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Abstract. We introduce a cut-free sequent calculus for the alternation-
free fragment of the modal μ-calculus. This system allows both for infinite
and for finite, circular proofs and uses a simple focus mechanism to
control the unravelling of fixpoints along infinite branches. We show that
the proof system is sound and complete for the set of guarded valid
formulas of the alternation-free μ-calculus.
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The modal μ-calculus Lμ, introduced in its present form by Kozen [16], is
an extension of basic modal logic with least and greatest fixpoint operators.
In the theory of formal program verification the formalism serves as a general
specification language for describing properties of reactive systems, embedding
many well-known logics such as ltl, ctl, ctl* and pdl. In fact, restricted to
bisimulation-invariant properties, Lμ has the same expressive power as monadic
second-order logic [13], while it still has very reasonable computational proper-
ties, such as an exptime-complete satisfiability problem [9]. Furthermore, the
modal μ-calculus has many attractive logical properties, and interesting connec-
tions with for instance the theory of automata and infinite games. In particular,
Lμ-formulas can be effectively represented as alternating tree automata, and vice
versa [12,26]. We refer to [4,5,10] for some surveys.

In this paper we contribute to the study of the modal μ-calculus by inves-
tigating one of its fragments. The theory of the full language is riddled with
combinatorial intricacies involving the interaction between least- and greatest
fixpoint operators. This interaction also lies at the root of the main drawback
of the formalism, viz., that its formulas are not always easy to decipher. The
alternation-free μ-calculus is the fragment Laf

μ of Lμ in which there is no real
interaction between least and greatest fixpoint operators. This restriction comes
with a decrease in expressive power, but many interesting logics, including ltl,
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ctl and pdl still embed into Laf
μ . Moreover, the expressive power of the full

μ-calculus collapses to that Laf
μ on some interesting classes of structures, such as

transitive ones [2] or the ones with restricted connectivity [11]. The latter case
generalises the particularly interesting example of the linear time μ-calculus [15].
Other reasons to study the alternation-free μ-calculus are that it corresponds in
expressive power to a natural class of parity automata, viz., the ones with a so-
called weak acceptance condition [19], and to the bisimulation-invariant fragment
of the so-called noetherian variation of monadic second-order logic [6].

The problem that we address here is that of obtaining good proof systems for
the alternation-free μ-calculus. Finding derivation systems for the full μ-calculus
and proving their soundness and completeness is a notoriously difficult task, and
successful applications of proof-theoretic techniques were few and far between
for a long time. Kozen [16] introduced a natural axiomatisation for the full μ-
calculus, and this system was proved to be complete by Walukiewicz [25]; Kozen’s
system, however, is a Hilbert-style axiomatisation. Niwiński & Walukiewicz [21]
introduced some interesting tableau games, but these have a rather infinitary
character. The same applies to the proof systems investigated by Dax et alii [7]
and by Studer [24]. Fairly recently, however, Afshari & Leigh [1] obtained com-
pleteness of Kozen’s axiomatisation using a series of cut-free circular derivation
systems. A crucial ingredient for their results is an earlier proof system, devel-
oped by Jungteerapanich and Stirling [14,23]. This system uses an intricate
mechanism for annotating formulas to detect after finitely many steps when a
branch of a proof may develop into a successful infinite branch in the sense of
Niẃınski & Walukiewicz’ tableaux, thus obtaining a finite but circular proof.

In this paper we show that the approach of [14,23] can be significantly sim-
plified in the setting of the alternation-free μ-calculus. In our proof system it
suffices to annotate formulas with just one bit of information, indicating whether
a formula is in focus or not. This terminology is taken from the focus games for
logics such as ltl and ctl by Lange & Stirling [17]. These are tableau-based
games where every sequent of the tableau contains exactly one formula in focus;
we generalise this so that a proof node may feature a set of formulas in focus.
This focus mechanism is used to detect successful trails of fixpoint formulas in
infinite branches of the proof (and seems to be unrelated to the literature on
focused proof systems starting with [3]).

The bookkeeping of annotations in our system is very simple: as we follow the
trail of a formula when moving up from the root in a Focus proof, we basically
keep the annotation unchanged, with two exceptions. First, when we unfold a
least fixpoint formula, we always drop the focus from its residual unfolding—
whereas unfolding a greatest fixpoint formula has no influence on the annota-
tions. And second, there are focus change rules, which put previously unfocused
formulas into focus, or vice versa; their use however, is very restricted.

In this paper we introduce Focus∞ and Focus as, respectively, an infinite
and a finite but circular version of our focus proof system. We first show the
equivalence of these two systems. Our main result concerns the soundness and
completeness of Focus∞; as an intermediate step in the proof we use a version
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of Niwiński & Walukiewicz’ tableau games. Below we summarise the main line
of argumentation in the paper (the number refers to the Theorem)

�Focus Φ
1⇐⇒�Focus∞ Φ

5,6⇐⇒ Φ ∈ WinProver(G(T)) 4⇐⇒ Φ is valid.

Here Φ denotes an arbitrary sequent of guarded alternation-free formulas.
Finally, although it may not be visible at the surface, our approach is heavily

influenced by ideas from automata theory. Here we follow Jungteerapanich [14],
whose annotations can be seen to encode a deterministic ω-automaton that
recognises successful branches of infinite proofs. Where such an encoding in the
setting of the full μ-calculus involves some version of the Safra construction [22],
in the case of alternation-free formulas a much simpler mechanism suffices. Basi-
cally, our one-bit focus mechanism encodes the determisation procedure for weak
ω-automata, as described in e.g. [8, Theorem 15.2.1].

Related versions More background and proof details can be found in our tech-
nical report [18].

1 Preliminaries

The modal μ-calculus. The formulas of the language Lμ of the modal μ-
calculus are generated by the grammar

ϕ ::= p | p | ⊥ | � | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | �ϕ | �ϕ | μxϕ | νxϕ,

where p and x are taken from a fixed set Prop of propositional variables and in
formulas of the form μx.ϕ and νx.ϕ there are no occurrences of x in ϕ. It is well
known that one can define a negation ϕ ∈ Lμ of any formula ϕ ∈ Lμ.

