operating on infinite objects feature prominently
in the theory of the modal μ-calculus. One such application concerns the
tableau games introduced by Niwiński & Walukiewicz, of which the win-
ning condition for infinite plays can be naturally checked by a nondeter-
ministic parity stream automaton. Inspired by work of Jungteerapanich
and Stirling we show how determinization constructions of this automa-
ton may be used to directly obtain proof systems for the μ-calculus. More
concretely, we introduce a binary tree construction for determinizing non-
deterministic parity stream automata. Using this construction we define
the annotated cyclic proof system BT, where formulas are annotated
by tuples of binary strings. Soundness and Completeness of this system
follow almost immediately from the correctness of the determinization
method.
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1 Introduction

The Modal μ-calculus. The modal μ-calculus is a natural extension of basic modal
logic with explicit least and greatest fixpoint operators. Allowing the formula-
tion of various recursive phenomena, this extension raises the expressive power
of the language (at least when it comes to bisimulation-invariant properties of
transition systems) to that of monadic second-order logic [12]. The μ-calculus
is generally regarded as a universal specification language, since it embeds most
other logics that are used for this purpose, such as LTL, CTL, CTL∗ and PDL.
Despite its expressive power the μ-calculus has still reasonable computational
properties; its model checking problem is in quasi-polynomial time [4] and its
satisfiability problem is exptime-complete [7]. Another interesting feature of
the theory of the modal μ-calculus lies in its connections with other fields, in
particular the theory of finite automata operating on infinite objects, and that
of infinite games.
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Derivation Systems. Given the importance of the modal μ-calculus, there is
a natural interest in the development and study of derivation systems for its
validities. And indeed, already in [15] Kozen proposed an axiomatization. Despite
the naturality of this axiom system, he only established a partial completeness
result, and it took a substantial amount of time before Walukiewicz [25] managed
to prove soundness and completeness for the full language.

Kozen’s axiomatization amounts to a Hilbert-style derivation system, making
it less attractive for proof search. If one is interested in a cut-free system, a good
starting point is the two-player tableau-style game introduced by Niwiński &
Walukiewicz [19]. Here we will present their system in the shape of a derivation
system NW (this change of perspective can be justified by identifying winning
strategies for one of the players in the game with NW-proofs). NW is a one-
sided sequent system which allows for infinite proofs: although its proof rules are
completely standard (and finitary), due to the unfolding rules for the fixpoint
operators, derivations may have infinite branches. A crucial aspect of the NW-
system is that one has to keep track of the traces of individual formulas along
the infinite branches. A derivation will only count as a proper proof if each of
its infinite branches is successful, in the sense that it carries a so-called ν-trace:
a trace which is dominated by a greatest fixpoint operator.

This condition is easy to formulate but not so nice to work with. One could
describe the subsequent developments in the proof theory for the modal μ-
calculus as a series of modifications of the system NW which aim to get a grip
on the complexities and intricacies of the above-mentioned traces, and in par-
ticular, to use the resulting “trace management” for the introduction of finitary,
cyclic proof systems. Landmark results were obtained by Jungteerapanich [13]
and Stirling [23], who introduced cyclic proof systems for the μ-calculus, two
calculi that we will identify here under the name JS.

Automata and Derivation Systems. Applications of automata theory are ubiq-
uitous in the theory of the modal μ-calculus, and the area of proof theory is
no exception. In particular, Niwiński & Walukiewicz [19] observed that infinite
matches of their game, corresponding to infinite branches in an NW-derivation,
can be seen as infinite words or streams over some finite alphabet. It follows that
stream automata (automata operating on infinite words) can be used to deter-
mine whether such a match/branch carries a ν-trace. Niwiński & Walukiewicz
used this perspective to link their results to the exponential-time complexity of
the satisfiability problem for the μ-calculus.

A key contribution of Jungteerapanich and Stirling [13,23] was to bring
automata inside the proof system. The basic idea would be to decorate each
sequent in a derivation with a state of the stream automaton which recognizes
whether an infinite branch is successful or not; starting from the root, the suc-
cessive states decorating the sequents on a given branch simply correspond to
a run of the automaton on this branch. For this idea to work one needs the
stream automaton to be deterministic. To see this, observe that two successful
but distinct branches in a derivation would generally require two distinct runs,
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and in the case of a nondeterministic automaton, these two runs might already
diverge before the two branches split.

Interestingly, there is a natural stream automaton recognizing the success-
ful branches of an NW-derivation: One may simply take the states of such an
automaton to be the formulas in the (Fischer-Ladner) closure of the root sequent.
But given the nondeterministic format of this automaton, before it can be used
in a proof system, we need to transform it into an equivalent deterministic one.
This explains the relevance of constructions for determinizing stream automata
to the proof theory of the modal μ-calculus.

Determinization of Stream Automata. Using the ideas we just sketched, one may
obtain sound and complete derivation systems for the modal μ-calculus in an easy
way. For any deterministic automaton A that recognizes the successful branches
in NW-derivations, one could simply introduce new-style sequents consisting of
an NW-sequent decorated with a state of A, and adapt the proof rules of NW
incorporating the transition map of A. This could be done in such a way that the
stream of decorations of an infinite branch corresponds to the run of A on the
stream of sequents of the same branch. The trace condition of NW-derivations
could then be replaced by the acceptance condition of A (which is generally
much simpler, since it does not refer to traces).

