
15

The Power of the Weak

FACUNDO CARREIRO, University of Amsterdam

ALESSANDRO FACCHINI, IDSIA, USI-SUPSI, Switzerland

YDE VENEMA, University of Amsterdam

FABIO ZANASI, University College London

A landmark result in the study of logics for formal verification is Janin and Walukiewicz’s theorem, stating

that the modal μ-calculus (μML) is equivalent modulo bisimilarity to standard monadic second-order logic

(here abbreviated as SMSO) over the class of labelled transition systems (LTSs for short). Our work proves

two results of the same kind, one for the alternation-free or noetherian fragment μN ML of μML on the modal

side and one for WMSO, weak monadic second-order logic, on the second-order side. In the setting of binary

trees, with explicit functions accessing the left and right successor of a node, it was known that WMSO

is equivalent to the appropriate version of alternation-free μ-calculus. Our analysis shows that the picture

changes radically once we consider, as Janin and Walukiewicz did, the standard modal μ-calculus, interpreted

over arbitrary LTSs.

The first theorem that we prove is that, over LTSs, μN ML is equivalent modulo bisimilarity to noetherian
MSO (NMSO), a newly introduced variant of SMSO where second-order quantification ranges over “con-

versely well-founded” subsets only. Our second theorem starts from WMSO and proves it equivalent modulo

bisimilarity to a fragment of μN ML defined by a notion of continuity. Analogously to Janin and Walukiewicz’s

result, our proofs are automata-theoretic in nature: As another contribution, we introduce classes of parity

automata characterising the expressiveness of WMSO and NMSO (on tree models) and of μC ML and μN ML

(for all transition systems).

CCS Concepts: • Theory of computation → Logic; Formal languages and automata theory;

Additional Key Words and Phrases: Modal μ-calculus, weak monadic second-order logic, tree automata,

bisimulation

ACM Reference format:

Facundo Carreiro, Alessandro Facchini, Yde Venema, and Fabio Zanasi. 2020. The Power of the Weak. ACM
Trans. Comput. Logic 21, 2, Article 15 (January 2020), 47 pages.

https://doi.org/10.1145/3372392

We would like to thank the reviewers for their work and the editor for handling our paper. In this final version, we addressed

all the minor comments that were made by the reviewers in the last round.

Authors’ addresses: F. Carreiro, Google, 2930 Pearl St, Boulder, CO 80301, United States; email: fcarreiro@gmail.com;

A. Facchini, Dalle Molle Institute for Artificial Intelligence USI-SUPSI, Galleria 2, Via Cantonale 2c, CH-6928 Manno,

Switzerland; email: alessandro.facchini@unil.ch; Y. Venema, Institute for Logic, Language and Computation, University

of Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, The Netherlands; email: Y.Venema@uva.nl; F. Zanasi, Department

of Computer Science, University College London, 66-72 Gower Street, 66-72 Gower Street, London WC1E 6BT, United

Kingdom; email: f.zanasi@ucl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1529-3785/2020/01-ART15 $15.00

https://doi.org/10.1145/3372392

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

https://doi.org/10.1145/3372392
mailto:permissions@acm.org
https://doi.org/10.1145/3372392

15:2 F. Carreiro et al.

1 INTRODUCTION

1.1 Expressiveness Modulo Bisimilarity

A seminal result in the theory of modal logic is van Benthem’s Characterisation Theorem [van
Benthem 1977], stating that, over the class of all labelled transition systems (LTSs for short), every
bisimulation-invariant first-order formula is equivalent to (the standard translation of) a modal
formula:

ML ≡ FO/↔ (over the class of all LTSs). (1)

Over the years, a wealth of variations of the Characterisation Theorem have been obtained. For
instance, van Benthem’s theorem is one of the few preservation results that transfers to the set-
ting of finite models [Rosen 1997]; for a recent, rich source of van Benthem-style characterisation
results, see Dawar and Otto [2009]. The general pattern of these results takes the shape

M ≡ L/↔ (over a class of models C). (2)

Apart from their obvious relevance to model theory, the interest in these results increases if C con-
sists of transition structures that represent certain computational processes, as in the theory of the
formal specification and verification of properties of software. In this context, one often takes the
point of view that bisimilar models represent the same process. For this reason, only bisimulation-
invariant properties are relevant. Seen in this light, Equation (2) is an expressive completeness result:
All the relevant properties expressible in L (which is generally some rich yardstick formalism) can
already be expressed in a (usually computationally more feasible) modal fragment M .

Of special interest to us is Janin and Walukiewicz [1996], which extends van Benthem’s result to
the setting of second-order logic, by proving that the bisimulation-invariant fragment of standard
monadic second-order logic (SMSO) is the modal μ-calculus (μML), viz., the extension of basic
modal logic with least- and greatest fixpoint operators:

μML ≡ SMSO/↔ (over the class of all LTSs). (3)

The aim of this article is to study the fine structure of such connections between second-order log-
ics and modal μ-calculi, obtaining variations of the expressiveness completeness results of Equa-
tions (1) and (3).

Our departure point is a result from Arnold and Niwiński [1992] for the class of binary trees.
Their setting is somewhat different from ours; in particular, since their trees have explicit functions
accessing the left and right successor of a node, the notion of bisimilarity trivialises to the isomor-
phism relation. Nevertheless, the key observation of Arnold and Niwiński is to link the alternation-
free fragment of a modal μ-calculus to so-called weak MSO, the version of monadic second-order
logic where second-order quantification is restricted to finite sets. Here, the alternation-free con-
straint means that only trivial interactions between least and greatest fixpoint operators are per-
mitted (more precise definitions will be provided in Section 3).

On the basis of the results by Janin and Walukiewicz and by Arnold and Niwiński it is natural
to conjecture that

μN ML ≡ WMSO/↔ (over the class of finitely branching trees), (4)

where a tree is said to be finitely branching if each node has only finitely many immediate
successors, and the logic μN ML is the alternation-free fragment of μML, or, as we shall explain
futher on, the “noetherian” version of the modal μ-calculus. Note that this logic μN ML is a very
natural fragment of the full μ-calculus; in particular, since the alternation depth of a fixpoint
formula is one of the key parameters that determine the complexity of model checking algorithms
for μML [Calude et al. 2017], the alternation-free fragment is of special interest for applications.
Similarly, weak MSO, the logic featuring on the right-hand side of Equation (4), is a well-known

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:3

variation of standard MSO, and it also has been studied in the setting of applications in software
verification (see, e.g., Grädel et al. [2002, Ch. 3]).

In other words, Equation (4) is an interesting expressive completeness statement, linking two
well-known logical systems. Nevertheless, while we will show that Equation (4) holds, our inves-
tigations take a wider scope. Note that Equation (4) only offers a comparison of the logics μN ML
and WMSO on finitely branching trees, whereas Equations (1) and (3) work at the level of arbi-
trary models. In fact, it turns out that the picture in the more general setting is far more subtle.
First, we know that already at the level of arbitrary trees, the equation μN ML ≡ WMSO/↔ is false,
since the class of conversely well-founded trees, definable by the formula μx .�x of μN ML, is not
WMSO-definable. Moreover, whereas WMSO is a fragment of SMSO on finitely branching trees,
as soon as we allow for infinite branching the two logics turn out to have incomparable expressive
power—we will discuss the details in Section 3.

One of the main questions of this work, then, is to clarify the relation between WMSO/↔ and
μN ML on arbitrary LTSs. We shall prove that, in this more general setting, Equation (4) “splits”
into the following two results, which refer to a relatively unknown fragment μC ML of the modal
μ-calculus and introduce a new second-order logic NMSO.

Theorem 1.1.

μC ML ≡ WMSO/↔ (over the class of all LTSs), (5)

μN ML ≡ NMSO/↔ (over the class of all LTSs). (6)

For the first result, Equation (5), our strategy is to start from WMSO and seek a suitable modal fix-
point logic characterising its bisimulation-invariant fragment. Second-order quantification ∃p.φ
in WMSO requires p to be interpreted over a finite subset of an LTS. We identify a notion of conti-
nuity as the modal counterpart of this constraint, and call the resulting logic μC ML, the continuous
μ-calculus. This fragment of μML, which was introduced in van Benthem [2006] under the name
of “ω-μ-calculus,” can defined by the same grammar as the full μML,

φ ::= q | ¬φ | φ ∨ φ | �φ | μp.φ ′,
with the difference that φ ′ does not just need to be positive in p but also continuous in p. This ter-
minology refers to the fact thatφ ′ is interpreted by a function that is continuous with respect to the
Scott topology; as we shall see in Section 3, p-continuity can be given a syntactic characterisation,
as a certain fragment of μML, which will be used to define the logic μC ML.

For our second result, Equation (6), we move in the opposite direction. That is, we look for a
natural second-order logic of which μN ML is the bisimulation-invariant fragment. Symmetrically
to the case of Equation (5) of WMSO and continuity, a crucial aspect is to identify which constraint
on second-order quantification corresponds to the constraint on fixpoint alternation expressed by
μN ML. Our analysis stems from the observation that, when a formula μp.φ of μN ML is satisfied
in a tree model T , the interpretation of p must be a subset of a conversely well-founded subtree of
T , because alternation-freedom prevents p from occurring in a ν-subformula of φ. We introduce
the concept of a noetherian subset as a generalisation of this property from trees to arbitrary LTSs:
Intuitively, a subset of a LTS S is called noetherian if it is a subset of a bundle of paths that does not
contain any infinite ascending chain. (Precise definitions will be supplied in Section 3.) The logic
NMSO appearing in Equation (6), which we call noetherian second-order logic, is the variation of
MSO restricting second-order quantification to noetherian subsets.

A unifying perspective over these results can be given through the lens of König’s lemma, saying
that a subset of a treeT is finite precisely when it is included in a subtree ofT , which is both finitely
branching and conversely well founded. In other words, finiteness on trees has two components,
a horizontal (finite branching) and a vertical (well-foundedness) dimension. The bound imposed

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:4 F. Carreiro et al.

by NMSO-quantification acts only on the vertical dimension, whereas WMSO-quantification acts
on both. It then comes as no surprise that Equations (5) and (6) collapse to Equation (4) on finitely
branching trees. The restriction to (unbounded) finitely branching models nullifies the difference
between noetherian and finite, equating WMSO and NMSO (and thus also μN ML and μC ML).

Another interesting observation concerns the relative expressive power of WMSO with respect
to standard MSO. As mentioned above, WMSO is not strictly weaker than SMSO on arbitrary
LTSs. Nonetheless, putting together Equations (3) and (5) reveals that WMSO collapses within the
boundaries of SMSO-expressiveness when it comes to bisimulation-invariant formulas, because
μC ML is strictly weaker than μML. In fact, modulo bisimilarity, WMSO turns out to be even weaker
than NMSO, as μC ML is also a fragment of μN ML. In a sense, this new landscape of results tells us
that the feature distinguishing WMSO from SMSO/NMSO, viz. the ability of expressing cardinality
properties of the horizontal dimension of models, disappears once we focus on the bisimulation-
invariant part and thus is not computationally relevant.

1.2 Automata-theoretic Characterisations

Janin and Walukiewicz’s proof of Equation (3) passes through a characterisation of the two logics
involved in terms of parity automata. In a nutshell, a parity automaton A = 〈A,Δ,Ω,aI 〉 processes
LTSs as inputs, according to a transition function Δ defined in terms of a so-called one-step logic
L1 (A), where the statesA of A may occur as unary predicates. The map Ω : A→ N assigns to each
state a priority; if the least priority value occurring infinitely often during the computation is even,
then the input is accepted. Both SMSO and μML are characterised by classes of parity automata:
What changes is just the one-step logic, which is, respectively, first-order logic with (FOE1) and
without (FO1) equality,

SMSO ≡ Aut (FOE1) (over the class of all trees), (7)

μML ≡ Aut (FO1) (over the class of all LTSs). (8)

This kind of automata-theoretic characterisation, which we believe is of independent interest, also
underpins our two correspondence results. As the second main contribution of this article, we
introduce new classes of parity automata that exactly capture the expressive power of the second-
order languages WMSO and NMSO (over tree models) and of the modal languages μC ML and
μN ML (over arbitrary models).