Formulas of the form μx.ϕ (νx.ϕ) are called μ-formulas (ν-formulas, respec-
tively); formulas of either kind are called fixpoint formulas. The operators μ and
ν are called fixpoint operators. We use η ∈ {μ, ν} to denote an arbitrary fixpoint
operator and write η := ν if η = μ and η = μ if η = ν. Formulas that are of the
form �ϕ or �ϕ are called modal. Formulas of the form ϕ ∧ ψ or ϕ ∨ ψ are called
boolean. Formulas of the form p or p for some p ∈ Prop are called literals and the
set of all literals is denoted by Lit; a formula is atomic if it is either a literal or an
atomic constant, that is, � or ⊥. We use standard notation and terminology for
the binding of variables by the fixpoint operators and for substitutions. Given a
fixpoint formula ξ = ηx.χ we define its unfolding as the formula χ[ξ/x].

For every formula ϕ ∈ Lμ we define the set Clos0(ϕ) as follows

Clos0(p) := ∅ Clos0(p) := ∅

Clos0(ψ0 ∧ ψ1) := {ψ0, ψ1} Clos0(ψ0 ∨ ψ1) := {ψ0, ψ1}
Clos0(�ψ) := {ψ} Clos0(�ψ) := {ψ}
Clos0(μx.ψ) := {ψ[μx.ψ/x]} Clos0(νx.ψ) := {ψ[νx.ψ/x]}

If ψ ∈ Clos0(ϕ) we call ψ a residual of ϕ and sometimes write ϕ →C ψ. We
define the closure Clos(ϕ) ⊆ Lμ of ϕ as the least set Σ containing ϕ that is closed
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in the sense that Clos0(ψ) ⊆ Σ for all ψ ∈ Σ. We define Clos(Φ) =
⋃

ϕ∈Φ Clos(ϕ)
for any Φ ⊆ Lμ. It is well known that Clos(Φ) is finite iff Φ is finite. A trace
is a sequence (ϕn)n<κ, with κ ≤ ω, of formulas such that ϕn →C ϕn+1, for
all n such that n + 1 < κ. If τ = (ϕn)n<κ is an infinite trace, then there is a
unique formula ϕτ that occurs infinitely often on τ and is a subformula of ϕn

for cofinitely many n. This formula is always a fixpoint formula, and where it is
of the form ϕτ = ηx.ψ we call τ an η-trace.

A formula ϕ ∈ Lμ is guarded if in every subformula ηx.ψ of ϕ all free occur-
rences of x in ψ are in the scope of a modality. It is well known that every
formula can be transformed into an equivalent guarded formula, and one may
verify that all formulas in the closure of a guarded formula are also guarded.

The semantics of the modal μ-calculus is given in terms of (Kripke) models
S = (S,R, V ), where S is a set whose elements are called worlds or states,
R ⊆ S × S is a binary relation on S and V : Prop → PS is a function called
the valuation function. The meaning [[ϕ]]S ⊆ S of a formula ϕ ∈ Lμ relative to a
model S is defined by induction on the complexity of ϕ:

[[p]]S := V (p) [[p]]S := S \ V (p)

[[⊥]]S := ∅ [[�]]S := S

[[ϕ ∨ ψ]]S := [[ϕ]]S ∪ [[ψ]]S [[ϕ ∧ ψ]]S := [[ϕ]]S ∩ [[ψ]]S

[[�ϕ]]S := {s ∈ S | R[s] ∩ [[ϕ]]S 	= ∅} [[�ϕ]]S := {s ∈ S | R[s] ⊆ [[ϕ]]S}
[[μx.ϕ]]S :=

⋂{U ⊆ S | [[ϕ]]S[x �→U ] ⊆ U} [[νx.ϕ]]S :=
⋃{U ⊆ S | [[ϕ]]S[x �→U ] ⊇ U}.

Here, S[x 
→ U ] for some U ⊆ S denotes the model (S,R, V ′), where V ′(x) =
U and V ′(p) = V (p) for all p ∈ Prop with p �= x. We say that ϕ is true at s if
s ∈ [[ϕ]]S. A formula ϕ ∈ Lμ is valid if [[ϕ]]S = S holds in all models S and two
formulas ϕ,ψ ∈ Lμ are equivalent if [[ϕ]]S = [[ψ]]S for all models S.

The Alternation-Free Fragment. Following the approach by Niwiński [20],
we call a formula ξ alternation free if it satisfies the following: if ξ has a subfor-
mula ηx.ϕ then no free occurrence of x in ϕ can be in the scope of an η-operator
in ϕ. We let Laf

μ denote the set of all alternation-free formulas. For an inductive
definition of this set we refer to [18].

Example 1. For some examples of alternation-free formulas, observe that Laf
μ

contains all basic modal (i.e., fixpoint-free) formulas, as well as all Lμ-formulas
that use μ-operators or ν-operators, but not both, and all modal and boolean
combinations of such formulas. For a slightly more sophisticated example, con-
sider the formula ξ = μx.(νy.p ∧ �y) ∧ �x. This formula does feature an alter-
nating chain of fixpoint operators, in the sense that the ν-formula ϕ = νy.p∧�y
is a subformula of the μ-formula ξ. However, since the variable x does not occur
in ϕ, this formula does belong to Laf

μ .

The language Laf
μ is closed under taking respectively negations, unfoldings,

subformulas and guarded equivalents of formulas. It follows from this that the
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closure operation restricts to alternation-free formulas. The next observation
formulates an essential simplification of traces in the case of Laf

μ -formulas.

Proposition 1. For any infinite trace τ = (ϕn)n<ω of Laf
μ -formulas the fol-

lowing are equivalent: (1) τ is an η-trace; (2) ϕn is an η-formula, for infinitely
many n; (3) ϕn is an η-formula, for at most finitely many n.