More interesting is to use specific determinization constructions, in order
to design more attractive proof systems or to prove results about the deriva-
tion system (and thus, potentially, about the μ-calculus). In particular, some
determinization constructions are based on a power construction, meaning that
the states of the deterministic automaton consist of macrostates (subsets of the
nondeterministic original) with some additional structure. Such constructions
allow for proof calculi where this additional structure is incorporated into the
sequents. For instance, the derivation system JS is based on the well-known Safra
construction [20], in which the states of the deterministic automaton consist of
macrostates of the original automaton that are organised by means of so-called
Safra trees. Concretely, the (augmented) sequents in JS consist of a set of anno-
tated formulas, with the annotations indicating the position of the formula in
the Safra tree and a so-called control which provides additional information on
the Safra tree.

Our Contribution. Our overall goal is to explicitize the role of automata theory
in the design of derivation systems for the modal μ-calculus (and other fixpoint
logics). Our point is that distinct determinization constructions lead to distinct
sequent system, and that we may look for alternatives to the Safra construction.
Concretely the contribution of this paper is threefold:

1. We provide a new determinization construction for both Büchi and parity
stream automata which is based on binary trees. Our construction is similar
to constructions related to so-called profile trees [8,16].

2. We apply our construction to obtain a new derivation system BT for the
modal μ-calculus. While our system is similar in spirit to the system JS, a
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key difference is that our sequents consist of annotated formulas, and nothing
else.

3. We establish the soundness and completeness of BT. A distinguishing feature
of our approach is that (up to some optimizations) this result is a direct
consequence of the soundness and completeness of NW and the adequacy of
our determinization construction.

Related Work. There is an extensive literature on applications of automata the-
ory in the theory of the modal μ-calculus, among others [6,11,12,26]. Jungteer-
apanich and Stirling [13,23] were the first to obtain an annotated proof system
inspired by the determinization of automata. The proof system Focus for the
alternation-free μ-calculus designed by Marti & Venema [18] originates with a
rather simple determinization construction for so-called weak automata. In [17],
Leigh & Wehr also take a rather general approach towards the use of deter-
minization constructions in the design of derivation systems, but they confine
attention to the Safra construction.

Overview of Paper. In the next section we provide the necessary background
material on binary trees, on ω-automata, on the modal μ-calculus and the proof
system NW; doing so we fix our notation. In Sect. 3 we introduce a new deter-
minization method for nondeterministic Büchi and parity automata. We will
use this construction to prove the soundness and completeness of the proof sys-
tem BT, which we introduce in Sect. 4. All missing proofs can be found in the
extended version of this paper [5].

2 Preliminaries

Binary Trees. We let 2∗ denote the set of binary strings; we write < for the
lexicographical order of 2∗, and � for the (initial) substring relation given by
s � t if sr = t for some r. Substitution for binary strings is defined in the
following way: Let s, t, s̃, r ∈ 2∗ be such that s = ts̃, then s[t\r] denotes the
binary string rs̃. A binary tree is a finite set of binary strings T ⊆ 2∗ such that
s0 ∈ T ⇒ s ∈ T and s0 ∈ T ⇔ s1 ∈ T . Here we let leaves(T ) = {s ∈ T | s0 /∈ T}
denote its set of leaves, and minL(T ) its minimal leaf of T , i.e. the unique leaf
of the form 0 · · · 0. A set of binary strings L is a set of leaves of a binary trees
if for all s �= t ∈ L we have s �� t and tree(L) = {s ∈ 2∗ | ∃t ∈ L : s � t} is a
binary tree.

Stream Automata. A non-deterministic automaton over a finite alphabet Σ is a
quadruple A = 〈A,Δ, aI ,Acc〉, where A is a finite set, Δ : A × Σ → P(A) is the
transition function of A, aI ∈ A its initial state and Acc ⊆ Aω its acceptance
condition. An automaton is called deterministic if |Δ(a, y)| = 1 for all pairs
(a, y) ∈ A × Σ. A run of an automaton A on a stream w = y0y1y2... ∈ Σω is a
stream a0a1a2... ∈ Aω such that a0 = aI and ai+1 ∈ Δ(ai, yi) for all i ∈ ω. A
stream w is accepted by A if there is a run of A on w, which is in Acc; we define
L(A) to be the set of all accepting streams of A.
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The acceptance condition can be given in different ways: A Büchi condition
is given as a subset F ⊆ A. The corresponding acceptance condition is the set
of runs, which contain infinitely many states in F . A parity condition is given as
a map Ω : A → ω. The corresponding acceptance condition is the set of runs α
such that min{Ω(a) | a occurs infinitely often in α} is even. A Rabin condition
is given as a set R = ((Gi, Bi))i∈I of pairs of subsets of A. The corresponding
acceptance condition is the set of runs α for which there exists i ∈ I such
that α contains infinitely many states in Gi and finitely many in Bi. Automata
with these acceptance conditions are called Büchi, parity and Rabin automata,
respectively.

Modal μ-calculus: Syntax. The set Lμ of formulas of the modal μ-calculus is
generated by the grammar

ϕ ::= p | p | ⊥ | 
 | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | �ϕ | �ϕ | μx.ϕ | νx.ϕ,

where p and x are taken from a fixed set Prop of propositional variables and in
formulas of the form μx.ϕ and νx.ϕ there are no occurrences of x in ϕ.

Formulas of the form μx.ϕ (νx.ϕ) are called μ-formulas (ν-formulas, respec-
tively); formulas of either kind are called fixpoint formulas. We write η, λ ∈ {μ, ν}
to denote an arbitrary fixpoint operator. We use standard terminology and nota-
tion for the binding of variables by the fixpoint operators and for substitutions,
and make sure only to apply substitution in situations where no variable capture
will occur. An important use of the substitution operation concerns the unfolding
χ[ξ/x] of a fixpoint formula ξ = ηx.χ.