Let us start from the simpler case, that is, NMSO and μN ML. As mentioned above, the leading
intuition for these logics is that they are constrained in what can be expressed about the vertical
dimension of models. In automata-theoretic terms, we translate this constraint into the require-
ment that runs of an automaton can see at most one parity infinitely often: This yields the class
of so-called weak parity automata [Muller et al. 1992], which we write as Autw (L1) for a given
one-step logic L1.

1 We shall show the following:

Theorem 1.2.

NMSO ≡ Autw (FOE1) (over the class of all trees), (9)

μN ML ≡ Autw (FO1) (over the class of all LTSs). (10)

It is worthwhile to zoom in on our main point of departure from Janin and Walukiewicz’ proofs of
Equations (7) and (8). In the characterisation (7), due to Walukiewicz [1996], a key step is to show

1Interestingly, Muller et al. [1992] introduces the class Autw (FOE1) to show that it characterises WMSO on finitely branch-

ing trees, whence the name of weak automata. As discussed above, this correspondence is an “optical illusion,” due to the

restricted class of models that are considered, on which NMSO =WMSO.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:5

that each automaton in Aut (FOE1) can be simulated by an equivalent non-deterministic automa-
ton of the same class. This is instrumental in the projection construction, allowing us to build an
automaton equivalent to ∃p.φ ∈ MSO starting from an automaton for φ. Our counterpart, Equa-
tion (9), is also based on a simulation theorem. However, we cannot proceed in the same manner,
as the class Autw (FOE1), unlike Aut (FOE1), is not closed under non-deterministic simulation. Thus
we devise a different construction, which starting from a weak automaton A creates an equivalent
automaton A′, which acts non-deterministically only on a conversely well-founded part of each
accepted tree. It turns out that the class Autw (FOE1) is closed under this variation of the simu-
lation theorem; moreover, the property of A′ is precisely what is needed to make a projection
construction that mirrors NMSO-quantification.

We now consider the automata-theoretic characterisation of WMSO and μC ML. Whereas in
Equations (9) and (10) the focus was on the vertical dimension of a given model, the constraint
that we now need to translate into automata-theoretic terms concerns both vertical and horizontal
dimensions. Our revision of Equations (7) and (8) thus moves on two different axes. The constraint
on the vertical dimension is handled analogously to the cases of Equations (9) and (10), by switch-
ing from standard to weak parity automata. The constraint on the horizontal dimension requires
more work. The first problem lies in finding the right one-step logic, which should be able to ex-
press cardinality properties, as WMSO is able to do. An obvious candidate would be weak monadic
second-order logic itself, or, more precisely, its variation WMSO1, over the signature of unary pred-
icates (corresponding to the automata states). A very helpful observation from Väänänen [1977] is
that we can actually work with an equivalent formalism that is better tailored to our aims. Indeed,
WMSO1 ≡ FOE∞1 , where FOE∞1 is the extension of FOE1 with the generalised quantifier ∃∞, with
∃∞x .φ stating the existence of infinitely many objects satisfying φ.

At this stage, our candidate automata class for WMSO could be Autw (FOE∞1). However, this
fails because FOE∞1 bears too much expressive power: Since it extends FOE1, we would find that,
over tree models, Autw (FOE∞1) extends Autw (FOE1), whereas we already saw that Autw (FOE1) ≡
NMSO is incomparable to WMSO. It is here that we crucially involve the notion of continuity. For a
class Autw (L1) of weak parity automata, we call continuous-weak parity automata, forming a class
Autwc (L1), those satisfying the following additional constraint:

—for every state a with even priority Ω(a), every one-step formula φ ∈ L1 (A) defining the
transitions from a has to be continuous in all states a′ lying in a cycle with a; dually, if Ω(a)
is odd, then every such φ has to be a′-cocontinuous.2

We can now formulate our characterisation result as follows.

Theorem 1.3.

WMSO ≡ Autwc (FOE∞1) (over the class of trees), (11)

μC ML ≡ Autwc (FO1) (over the class of all LTSs). (12)

Thus automata for WMSO deviate from SMSO-automata Aut (FOE1) on two different levels: at the
global level of the automaton run, because of the weakness and continuity constraint, and at the
level of the one-step logic defining a single transition step. Another interesting point stems from
pairing Equations (11) and (12) with the expressive completeness result of Equation (5): Although
automata for WMSO are based on a more powerful one-step logic (FOE∞1) than those for μC ML

2It is important to stress that, even though continuity is a semantic condition, we have a syntactic characterisation of FOE∞1 -

formulas satisfying it (see Carreiro et al. [2018]), meaning that Autwc (FOE∞1) is definable independently of the structures

taken as input.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:6 F. Carreiro et al.

(FO1), modulo bisimilarity they characterise the same expressiveness. This connects to our pre-
vious observation that the ability of WMSO to express cardinality properties on the horizontal
dimension vanishes in a bisimulation-invariant context.

1.3 Outline

It is useful to conclude this introduction with a roadmap of how the various results are achieved.
In a nutshell, the two expressive completeness theorems (5) and (6) will be based respectively on
the following two chains of equivalences:

μN ML ≡ μN FO1 ≡ Autw (FO1) ≡ Autw (FOE1)/↔ ≡ NMSO/↔ (over LTSs), (13)

μC ML ≡ μC FO1 ≡ Autwc (FO1) ≡ Autwc (FOE∞1)/↔ ≡ WMSO/↔ (over LTSs). (14)

After giving a precise definition of the necessary preliminaries in Sections 2 and 3, we proceed
as follows. First, Section 4 introduces parity automata parametrised over a one-step language L1,
in the standard (Aut (L1)), weak (Autw (L1)), and continuous-weak (Autwc (L1)) forms. With Theo-
rems 4.33 and 4.34, we show that

μNL1 ≡ Autw (L1) μCL1 ≡ Autwc (L1) (over LTSs), (15)

where μNL1 and μCL1 are extensions of L1 with fixpoint operators subject to a “noetherianess” and
a “continuity” constraint, respectively. Instantiating Equation (15) yields the second equivalence
both in Equations (13) and (14):

μN FO1 ≡ Autw (FO1) μC FO1 ≡ Autwc (FO1) (over LTSs).

Next, in Section 5, Theorem 5.2, we show how to construct from a WMSO-formula an equivalent
automaton of the class Autwc (FOE∞1). In Section 6, Theorem 6.2, we show the analogous char-
acterisation for NMSO and Autw (FOE1). These two sections yield part of the last equivalence in
Equation (14) and in Equation (13), respectively,

Autw (FOE1) ≥ NMSO Autwc (FOE∞1) ≥ WMSO (over trees). (16)

Notice that, differently from all the other proof pieces, Equation (16) only holds on trees, because
the projection construction for automata relies on the input LTSs being tree shaped.

Section 7 yields the remaining bit of the automata characterisations. Theorem 7.1 shows

μN FOE1 ≤ NMSO μC FOE∞1 ≤ WMSO (over LTSs),

which, paired with Equation (15), yields

Autw (FOE1) ≡ μN FOE1 ≤ NMSO Autwc (FOE∞1) ≡ μC FOE∞1 ≤ WMSO (over LTSs).

Putting the last equation and Equation (16) together, we have our automata characterisations,

Autw (FOE1) ≡ NMSO Autwc (FOE∞1) ≡ WMSO (over trees),

which also yield the rightmost equivalence in Equation (14) and in Equation (13), because any LTS
is bisimilar to its tree unraveling,

Autw (FOE1)/↔ ≡ NMSO/↔ Autwc (FOE∞1)/↔ ≡ WMSO/↔ (over LTSs).

At last, Section 8 is split into two parts. First, Theorem 8.1 extends the results in Section 4 to
complete the following chains of equivalences, yielding the first block in Equation (13) and in
Equation (14),

μN ML ≡ μN FO1 ≡ Autw (FO1) μC ML ≡ μC FO1 ≡ Autwc (FO1) (over LTSs).

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:7

As a final step, Subsection 8.2 fills the last gap in Equations (13) and (14) by showing

Autw (FO1) ≡ Autw (FOE1)/↔ Autwc (FO1) ≡ Autwc (FOE∞1)/↔ (over LTSs).

1.4 Conference Versions and Companion Paper

This article is based on two conference papers [Facchini et al. 2013; Carreiro et al. 2014], which
were based in turn on a Master’s thesis [Zanasi 2012] and a Ph.D. dissertation [Carreiro 2015].
Each of the two conference papers focussed on a single expressive completeness theorem between
Equations (5) and (6): Presenting both results in a mostly uniform way has required an extensive
overhaul, involving the development of new pieces of theory, as in particular in Sections 4, 7, and 8.
All missing proofs of the conference papers are included, and the simulation theorem for NMSO-
and WMSO-automata is simplified, as it is now based on macro-states that are sets instead of re-
lations. Moreover, we amended two technical issues with the characterisation μN ML ≡ NMSO/↔
presented in Facchini et al. [2013]. First, the definition of noetherian subset in NMSO has been made
more precise to prevent potential misunderstandings arising with the formulation in Facchini et al.
[2013]. Second, as stated in Facchini et al. [2013], the expressive completeness result was only valid
on trees. In this version, we extend it to arbitrary LTSs, thanks to the new material in Section 7.

Finally, our approach depends on model-theoretic results on the three main one-step logics fea-
turing in this article: FO1, FOE1, and FOE∞1 . We believe these results to be of independent interest,
and to save some space here, we decided to restrict our discussion of the model theory of these
monadic predicate logics in this article to a summary. Full details can be found in the companion
paper [Carreiro et al. 2018].

2 PRELIMINARIES

We assume the reader to be familiar with the syntax and (game-theoretic) semantics of the modal
μ-calculus and with the automata-theoretic perspective on this logic. For background reading, we
refer to Grädel et al. [2002] and Venema [2012]; the purpose of this section is to fix some notation
and terminology.

2.1 Transition Systems and Trees

Throughout this article we fix a set Prop of elements that will be called proposition letters and
denoted with small Latin letters p,q, We will often focus on a finite subset P ⊆ω Prop and
denote withC the set ℘(P) of labels on P; it will be convenient to think ofC as an alphabet. Given
a binary relation R ⊆ X × Y for any element x ∈ X , we indicate with R[x] the set {y ∈ Y | (x ,y) ∈
R}, while R+ and R∗ are defined, respectively, as the transitive closure of R and the reflexive and
transitive closure of R. The set Ran(R) is defined as

⋃
x ∈X R[x].

A P-labeled transition system (LTS) is a tuple S = 〈T ,R,κ, sI 〉, whereT is the universe or domain
of S, κ : T → ℘(P) is a colouring (or marking), R ⊆ T 2 is the accessibility relation, and sI ∈ T is
a distinguished node. We call κ (s) the colour, or type, of node s ∈ T . Observe that the colouring
κ : T → ℘(P) can be seen as a valuation κ � : P → ℘(T) given by κ � (p) := {s ∈ T | p ∈ κ (s)}. A P-
tree is a P-labeled LTS in which every node can be reached from sI , and every node except sI has
a unique predecessor; the distinguished node sI is called the root of S. Each node s ∈ T uniquely
defines a subtree of S with carrier R∗[s] and root s . We denote this subtree by S.s .

A path through an LTS S = 〈T ,R,κ, sI 〉 is a sequence (si)i<α , where α is finite but non-zero, or
α = ω, and (si , si+1) ∈ R whenever i + 1 < α . In particular, we allow paths of the form s for any
s ∈ S . A tree is called conversely well founded if it does not contain any infinite path.

The tree unravelling of an LTSS is given by Ŝ := 〈TP ,RP ,κ
′, sI 〉, whereTP is the set of finite paths

in S stemming from sI , RP (t , t ′) iff t ′ is a one-step extension of t and the colour of a path t ∈ TP

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:8 F. Carreiro et al.

is given by the colour of its last node in T . The ω-unravelling Sω of S is defined similarly, now
taking as nodes all “generalised” paths of the form (sI ,n1, s1, . . . ,nk , sk), where ni ∈ ω for each i .

Ap-variant of a transition systemS = 〈T ,R,κ, sI 〉 is a P ∪ {p}-transition system 〈T ,R,κ ′, sI 〉 such
that κ ′(s) \ {p} = κ (s) \ {p} for all s ∈ T . Given a set S ⊆ T , we let S[p �→ S] denote the p-variant,
where p ∈ κ ′(s) iff s ∈ S .