2 The Focus System

In this section we introduce our annotated proof system for the alternation-
free μ-calculus. We consider two versions of the system, which we call Focus and
Focus∞, respectively. Focus∞ is a proof system that allows proofs to be based on
infinite, but finitely branching trees. The focus mechanism that is implemented
by the annotations of formulas helps ensuring that all the infinite branches in
a Focus∞ proof are of the right shape. The proof system Focus can be seen as
a finite variant of Focus∞. The proof trees in this system are finite, but the
system is circular in that it contains a discharge rule that allows to discharge
a leaf of the tree if the same sequent is reached again closer to the root of the
tree. As we will see, the two systems are equivalent in the sense that we may
transform proofs in either variant into proofs of the other kind. We generally
take a root-first perspective in proof search.

2.1 The Proof Systems Focus and Focus∞

A sequent (Φ, Ψ, . . .) is a finite set of guarded formulas, intuitively to be
read disjunctively. We use standard notational conventions for sequents, e.g.,
we usually write ϕ1, . . . , ϕi for the sequent {ϕ1, . . . , ϕi}, and ϕ1, . . . , ϕi, Φ for
{ϕ1, . . . , ϕi} ∪ Φ. Given a sequent Φ we write �Φ for the sequent �Φ := {�ϕ |
ϕ ∈ Φ}.

An annotated formula is a pair (ϕ, a) ∈ Laf
μ × {f, u}; we usually write ϕa

instead of (ϕ, a) and call a the annotation of ϕ. Given a ∈ {f, u} we let a be
its alternative, i.e., we define u := f and f := u. Formulas annotated with
f/u are said to be in focus/out of focus, respectively. A finite set of annotated
formulas is called an annotated sequent (Σ,Γ,Δ, . . .). In practice we will often
be sloppy and refer to annotated sequents as sequents. Given a sequent Φ, we
define Φa := {ϕa | ϕ ∈ Φ}. Conversely, we set Σ̃ := {ϕ | ϕa ∈ Σ, for some a}.
We abbreviate Σf := Σ̃f .

The proof rules of our focus proof systems Focus and Focus∞ are given
in Fig. 1. We use standard terminology when talking about proof rules. Every
(application of a) rule has one conclusion and a finite (possibly zero) number
of premises. Axioms are rules without premises. The principal formula of a rule
application is the formula in the conclusion to which the rule is applied. As non-
obvious cases we have that all formulas are principal in the conclusion of the
rule R� and that the rule Dx has no principal formula. In all cases other than
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Ax1
pa, pb Ax2a

ϕa, ψa, Σ
R∨(ϕ ∨ ψ)a, Σ

ϕa, Σ ψa, Σ
R∧(ϕ ∧ ψ)a, Σ

ϕa, Σ
R

ϕa, Σ

ϕ[μx.ϕ/x]u, Σ
Rμ

μx.ϕa, Σ

ϕ[νx.ϕ/x]a, Σ
Rν

νx.ϕa, Σ

Σ W
ϕa, Σ

ϕf , Σ
F

ϕu, Σ

ϕu, Σ
U

ϕf , Σ

[Σ]x

...
Σ

Dx

Σ

Fig. 1. Proof rules of the focus system

the rule W the principal formula develops into one or more residual formulas in
each of the premises. Principal and residual formulas are also called active.

Here are some more specific comments about the individual proof rules. The
boolean rules (R∧ and R∨) are fairly standard; observe that the annotation of the
active formula is simply inherited by its subformulas. The fixpoint rules (Rμ and
Rν) simply unfold the fixpoint formulas; note, however, the difference between
Rμ and Rν when it comes to the annotations: in Rν the annotation of the active
ν-formula remains the same under unfolding, while in Rμ, the active μ-formula
loses focus when it gets unfolded. The box rule R� is the standard modal rule
in one-sided sequent systems; the annotation of any formula in the consequent
and its residual in the antecedent are the same.

The rule W is a standard weakening rule. Next to Rμ, the focus rules F and U
are the only rules that change the annotations of formulas.1 Finally, the discharge
rule D is a special proof rule that allows us to discharge an assumption if it is
repeating a sequent that occurs further down in the proof. Every application Dx

of this rule is marked by a so-called discharge token x that is taken from some
fixed infinite set D = {x, y, z, . . . }. In Fig. 1 this is suggested by the notation
[Σ]x. The precise conditions under which Dx can be employed are explained in
Definition 1 below.

Definition 1. A pre-proof Π = (T, P,Σ,R) is a quadruple such that (T, P ) is
a, possibly infinite, tree with nodes T and parent relation P (with Puv meaning
that u is the parent of v). Σ is a function that maps every node u ∈ T to a
non-empty annotated sequent Σu; and

R : T → {
Ax1,Ax2,R∨,R∧,R�,Rμ,Rν ,W,F,U

} ∪ {
Dx | x ∈ D} ∪ D ∪ {�},

is a map that assigns to every node u of T its label R(u), which is either (i) the
name of a proof rule, (ii) a discharge token or (iii) the symbol �.

To qualify as a pre-proof, Π is required to satisfy the following conditions:
1 The rule U is not really needed—in fact we prove completeness without it. We include
U because of its convenience for constructing proofs.
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1. If a node is labelled with the name of a proof rule then it has as many children
as the proof rule has premises, and the annotated sequents at the node and
its children match the specification of the proof rules in Fig. 1.

2. If a node is labelled with a discharge token or with � then it is a leaf. We call
such nodes non-axiomatic leaves as opposed to the axiomatic leaves that are
labelled with one of the axioms, Ax1 or Ax2.

3. For every leaf l that is labelled with a discharge token x ∈ D there is exactly
one node u in Π that is labelled with Dx. This node u, as well as its (unique)
child, is a proper ancestor of l and satisfies Σu = Σl. In this situation we
call l a discharged leaf, and u its companion; we write c for the function that
maps a discharged leaf l to its companion c(l).

4. If l is a discharged leaf with companion c(l) then the path from c(l) to l
contains (4a) no application of the focus rules and (4b) at least one application
of R�, while (4c) every node on this path features a formula in focus.

Non-axiomatic leaves that are labelled with � (and thus not discharged), are
called open, as are the associated sequents. We call a pre-proof a proof in Focus
if it is finite and does not have any open assumptions.