Given two formulas ϕ,ψ ∈ Lμ we write ϕ →C ψ if ψ is either a direct boolean
or modal subformula of ϕ, or else ϕ is a fixpoint formula and ψ is its unfolding.
The closure Clos(Φ) ⊆ Lμ of Φ ⊆ Lμ is the least superset of Φ that is closed
under this relation. It is well known that Clos(Φ) is finite iff Φ is finite. A trace
is a sequence (ϕn)n<κ, with κ ≤ ω, such that ϕn →C ϕn+1, for all n + 1 < κ.

We define a dependence order on the fixpoint formulas occurring in Φ, written
Fix(Φ), by setting ηx.ϕ <Φ λy.ψ (where smaller in <Φ means being of higher
priority) if Clos(ηx.ϕ) = Clos(λy.ψ) and ηx.ϕ is a subformula of λy.ψ. One
may define a parity function Ω : Fix(Φ) → ω, which respects this order (i.e.,
Ω(ηx.ϕ) < Ω(λy.ψ) if ηx.ϕ <Φ λyψ) and satisfies Ω(ηx.ϕ) is even iff η = ν. Let
maxΩ(Φ) = max{Ω(νx.ϕ) | νx.ϕ ∈ Fix(Φ)}.

It is well known that any infinite trace τ = (ϕn)n<κ features a unique formula
ϕ that occurs infinitely often on τ and is a subformula of ϕn for cofinitely many
n. This formula is always a fixpoint formula, and where it is of the form ηx.ψ
we call τ an η-trace.

Since the semantics of the modal μ-calculus only plays an indirect role in our
paper, we refrain from giving the definition.

Non-wellfounded Proofs. A sequent Γ is a finite set of μ-calculus formulas, pos-
sibly with additional structure such as annotations. Rules have the following
form, possibly with additional side conditions:



Proof Systems for the Modal μ-Calculus 247

R :
Γ1 · · · Γn

Γ

[Γ ]x
...

Dx : Γ
Γ

A rule R, where n = 0, is called an axiom. The rules Dx are called discharge
rules. Each discharge rule is marked by a unique discharge token taken from a
fixed infinite set D = {x, y, ...}.

Definition 1. A derivation system P is a set of rules. A P derivation π =
(T, P,S,R, f) is a quintuple such that (T, P ) is a, possibly infinite, tree with nodes
T and parent relation P ; S is a function that maps every node u ∈ T to a non-
empty sequent Σu; R is a function that maps every node u ∈ T to its label R(u),
which is either (i) the name of a rule in P or (ii) a discharge token; and f is a
partial function that maps some nodes u ∈ T to its principal formula f(u) ∈ S(u).
If a specific formula ϕ in the conclusion of a rule is designated, then f(u) = ϕ
and otherwise f(u) is undefined. To qualify as a derivation, such a quintuple is
required to satisfy the following conditions:

1. If a node is labeled with the name of a rule then it has as many children as
the rule has premises, and the annotated sequents at the node and its children
match the specification of the rules.

2. If a node is labeled with a discharge token then it is a leaf. For every leaf l
that is labeled with a discharge token x ∈ D there is exactly one node u ∈ T
that is labeled with Dx. This node u and its child are proper ancestors of l.
In this situation we call l a discharged leaf, and u its companion; we write c
for the function that maps a discharged leaf l to its companion c(l) and write
p(l) for the path in T from c(l) to l.

A derivation π′ = (T ′, P ′,S′,R′, f′) is a subderivation of π = (T, P,S,R, f) if
(T ′, P ′) is a subtree of (T, P ) and S′,R′, f′ and S,R, f are equal on (T ′, P ′). A
derivation π is called regular if it has finitely many distinct subderivations.

Definition 2. Let π = (T, P,S,R, f) be a derivation. We define two graphs we
are interested in: (i) The usual proof tree Tπ = (T, P ) and (ii) the proof tree
with back edges T C

π = (T, PC), where PC = P ∪{(l, c(l)) | l is a discharged leaf}
is the parent relation plus back-edges for every discharged leaf.

A strongly connected subgraph in T C
π is a set S of nodes, such that for every

u, v ∈ S there is a PC-path from u to v.

The NW Proof System. The rules of the derivation system NW, which is directly
based on the tableau games introduced by Niwiński & Walukiewicz [19], are
given in Fig. 1.

In order to decide whether an NW derivation qualifies as a proper proof,
one has to keep track of the development of individual formulas along infinite
branches of the proofs.
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Fig. 1. Rules of NW

Definition 3. Let Γ, Γ ′ be sequents, ξ be a formula such that Γ is the conclusion
and Γ ′ is a premise of a rule in Fig. 1 with principal formula ξ. We define the
active and passive trail relation AΓ,ξ,Γ ′ ,PΓ,ξ,Γ ′ ⊆ Γ × Γ ′. Both relations are
defined via a case distinction on ξ:

Case ξ = �ϕ: Then Γ = �ϕ,�Λ,Δ and Γ ′ = ϕ,Λ. We define AΓ,ξ,Γ ′ ,=
{(�ϕ,ϕ)} ∪ {(�χ, χ) | χ ∈ Λ} and PΓ,ξ,Γ ′ = ∅.

Case ξ = ϕ ∨ ψ: Then Γ = ϕ ∨ ψ,Λ and Γ ′ = ϕ,ψ,Λ. We define AΓ,ξ,Γ ′ =
{(ϕ ∨ ψ,ϕ), (ϕ ∨ ψ,ψ)} and PΓ,ξ,Γ ′ = {(χ, χ) | χ ∈ Λ}.