Let φ ∈ L be a formula of some logic L, we use ModL (φ) = {S | S |= φ} to denote the class of
transition systems that makeφ true. The subscript L will be omitted when L is clear from context. A
class C of transition systems is said to beL-definable if there is a formulaφ ∈ L such that ModL (φ) =
C. We use the notation φ ≡ ψ to mean that ModL (φ) = ModL (ψ), and given two logics L,L′ we
use L ≡ L′ when the L-definable and L′-definable classes of models coincide.

2.2 Games

We introduce some terminology and background on infinite games. All the games that we consider
involve two players called Éloise (∃) and Abelard (∀). In some contexts, we refer to a player Π to
specify a a generic player in {∃,∀}. Given a set A, by A∗ and Aω we denote respectively the set of
words (finite sequences) and streams (or infinite words) over A.

A board game G is a tuple (G∃,G∀,E,Win), whereG∃ andG∀ are disjoint sets whose unionG =
G∃ ∪G∀ is called the board of G, E ⊆ G ×G is a binary relation encoding the admissible moves, and
Win ⊆ Gω is a winning condition. An initialized board game G@uI is a tuple (G∃,G∀,uI ,E,Win),
where uI ∈ G is the initial position of the game. In a parity game, the set Win is given by a parity
function, that is, a map Ω : G → ω of finite range, in the sense that a sequence (ai)i < ω belongs
to Win iff the maximal value n that is reached as n = Ω(ai) for infinitely many i is even.

Given a board gameG, a match ofG is simply a path through the graph (G,E), that is, a sequence
π = (ui)i<α of elements of G, where α is either ω or a natural number, and (ui ,ui+1) ∈ E for all i
with i + 1 < α . A match of G@uI is supposed to start at uI . Given a finite match π = (ui)i<k for
some k < ω, we call last (π) := uk−1 the last position of the match; the player Π such that last (π) ∈
GΠ is supposed to move at this position, and if E[last (π)] = ∅, then we say that Π got stuck in π .
A match π is called total if it is either finite, with one of the two players getting stuck, or infinite.
Matches that are not total are called partial. Any total match π is won by one of the players: If π
is finite, then it is won by the opponent of the player who gets stuck. Otherwise, if π is infinite,
then the winner is ∃ if π ∈ Win, and ∀ if π � Win.

Given a board game G and a player Π, let PMG
Π denote the set of partial matches of G whose last

position belongs to player Π. A strategy for Π is a function f : PMG
Π → G. A match π = (ui)i<α of

G is f -guided if for each i < α such that ui ∈ GΠ we have that ui+1 = f (u0, . . . ,ui). Let u ∈ G and
a f be a strategy for Π. We say that f is a surviving strategy for Π in G@u if for each f -guided
partial match π of G@u, if last (π) is inGΠ , then f (π) is legitimate, that is, (last (π), f (π)) ∈ E. We
say that f is a winning strategy for Π in G@u if, additionally, Π wins each f -guided total match
of G@u. If Π has a winning strategy for G@u, then u is called a winning position for Π in G. The
set of positions of G that are winning for Π is denoted by WinΠ (G).

A strategy f is called positional if f (π) = f (π ′) for each π ,π ′ ∈ Dom(f) with last (π) = last (π ′).
A board game G with board G is determined if G = Win∃ (G) ∪Win∀(G), that is, each u ∈ G is a
winning position for one of the two players. The next result states that parity games are position-
ally determined.

Fact 2.1 ([Emerson and Jutla 1991; Mostowski 1991]). For each parity game G, there are
positional strategies f∃ and f∀ respectively for player ∃ and ∀, such that for every position u ∈ G
there is a player Π such that fΠ is a winning strategy for Π in G@u.

In the sequel, we will often assume, without notification, that strategies in parity games are posi-
tional. Moreover, we think of a positional strategy fΠ for player Π as a function fΠ : GΠ → G.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:9

2.3 The Modal μ-Calculus

The language of the modal μ-calculus (μML) is given by the following grammar:

φ ::= q | ¬q | φ ∧ φ | φ ∨ φ | �φ | �φ | μp.φ | νp.φ,

where p,q ∈ Prop and p is positive in φ (i.e., p is not negated). We will freely use standard syntactic
concepts and notations related to this language, such as the sets FV (φ) and BV (φ) of free and bound
variables of φ, and the collection Sfor (φ) of subformulas of φ. We use the standard convention that
no variable is both free and bound in a formula and that every bound variable is fresh. We let
μML(P) denote the collection of formulas φ with FV (φ) ⊆ P. Sometimes we writeψ � φ to denote
thatψ is a subformula of φ. For a bound variable p occurring in some formula φ ∈ μML, we use δp

to denote the binding definition of p, that is, the unique formula such that either μp.δp or νp.δp is
a subformula of φ.

We need some notation for the notion of substitution. Let φ and {ψz | z ∈ Z } be modal fixpoint
formulas, where Z ∩ BV (φ) = ∅. Then we let φ[ψz/z | z ∈ Z] denote the formula obtained from φ
by simultaneously substituting each formula ψz for z in φ (with the usual understanding that no
free variable in any of theψz will get bound by doing so). In case Z is a singleton z, we will simply
write φ[ψz/z] or φ[ψ] if z is clear from context.

The semantics of this language is completely standard. LetS = 〈T ,R,κ, sI 〉 be a transition system

and φ ∈ μML. We inductively define the meaning �φ�S , which includes the following clauses for
the least (μ) and greatest (ν) fixpoint operators:

�μp.ψ �S :=
⋂ {

X ⊆ T | X ⊇ ψS
p (X)

}
�νp.ψ �S :=

⋃ {
X ⊆ T | X ⊆ ψS

p (X)
}
,

where the mapψS
p : ℘(T) → ℘(T) represents how the meaning ofψ depends on that of p:

ψS
p (X) := �ψ �S[p �→X].

We say that φ is true in S (notation S � φ) iff sI ∈ �φ�S .
We will now describe the semantics defined above in game-theoretic terms. That is, we will

define the evaluation game E (φ,S) associated with a formula φ ∈ μML and a transition system S.
This game is played by two players (∃ and ∀) moving through positions (ξ , s), where ξ � φ and
s ∈ T . In an arbitrary position (ξ , s) it is useful to think of ∃ trying to show that ξ is true at s and
of ∀ of trying to convince her that ξ is false at s . The rules of the evaluation game are given in the
following table.

Position Player Admissible moves
(ψ1 ∨ψ2, s) ∃ {(ψ1, s), (ψ2, s)}
(ψ1 ∧ψ2, s) ∀ {(ψ1, s), (ψ2, s)}
(�φ, s) ∃ {(φ, t) | t ∈ R[s]}
(�φ, s) ∀ {(φ, t) | t ∈ R[s]}
(μp.φ, s) − {(φ, s)}
(νp.φ, s) − {(φ, s)}
(p, s) with p ∈ BV (φ) − {(δp , s)}
(¬q, s) with q ∈ FV (φ) and q � κ (s) ∀ ∅
(¬q, s) with q ∈ FV (φ) and q ∈ κ (s) ∃ ∅
(q, s) with q ∈ FV (φ) and q ∈ κ (s) ∀ ∅
(q, s) with q ∈ FV (φ) and q � κ (s) ∃ ∅

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:10 F. Carreiro et al.

Every finite match of this game is lost by the player that got stuck. To give a winning condition
for an infinite match let p be, of the bound variables of φ that get unravelled infinitely often, the
one such that δp the highest subformula in the syntactic tree of φ. The winner of the match is ∀ if
p is a μ-variable and ∃ if p is a ν-variable. We say that φ is true in S iff ∃ has a winning strategy in
E (φ,S).

Proposition 2.2 (Adeqacy Theorem). Let φ = φ (p) be a formula of μML in which all occur-
rences of p are positive, S be a LTS and s ∈ T . Then:

s ∈ �μp.φ�S ⇐⇒ (μp.φ, s) ∈ Win∃ (E (μp.φ,S)). (17)

2.4 Bisimulation

Bisimulation is a notion of behavioral equivalence between processes. For the case of transition
systems, it is formally defined as follows.

Definition 2.3. Let S = 〈T ,R,κ, sI 〉 and S′ = 〈T ′,R′,κ ′, s ′I 〉 be P-labeled transition systems. A
bisimulation is a relation Z ⊆ T ×T ′ such that for all (t , t ′) ∈ Z the following holds:

(atom). κ (t) = κ ′(t ′);
(forth). for all s ∈ R[t] there is s ′ ∈ R′[t ′] such that (s, s ′) ∈ Z ;
(back). for all s ′ ∈ R′[t ′] there is s ∈ R[t] such that (s, s ′) ∈ Z .

Two pointed transition systems S and S′ are bisimilar (denoted S ↔ S′) if there is a bisimulation
Z ⊆ T ×T ′ containing (sI , s

′
I).

The following observation about tree unravellings is the key to understand the importance of
tree models in the setting of invariance modulo bismilarity results.

Fact 2.4. S, Ŝ, and Sω are bisimilar for every transition system S.

A class C of transition systems is bisimulation closed if S ↔ S′ implies that S ∈ C iff S′ ∈ C for
all S and S′. A formula φ ∈ L is bisimulation-invariant if S ↔ S′ implies that S � φ iff S′ � φ for
all S and S′.

Fact 2.5. Each μML-definable class of transition systems is bisimulation closed.

3 MONADIC SECOND-ORDER LOGICS AND MODAL μ-CALCULI

In this section, we introduce the main logics of our narrative, i.e., the weak and noetherian versions
of monadic second-order logic on the one hand and the continuous and noetherian fragments of
the modal μ-calculus on the other. We also briefly discuss some model-theoretic properties and
results related to these logics.

3.1 Monadic Second-order Logics

Three variations of monadic second-order logic feature in our work: standard, weak, and noetherian
monadic second-order logic; and for each of these three variations, we consider a one-sorted and a
two-sorted version. As we will see later, the one-sorted version fits better in the automata-theoretic
framework, whereas it is more convenient to use the two-sorted approach when translating μ-
calculi to second-order languages. In both the one-sorted and the two-sorted versions, the syntax
of the three languages is the same, the difference lying in the semantics, more specifically in the
type of subsets over which the second-order quantifiers range. In the case of standard and weak
monadic second-order logic, these quantifiers range over all, respectively, finite subsets of the
model. In the case of NMSO, we need the concept of a noetherian subset of an LTS.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:11

Definition 3.1. Let S = 〈T ,R,κ, sI 〉 be an LTS, and let B be a set of finite paths that all share the
same starting point s; we call B a bundle rooted at s , or simply an s-bundle, if B does not contain
an infinite ascending chain π0 � π1 � · · · , where � denotes the (strict) initial-segment relation on
paths. A bundle is simply an s-bundle for some s ∈ T . Finally, a subset X of T is called noetherian
if there is a bundle B such that each t ∈ X lies on some path in B.

Example 3.2. Let S = 〈T ,R,κ, sI 〉 be a labelled transition system.

(1) Since the empty bundle is a bundle, the empty set is a noetherian set in S.
(2) In case S is a conversely well-founded tree, the set of all paths emanating from sI is a

bundle, and therefore every subset of T is noetherian.
(3) More generally, if S is an arbitrary tree, then its noetherian subsets coincide with those

that are included in a well-founded subtree of S. In case S is finitely branching, every
well-founded subtree is finite; as a consequence, every noetherian subset is finite.

(4) Let s be some arbitrary node in S, and suppose that the points s1, . . . , sn are all reachable
from s (i.e., belong to the set R∗[s]). Then, for each i , we may fix a (finite) path πi from s
to si . Clearly these paths, taken together, provide a bundle, and so the set {s1, . . . , sn } is
noetherian.

(5) This means in particular that every singleton is noetherian. Furthermore, if S is finite, and
every point in S is reachable from sI , then every subset of T is noetherian.

(6) Similarly, every finite subset of a tree is noetherian. Hence, on finitely branching trees,
the noetherian sets coincide with the finite ones.

One-sorted monadic second-order logics.

Definition 3.3. The formulas of the (one-sorted) monadic second-order language are defined by
the following grammar:

φ ::= ⇓p | p � q | R (p,q) | ¬φ | φ ∨ φ | ∃p.φ,

where p and q are letters from Prop. We adopt the standard convention that no proposition letter
is both free and bound in φ.