A infinite branch β = (vn)n∈ω is successful if there are infinitely many appli-
cations of R� on β and there is some i such that for all j ≥ i the annotated
sequent at vj contains at least one formula that is in focus and none of the focus
rules F and U is applied at vj. A pre-proof is a Focus∞-proof if it does not have
any non-axiomatic leaves and all its infinite branches are successful.

A plain sequent Φ is derivable in Focus, notation: �Focus Φ, if there is a Focus
proof for Φf ; and similarly for Focus∞.

The idea behind the success condition on infinite branches (and the corre-
sponding path condition 4 on finite Focus-proofs) is to force any infinite branch
in a Focus∞-proof (respectively, in the unravelling of a Focus-proof) to contain
an infinite trace of formulas in focus. Since μ-formulas lose their focus when
unfolded, such a trace then must be a ν-trace; and because of Proposition 1,
every ν-trace will be of this form.

As an example of a Focus-proof consider the proof of the formula ϕ ∨ ψ in
Fig. 2, where ϕ = νx.�(p ∧ x) ∨ �(q ∧ x) and ψ = μy.�((p ∧ q) ∨ y). This
example illustrates a crucial difference between our system and the ones from
[17]. Whereas the sequents of [17] have exactly one formula in focus, it is crucial
for us to allow for multiple formulas to be in focus at one single sequent. In the
proof from Fig. 2 both �(p ∧ ϕ) and �(q ∧ ϕ) need to be in focus at the sequent
where R� is applied. It is only above the application of R�, when the conjunction
p∧ q is decomposed, that we know which of p∧ϕ and q ∧ϕ needs to be in focus.

We close this section with a first observation about (pre-)proofs in this sys-
tem. The (completely routine) proof is omitted.

Proposition 2. Let Π = (T, P,Σ,R) be some pre-proof with root r. Then all
formulas occurring in Π belong to Clos(Σ̃r).
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Ax1
pf , pu

W
pf , pu, ψu

[ϕf , ψu]x
W

ϕf , pu, ψu

R∧
p ∧ ϕf , pu, ψu

W
p ∧ ϕf , q ∧ ϕf , pu, ψu

Ax1
qf , qu

W
qf , qu, ψu

[ϕf , ψu]x
W

ϕf , qu, ψu

R∧
q ∧ ϕf , qu, ψu

W
p ∧ ϕf , q ∧ ϕf , qu, ψu

R∧
p ∧ ϕf , q ∧ ϕf , p ∧ qu, ψu

R∨
p ∧ ϕf , q ∧ ϕf , (p ∧ q) ∨ ψu

R
(p ∧ ϕ)f , (q ∧ ϕ)f , ((p ∧ q) ∨ ψ)u

Rμ
(p ∧ ϕ)f , (q ∧ ϕ)f , ψu

R∨
(p ∧ ϕ) ∨ (q ∧ ϕ)f , ψu

Rν
ϕf , ψu

Dx

ϕf , ψu

U
ϕf , ψf

R∨
ϕ ∨ ψf

Fig. 2. A Focus-proof

2.2 Circular and Infinite Proofs

We first show that Focus∞ and Focus are the infinitary and circular version of
the same proof system, and derive the same annotated sequents.

Theorem 1. Let Γ be an annotated sequent. Then Γ is provable in Focus iff it
is provable in Focus∞.

Proof. (Sketch) The proof of the implication from left to right is based on
a straightforward construction that (iteratively) unravels a given Focus-proof
around its discharged leaves, creating a Focus∞-proof in the limit.

For the opposite direction, fix a Focus∞ pre-proof Π = (T, P,Σ,R). If Π is
finite we are done, so assume otherwise. A node u in Π is called a successful repeat
if it has a proper ancestor t such that Σt = Σu, R(t) �= D, and the path [t, u] in
Π satisfies condition 1 of Definition 1. It is then obvious by the definitions and
Proposition 2 that every branch β ∈ B∞ contains a successful repeat. Define,
for any τ ∈ B∞, the number l(τ) ∈ ω as the least number n ∈ ω such that τ(n)
is a successful repeat. This means that τ(l(τ)) is the first successful repeat on τ .
It is then possible to show, using König’s Lemma, that the set

Ŷ := {τ(l(τ)) | τ ∈ B∞}
is finite. Every element l ∈ Ŷ is a successful repeat; we may thus define a
companion map c : Ŷ → T by setting c(l) to be the first ancestor t of l witnessing
that l is a successful repeat. The map c takes care of the circular part of the
finite tree (T ′, P ′) that will support the Focus-proof Π ′ of Γ . For a full and
precise definition of Π ′ we have to add all ancestors of nodes in Ŷ , and add a
finite well-founded part, but this is not difficult. ��
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2.3 Thin and Progressive Proofs

When we prove the soundness of our proof system it will be convenient to work
with (infinite) proofs that are in a certain normal form.

Definition 2. An annotated sequent Σ is thin if there is no formula ϕ ∈ Laf
μ

such that ϕf ∈ Σ and ϕu ∈ Σ. Given an annotated sequent Σ, we define its
thinning

Σ− := {ϕf | ϕf ∈ Σ} ∪ {ϕu | ϕu ∈ Σ,ϕf �∈ Σ}.

A pre-proof Π = (T, P,Σ,R) is thin if for all v ∈ T with ϕf , ϕu ∈ Σv we have
that Rv = W and ϕu /∈ Σu for the unique u with Pvu.

Note that one may obtain the thinning Σ− from an annotated sequent Σ by
removing the unfocused versions of the formulas with a double occurrence in Σ.
Since Σ− ⊆ Σ, one may derive Σ from Σ− through a series of weakenings.

Definition 3. An application of a boolean or fixpoint rule at a node u in a pre-
proof Π = (T, P,Σ,R) is progressive if for the principal formula ϕa ∈ Σu it
holds that ϕa /∈ Σv for all v with Puv.2 Π itself is progressive if all applications
of the boolean rules and the fixpoint rules in Π are progressive.