The relations for the remaining rules are defined analogously.
The trail relation TΓ,ξ,Γ ′ ⊆ Γ ×Γ ′ is defined as AΓ,ξ,Γ ′ ∪PΓ,ξ,Γ ′ . Finally, for

nodes u, v in an NW proof π, such that P (u, v), we define Tu,v = TS(u),f(u),S(v)

Note that for any two nodes u, v with P (u, v) and (ϕ,ψ) ∈ Tu,v, we have
either (ϕ,ψ) ∈ Au,v and ϕ →C ψ, or else (ϕ,ψ) ∈ Pu,v and ϕ = ψ. The idea is
that A connects the active formulas in the premise and conclusion, whereas P
connects the side formulas.

Definition 4. Let π = (T, P,S,R, f) be an NW derivation. A branch of π is
simply a (finite or infinite) branch of the underlying tree (T, P ) of π. A trail
on a branch α = (vn)n<κ is a sequence τ = (ϕn)n<κ of formulas such that
(ϕi, ϕi+1) ∈ Tvi,vi+1 , whenever i + 1 < κ. We obtain the tightening τ̂ of such
a τ by erasing all ϕi+1 from τ for which (ϕi, ϕi+1) belongs to the passive trail
relation Pvi,vi+1 . We call τ a ν-trail if its tightening τ̂ is a ν-trace (and so, in
particular, it is infinite).

Definition 5. An NW proof π is an NW derivation such that on every infinite
branch of π there is a ν-trail. We write NW � Γ if there is an NW proof of Γ ,
i.e., an NW proof, where Γ is the sequent at the root of the proof.

Soundness and Completeness of NW for guarded formulas, (i.e., where in
every subformula ηx.ψ all free occurrences of x in ψ are in the scope of a modal-
ity) follows from the results by Niwiński & Walukiewicz [19]. As pointed out
in [2], it follows from [24] and [10] that the result in fact holds for arbitrary
formulas. By Theorem 6.3 in [19], NW-proofs can be assumed to be regular, and
this observation applies to unguarded formulas as well.

Theorem 1 (Soundness & Completeness). Let Γ be a sequent, then
∨

Γ
is valid iff NW � Γ iff Γ has a regular NW-proof.
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3 Determinization of Automata with Binary Trees

3.1 Büchi automata

Let Σ be an alphabet and B = 〈B,Δ, bI , F 〉 a nondeterministic Büchi automaton
over Σ. We want to present an equivalent deterministic Rabin automaton.

The run tree of B on a word w = (wi)i∈ω is a pair R = (R, l), where R is
the full infinite binary tree and l labels every node s with Bs ⊆ B, such that
l(ε) = {bI} and for |s| = i: l(s1) = Δ(Bs, wi) ∩ F and l(s0) = Δ(Bs, wi) ∩ F ,
where we define Δ(Bs, y) =

⋃

b∈Bs
Δ(b, y). It describes all possible runs of B on

w, using the 1 s to keep track of visited states in F .
The profile tree, introduced in [9], is a pruned version of the run tree, where

1) at each level all but the (lexicographically) greatest occurrence of a state b
are removed and 2) nodes labelled by the empty set are deleted. This results in a
tree of bounded width, where every node has 0,1 or 2 children. It can be proved
that B accepts a stream w iff the corresponding profile tree has a branch with
infinitely many 1 s.

In [8] a determinization method was defined, where macrostates encode levels
of the profile tree. In our approach macrostates encode a compressed version of
the whole profile tree up to some level: Nodes u, v are identified (iteratively),
if v is the unique child of u. This results in finite binary trees, where leaves are
labelled by subsets of B. In every step of the transition function we add one
level of the run tree and then prune and compress the tree to obtain a binary
tree again. Whenever a 1 is compressed (in the sense of a node being identified
with its right child) we know that a state in F has been visited and mark the
node green. A run of the deterministic automaton is accepted if there is a node,
which never gets removed and is marked green infinitely often. Figure 2 contains
an example of this determinization construction.

Formally we define the deterministic Rabin automaton B
D = 〈BD, δ, b′

I , R〉
as follows: An element S in the carrier BD of B

D is called a macrostate and
consists of

– a subset BS of B,
– a map f : BS → 2∗, such that1 ran(f) is a set of leaves of a binary tree and
– a colouring map c : tree(ran(f)) → {green, red,white}.

We define TS to be the binary tree tree(ran(f)), that has ran(f) as its leaves
and say that a binary string s is in play if s ∈ TS . If it is clear from the context
we occasionally abbreviate TS by T . We will sometimes denote a macrostate by
a set of pairs (b, s), usually written as bs, where b ∈ BS and s = f(b) and deal
with the colouring c implicitly.

The initial macrostate b′
I consists of the singleton {bε

I}, where c(ε) = white.
To define the transition function δ let S be in BD and y ∈ Σ. We define δ(S, y) =
S′, where starting from the empty set we build up S′ in the following steps:

1. Move: For every as ∈ S and b ∈ Δ(a, y), add bs to S′.
1 Here ran(f) denotes the co-domain of f .
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Fig. 2. A nondeterministic Büchi automaton B on the left and its determinization B
D

on the right. The diagram in the middle shows the internal structure of the macrostates
m0, m1, m2 and m3 of B

D. Binary trees are represented in the obvious way (i.e., the
root is the string ε, and for every node the left child appends 0 and the right child
appends 1). The transitions of B

D are split in two parts: In the first part one level
of the run tree is added, corresponding to the steps 1 and 2 in the definition of the
transition function. In the second part (the dashed arrows) the tree is pruned and
compressed, corresponding to the steps 3 and 4. The acceptance condition of B

D is
such that the word aω is accepted by B

D because the string ε is always in play, marked
green infinitely often and never red.