As mentioned, the three logics SMSO, WMSO, and NMSO are distinguished by their semantics.
Let S = 〈T ,R,κ, sI 〉 be an LTS. The interpretation of the atomic formulas is fixed:

S |= ⇓p iff κ � (p) = {sI }
S |= p � q iff κ � (p) ⊆ κ � (q)

S |= R (p,q) iff for every s ∈ κ � (p) there exists t ∈ κ � (q) such that sRt .

Furthermore, the interpretation of the Boolean connectives is standard. The interpretation of the
existential quantifier is where the logics diverge:

S |= ∃p.φ iff S[p �→ X] |= φ
⎧⎪⎪⎨⎪⎪⎩

for some (SMSO)
for some finite (WMSO)
for some noetherian (NMSO)

⎫⎪⎪⎬⎪⎪⎭
X ⊆ T .

Observe that for a given monadic second-order formula φ, the classes ModSMSO (φ),
ModWMSO (φ), and ModNMSO (φ) will generally be different.

Two-sorted monadic second-order logics. The reader may have expected to see the following more
standard language for second-order logic.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:12 F. Carreiro et al.

Definition 3.4. Given a set iVar of individual (first-order) variables, we define the formulas of
the two-sorted monadic second-order language by the following grammar:

φ ::= p (x) | R (x ,y) | x ≈ y | ¬φ | φ ∨ φ | ∃x .φ | ∃p.φ,

where p ∈ Prop, x ,y ∈ iVar and ≈ is the symbol for equality.

Formulas are interpreted over an LTS S = 〈T ,R,κ, sI 〉 with a variable assignment д : iVar → T ,
and the semantics of the language is completely standard. Depending on whether second-order
quantification ranges over all subsets, over finite subsets, or over noetherian subsets, we obtain
the three two-sorted variations denoted respectively as 2SMSO, 2WMSO, and 2NMSO.

Equivalence of one-sorted and two-sorted MSO. In each variation, the one-sorted and the two-
sorted versions can be proved to be equivalent, but there is a subtlety due to the fact that our
models have a distinguished state. In the one-sorted language, we use the downarrow ⇓ to access
this distinguished state; in the two-sorted approach, we will use a fixed variable v to refer to the
distinguished state, and given a formula φ (v) of which v is the only free individual variable, we
write S |= φ[sI] rather than S[v �→ sI] |= φ. As a consequence, the proper counterpart of the one-
sorted language SMSO is the set 2SMSO(v) of those 2SMSO-formulas that have preciselyv as their
unique free variable.

More in particular, with L ∈ {SMSO,WMSO,NMSO}, we say that φ ∈ L is equivalent to ψ (v) ∈
L(v) if

S |= φ iff S |= ψ [sI]

for every model S = 〈T ,R,κ, sI 〉. We can now state the equivalence between the two approaches
to monadic second-order logic as follows.

Proposition 3.5. Let L ∈ {SMSO,WMSO,NMSO} be a monadic second-order logic.

(1) There is an effective construction transforming a formula φ ∈ L into an equivalent formula
φt ∈ 2L(v).

(2) There is an effective construction transforming a formula ψ ∈ 2L(v) into an equivalent for-
mulaψ o ∈ L.

Proof. Since it is completely straightforward to define a translation (·)t as required for part
(1) of Proposition 3.5, we only discuss the proof of part (2). The key observation here is that a
single-sorted language can interpret the corresponding two-sorted language by encoding every
individual variable x ∈ iVar as a set variable px denoting a singleton and that it is easy to write
down a formula stating that a variable indeed is interpreted by a singleton. As a consequence,
where 2L(P,X) denotes the set of 2L-formulas with free second-order variables in P and free first-
order variables in X, it is not hard to formulate a translation (·)m : 2L(P,X) → L(P � {px | x ∈ X})
such that, for every model S, every variable assignment д and every formulaψ ∈ 2L(Prop,X):

S,д |= ψ iff S[px �→ {д(x)} | x ∈ X] |= ψm .

From this it is immediate that anyψ ∈ 2L(v) satisfies

S |= ψ [sI] iff S |= ∃pv (⇓pv ∧ψm),

so that we may takeψ o := ∃pv (⇓pv ∧ψm). �

Comparing the relative expressive power of the logics SMSO, WMSO, and NMSO on finitely
trees, on arbitrary trees, and on arbitrary models, we can make the following observations.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:13

Fig. 1. Expressiveness of three monadic second-order logics.

Finitely branching trees. From Example 3.2(6), it follows that on this subclass of LTS, NMSO
and WMSO are equivalent. They are, however, both strictly included in SMSO. First, since
being a well-founded subtree is SMSO-definable, NMSO (and thus WMSO) is included
in SMSO. Finally, from Rabin [1970], we know that already on binary trees the SMSO-
definable property “there is a path on which p is true infinitely often” is not WMSO-
definable.

Arbitrary trees. For the same reason as in the case of finitely branching trees, NMSO is strictly
included in SMSO. However, WMSO is now incomparable with both NMSO and SMSO.
First, it is well known that WMSO can only define properties whose topological complex-
ity is Borel (see, e.g., ten Cate and Facchini [2011]), whereas NMSO can also define non
Borel properties, such as being well founded. Second, consider the property of having a
node with infinitely many successors. This property is clearly definable in WMSO but not
in SMSO. This is due to the fact that on arbitrary trees every SMSO formula is equiva-
lent to a MSO-automata and that every non empty MSO-automata recognises a finitely
branching tree (see Walukiewicz [1996]). Since all WMSO-definable languages are closed
under complementation, it therefore turns out that the language of finitely branching
trees is WMSO-definable, but it is not SMSO-definable.

Arbitrary models. Clearly, the incomparability results on tree models carry over to the more
general case; that is, on arbitrary models, WMSO is incomparable with both NMSO and
SMSO, and SMSO is not included in NMSO. However, at the moment of writing, we do
not know whether on arbitrary models NMSO is still included in SMSO.

These findings are summarized in Figure 1 below. Note, too, that there are many nontrivial prop-
erties that can be expressed in all three languages; as an example we mention “eventually always
p,” see Remark 3.13.

3.2 Some Model-theoretic Observations

Before we turn to the precise syntactic definition of the two fragments of μML that correspond to
the monadic second-order logics WMSO and NMSO, we briefly discuss the fundamental seman-
tic properties underlying these definitions. Note that such a connection underlies the framework
of the modal μ-calculus itself: The syntactic proviso on the formation of fixpoint formulas μq.φ
(viz., the requirement that all occurrences of q in φ are positive) guarantees a semantic property

(namely, monotonicity of the associated semantic map φSq), which is needed to use the Knaster-
Tarski theorem to interpret the formula μq.φ.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:14 F. Carreiro et al.

The idea underlying the definition of the fragments μC ML and μN ML is to impose further con-

ditions on the formation of fixpoint formulas ηq.φ to ensure that the semantic map φSq satisfies
some additional properties to be introduced now.

Definition 3.6. Let F : ℘S → ℘S be a map. We say that F is monotone if F (X) ⊆ F (Y) whenever
X ⊆ Y and continuous if it is monotone and satisfies

F (X) =
⋃
{F (Y) | Y ⊆ X ,Y finite}. (18)

In case S is the domain of a tree model, we call F noetherian-based if it is monotone and satisfies
the following condition:

F (X) =
⋃
{F (Y) | Y ⊆ X ,Y noetherian}. (19)

In words, F is continuous if it is completely determined by its action on finite sets, and a similar
perspective applies to noetherian-based maps. The name “continuity” is explained by the fact that
a map F : ℘S → ℘S satisfies Equation (18) iff F is continuous with respect to the Scott topology on
the power set ℘(S) of S . Scott continuity stems from domain theory [Abramsky and Jung 1994] and
plays a fundamental role in many branches of logic and theoretical computer science that feature
ordered structures.

What is of interest here is that we may apply the concepts of Definition 3.6 to formulas. To see

how this works out for fixpoint formulas, recall the definition of the semantic map φSq associated
with a formula φ ∈ μML and a proposition letter q.

Definition 3.7. Let φ ∈ μML and q be a propositional variable. We say that φ is monotone (re-
spectively, continuous/noetherian) in q if for every transition system S, the map φSq : ℘S → ℘S is

monotone (respectively, continuous/noetherian).

In fact, as part of the model theory of the modal μ-calculus, these semantic properties (and many
more) can be given rather exact syntactic characterisations.

Definition 3.8. Given a set Q of propositional variables, we define the fragment NoeQ (μML) of
μML-formulas that are (syntactically) noetherian in Q by the following grammar:

φ ::= q | ψ | φ ∨ φ | φ ∧ φ | �φ | �φ | μp.φ ′,
where q ∈ Q , ψ is a Q-free μML-formula and φ ′ ∈ NoeQ∪{p } (μML). The co-noetherian fragment
CoNoeQ (μML) is defined dually by taking ν instead of μ and stating φ ′ ∈ CoNoeQ∪{p } (μML).

Similarly, we define the fragment of μML continuous in Q , denoted by ConQ (μML), by induction
in the following way:

φ ::= q | ψ | φ ∨ φ | φ ∧ φ | �φ | μp.φ ′,
where q,p ∈ Q , ψ is a Q-free μML-formula and φ ′ ∈ ConQ∪{p } (μML). The co-continuous frag-
ment CoConQ (μML) is defined dually by taking ν instead of μ and � instead of � and stating
φ ′ ∈ CoConQ∪{p } (μML).

Fact 3.9 ([D’Agostino and Hollenberg 2000; Fontaine 2008; Fontaine and Venema
2018]). The following hold, for any μML-formula formula φ, and any proposition letter q:

(1) φ is monotone in q iff it is equivalent to a formula φ ′ that is positive in q;
(2) φ is continuous in q iff it is equivalent to a formula φ ′ in the fragment Conq (μML);
(3) φ is noetherian in q iff it is equivalent to a formula φ ′ in the fragment Noeq (μML).

In passing, we note that in each instance of Fact 3.9, a slightly stronger result can be proved,
to the effect that it is decidable whether a given μ-calculus formula is monotone (respectively,
continuous/noetherian) in a given proposition letter.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:15

3.3 Fragments of the Modal μ-calculus

We are now ready for the definition of the fragments μN ML and μC ML. Starting with the first,
note that formulas of the modal μ-calculus may be classified according to their alternation depth,
which roughly is given as the maximal length of a chain of nested alternating least and greatest
fixpoint operators [Niwiński 1986]. The alternation-free fragment of the modal μ-calculus (μN ML)
is usually defined as the collection of μML-formulas without nesting of least and greatest fixpoint
operators. It can also be given a more standard grammatical definition as the fragment of the full
language where we restrict the application of the least fixpoint operator μp to formulas that are
(syntactically) noetherian in p (and apply a dual condition to the greatest fixpoint operator).

Definition 3.10. The formulas of the alternation-free μ-calculus μN ML are defined by the follow-
ing grammar:

φ ::= q | ¬q | φ ∨ φ | φ ∧ φ | �φ | �φ | μp.φ ′ | νp.φ ′′,
where p,q ∈ Prop, φ ′ ∈ μN ML ∩ Noep (μML), and dually φ ′′ ∈ μN ML ∩ CoNoep (μML).

It is then immediate to verify that the above definition indeed captures exactly all formulas
without alternation of least and greatest fixpoints. One may prove that a formula φ ∈ μML belongs
to the fragment μN ML iff for all subformulas μp.ψ1 and νq.ψ2 it holds that p is not free in ψ2 and
q is not free inψ1.

Similarly, we define μC ML to be the fragment of μML where the use of the least fixed point
operator is restricted to the continuous fragment.

Definition 3.11. Formulas of the fragment μC ML are given by

φ ::= q | ¬q | φ ∨ φ | φ ∧ φ | �φ | �φ | μp.φ ′ | νp.φ ′′,
where p,q ∈ Prop, φ ′ ∈ Conp (μML) ∩ μC ML, and dually φ ′′ ∈ CoConp (μML) ∩ μC ML.

Characteristic about μC ML is that in a formula μp.φ ∈ μC ML, all occurrences of p in φ are exis-
tential in the sense that they may be in the scope of a diamond but not of a box. Furthermore, as
an immediate consequence of Fact 3.9(2) we may make the following observation.

Corollary 3.12. For every μC ML-formula μp.φ, the formula φ is continuous in p.