Our main result here is the following.

Theorem 2. Let Φ be some sequent. If Φ is derivable in Focus or Focus∞ then
it has a thin and progressive proof, both in Focus and in Focus∞.

3 Tableaux and Tableau Games

To prove soundness and completeness, as an intermediate step we use a (fairly
straightforward) adaptation of Niwiński & Walukiewicz’ tableau games [21].

Tableaux. We first introduce tableaux, which are the graphs over which the
tableau game is played. The nodes of a tableau for some sequent Φ are labelled
with sequents consisting of formulas taken from the closure of Φ. Our system is
based on the rules in Fig. 3, where the tableau rules Ax1, Ax2, R∨, R∧, Rμ and
Rν are direct counterparts of the focus proof rules with the same name.

The modal rule M can be seen as a game-theoretic version of the box rule R�

from the focus system, differing from it in two ways. First of all, the number of
premises of M is not fixed, but depends on the number of box formulas in the
conclusion; as a special case, if the conclusion contains no box formula at all,
then the rule has an empty set of premises, similar to an axiom. Second, the rule
M does allow side formulas in the consequent that are not modal; note however,
that M has as its side condition (†) that this set Ψ contains atomic formulas
only, and that it is locally falsifiable, i.e., Ψ does not contain � and there is no
proposition letter p such that both p and p belong to Ψ . This side condition
guarantees that M is only applicable if no other tableau rule is.
2 Note that since we assume guardedness, the principal formula is different from its

residuals.
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Ax1
p, p, Φ

Ax2
, Φ

ϕ, ψ, Φ
R∨

ϕ ∨ ψ, Φ

ϕ, Φ ψ, Φ
R∧

ϕ ∧ ψ, Φ

ϕ1, Φ . . . ϕn, Φ
(†) M

Ψ, ϕ1, . . . , ϕn, Φ

ϕ[μx.ϕ/x], Φ
Rμ

μx.ϕ, Φ

ϕ[νx.ϕ/x], Φ
Rν

νx.ϕ, Φ

Fig. 3. Rules of the tableau system

Definition 4. A tableau is a quintuple T = (V,E, Φ,Q, vI), where (V,E) is a
directed graph, vI ∈ V is the root of the tableau, Φ maps every node v to a
non-empty sequent Φv, and Q : V → {Ax1,Ax2,R∨,R∧,M,Rμ,Rν} associates a
proof rule Qv with each node v in V . Tableaux must satisfy the following:

1. If Q(u) = R then the sequents at the node u and its successors match the
specification of R as in Fig. 3.

2. If Q(u) = M then the side condition (†) of M is met.
3. In any application of the rules R∨,R∧,Rμ and Rν , the principal formula is

not an element of the context Φ.

A tableau T is a tableau for a sequent Φ if Φ is the sequent of the root of T.

The following can easily be proved.

Proposition 3. There is a tree-based tableau for every sequent Φ.

Crucially, one needs to keep track of the development of individual formulas
along infinite paths in a tableau. Fix a tableau T = (V,E, Φ,Q, vI).

Definition 5. For all nodes u, v ∈ V such that Euv we define the active trail
relation Au,v ⊆ Φu × Φv and the passive trail relation Pu,v ⊆ Φu × Φv, via the
following case distinction:

Case Qu = R∨: With Φu = {ϕ ∨ ψ} � Ψ and Φv = {ϕ,ψ} ∪ Ψ , we define
Au,v = {(ϕ∨ψ,ϕ), (ϕ∨ψ,ψ)} and Pu,v = ΔΨ , where ΔΨ = {(ϕ,ϕ) | ϕ ∈ Ψ}.

Case Qu = R∧: With Φu = {ϕ0 ∧ ϕ1} � Ψ and v corresponding to the conjunct
ϕi, we set Au,v = {(ϕ0 ∧ ϕ1, ϕi)} and Pu,v = ΔΨ .

Case Qu = Rη: With Φu = {ηx.ϕ} � Ψ and Φv = {ϕ[ηx.ϕ/x]} ∪ Ψ , we define
Au,v = {(ηx.ϕ, ϕ[ηx.ϕ/x])} and Pu,v = ΔΨ .

Case Qu = M: With Φu = Ψ ∪ {�ϕ1, . . . ,�ϕn} ∪ �Φ and Φv = {ϕv} ∪ Φ, we
define Au,v = {(�ϕv, ϕv)} ∪ {(�ϕ,ϕ) | ϕ ∈ Φ} and Pu,v = ∅.

Finally, we define the general trail relation as Tu,v := Au,v ∪ Pu,v.

Definition 6. A path in T is simply a path in the underlying graph (V,E) of
T. A trail on such a path π = (vn)n<κ is a sequence τ = (ϕn)n<κ of formulas
such that (ϕi, ϕi+1) ∈ Tvi,vi+1 , whenever i+1 < κ. The tightening τ̂ is obtained
from τ by removing all ϕi+1 from τ for which (ϕi, ϕi+1) belongs to the passive
trail relation Pvi,vi+1 .
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Because of guardedness, any infinite path π in T witnesses infinitely many
applications of the rule M; and for any trail (ϕn)n<ω on π there are infinitely
many i such that (ϕi, ϕi+1) ∈ Avi,vi+1 . Furthermore, for any two nodes u, v
with Euv and (ϕ,ψ) ∈ Tu,v, we have either (ϕ,ψ) ∈ Au,v and ψ ∈ Clos0(ϕ), or
(ϕ,ψ) ∈ Pu,v and ϕ = ψ. It is then not difficult to see that tightened trails are
traces, and that the tightening of an infinite trail is infinite.

Definition 7. Let τ = (ϕn)n<ω be an infinite trail on the path π = (vn)n<ω in
some tableau T. Then we call τ an η-trail if its tightening τ̂ is an η-trace.

Tableau Games. With each tableau T we associate a tableau game G(T), with
two players, Prover (female) and Refuter (male).