2. Append: For every as ∈ S′, where a /∈ F , change as to as0. For every as ∈ S′,
where a ∈ F , change as to as1.

3. Resolve: If as and at are in S′, where s < t, delete as.
4. Compress/Colour: Let c(t) = white for every t ∈ TS′

. Now we compress and
colour T in the following way, until there exists no witness t ∈ T , such that
(a) or (b) is applicable:2

(a) For any t ∈ T , such that t0 ∈ T and t1 /∈ T , change every as ∈ S′, where
t0 � s, to as[t0\t]. For any s ∈ T , where t � s, let c(s) = red.

(b) For any t ∈ T , such that t0 /∈ T and t1 ∈ T , change every as ∈ S′, where
t1 � s, to as[t1\t]. For any s ∈ T such that t = s0 · · · 0, let c(s) = green,
if c(s) �= red. In particular let c(t) = green if c(t) �= red. For any s ∈ T ,
where t � s, let c(s) = red.

We define BD as the set of macrostates that can be reached from b′
I in this way.

A run of B
D is accepting if there is a binary string s, which is in play cofinitely

often such that c(s) is green infinitely often and red only finitely often.

Theorem 2. B accepts a word w iff B
D accepts w.

Remark 1. For a Büchi automaton of n states, our construction yields a deter-
ministic automaton B

D with nO(n) states and a Rabin condition of O(2n) pairs,

2 As shown in Proposition 1 of [5] this procedure does not depend on the order in
which witnesses are chosen, and thus produces a unique binary tree.
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see Lemma 5 of [5]. With some adaptations we could also match the optimal
Rabin condition, which is known to be linear-size [20].

This can be achieved by adding an labelling function as follows: Let L =
{1, . . . , 2n − 1} be the set of potential labels. Macrostates are defined as before,
where an additional injective function l : TS → L is added. For the initial state
we let l(ε) = 1. The steps 1–4 in the transition function remain the same, where
we add a final step 5 in which we define the new labeling function l′: We let
l′(s) = l(s) for all s that already occurred in TS and for all s ∈ TS′ \ TS we let
c(s) = red and choose new, distinct labels in L, i.e. ones which do not occur in
ran(l). The binary tree TS′

has at most n leaves, hence it has at most 2n − 1
many nodes and this is always possible.

The new acceptance condition has the following form: A run of the automaton
is accepting if there is a label k ∈ L, such that c(l−1(k)) is green infinitely often
and red only finitely often. Here c(l−1(k)) is defined to be red if k /∈ ran(l). This
is a Rabin condition with O(n) pairs. Notably we still have nO(n) macrostates,
thus the determination method is optimal.

3.2 Parity Automata

We now extend the approach to parity automata. Let Σ be an alphabet and
A = 〈A,ΔA, aI , Ω〉 be a nondeterministic parity automaton.

In order to present the intuitive idea behind the construction we first trans-
form A into an equivalent nondeterministic Büchi automaton B. Let m be the
maximal even priority of Ω. For even k = 0, 2, ...m we define A0, A2, ..., An as
copies of A without the states of priority smaller than k, i.e. Ak = 〈Ak,Δk, Fk〉
with Ak = {ak | a ∈ A∧Ω(a) ≥ k}, Δk = ΔA|Ak

and Fk = {ak ∈ Ak | Ω(a) = k}.
Now we define the nondeterministic Büchi automaton B = 〈B,ΔB , bI , F 〉:3

B =A ∪
m
⋃

k=0
k even

Ak, bI = aI , F =
m
⋃

k=0
k even

Fk,

ΔB =ΔA ∪
m
⋃

k=0
k even

Δk ∪ {(a, y, bk) ∈ A × Σ × Ak | b ∈ ΔA(a, y), k = 0, 2, ...,m}.

Although Ak is not an automaton, as it does not have an initial state, we can
define the Büchi automaton A∪Ak = 〈A∪Ak,ΔB |A∪Ak

, aI , Fk〉 for k = 0, ...,m.
The intuition behind the determinization of the parity automaton A is the

following: We apply the binary tree construction to every automaton A ∪ Ak for
k = 0, 2, ...,m, which is possible as there are no paths from Ak to Aj if k �= j
and none of the accepting states of B are in the set A. The annotation of a
state a ∈ A will then be the tuple (s0, s2, ..., sm), where sk is the annotation at
the state ak ∈ A ∪ Ak. Note that the automaton A

D will be different from the
automaton obtained from the binary tree construction on the whole B.
3 For easier notation we represent the transition function B × Σ → P(B) by its

corresponding relation (i.e., subset of B × Σ × B).
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To make that formal we need some definitions. A treetop L is a set of leaves
of a binary tree, where potentially the minimal leaf is missing, i.e. L is a finite
set of binary strings such that for all s �= t ∈ L it holds s �� t and tree(L) = {s ∈
2∗ | ∃t ∈ L : s � t} ∪ {s0 | s = 0 · · · 0 and s1 ∈ L} is a binary tree.

For even m let TSeq(m) = {(s0, s2, ..., sm) | s0, s2, ..., sm ∈ 2∗} be the set
of sequences of length m

2 + 1, where s0, ..., sm are binary strings. Let πk be the
projection function, which maps σ = (s0, ..., sm) to sk for k = 0, 2, ...,m. We
define a partial order < on TSeq(m): Let (s0, ..., sm) < (t0, ..., tm) if there exists
l ∈ {0, ...,m} such that sl < tl and sj = tj for j = 0, ..., l − 2.