Finally, we consider the relative expressiveness of the fixpoint languages μC ML, μN ML, and
μML. It is immediate from the definitions that μC ML ≤ μN ML ≤ μML. Both inclusions are strict:

(μC ML �≤ μN ML). Consider the formula μx .�x in μN ML, stating that every path starting from
the distinguished node of the model is finite. As mentioned, on tree models this formula
captures the property of being conversely well founded, which is known not be express-
ible in WMSO [ten Cate and Facchini 2011] and, hence, since μC ML ≤ WMSO, not in the
continuous μ-calculus either.

(μN ML �≤ μML). The property “on some path,p holds infinitely often” is definable by the μML-
formula φ := νx .μy.((p ∨ �y) ∧ �x). However, this property is not definable in the alter-
nation free fragment μN ML. This is because, for instance, on trees, every property de-
finable in μN ML is also recognised by both a Büchi and a co-Büchi automaton (see, e.g.,
Kupferman and Vardi [2003]), whereas “infinitely often p” is not [Rabin 1970].

Remark 3.13. The discussion above, concerning the property “on some path, p holds infinitely
often” may be contrasted with the rather similar-looking formula ψ := μx .νy.(�x ∨ (�y ∧ p)).
This formula states that there is a path in which from a certain point onp always holds (“eventually
always p”). Syntactically,ψ is neither in μN ML (it has one alternation of fixpoints) nor a fortiori in
μC ML. However, it is not difficult to see thatψ is equivalent to the formula μx .(�x ∨ νy (�y ∧ p)),
which does belong to the continuous μ-calculus and is in particular alternation free.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:16 F. Carreiro et al.

4 ONE-STEP LOGICS, PARITY AUTOMATA, AND μ-CALCULI

This section introduces and studies the type of parity automata that will be used in the charac-
terisation of WMSO and NMSO on tree models. To define these automata in a uniform way, we
introduce, at a slightly higher level of abstraction, the notion of a one-step logic, a concept from
coalgebraic modal logic [Cîrstea and Pattinson 2004], which provides a nice framework for a gen-
eral approach toward the theory of automata operating on infinite objects. As salient specimens
of such one-step logics, we will discuss monadic first-order logic with equality (FOE1) and its ex-
tension with the infinity quantifier (FOE∞1). We then define, parametric in the language L1 of such
a one-step logic, the notions of an L1-automaton and of a mu-calculus μL1, and we show how
various classes of L1-automata effectively correspond to fragments of μL1.

4.1 One-step Logics and Normal Forms

Definition 4.1. Given a finite set A of monadic predicates, a one-step model is a pair (D,V) con-
sisting of a domain set D and a valuation or interpretation V : A→ ℘D. Where B ⊆ A, we say that
V ′ : A→ ℘D is a B-extension of V : A→ ℘D, notation V ≤B V ′, if V (b) ⊆ V ′(b) for every b ∈ B
and V (a) = V ′(a) for every a ∈ A \ B.

A one-step language is a map assigning to any set A a collection L1 (A) of objects that we will
refer to as one-step formulas overA. We assume that one-step languages come with a truth relation
|= between one-step formulas and models, writing (D,V) |= φ to denote that (D,V) satisfies φ.

Note that we do allow the (unique) one-step model that is based on the empty domain; we will
simply denote this model as (∅,∅).

Our chief examples of one-step languages will be variations of modal and first-order logic.

Definition 4.2. For a set A of monadic predicates, the corresponding basic one-step modal logic
ML1 (A) is the language defined as:

ML1 (A) := {�a,�a | a ∈ A}.
The semantics of these formulas is given by

(D,V) |= �a iff V (a) � ∅

(D,V) |= �a iff V (a) = D.

Definition 4.3. The one-step language FOE1 (A) of first-order logic with equality on a set of pred-
icates A and individual variables iVar is given by the sentences (formulas without free variables)
generated by the following grammar, where a ∈ A and x ,y ∈ iVar.:

φ ::= a(x) | ¬a(x) | x ≈ y | x � y | ∃x .φ | ∀x .φ | φ ∨ φ | φ ∧ φ. (20)

We use FO1 for the equality-free fragment, where we omit the clauses x ≈ y and x � y.

The interpretation of this language in a model (D,V) with D � ∅ is completely standard. For-
mulas of FO1 and FOE1 are interpreted inductively by augmenting the pair (D,V) with a variable
assignment д : iVar → D. The semantics then defines the desired truth relation (D,V),д |= φ be-
tween one-step models, assignments, and one-step formulas. As usual, the variable assignment д
can and will be omitted when we are dealing with sentences—and note that we only take sentences
as one-step formulas. For the interpretation in one-step models with empty domain we refer to
Definition 4.5.

We now introduce an extension of first-order logic with two additional quantifiers, which first
appeared in the context of Mostowski’s study [Mostowski 1957] of generalised quantifiers. The
first, written ∃∞x .φ, expresses that there exist infinitely many elements satisfying a formula φ. Its

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:17

dual, written ∀∞x .φ, expresses that there are at most finitely many elements falsifying the formula
φ. Formally:

(D,V),д |= ∃∞x .φ (x) iff |{s ∈ D | (D,V),д[x �→ s] |= φ (x)}| ≥ ω

(D,V),д |= ∀∞x .φ (x) iff |{s ∈ D | (D,V),д[x �→ s] � |= φ (x)}| < ω .
(21)

Definition 4.4. The one-step language FOE∞1 (A) is defined by adding to the grammar (20)
of FOE1 (A) the cases ∃∞x .φ and ∀∞x .φ. In the case of non-empty models, the truth relation
(D,V),д |= φ is defined by extending the truth relation for FOE1 (A) with the clauses (21).

In the case of models with empty domain, we cannot give an inductive definition of the truth
relation using variable assignments. Nevertheless, a definition of truth can be provided for formu-
las that are Boolean combinations of sentences of the form Qx .φ, where Q ∈ {∃,∃∞,∀,∀∞} is a
quantifier.

Definition 4.5. For the empty one-step model (∅,∅), we define the truth relation as follows: For
every sentence Qx .φ, where Q ∈ {∃,∃∞,∀,∀∞}, we set

(∅,∅) � |= Qx .φ if Q ∈ {∃,∃∞}
(∅,∅) |= Qx .φ if Q ∈ {∀,∀∞},

and we extend this definition to arbitrary FOE∞1 -sentences via the standard clauses for the Boolean
connectives.

For various reasons, it will be convenient to assume that our one-step languages are closed under
taking (Boolean) duals. Here we say that the one-step formulas φ and ψ are Boolean duals if for
every one-step model we have (D,V) |= φ iff (D,V c) � |= ψ , where V c is the complement valuation
given by V c (a) := D \V (a) for all a.

As an example, it is easy to see that for the basic one-step modal logic ML1 the formulas �a and
�a are each other’s dual. In the case of the monadic predicate logics FO1, FOE1, and FOE∞1 we can
define the Boolean dual of a formula φ by a straightforward induction.

Definition 4.6. For L1 ∈ {FO1, FOE1, FOE∞1 }, we define the following operation on formulas:

(a(x))δ := a(x) (¬a(x))δ := ¬a(x)

(�)δ := ⊥ (⊥)δ := �

(x ≈ y)δ := x � y (x � y)δ := x ≈ y

(φ ∧ψ)δ := φδ ∨ψ δ (φ ∨ψ)δ := φδ ∧ψ δ

(∃x .ψ)δ := ∀x .ψ δ (∀x .ψ)δ := ∃x .ψ δ

(∃∞x .ψ)δ := ∀∞x .ψ δ (∀∞x .ψ)δ := ∃∞x .ψ δ .

We leave it for the reader to verify that the operation (·)δ indeed provides a Boolean dual for every
one-step sentence.

The following semantic properties will be essential when studying the parity automata and
μ-calculi associated with one-step languages.

Definition 4.7. Given a one-step language L1 (A), φ ∈ L1 (A), and B ⊆ A,

—φ is monotone in B if for all pairs of one step models (D,V) and (D,V ′) with V ≤B V ′,
(D,V) |= φ implies (D,V ′),д |= φ.

—φ is B-continuous if φ is monotone in B and, whenever (D,V) |= φ, then there exists V ′ :
A→ ℘(D) such that V ′ ≤B V , (D,V ′) |= φ and V ′(b) is finite for all b ∈ B.

—φ is B-cocontinuous if its dual φδ is continuous in B.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:18 F. Carreiro et al.

Example 4.8. Fix a set A of monadic predicates, a subset B ⊆ A and a b ∈ B.

(1) It is easy to see that a formula φ is monotone in B if all predicates from B occur only
positively in φ (i.e., in the scope of an even number of negations). For simple formulas
that are not monotone in b, consider for instance ¬∃xb (x) or ∀x (a(x) ∨ ¬b (x)). However,
the formula∀x (b (x) ∨ ¬b (x)), although it features a negative occurrence ofb, is monotone
in b.

(2) Typical formulas that are continuous inb are∃x b (x) and∃x1∃x2 (x1 � x2 ∧ b (x1) ∧ b (x2)).
For a typical counterexample, take the formula ∀x b (x).

(3) Particularly interesting FOE∞1 -formulas that are continuous in B may be obtained using
the abbreviated quantifier W given by

Wx .(φ,ψ) := ∀x .(φ (x) ∨ψ (x)) ∧ ∀∞x .ψ (x). (22)

In words, Wx .(φ,ψ) states that every element of the domain validates φ (x) or ψ (x), but
only finitely many need to validate φ (x). As a consequence, if φ is continuous in B, and
no b ∈ B occurs inψ , then the formula Wx .(φ,ψ) will be continuous in B. Thus ∀∞ makes
a certain use of the universal quantifier compatible with the notion of continuity.

We recall from Carreiro et al. [2018] syntactic characterisations of these semantic properties,
relative to the monadic predicate logics FO1, FOE1, and FOE∞1 . We first discuss characterisations
of monotonicity and (co)continuity given by grammars.

Definition 4.9. For L1 ∈ {FO1, FOE1, FOE∞1 }, we define the positive fragment of L1 (A), written
L+1 (A), as the set of sentences generated by the grammar we obtain by leaving out the clause
¬a(x) from the grammar for L1.

For B ⊆ A, the B-continuous fragment of FOE1 (A), written ConB (FOE1 (A)), is the set of sentences
generated by the following grammar:

φ ::= b (x) | ψ | φ ∧ φ | φ ∨ φ | ∃x .φ, (23)

for b ∈ B and ψ ∈ FOE+1 (A \ B). When ψ ∈ FO+1 (A \ B), the grammar (23) above generates the B-
continuous fragment ConB (FO1 (A)) of FO1 (A). Finally, the B-continuous fragment of FOE∞1 (A),
written ConB (FOE∞1 (A)), is generated as follows:

φ ::= b (x) | ψ | φ ∧ φ | φ ∨ φ | ∃x .φ | Wx .(φ,ψ), (24)

where b ∈ B,ψ ∈ (FOE∞1)+ (A \ B), and Wx .(φ,ψ) is defined as in Equation (22).
For L1 ∈ {FO1, FOE1, FOE∞1 } and B ⊆ A, the B-cocontinuous fragment of L1 (A), written

CoConB (L1 (A)), is the set {φ | φδ ∈ ConB (L1 (A))}.

Note that we do allow the clause x � y in the positive fragments of FOE1 and FOE∞1 .
The following result provides syntactic characterizations for the mentioned semantics proper-

ties.

Theorem 4.10 ([Carreiro et al. 2018]). For L1 ∈ {FO1, FOE1, FOE∞1 }, letφ ∈ L1 (A) be a one-step
formula. Then

(1) φ ∈ L1 (A) is A-monotone iff it is equivalent to someψ ∈ L+1 (A).
(2) φ ∈ L1 (A) is B-continuous iff it is equivalent to someψ ∈ ConB (L1 (A)).
(3) φ ∈ L1 (A) is B-cocontinuous iff it is equivalent to someψ ∈ CoConB (L1 (A)).

Proof. The first two statements are proved in Carreiro et al. [2018]. The third one can be verified
by a straightforward induction on φ. �

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:19

In some of our later proofs we need more precise information on the shape of formulas belonging
to certain syntactic fragments. For this purpose we introduce normal forms for positive sentences
in FO1, FOE1, and FOE∞1 .

Definition 4.11. A type T is just a subset of A. It defines a FOE1-formula

τ+T (x) :=
∧
a∈T

a(x).