Definition 8. Given a tableau T = (V,E, Φ,Q, vI), the tableau game G(T) is
the (initialised) board game G(T) = (V,E,O,Mν , vI) defined as follows. O is a
partial map that assigns an owner O(v) to some positions v ∈ V . Refuter owns
all positions that are labelled with one of the axioms, Ax1 or Ax2, or with the
rule R∧; Prover owns all position labelled with M; O is undefined on all other
positions. In this context vI will be called the initial position of the game.

The set Mν is the winning condition of the game (for Prover); it is defined
as the set of infinite paths through the graph that carry a ν-trail.

A match of the game consists of the two players moving a token from one
position to another, starting at the initial position, and following the edge rela-
tion E. The owner of a position is responsible for moving the token from that
position to an adjacent one (that is, an E-successor); in case this is impossible
because the node has no E-successors, the player gets stuck and immediately
loses the match. For instance, Refuter loses as soon as the token reaches an
axiomatic leaf labelled Ax1 or Ax2; similarly, Prover loses at any modal node
without successors. If the token reaches a position that is not owned by a player,
that is, a node of T that is labelled with the proof rule R∨, Rμ or Rν , the token
automatically moves to the unique successor of the position. If neither player
gets stuck, the resulting match is infinite; we declare Prover to be its winner if
the match, as an E-path, belongs to the set Mν , that is, if it carries a ν-trail.

Finally, a winning strategy for a player P in G(T) is a way of playing that
guarantees that P wins the resulting match, no matter how P ’s opponent plays.

Remark 1. If T is tree-based we may identify strategies for either player with
subtrees S of T that contain the root of T and, for any node s in S, (1) contain
exactly one successor of s in case the player owns the position s, and (2) contain
all successors of s in case the player’s opponent owns the position s.

The observations below are essentially due to Niwiński & Walukiewicz [21].

Theorem 3 (Determinacy). Let T be a some tableau. Then precisely one of
the players has a winning strategy in G(T).
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Theorem 4 (Adequacy). Let T be a tableau for a sequent Φ. Then Refuter
(Prover, respectively) has a winning strategy in G(T) iff the formula

∨
Φ is

refutable (valid, respectively).

Corollary 1. Let T and T
′ be two tableaux for the same sequent. Then Prover

has a winning strategy in G(T) iff she has a winning strategy in G(T′).

4 Soundness

In this section we establish the soundness of our system. Because of Theorem 4
and Theorem 1 it suffices to prove the following.

Theorem 5. Let Φ be some sequent. If Φ is provable in Focus∞ then there is
some tableau T for Φ such that Prover has a winning strategy in G(T).

We will prove the soundness theorem by transforming a thin and progressive
Focus∞-proof of Φ into a winning strategy for Prover in the tableau game asso-
ciated with some tableau for Φ. We first adapt the notion of trail from tableaux
to the setting of Focus∞-proofs.

Definition 9. Let Π = (T, P,Σ,R) be a thin and progressive proof in Focus∞.
For all nodes u, v ∈ V such that Puv we define the active trail relation Au,v ⊆
Σu × Σv and the passive trail relation Pu,v ⊆ Σu × Σv, via the following case
distinction:

Case R(u) = R∨: With Σu = {(ϕ ∨ ψ)a} � Γ and Σv = {ϕa, ψa} ∪ Γ , we
define Au,v := {((ϕ ∨ ψ)a, ϕa), ((ϕ ∨ ψ)a, ψa)} and Pu,v := ΔΓ .

In the cases where R(u) ∈ {R∧,Rμ,Rν ,R�} we proceed analogously.
Case R(u) = W: With Σu = Σv � {ϕa}, we set Au,v := ∅ and Pu,v := ΔΣv

.
Case R(u) ∈ {F,U}: With Σu = {ϕa} ∪ Γ and Σv = {ϕa} ∪ Γ , we define

Au,v = ∅ and Pu,v = {(ϕa, ϕa)} ∪ ΔΓ .
We also define the general trail relation Tu,v := Au,v ∪ Pu,v.

We inductively extend the trail relation Tu,v to any two nodes such that
P ∗uv by putting Tu,u := ΔΣu

, and if Puw and P ∗wv then Tu,v := Tu,w ;Tw,v,
where ; denotes relational composition.

As in the case of tableaux, we will be specifically interested in infinite trails
and their tighentings. These are defined in exactly the same way as for tableaux.

The following observation concerns a central feature of our focus mechanism.

Proposition 4. Every infinite branch in a thin and progressive Focus∞-proof
carries a ν-trail.

Proof. Consider an infinite branch α = (vn)n∈ω in some thin and progressive
Focus∞-proof Π = (T, P,Σ,R). Then α is successful by assumption, so that we
may fix a k such that for every j ≥ k, the sequent Σvj

contains a formula in
focus, and R(vj) is not a focus rule. We claim that

for every j ≥ k and ψf ∈ Σvj+1 there is a χf ∈ Σvj
with (χf , ψf ) ∈ Tvj ,vj+1 .

(1)
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To see this, let j ≥ k and ψf ∈ Σvj+1 . It is obvious that there is some anno-
tated formula χa ∈ Σvj

with (χa, ψf ) ∈ Tvj ,vj+1 . The key observation is now
that in fact a = f , and this holds because the only way that we could have
(χu, ψf ) ∈ Tvj ,vj+1 is if we applied the focus rule at vj , which would contradict
our assumption on the nodes vj for j ≥ k.

Now consider the graph (V,E) where

V := {(j, ϕ) | k ≤ j < ω and ϕf ∈ Σvj
},

E :=
{(

(j, ϕ), (j + 1, ψ)
) | (ϕf , ψf ) ∈ Tvj ,vj+1

}

This graph is directed, acyclic, infinite and finitely branching. Furthermore, it
follows by (1) that every node (j, ϕ) is reachable in (V,E) from some node (k, ψ).
Then by a (variation of) König’s Lemma there is an infinite path (n, ϕf

n)n∈ω in
this graph. The induced sequence τ := (ϕf

n)n∈ω is a trail on α by definition of
E. By the fact that α features infinitely many applications of R�, the tightening
τ̂ of τ must be infinite, and so τ is either a μ-trail or a ν-trail. But τ cannot
feature infinitely many μ-formulas, simply because the rule Rμ attaches the label
u to the unfolding of a μ-formula. This means that τ cannot be a μ-trail, and
hence it must be a ν-trail. ��

Proof of Theorem 5. Let Π = (T, P,Σ,R) be a Focus∞-proof for Φf . By Theo-
rem 2 we may assume without loss of generality that Π is thin and progressive.
We will construct a tableau T = (V,E, Φ,Q, vI) and a winning strategy for
Prover in G(T). Our construction will be such that (V,E) is a (generally infi-
nite) tree, of which the winning strategy S ⊆ V for Prover is a subtree, as in
Remark 1.