We now define the deterministic Rabin automaton A
D = 〈AD, δA, a′

I , RA〉.
Let m be the maximal even priority of Ω in A. An element S in the carrier AD

of A
D consists of a tuple (AS , f, c0, ..., cm), where

– AS is a subset of A,
– f : AS → TSeq(m), such that ran(πk ◦ f) is a treetop for k = 0, ...,m and
– ck is a colouring map from tree(ran(πk ◦ f)) → {green, red,white} for k =

0, 2, ...,m.

We define TS
k to be the binary tree tree(ran(πk ◦ f)) for k = 0, 2, ...,m and say

a binary string s is in play at position k if s ∈ TS
k . If the context is clear we

will abbreviate TS
k with Tk. Again we sometimes denote a macrostate by a set

of pairs (a, σ), usually written as aσ, where a ∈ AS and σ = f(a) and deal with
the colourings ck implicitly.

The initial macrostate a′
I consists of the singleton {a

(ε,...,ε)
I }. To define the

transition function δA let S be in AD and y ∈ Σ. We define δA(S, y) = S′, where
S′ is constructed in the following steps:

1. (a) Move: For every aσ ∈ S and b ∈ ΔA(a, y), add bσ to S′.
(b) Reduce: For every aσ ∈ S′, change aσ to aσ′

, where σ′ is obtained from
σ = (s0, ..., sm) by replacing every sj with j > Ω(a) by minL(Tj).

2. Append: For every aσ ∈ S′ and σ = (s0, ..., sm), change aσ to aσ′
, where σ′ =

(s00, ..., sk−20, sk1, sk+20, ..., sm0) if Ω(a) = k is even, and σ′ = (s00, ..., sm0)
if Ω(a) = k is odd.

3. Resolve: If aσ and aτ are in S′ and σ < τ , delete aσ.
4. Compress/Colour: Do for every k = 0, 2, ...,m: Let ck(t) = white for any

t ∈ Tk. Now we compress and colour Tk inductively in the following way,
until there exists no witness t ∈ Tk, such that (a) or (b) is applicable:
(a) For any t ∈ Tk, such that t0 ∈ Tk and t1 /∈ Tk, change every

aσ ∈ S′, where σ = (s0, ..., sm), and t0 � sk, to aσ′
, where σ′ =

(s0, ..., sk[t0\t], ..., sm). For any s ∈ Tk, where t � s, let ck(s) = red.
(b) For any t ∈ Tk, such that t0 /∈ Tk, t1 ∈ Tk and t �= 0 · · · 0, change

every aσ ∈ S′, where σ = (s0, ...sm), and t1 � sk, to aσ′
, where σ′ =

(s0, ..., sk[t1\t], ..., sm). For any s ∈ Tk such that t = s0 · · · 0, let ck(s) =
green, if ck(s) �= red. In particular let ck(t) = green if ck(t) �= red. For
any s ∈ Tk, where t � s, let ck(s) = red.
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A run of A
D is accepting if there is k ∈ {0, 2, ...,m} and a binary string s, which

is in play at position k cofinitely often such that ck(s) is green infinitely often
and red only finitely often.

Theorem 3. Let A be a parity automaton and A
D the deterministic Rabin

automaton defined from A. Then L(A) = L(AD).

Remark 2. For a parity automaton A of size n with highest even priority
m, our construction produces a deterministic Rabin automaton with nO(m·n)

macrostates and O(m · 2n) Rabin pairs, see Lemma 6 of [5].

4 BT Proofs

4.1 Proof Systems

We present two non-wellfounded proof systems for the modal μ-calculus, namely
BT and BT∞. The idea is that annotated sequents in the BT system correspond
to macrostates of A

D, where A is a nondeterministic parity automaton checking
the trace condition in an NW proof. The rules of BT resemble the transition
function of A

D.
Let Φ be a set of formulas, the sequent we want to prove, and let m =

maxΩ(Φ) be the maximal even priority of Ω. Annotated sequents are sets of
pairs (ϕ, σ), usually written as ϕσ, where ϕ ∈ Clos(Φ) and σ ∈ TSeq(m). For
an annotated sequent Γ we let ΓN be the set of annotations occurring in Γ , i.e.
ΓN = {σ ∈ TSeq(m) | ∃ϕ s.t. ϕσ ∈ Γ}. We let ΓN

k be the set of binary strings
occurring at the k-th position of the annotations in Γ , i.e., ΓN

k = πk[ΓN ]. We
say that a string s occurs in ΓN

k if there exists t ∈ ΓN
k such that s � t.

For σ = (s0, ..., sm) ∈ TSeq(m) we define σ · 1k = (s0, ..., sk1, ..., sm) and
σ · 0k = (s0, ..., sk0, ..., sm). For an annotated sequent Γ we let Γ ·0k denote the
annotated sequent {ϕσ·0k | ϕσ ∈ Γ}.

Let Γ be an annotated sequent and ϕσ ∈ Γ . We define σ � kΓ to be the tuple
of binary strings obtained from σ = (s0, ..., sm) by replacing every sj with j > k
by minL(tree(ΓN

j ). If the context Γ is clear we write σ � k instead of σ � kΓ .
The rules Compresss0k and Compresss1k are schemata for k = 0, 2, ...,m and

s ∈ 2∗. In these rules the notation ϕ
(...,sti,... )
i is to be read such that sti is the

binary string in the k-th position of the annotation. We will write Compress for
any of those rules and write Compresssk for either Compresss0k or Compresss1k .