Given a one-step model (D,V), s ∈ D witnesses a type T if (D,V),д[x �→ s] |= τ+T (x) for some (or,
equivalently, each) assignment д. The predicate diff (y), stating that the elements y are distinct, is
defined as diff (y1, . . . ,yn) :=

∧
1≤m<m′ ≤n (ym � ym′).

A formula φ ∈ FO1 (A) is said to be in basic form if it is of the shape φ =
∨∇+FO (Σ,Π), where for

sets Σ,Π ⊆ A of types, the formula ∇+FO (Σ,Π) ∈ FO1 (A) is defined as

∇+FO (Σ,Π) :=
∧
S ∈Σ

∃x τ+S (x) ∧ ∀z.
∨
S ∈Π

τ+S (z).

We say that φ ∈ FOE1 (A) is in basic form if it is a disjunction of formulas of the form ∇+FOE (T,Π),
where each disjunct is of the form

∇+FOE (T,Π) := ∃x. ��diff (x) ∧
∧

i

τ+Ti
(xi) ∧ ∀z.(diff (x, z) →

∨
S ∈Π

τ+S (z))
� ,
such that T = (T1, . . . ,Tk) ∈ ℘(A)k for some k and Π ⊆ {T1, . . . ,Tk }.

Finally, we say that φ ∈ FOE∞1 (A) is in basic form if it is a disjunction of formulas of the form

∇+
FOE∞ (T,Π, Σ), where each disjunct is of the form

∇+FOE∞ (T,Π, Σ) := ∇+FOE (T,Π ∪ Σ) ∧ ∇+∞ (Σ)

∇+∞ (Σ) :=
∧
S ∈Σ

∃∞y.τ+S (y) ∧ ∀∞y.
∨
S ∈Σ

τ+S (y)

for some sets of types Π, Σ ⊆ ℘A and T1, . . . ,Tk ⊆ A.

Intuitively, the basic FO1-formula ∇+FO (Σ,Π) simply states that every type S ∈ Σ is witnessed
in the model and at the same time, every element of the domain witnesses some type in Π.3 The

formula ∇+FOE (T,Π) says that each one-step model satisfying it admits a partition of its domain in
two parts: distinct elements t1, . . . , tn witnessing types T1, . . . ,Tn , and all the remaining elements

witnessing some type S of Π. The formula∇+∞ (Σ) extends the information given by∇+FOE (T,Π ∪ Σ)
by saying that (1) for every type S ∈ Σ, there are infinitely many elements witnessing each S ∈ Σ
and (2) only finitely many elements do not satisfy any type in Σ.

The next theorem states that the basic formulas indeed provide normal forms.

Theorem 4.12 ([Carreiro et al. 2018]). For each L1 ∈ {FO1, FOE1, FOE∞1 } there is an effective
procedure transforming any sentence φ ∈ L+1 (A) into an equivalent sentence φ• in basic L1-form.

One may use these normal forms to provide a tighter syntactic characterisation for the notion
of continuity, in the cases of FO1 and FOE∞1 .

3In fact, it is not hard to show that every formula of the form ∇+FO (Σ, Π) is equivalent to a disjunction of formulas of the

form ∇+FO (Γ, Γ), which are closely related to the disjunctive formulas that feature in the work of Janin and Walukiewicz.

In principle, we could simplify our basic FO1 form further to formulas of the form ∇+FO (Γ, Γ); for the characterisation of

continuity in Theorem 4.13, however, this format is not suitable.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:20 F. Carreiro et al.

Theorem 4.13 ([Carreiro et al. 2018]).

(1) A formula φ ∈ FO1 (A) is continuous in B ⊆ A iff it is equivalent to a formula, effectively
obtainable from φ, in the basic form

∨∇+FO (Σ,Π), where we require that B ∩⋃Π = ∅ for
every Π.

(2) A formula φ ∈ FOE∞1 (A) is continuous in B ⊆ A iff it is equivalent to a formula, effectively

obtainable from φ, in the basic form
∨∇+

FOE∞ (T,Π, Σ), where we require that B ∩⋃ Σ = ∅

for every Σ.

Remark 4.14. We focussed on normal form results for monotone and (co)continuous sentences,
as these are the ones relevant to our study of parity automata. However, generic sentences both
of FO1, FOE1, and FOE∞1 also enjoy normal form results, with the syntactic formats given by vari-
ations of the “basic form” above. The interested reader may find in Carreiro et al. [2018] a detailed
overview of these results.

We finish this section with a disucssion of the notion of separation.

Definition 4.15. Fix a one-step language L1, and two sets A and B with B ⊆ A. Given a one-
step model (D,V), we say thatV : A→ ℘D separates B if |V −1 (d) ∩ B | ≤ 1 for every d ∈ D, where
V −1 (d) = {a ∈ A | d ∈ V (a)}. A formulaφ ∈ L1 (A) is B-separating ifφ is monotone in B and, when-
ever (D,V) |= φ, then there exists a B-separating valuation V ′ : A→ ℘(D) such that V ′ ≤B V and
(D,V ′) |= φ.

Intuitively, a formula φ is B-separating if its truth in a one-step model never requires an element
of the domain to satisfy two distinct predicates in B at the same time.

Example 4.16. Let A be a set of monadic predicates and let B = {b1,b2} ⊆ A.

(1) A typical example of a formula that is notB-separating is∃x b1 ∧ ∀y b2 (y). The point is that
any one-step model satisfying this formula will have at least one element satisfying both
b1 and b2. As another example of a formula that is not B-separating, take φ := ∃x b1 (x) ∧
∃xb2 (x). This formula is in fact easily satisfiable in aB-separating model, but if we consider
a model (D,V) for φ in which there is a element d such thatV (b1) = V (b2) = {d }, then we
cannot shrink V to a B-separating valuation V ′ such that (D,V ′) |= φ.

(2) For an example of a formula that is B-separating, consider the formula ∃x1∃x2 (x1 � x2 ∧
b (x1) ∧ b (x2)). This example is generalised in Proposition 4.17.

We do not need a full syntactic characterisation of this notion, but the following sufficient con-
dition is used later.

Proposition 4.17.

(1) Let φ ∈ FOE+1 (A) be a formula in basic form, φ =
∨∇+FOE (T,Π). Then φ is B-separating if,

for each disjunct, |S ∩ B | ≤ 1 for each S ∈ {T1, . . . ,Tk } ∪ Π.
(2) Letφ ∈ FOE∞1

+ (A) be a formula in basic form,φ =
∨∇+

FOE∞ (T,Π, Σ). Thenφ is B-separating
if, for each disjunct, |S ∩ B | ≤ 1 for each S ∈ {T1, . . . ,Tk } ∪ Π ∪ Σ.

Proof. We only discuss the case L1 = FOE∞1 : a simplification of the same argument yields the
case L1 = FOE1. Aassume that (D,V) |= φ for some model (D,V). We want to construct a valuation

V ′ ≤B V witnessing the B-separation property. First, we fix one disjunct ψ = ∇+
FOE∞ (T,Π, Σ) of φ

such that (D,V) |= ψ . The syntactic shape ofψ implies that (D,V) can be partitioned in three sets
D1,D2, andD3 as follows:D1 contains elements s1, . . . , sk witnessing typesT1, . . . ,Tk , respectively;
among the remaining elements, there are infinitely many witnessing some S ∈ Σ (these form D2)
and finitely many not witnessing any S ∈ Σ but each witnessing some R ∈ Π (these form D3). In
other words, we have assigned to eachd ∈ D a type Sd ∈ {T1, . . . ,Tk } ∪ Π ∪ Σ such thatd witnesses

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:21

Sd . Now consider the valuationU that we obtain by pruningV to the extent thatU (a) := V (a) for
a ∈ A \ B, whileU (b) := {d ∈ D | b ∈ Sd }. It is then easy to see that we still have (D,U) |= ψ , while
it is obvious thatU separates B and thatU ≤B A. Thereforeψ is B-separating and so φ is, too. �

4.2 Parity Automata

Throughout the rest of the section, we fix, next to a set P of proposition letters, a one-step language
L1, as defined in Subsection 4.1. In addition, we assume that we have isolated fragments L+1 (A),
ConB (L1 (A)), and CoConB (L1 (A)) consisting of one-step formulas in L1 (A) that are respectively
monotone, B-continuous, and B-co-continuous for B ⊆ A.

We first recall the definition of a general parity automaton, adapted to this setting.

Definition 4.18 (Parity Automata). A parity automaton based on the one-step language L1 and
the set P of proposition letters, or briefly: An L1-automaton is a tuple A = 〈A,Δ,Ω,aI 〉 such thatA
is a finite set of states, also called the carrier ofA; aI ∈ A is the initial state; Δ : A × ℘(P) → L+1 (A) is
the transition map; and Ω : A→ N is the priority map. The class of such automata will be denoted
by Aut (L1).

Acceptance of a P-transition system S = 〈T ,R,κ, sI 〉 by A is determined by the acceptance game
A (A,S) of A on S. This is the parity game defined according to the rules of the following table.

Position Player Admissible moves Priority
(a, s) ∈ A ×T ∃ {V : A→ ℘(R[s]) | (R[s],V) |= Δ(a,κ (s))} Ω(a)
V : A→ ℘(T) ∀ {(b, t) | t ∈ V (b)} 0

A accepts S if ∃ has a winning strategy in A (A,S)@(aI , sI) and rejects S if (aI , sI) is a winning
position for ∀. We write Mod(A) for the class of transition systems that are accepted by A and
TMod(A) for the class of tree models in Mod(A).

The acceptance game A (A,S) proceeds in rounds, with each round moving from one basic
position (a, s) ∈ A ×T to the next. At such a basic position, it is ∃’s task to turn the set R (s) of
successors of s into the domain of a one-step model for the formula Δ(a,κ (s)) ∈ L1 (A). That is,
she needs to come up with a valuationV : A→ ℘(R[s]) such that (R[s],V) |= Δ(a,κ (s)) (and if she
cannot find such a valuation, she loses immediately). One may think of the set {(b, t) | t ∈ V (b)} as
a collection of witnesses to her claim that, indeed, (R[s],V) |= Δ(a,κ (s)). The round ends with ∀
picking one of these witnesses, which then becomes the basic position at the start of the next round.
(Unless, of course, ∃ managed to satisfy the formula Δ(a,κ (s)) with an empty set of witnesses, in
which case ∀ gets stuck and looses immediately.)

Many properties of parity automata can already be determined at the one-step level. An im-
portant example concerns the notion of complementation, which will be used later in this sec-
tion. Recall the notion of (Boolean) dual of a one-step formula (Definition 4.1). Following ideas
from Muller and Schupp [1987] and Kissig and Venema [2009], we can use duals, together with a
role switch between ∀ and ∃, to define a negation or complementation operation on automata.

Definition 4.19. Assume that, for some one-step language L1, the map (·)δ provides, for each
set A, a Boolean dual φδ ∈ L1 (A) for each φ ∈ L1 (A). We define the complement of a given L1-
automaton A = 〈A,Δ,Ω,aI 〉 as the automaton Aδ := 〈A,Δδ ,Ωδ ,aI 〉, where Δδ (a, c) := (Δ(a, c))δ ,
and Ωδ (a) := 1 + Ω(a) for all a ∈ A and c ∈ ℘(P).

Proposition 4.20. Let L1 and (·)δ be as in the previous definition. For each A ∈ Aut (L1) and S
we have that Aδ accepts S if and only if A rejects S.

The proof of Proposition 4.20 is based on the fact that the power of ∃ in A (Aδ ,S) is the same
as that of ∀ in A (A,S), as defined in Kissig and Venema [2009]. As an immediate consequence,

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:22 F. Carreiro et al.

one may show that if the one-step language L1 is closed under duals, then the class Aut (L1) is
closed under taking complementation. Later we will use Proposition 4.20 to show that the same
may apply to some subclasses of Aut (L1).

The automata-theoretic characterisation of WMSO and NMSO will use classes of parity au-
tomata constrained by two additional properties. To formulate these, we first introduce the notion
of a cluster.

Definition 4.21. Let L1 be a one-step language, and let A = 〈A,Δ,Ω,aI 〉 be in Aut (L1). Write ≺
for the reachability relation in A, i.e., the transitive closure of the “occurrence relation” {(a,b) |
b occurs in Δ(a, c) for some c ∈ ℘(P)}; in case a ≺ b we say that b is active in a. A cluster of A is a
cell of the equivalence relation generated by the relation ≺ ∩ " (i.e., the intersection of ≺ with its
converse). A cluster is called degenerate if it consists of a single element that is not active in itself.