In addition to the tableau T we define a function g : S → T satisfying the
following three conditions, which will allow us to lift the ν-trails from Π to S:

1. If Euv then P ∗g(u)g(v).
2. The sequent Σg(u) is thin, and Σ̃g(u) ⊆ Φu.
3. If Euv and (ψb, ϕa) ∈ TΠ

g(u),g(v) then (ψ,ϕ) ∈ TT
u,v.

The construction of T, S and g is guided by the structure of Π and proceeds
via an induction that starts from the root and in every step adds children to one
of the nodes in the subtree S that is not yet an axiom. Nodes of T that are not
in S are always immediately completely extended using Proposition 3, and thus
need not be taken along in the inductive construction.

At step n ∈ ω of the construction, we are dealing with finite approximating
objects Tn, Sn and gn : Sn → T , and in the limit these will yield T, S and
g. Each Tn will be a pre-tableau, that is, an object as defined in Definition 4,
except that we do not require the rule labelling to be defined for every leaf of the
tree. The basic idea underlying the construction is that step n will take care of
one such undetermined leaf of Tn, say, l; the precise details of the construction
(which are spelled out in [18]) depend on the nature of the proof rule applied in
Π at the node gn(l).



384 J. Marti and Y. Venema

It remains to be seen that S is a winning strategy for Prover in G(T). It is
clear that she wins all finite matches that are played according to S because by
construction all leaves in S are axioms. To show that she wins all infinite matches
too, consider an infinite path β = (vn)n∈ω in S. We need to show that β contains
a ν-trail. Using condition 1 it follows that there is an infinite path α = (tn)n∈ω

in Π such that for every i ∈ ω we have that g(vi) = tki
for some ki ∈ ω, and,

moreover, ki ≤ kj if i ≤ j. By Proposition 4 the infinite path α contains a ν-trail
τ = ϕa0

0 ϕa1
1 · · · . With condition 3 it follows that τ ′ := ϕk0ϕk1ϕk2 · · · is a trail

on β. By Proposition 1, τ contains only finitely many μ-formulas; from this it is
immediate that τ ′ also features at most finitely many μ-formulas. Thus, using
Proposition 1 a second time, we find that τ ′ is a ν-trail, as required. ��

5 Completeness

In this section we show that the focus systems are complete. Because of Theo-
rem 4 and Theorem 1 it suffices to prove the following.

Theorem 6. If Prover has a winning strategy in some tableau game for a
sequent Φ then Φ is provable in Focus∞.

Proof. Let T = (V,E, Φ,Q, vI) be a tableau for Φ and let S be a winning strategy
for Prover in G(T). Because of Proposition 3, Corollary 1 and Remark 1, we may
assume that T is tree based, with root vI , and that S ⊆ V is a subtree of T. We
will construct a Focus∞-proof Π = (T, P,Σ,R) for Φf .

Applications of the focus rules in Π will be very restricted. To start with,
the unfocus rule U will not be used at all, and the focus rule F will only occur in
the form of the following total focus rule Ft which is easily seen to be derivable
as a series of successive applications of F:

Φf

Ft
Φu

We construct the pre-proof Π of Φf together with a function g : S → T in
such a way that the following conditions are satisfied:

1. If Evu then P+g(v)g(u).
2. For every v ∈ S and every infinite branch β = (vn)n∈ω in Π with v0 = g(v)

there is some i ∈ ω and some u ∈ S such that Evu and g(u) = vi.
3. For every ϕ ∈ Φv there is a unique aϕ ∈ {f, u} such that ϕaϕ ∈ Σg(v). In

particular, Σg(v) is thin.
4. If Evu and (ϕ,ψ) ∈ Tv,u then (ϕaϕ , ψaψ ) ∈ Tg(v),g(u).
5. If Evu, and s and t are nodes on the path from g(v) to g(u) such that P+st,

(χa, ϕf ) ∈ Tg(v),s for some a ∈ {f, u} and (ϕf , ψu) ∈ Ts,t, then χ = ϕ and χ
is a μ-formula.

6. If α is an infinite branch of Π and Ft is applicable at some node on α, then
Ft is applied at some later node on α.
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We construct Π and g as the limit of finite stages, where at stage i we have
constructed a finite pre-proof Πi and a partial function gi : S → Πi. At every
stage we make sure that gi and Πi satisfy the following conditions:

7. All open leaves of Πi are in the range of gi.
8. All nodes v ∈ S for which gi(v) is defined satisfy Φv = Σ̃gi(v).

In the base case we define Π0 to consist of just one node r that is labelled
with the sequent Φf . The partial function g0 maps r to vI . Clearly, this satisfies
the conditions 7 and 8.

In the inductive step we consider any open leaf m of Πi, which has a minimal
distance from the root of Πi. This ensures that in the limit every open leaf is
eventually treated, so that Π will not have any open leaves. By condition 7 there
is a u ∈ S such that g(u) = m. Our plan is to extend the proof Πi at the open
leaf m to mirror the rule that is applied at u in T. In general this is possible
because by condition 8 the formulas in the annotated sequent at m = gi(u) are
the same as the formulas at u. All children of u that are in S should then be
mapped by gi+1 to new open leaves in Πi+1. Two technical issues feature in all
the cases.