Note that, if one ignores the annotations, the rules Ax1, Ax2, R∨, R∧, Rμ,
Rν and R� in Fig. 3 are the same as the rules of NW. As mentioned above
annotated sequents in the BT system correspond to macrostates of A

D, where A

is a nondeterministic parity automaton checking the trace condition in an NW
proof. The rules of BT correspond to the transition function δA of A

D, where
the transformations of δA are distributed over multiple rules: Step 1(a) of δA is
carried out in every rule and step 1(b) and step 2 correspond to the modification
of the annotations in the rules Rμ and Rν . Notably, we do not add zeros to the
annotations if the zeros would get deleted anyway in step 4 of the transition
function. The rules Resolve and Compress are additional and correspond to steps
3 and 4 of δA.
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Fig. 3. Rules of BT

Definition 6. A BT derivation π is a derivation defined from the rules in Fig. 3,
such that the rules are applied with the following priority: first Resolve, then
Compress, and then all other rules.

Just as annotated sequents correspond to macrostates of the deterministic
automaton A

D, the soundness condition of BT∞ and BT correspond to the
acceptance condition of A

D: We say that a pair (k, s) is preserved at a node, if
s is in play at position k at the corresponding macrostate and not marked red;
and progresses if it is marked green.

Definition 7. Let π be a BT derivation of Φ, m = maxΩ(Φ) and S be a set of
nodes in π. Let k ∈ {0, 2, ...,m} and s ∈ 2∗. We say that the pair (k, s)

– is preserved on S if
• s occurs in S(v)Nk for every v in S and
• if R(v) = Compresstk for a node v in S, then t �� s,

– progresses (infinitely often) on S if there is s′ = s0 · · · 0 such that R(v) =
Compresss

′1
k for some v in S (for infinitely many v ∈ S).

Definition 8. Let π be a BT derivation. An infinite branch α = (ui)i∈ω in π is
successful if there are N and (k, s) such that (k, s) is preserved and progresses
infinitely often on {ui | i ≥ N}. A BT∞ proof is a BT derivation without
occurrences of Dx and such that all infinite branches are successful. A BT proof
is a finite BT derivation such that for each strongly connected subgraph S in
T C

π there exists (k, s) that is preserved and progresses on S.
We write BT � Γ (BT∞ � Γ ) if there is a BT (BT∞) proof of Γ , i.e., a

proof, where Γ is the sequent at the root of the proof.
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Remark 3. In the proof system JS introduced by Jungteerapanich and Stirling
[13,23] annotated sequents are of the form θ � ϕa1

1 , ..., ϕan
n , where a1, ..., an are

sequences of names and the so-called control θ is a linear order on all names
occurring in the sequent. In contrast to JS our sequents consist of formulas with
annotations and nothing else, that is, no control. On the other hand the sound-
ness condition of BT is less local: It speaks about strongly connected subgraphs,
whereas in JS only paths between leafs and its companions have to be checked.
We see that the control in JS gives information on the structure of the cyclic
proof tree. Interestingly, we could also add a control to our sequents and obtain a
soundness condition that talks about paths, if desired. Similarly, in [1] a control
was added to a cyclic system for the first-order μ-calculus introduced by [22] to
obtain a path-based system.

4.2 Soundness and Completeness

The intuitive idea behind the BT∞ proof system is the following: Starting with
an NW proof, we can define a nondeterministic parity automaton A, that checks
if an infinite branch carries a ν-trail. Using the determinization method from
Sect. 3 we simulate macrostates of A

D by annotated formulas in the proof system.
Thus an infinite branch in BT∞ resembles an infinite run of A

D. This will be
formalised in the Soundness and Completeness proofs.

Tracking Automaton. Let Φ be a sequent of formulas, ηx1.ψ1, ..., ηxn.ψn the
fixpoint formulas in Fix(Φ) and Ω the parity function on Fix(Φ).

We define a nondeterministic parity automaton that checks if there is a ν-
trail on an infinite branch of some NW proof of Φ. The alphabet Σ consists of
all triples (Γ, ξ, Γ ′), where Γ ⊆ Clos(Φ) is the conclusion and Γ ′ ⊆ Clos(Φ) is
the premise of a rule in Fig. 1 with principal formula ξ. We define the following
nondeterministic parity automaton A = (A,Δ, aI , ΩA):

– A = aI ∪ Clos(Φ) ∪ {ηx.ψ∗ | ηx.ψ ∈ Clos(Φ)},
– For each γ ∈ A and (Γ, ξ, Γ ′) ∈ Σ:

1. if γ = aI , then Δ(γ, (Γ, ξ, Γ ′)) = Φ,
2. if γ = ξ = ηx.ψ then Δ(γ, (Γ, ξ, Γ ′)) = {ηx.ψ∗},
3. if γ = ηx.ψ∗, then Δ(γ, (Γ, ξ, Γ ′)) = {γ′ | (ψ[x\ηx.ψ], γ′) ∈ TΓ,ξ,Γ ′} and
4. else Δ(γ, (Γ, ξ, Γ ′)) = {γ′ | (γ, γ′) ∈ TΓ,ξ,Γ ′}.

– For all states ηx.ψ∗ let ΩA(ηx.ψ∗) = Ω(ηx.ψ). For all other states a let
ΩA(a) = maxΩ(Φ) if maxΩ(Φ) is odd and ΩA(a) = maxΩ(Φ) + 1 else.

Let α = (vn)n∈ω be an infi-
nite branch in an NW-proof π. We define w(α) ∈ Σω to be the infinite word
(S(v0), f(v0),S(v0))(S(v0), f(v0),S(v1))(S(v1), f(v1),S(v2))....

Lemma 1. Let α be an infinite branch in an NW proof. Then α carries a ν-trail
iff w(α) ∈ L(A).