Remark 4.22. Observe that any cluster of an automaton is either degenerate or else each of its
states is active in itself and in any other state of the cluster. Observe, too, that there is a natural
order on clusters: We may say that one cluster is higher than another if each member of the second
cluster if active in each member of the first. We may assume without loss of generality that the
initial state belongs to the highest cluster of the automaton.

We can now formulate the mentioned requirements on L1-automata as follows.

Definition 4.23. Let A = 〈A,Δ,Ω,aI 〉 be some L1-automaton. We say that A is weak if Ω(a) =
Ω(b) whenever a and b belong to the same cluster. For the property of continuity we require
that, for any cluster M , any state a ∈ M and any c ∈ ℘P, we have that Ω(a) = 1 implies Δ(a, c) ∈
ConM (L1 (A)) and Ω(a) = 0 implies Δ(a, c) ∈ CoConM (L1 (A)).

We call a parity automatonA ∈ Aut (L1) weak-continuous if it satisfies both properties, weakness
and continuity. The classes of weak and weak-continuous automata are denoted as Autw (L1) and
Autwc (L1), respectively.

Intuitively, weakness forbids an automaton to register non-trivial properties concerning the
vertical “dimension” of input trees such as “there is a path in which infinitely many nodes satisfy
p,” whereas continuity expresses a constraint on how much of the horizontal “dimension” of an
input tree the automaton is allowed to process. In terms of second-order logic, they correspond
respectively to quantification over “vertically” finite (i.e., included in well-founded subtrees) and
“horizontally” finite (i.e., included in finitely branching subtrees) sets. The conjunction of weakness
and continuity thus corresponds to quantification over finite sets.

Remark 4.24. Any weak parity automaton A is equivalent to a special weak automaton A′ with
Ω : A′ → {0, 1}. This is because (weakness) prevents states of different parity to occur infinitely
often in acceptance games; so we may just replace any even priority with 0 and any odd priority
with 1. We shall assume such a restricted priority map for weak parity automata.

4.3 μ-Calculi

We now see how to associate, with each one-step language L1, the following variant μL1 of the
modal μ-calculus. These logics are of a fairly artificial nature; their main use is to smoothen the
translations from automata to second-order formulas further on.

Definition 4.25. Given a one-step language L1, we define the language μL1 of the μ-calculus over
L1 by use of the following grammar:

φ ::= q | ¬q | φ ∨ φ | φ ∧ φ | ©α (φ1, . . . ,φn) | μp.φ ′ | νp.φ ′,

where p,q ∈ Prop, α (a1, . . . ,an) ∈ L+1 and φ ′ is monotone in p.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:23

As in the case of the modal μ-calculus μML, we will freely use standard syntactic concepts and
notations related to this language.

Observe that the language μL1 generally has a wealth of modalities: one for each one-step for-
mula in L1.

The semantics of this language is given as follows.

Definition 4.26. LetS be a transition system. The satisfaction relation � is defined in the standard
way, with the following clause for the modality ©α :

S � ©α (φ1, . . . ,φn) iff (R[sI],Vφ) |= α (a1, . . . ,an), (25)

where Vφ is the one-step valuation given by

Vφ (ai) := {t ∈ R[sI] | S.t � φi }. (26)

Example 4.27.

(1) If we identify the modalities ©�a and ©�a of the basic modal one-step language ML1

(cf. Definition 4.2) with the standard � and � operators, then we may observe that μ (ML1)
corresponds to the standard modal μ-calculus: μ (ML1) = μML.

(2) Consider the one-step formulas α = ∃x (a1 (x) ∧ ∀y a2 (y)), β = ∃xy (x � y ∧ a1 (x) ∧
a1 (y)), and γ =Wx (a1 (x),a2 (x)). Then ©α (φ1,φ2) is equivalent to the modal formula
�φ1 ∧ �φ2 and ©β (φ) expresses that the current state has at least two successors where φ
holds. The formula ©γ (φ1,φ2) holds at a state s if all its successors satisfyφ1 orφ2, while at
most finitely many successors refute φ2. Neither ©β nor ©γ can be expressed in standard
modal logic.

(3) If the one-step language L1 is closed under taking disjunctions (conjunctions, respec-
tively), then it is easy to see that ©α∨β (φ) ≡ ©α (φ) ∨ ©β (φ) (©α∧β (φ) ≡ ©α (φ) ∧ ©β (φ),
respectively).

Alternatively but equivalently, one may interpret the language game-theoretically.

Definition 4.28. Given a μL1-formula φ and a model S, we define the evaluation game E (φ,S) as
the two-player infinite game whose rules are given in the next table.

Position Player Admissible moves
(q, s), with q ∈ FV (φ) ∩ κ (s) ∀ ∅
(q, s), with q ∈ FV (φ) \ κ (s) ∃ ∅
(¬q, s), with q ∈ FV (φ) ∩ κ (s) ∃ ∅
(¬q, s), with q ∈ FV (φ) \ κ (s) ∀ ∅
(ψ1 ∨ψ2, s) ∃ {(ψ1, s), (ψ2, s)}
(ψ1 ∧ψ2, s) ∀ {(ψ1, s), (ψ2, s)}
(©α (φ1, . . . ,φn), s) ∃ {Z ⊆ {φ1, . . . ,φn } × R[s] | (R[s],V ∗

Z) |= α (a)}
Z ⊆ Sfor (φ) × S ∀ {(ψ , s) | (ψ , s) ∈ Z }
(μp.φ, s) − {(φ, s)}
(νp.φ, s) − {(φ, s)}
(p, s), with p ∈ BV (φ) − {(δp , s)}

For the admissible moves at a position of the form (©α (φ1, . . . ,φn), s), we consider the valuation
V ∗

Z : {a1, . . . ,an } → ℘(R[s]), given byV ∗
Z (ai) := {t ∈ R[s] | (φi , t) ∈ Z }. The winning conditions of

E (φ,S) are standard: ∃ wins those infinite matches of which the highest variable that is unfolded
infinitely often during the match is a μ-variable.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:24 F. Carreiro et al.

The following proposition, stating the adequacy of the evaluation game for the semantics of
μL1, is formulated explicitly for future reference. We omit the proof, which is completely routine.

Fact 4.29 (Adeqacy). For any formulaφ ∈ μL1 and any modelS the following equivalence holds:

S � φ iff (φ, sI) is a winning position for ∃ in E (φ,S).

We will be specifically interested in two fragments of μL1, associated with the properties of being
noetherian and continuous, respectively, and with the associated variants of the μ-calculus μL1

where the use of the fixpoint operator μ is restricted to formulas belonging to these two respective
fragments.

Definition 4.30. Let Q be a set of proposition letters. We first define the fragment NoeQ (μL1) of
μL1 of formulas that are syntactically noetherian in Q by the following grammar:

φ ::= q | ψ | φ ∨ φ | φ ∧ φ | ©α (φ1, . . . ,φn) | μp.φ ′,
where q ∈ Q , ψ is a Q-free μML-formula, α (a1, . . . ,an) ∈ L+1 and φ ′ ∈ NoeQ∪{p } (μL1). The co-
noetherian fragment CoNoeQ (μL1) is defined dually.

Similarly, we define the fragment ConQ (μL1) of μL1-formulas that are syntactically continuous
in Q as follows:

φ ::= q | ψ | φ ∨ φ | φ ∧ φ | ©α (φ1, . . . ,φk ,ψ1, . . . ,ψm) | μp.φ ′,

where p ∈ Prop, q ∈ Q , ψ , ψi are Q-free μL1-formula, α (a1, . . . ,ak ,b1, . . . ,bm) ∈ Cona (L1) (a,b),
and φ ′ ∈ ConQ∪{p } (μL1). The co-continuous fragment CoConQ (μL1) is defined dually.

Based on this, we can now define the mentioned variants of the μ-calculus μL1, where the use of
the least (greatest) fixpoint operator can only be applied to formulas that belong to, respectively,
the noetherian (co-noetherian) and continuous (co-continuous) fragment of the language that we
are defining.

Definition 4.31. The formulas of the alternation-free μ-calculus μNL1 are defined by the following
grammar:

φ ::= q | ¬q | φ ∨ φ | φ ∧ φ | ©α (φ1, . . . ,φn) | μp.φ ′ | νp.φ ′′,
where α (a1, . . . ,an) ∈ L+1 , φ ′ ∈ μNL1 ∩ Noep (μL1), and dually φ ′′ ∈ μNL1 ∩ CoNoep (μL1).

Similarly, the formulas of the continuous μ-calculus μCL1 are given by the grammar

φ ::= q | ¬q | φ ∨ φ | φ ∧ φ | ©α (φ1, . . . ,φn) | μp.φ ′ | νp.φ ′′,
where α (a1, . . . ,an) ∈ L+1 , φ ′ ∈ μCL1 ∩ Conp (μL1), and dually φ ′′ ∈ μCL1 ∩ CoConp (μL1).

Example 4.32. Following up on Example 4.27, it is easy to verify that μN ML1 = μN ML and
μC ML1 = μC ML.

4.4 From Automata to Fixpoint Formulas and Back

In the context of modal fixpoint logics and automata operating on (possibly) infinite objects, it is
well known that there are effective translations from parity automata to fixpoint formulas and vice
versa [Grädel et al. 2002]. The results that we need in this article are the following.

Theorem 4.33. There is an effective procedure that, given an automaton A in Aut (L1), returns a
formula ξA ∈ μL1, which satisfies the following properties:

(1) ξA is equivalent to A;
(2) ξA ∈ μNL1 if A ∈ Autw (L1);
(3) ξA ∈ μCL1 if A ∈ Autwc (L1).

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:25

Theorem 4.34. Let L1 be a on-step language that is closed under taking conjunctions and disjunc-
tions. Then there is an effective procedure that, given a formula ξ ∈ μL1, returns an automaton Aξ in
Aut (L1), which satisfies the following properties:

(1) Aξ is equivalent to ξ ;
(2) Aξ ∈ Autw (L1) if ξ ∈ μNL1;
(3) Aξ ∈ Autwc (L1) if ξ ∈ μCL1.

For both theorems, the first item can be proved by standard methods. To prove the second and
third items, some care is needed to ensure that the translation obtained in the proof of the first
item lands in the right fragment of the language and, respectively, produces an automaton of the
right kind. In both cases, these proofs are not entirely trivial, but they are fairly straightforward
and space-consuming. For this reason, we refer the interested reader to the technical report for
the details.

5 AUTOMATA FOR WMSO

In this section, we start looking at the automata-theoretic characterisation of WMSO. That is,
we introduce the following automata, corresponding to this version of monadic second-order
logic; these WMSO-automata are the continuous-weak automata for the one-step language FOE∞1 ,
cf. Definition 4.23.

Definition 5.1. A WMSO-automaton is an automaton in the class Autwc (FOE∞1).

Recall that our definition of continuous-weak automata is syntactic in nature, i.e., if A =
〈A,Δ,Ω,aI 〉 is a WMSO-automaton, then for any pair of states a,b with a ≺ b and b ≺ a, and
any c ∈ C , we have Δ(a, c) ∈ Conb (FOE∞1 (A)+) if Ω(a) is odd and Δ(a, c) ∈ CoConb (FOE∞1 (A)+) if
Ω(a) is even.

The main result of this section states one direction of the automata-theoretic characterisation
of WMSO.

Theorem 5.2. There is an effective construction transforming a WMSO-formula φ into a WMSO-
automaton Aφ that is equivalent to φ on the class of trees.

The proof of Theorem 5.2, provided at the end of this section, proceeds by induction on the
complexity of φ. The case φ = ∃p.ψ requires most of the work. First, we need to define a closure
operation on classes of tree models corresponding to the semantics of WMSO quantification.

Definition 5.3. Fix a set P of proposition letters, a proposition letter p � P , and a language C of
P ∪ {p}-labeled trees. The finitary projection of C over p is the language of P-labeled trees defined
as

∃Fp.C := {T | there is a finite p-variant T ′ of T with T ′ ∈ C}.

A collection of classes of tree models is closed under finitary projection over p if it contains the class
∃Fp.C whenever it contains the class C itself.