First, to ensure that condition 6 is satisfied by our construction we will apply
Ft at m, whenever it is applicable. Thus, we need to check whether all formulas
in the sequent of m are annotated with u. If this is the case then we apply the
total focus rule and proceed with its premise n; otherwise we just proceed with
n = m. Note that in either case the sequent at n contains the same formulas
as the sequent at m and if n �= m then the trace relation relates the formulas
at n in an obvious way to those at m. The second technical issue is that to
ensure condition 3 we may need to apply W to the new leaves of Πi+1. For the
details of the construction, which are based on a straightforward case distinction
depending on the rule Q(u), we refer to the technical report [18].

We define Π = (T, P,Σ,R) and the function g : S → T as the limit of the
structures Πi and the maps gi, respectively. The proof that g and Π satisfy the
conditions 1–6, is fairly routine; details can be found in [18].

It is more interesting to see why Π is a correct Focus∞-proof. Leaving the
routine argument as to why Π is a pre-proof to the reader, we concentrate on
the proof that every infinite branch of Π is successful. Let β = (vn)n∈ω be such
a branch. Based on our construction it will not be hard to see that β witnesses
infinitely many application of the box rule R�. Our key claim is that

from some moment on, every sequent on β contains a formula in focus. (2)

By condition 2 we can link β to a branch α = (tn)n∈ω in S such that there
are 0 = k0 < k1 < k2 < · · · with g(ti) = vki

for all i < ω. Because α, as
a match of the tableau game, is won by Prover, it contains a ν-trail (ϕn)n∈ω,
so by condition 4 we obtain an annotated trail τ = (ψan

n )n∈ω on β such that
ϕi = ψki

for all i. Then by Proposition 1 τ is a ν-trail as well; in particular, it
contains no μ-formulas after a certain moment k.

Now distinguish cases. If β has no application of Ft after k, then by condition
6 this rule is not applicable any more, so that by its definition β must witness
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a formula in focus at every node vn with n ≥ k indeed. On the other hand, if
R(vn) = Ft for n ≥ k, then at stage n+1 every formula is in focus . In particular,
we find an+1 = f , and since no μ-formula is unfolded on τ after this, we may
show that τ keeps passing through formulas in focus from this moment on.

This proves (2), and, again by condition 6, we may conclude that β features
only finitely many applications of Ft. Since all applications of F in Π are part of
Ft, and the unfocus rule U is not used anywhere in Π, β is successful indeed. ��

6 Conclusion and Questions

In this paper we saw that the idea of placing formulas in focus can be extended
from the setting of logics like ltl and ctl [17] to that of the alternation-free
modal μ-calculus: we designed a very simple and natural, cut-free sequent system
which is sound and complete for all validities in the language consisting of all
(guarded) formulas in the alternation-free fragment Laf

μ of the modal μ-calculus.
In a follow-up paper we use the Focus system to show that the alternation-free

fragment enjoys the Craig Interpolation Theorem. Clearly, these results support
the claim that Laf

μ is an interesting logic with good meta-logical properties.

Below we list questions for future research. To start with, we based our soundness
and completeness proofs on Niwiński & Walukiewicz’ tableau games [21]. A
reviewer suggested that our proofs might be simplified by connecting to the
non-wellfounded proof system of Studer [24]. We leave this for future work.

Probably the most obvious question is whether the restriction to guarded
formulas can be lifted. Note that guardedness is related to the condition that
successful branches in a Focus∞-proof feature infinitely many applications of the
rule R�, which plays a crucial role in the soundness proof (cf. Proposition 4).
Without guardedness, this condition would be too strong since it would disqualify
any proof for a valid formula like νx.x.

Note that our proof systems are cut free, and that it follows from our sound-
ness and completeness results that the cut rule is admissible. It would be of
interest to see whether this can also be proved constructively, corresponding to
a cut elimination procedure for the version of the system with the cut rule.

Another question is whether we may tidy up the focus proof system, in the
same way that Afshari & Leigh did with the Jungteerapanich-Stirling system [1,
14,23]. As a corollary of this it should be possible to obtain an annotation-free
sequent system for the alternation-free fragment of the μ-calculus, and to prove
completeness of Kozen’s axiomatisation for Laf

μ .
It is straightforward to generalise our result to the alternation-free fragment

of variants of the modal μ-calculus, such as the polymodal or the monotone
μ-calculus. Of particular interest is the linear time μ-calculus (i.e., where both
� and � are the next time operator), since in this setting the alternation-free
μ-calculus is known to have the same expressive power as the full language. It
would be interesting to prove a general result for coalgebraic modal μ-calculi.

Moving in a somewhat different direction, we are interested to see to which
degree the focus system can serve as a basis for sound and complete derivation
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systems for the alternation-free validities in classes of frames satisfying various
kinds of frame conditions.
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21. Niẃınski, D., Walukiewicz, I.: Games for the μ-calculus. Theor. Comput. Sci. 163,
99–116 (1996)

22. Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th Symposium
on the Foundations of Computer Science, pp. 319–327. IEEE Computer Society
Press (1988)

23. Stirling, C.: A tableau proof system with names for modal mu-calculus. In:
Voronkov, A., Korovina, M.V. (eds.) HOWARD-60: A Festschrift on the Occa-
sion of Howard Barringer’s 60th Birthday, vol. 42, pp. 306–318 (2014)

24. Studer, T.: On the proof theory of the modal mu-calculus. Stud. Logica 89(3),
343–363 (2008)

25. Walukiewicz, I.: On completeness of the mu-calculus. In: Proceedings of the Eighth
Annual Symposium on Logic in Computer Science (LICS 1993), pp. 136–146. IEEE
Computer Society (1993)

26. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Belgian Math. Soc. 8, 359–391 (2001)

https://doi.org/10.1007/3-540-16761-7_96
https://doi.org/10.1007/3-540-16761-7_96

	A Focus System for the Alternation-Free -Calculus
	1 Preliminaries
	2 The Focus System
	2.1 The Proof Systems Focus and Focus
	2.2 Circular and Infinite Proofs
	2.3 Thin and Progressive Proofs

	3 Tableaux and Tableau Games
	4 Soundness
	5 Completeness
	6 Conclusion and Questions
	References