Combining Lemma 1 and Theorem 3 from Sect. 3 we get
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Lemma 2. Let π be an NW derivation. Then π is an NW proof iff for every
infinite branch α in π it holds w(α) ∈ L(AD).

Lemma 3. Let Γ be a sequent. Then NW � Γ iff BT � Γ ε.

Proof (Sketch). Let π be an NW proof of a sequent Γ . Inductively we translate
every node v in π to a node v′ plus some additional nodes, such that v′ is labeled
by the same sequent as v plus annotations. This can be achieved by replacing
every rule in NW by its corresponding rule in BT and adding the rules Resolve
and Compress whenever applicable. This yields a BT derivation ρ. It remains
to show that every infinite branch α = (vi)i∈ω in ρ is successful. Let α̂ be the
corresponding infinite branch in π. Due to Lemma 2 it holds that α̂ ∈ L(AD).
Thus there is (k, s) such that s is in play at position k cofinitely often and ck(s) is
green infinitely often and red only finitely often. As the annotations in α resemble
the annotations in the run of A

D on α̂ it follows that there is some N ∈ ω such
that (k, s) is preserved and progresses infinitely often on {vi | i ≥ N}.

Conversely let ρ be a BT proof of Γ ε. We let π be the NW derivation defined
from ρ by omitting the rules Resolve and Compress and reducing the other rules
to the corresponding NW rules. We have to show that every infinite branch
α in π is successful. Let α′ = (vi)i∈ω be the corresponding infinite branch in
ρ. Because ρ is a BT proof there is N ,(k, s) such that (k, s) is preserved and
progresses infinitely often on {vi | i ≥ N}. Again the annotations in α′ resemble
the annotations in the run of A

D on α, thus (k, s) witnesses the acceptance of
the run of L(AD) on α and Lemma 2 concludes the proof.

Theorem 4 (Soundness and Completeness). Let Γ be a sequent. Then
there is a BT∞-proof of Γ ε iff

∨

Γ is valid.

Proof. This follows from Lemma 3 and Theorem 1.

4.3 Cyclic BT Proofs

As NW proofs can be assumed to be regular and annotations are added deter-
ministically we can also assume BT∞ proofs to be regular. A standard argument
then transforms regular BT∞ proofs into BT proofs and vice versa.

Lemma 4. An annotated sequent is provable in BT iff it is provable in BT∞.

Theorem 5 (Soundness and Completeness). Let Γ be a sequent. Then
there is a BT-proof of Γ ε iff

∨

Γ is valid..

Remark 4. The number of distinct subtrees in a regular BT∞ proof can be
bounded by the number of distinct annotated sequents. This follows because
the same statement holds for NW proofs [19] and because in the proof of Lemma
3 annotations and extra rules are added deterministically to sequents in NW
proofs.

Let Φ be a sequent, n = |Clos(Φ)| and m = maxΩ(Φ). There are at most
nO(m·n) many distinct annotated sequents occurring in a proof of Φ, because
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annotated sequents resemble macrostates in A
D and as seen in Remark 2 there

are at most nO(m·n) distinct macrostates in A
D.

Combining these two observations with the proof of Lemma 4 yields that the
height of a BT proof of a sequent Φ can be bound by nO(m·n). This is the same
complexity as in JS [13].

Remark 5. Given a BT derivation π, we can check if π is a BT proof in coNP.
We can give the following algorithm in NP, that checks if π is not a BT proof:
Choose non-deterministically a strongly connected subgraph S and check if there
exists (k, s) that is preserved and progresses on S, the latter can be done in
polynomial time. The complexity of proof checking can be compared to linear
time in JS and PSPACE in NW. Note that, if we add a control to the BT proof
system, the soundness condition boils down to checking paths between leafs and
its companions. In that case proof checking could also be done in linear time.

5 Conclusions and Future Work

We hope that this paper contributes to the theory of non-wellfounded and cyclic
proof systems by discussing applications of automata theory in the field. We
have argued for the relevance of the notion of determinizing stream automata
in the design of proof systems for the modal μ-calculus. More concretely, we
have introduced a determinization construction based on binary trees and used
this to obtain a new derivation system BT which is cyclic, cutfree, and sound
and complete for the collection of valid Lμ-formulas. In the remainder of this
concluding section we point out some directions for future research.

First of all, our approach is not restricted to the modal μ-calculus, but will
apply to non-wellfounded and cyclic derivation systems for many other logics
as well. For instance, in the proof systems LKIDω [3] for first-order logic with
inductive definitions, cyclic arithmetic CA [21] and similar systems the trace con-
dition is of the form that on every infinite branch there is a term/variable which
progresses infinitely often. This condition can be checked by a nondeterministic
Büchi automaton and thus our method would yield an annotated proof system,
where the annotations are binary strings, which label the terms/variables.

Second, in Remark 3 we discussed some relative advantages and disadvan-
tages of the systems JS and BT. It would be interesting to either design a system
that combines the advantages of both systems (i.e. sequents consisting of anno-
tated formulas only as in BT, and a local condition for proof checking as in JS),
or prove that such a system cannot exist.

Finally, it would be interesting (and in fact, it was one of the original aims
of our work), to connect annotation-based sequent calculi such as JS and BT
to Kozen’s Hilbert-style proof system and to see whether a more structured
automata-theoretic approach would yield an alternative proof of Walukiewicz’
completeness result. Note that this was also the goal of Afshari & Leigh [2];
unfortunately, it was recently shown by the second author [14] that the system
Clo, a key system in Afshari & Leigh’s approach linking JS to Kozen’s axioma-
tization, is in fact incomplete.
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