The case φ = ∃p.ψ of the proof of Theorem 5.2 will require a projection construction that, given
a WMSO-automaton A, provides one recognising ∃Fp.TMod(A). In other words, this will prove
that the collection of classes that are recognisable by WMSO-automata is closed under finitary
projection. The next subsection is devoted to a preliminary result, allowing us to put WMSO-
automata in a suitable shape for the projection construction.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:26 F. Carreiro et al.

5.1 Simulation Theorem for WMSO-automata

For SMSO-automata, the analogous projection construction (mimicking SMSO quantification) cru-
cially uses the following simulation theorem: Every SMSO-automaton A is equivalent to a non-
deterministic automatonA′ [Walukiewicz 1996]. Semantically, non-determinism yields the appeal-
ing property that every node of the input modelT is associated with at most one state ofA′ during
the acceptance game, which means that we may assume ∃’s strategy f in A (A′,T) to be func-
tional (cf. Definition 5.9 below). This is particularly helpful in case we want to define a p-variant of
T that is accepted by the projection construct on A′: Our decision whether to label a node s with
p will crucially depend on the value f (a, s), where a is the unique state of A′ that is associated
with s . Now, in the case of WMSO-automata, we are interested in guessing finitary p-variants,
which requires f to be functional only on a finite set of nodes. Thus, the idea of our simulation
theorem is to turn a WMSO-automaton A into an equivalent device AF that consists of an initial,
non-deterministic part, together with a final part that is a copy of the (generally alternating) au-
tomaton A itself; by tweaking the transition and priority function, we can then make sure that AF

behaves non-deterministically on a finite part of any accepted tree.
For SMSO-automata, the simulation theorem is based on a powerset construction: If the starting

automaton has set of statesA, then the resulting non-deterministic automaton is based on “macro-
states” from the set ℘A. Analogously, for WMSO-automata, we will associate the non-deterministic
behaviour with macro-states. However, as explained above, the automaton AF that we construct
has to be non-deterministic just on finitely many nodes of the input and may behave as A (i.e., in
“alternating mode”) on the others. To this aim, AF will be “two-sorted,” roughly consisting of a
copy of A (with set of statesA) together with a variant of its powerset construction, based both on
A and ℘A. For any accepted T , the idea is to make any match π of A (AF ,T) consist of two parts:

(Non-deterministic mode). For finitely many rounds π is played on macro-states, i.e., positions
belong to the set ℘A ×T . In her strategy, player ∃ assigns macro-states (from ℘A) only to
finitely many nodes and states (from A) to the rest. Also, her strategy is functional in ℘A,
i.e., it assigns at most one macro-state to each node.

(Alternating mode). At a certain round, π abandons macro-states and turns into a match of the
game A (A,T), i.e., all subsequent positions are from A ×T (and are played according to
a not necessarily functional strategy).

Therefore, successful runs of AN will have the property of processing only a finite amount of the
input with AN being in a macro-state and all the rest with AN behaving exactly as A. We now
proceed in steps toward the construction of AN . First, recall from Definition 4.11 that an A-type
is just a subset of A. We now define a notion of liftings for sets of types, which is instrumental in
translating the transition function from states on macro-states.

Definition 5.4. The lifting of a type S ∈ ℘A is defined as the following ℘A-type:

S⇑ :=

{
{S } if S � ∅

∅ if S = ∅.

This definition is extended to sets of A-types by putting Σ⇑ := {S⇑ | S ∈ Σ}.

The distinction between empty and non-empty elements of Σ is to ensure that the empty type on
A is lifted to the empty type on ℘A. Notice that the resulting set Σ⇑ is either empty or contains
exactly one ℘A-type. This property is important for functionality, see below.

Next we define a translation on the sentences associated with the transition function of the orig-
inal WMSO-automaton. Following the intuition given above, we want to work with sentences that

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:27

can be made true by assigning macro-states (from ℘A) to finitely many nodes in the model and or-
dinary states (fromA) to all the other nodes. Moreover, each node should be associated with at most
one macro-state because of functionality. These desiderata are expressed for one-step formulas as
℘A-continuity and ℘A-separability, see the Definitions 4.7 and 4.15. For the language FOE∞1 , Theo-
rem 4.12 and Proposition 4.17 guarantee these properties when formulas are in a certain syntactic
shape. The next definition will provide formulas that conform to this particular shape.

Definition 5.5. Let φ ∈ FOE∞1
+ (A) be a formula of shape ∇+

FOE∞ (T,Π, Σ) for some Π, Σ ⊆ ℘A
and T = {T1, . . . ,Tk } ⊆ ℘A. We defineφF ∈ FOE∞1

+ (A ∪ ℘A) as the formula∇+
FOE∞ (T

⇑
,Π⇑ ∪ Σ⇑, Σ),

which means

φF := ∃x.
��
�diff (x) ∧

∧
0≤i≤n

τ+
T
⇑
i

(xi) ∧ ∀z.(diff (x, z) →
∨

S ∈Π⇑∪Σ⇑∪Σ

τ+S (z))
��
∧
∧
P ∈Σ

∃∞y.τ+P (y) ∧ ∀∞y.
∨
P ∈Σ

τ+P (y).

(27)

We combine the previous definitions to form the transition function for macro-states.

Definition 5.6. Let A = 〈A,Δ,Ω,aI 〉 be a WMSO-automaton. Fix c ∈ C and Q ∈ ℘A. By Theo-
rem 4.12 for some Π, Σ ⊆ ℘A and Ti ⊆ A, there is a sentence ΨQ,c ∈ FOE∞1

+ (A) in the basic form∨∇+
FOE∞ (T,Π, Σ) such that

∧
a∈Q Δ(a, c) ≡ ΨQ,c . By definition ΨQ,c is of the form

∨
i φi , with

each φi of shape ∇+
FOE∞ (T,Π, Σ). We put Δ� (Q, c) :=

∨
i φ

F

i , where the translation (−)F is given as

in Definition 5.5. Observe that Δ� (Q, c) is of type FOE∞1
+ (A ∪ ℘A).

We have now all the ingredients to define our two-sorted automaton.

Definition 5.7. LetA = 〈A,Δ,Ω,aI 〉 be a WMSO-automaton. We define the finitary construct over
A as the automaton AF = 〈AF ,ΔF ,ΩF ,aF

I 〉 given by

AF := A ∪ ℘A
aF

I := {aI }
ΩF (a) := Ω(a)
ΩF (R) := 1

ΔF (a, c) := Δ(a, c)

ΔF (Q, c) := Δ� (Q, c) ∨∧a∈QΔ(a, c).

Remark 5.8. In the standard powerset construction of non-deterministic parity automata
(Walukiewicz [2002], see also Venema [2012] and Arnold and Niwiński [2001]), macro-states are
required to be relations rather than sets to determine whether a run through macro-states is ac-
cepting. This is not needed in our construction: Macro-states will never be visited infinitely often
in accepting runs, and thus they may simply be assigned the priority 1.

The idea behind this definition is that AF is enforced to process only a finite portion of any ac-
cepted tree while in the non-deterministic mode. This is encoded in game-theoretic terms through
the notion of functional and finitary strategy.

Definition 5.9. Given a WMSO-automaton A = 〈A,Δ,Ω,aI 〉 and transition system T , a strategy
f for ∃ in A (A,T) is functional in B ⊆ A (or simply functional, if B = A) if for each node s in T
there is at most one b ∈ B such that (b, s) is a reachable position in an f -guided match. Also f is
finitary in B if there are only finitely many nodes s in T for which a position (b, s) with b ∈ B is
reachable in an f -guided match.

The next proposition establishes the desired properties of the finitary construct.

Theorem 5.10 (Simulation Theorem for WMSO-automata). Let A be a WMSO-automaton
and AF its finitary construct.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:28 F. Carreiro et al.

(1) AF is a WMSO-automaton.
(2) For any tree model T , if (aF

I , sI) is a winning position for ∃ in A (AF ,T) , then she has a
winning strategy that is both functional and finitary in ℘A.

(3) A ≡ AF .

Proof.

(1) Observe that any cluster of AF involves states of exactly one sort, either A or ℘A. For
clusters on sortA, weakness and continuity of AF follow by the same properties of A. For
clusters on sort ℘A, weakness follows by observing that all macro-states in AF have the
same priority. Concerning continuity, by definition of ΔF any macro-state can only appear

inside a formula of the formφF = ∇+
FOE∞ (T

⇑
,Π⇑ ∪ Σ⇑, Σ) as in Equation (27). Because ℘A ∩⋃

Σ = ∅, by Theorem 4.13 φF is continuous in each Q ∈ ℘A.
(2) Let f be a (positional) winning strategy for ∃ in A (AF ,T)@(aF

I , sI). We define a strategy
f ′ for ∃ in the same game as follows:
(a) On basic positions of the form (a, s) ∈ A ×T , let V : A→ ℘R[s] be the valuation sug-

gested by f . We let the valuation suggested by f ′ be the restriction V ′ of V to A. Ob-
serve that, as no predicate from AF \A = ℘A occurs in ΔF (a,κ (s)) = Δ(a,κ (s)), then
V ′ also makes that sentence true in R[s].

(b) For winning positions of the form (R, s) ∈ ℘A ×T , letVR,s : (℘A ∪A) → ℘R[s] be the
valuation suggested by f . As f is winning, ΔF (R,κ (s)) is true in the modelVR,s . If this
is because the disjunct

∧
a∈R Δ(a,κ (s)) is made true, then we can let f ′ suggest the

restriction to A of VR,s , for the same reason as in (a).

Otherwise, the disjunct Δ� (R,κ (s)) =
∨

i φ
F

i is made true. This means that for
some i , (R[s],VR,s) |= φF

i . Now, by construction of φF

i as in Equation (27), we have
℘A ∩⋃ Σ = ∅. By Theorem 4.13, this implies that φF

i is continuous in ℘A. Thus we
have a restriction V ′

R,s of VR,s that verifies φF

i and assigns only finitely many nodes

to predicates from ℘A. Moreover, by construction of φF

i , for each S ∈ {T ⇑1 , . . . ,T
⇑
k
} ∈

Π⇑ ∪ Σ⇑, S contains at most one element from ℘A. Thus, by Proposition 4.17, φF

i is
℘A-separable. But then we may find a separating valuation V ′′

R,s ≤℘A V ′′
R,s such that

V ′′
R,s verifies φF

i . Separation means that V ′′
R,s associates with each node at most one

predicate from ℘A, and the fact thatV ′′
R,s ≤℘A V ′′

R,s , combined with the ℘A-continuity

of V ′
R,s ensures ℘A-continuity of V ′′

R,s . In this case, we let f ′ suggest V ′′
R,s at position

(R, s).
The strategy f ′ defined as above is immediately seen to be surviving for ∃. It is also

winning, since at every basic winning position for ∃, the set of possible next basic posi-
tions offered by f ′ is a subset of those offered by f . By this observation, it also follows
that any f ′-guided match visits basic positions of the form (R, s) ∈ ℘A ×C only finitely
many times, as those have odd parity. By definition, the valuation suggested by f ′ only
assigns finitely many nodes to predicates in ℘A from positions of that shape, and no nodes
from other positions. It follows that f ′ is finitary in ℘A. Functionality in ℘A also follows
immediately by definition of f ′.

(3) For the direction from left to right, it is immediate by definition of AF that a winning
strategy for ∃ in G = A (A,T)@(aI , sI) is also winning for ∃ in GF = A (AF ,T)@(aF

I , sI).

For the direction from right to left, let f be a winning strategy for ∃ in GF . The idea is
to define a strategy f ′ for ∃ in stages, while playing a match π ′ in G. In parallel to π ′, a
shadow match π in GF is maintained, where ∃ plays according to the strategy f . For each
round zi , we want to keep the following relation between the two matches:

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:29

Either
(1) positions of the form (Q, s) ∈ ℘A ×T and (a, s) ∈ A ×T occur respectively in π

and π ′, with a ∈ Q ,
or
(2) the same position of the form (a, s) ∈ A ×T occurs in both matches.

(‡)

The key observation is that, because f is winning, a basic position of the form (Q, s) ∈
℘A ×T can occur only for finitely many initial rounds z0, . . . , zn that are played in π ,
whereas for all successive rounds zn , zn+1, . . . only basic positions of the form (a, s) ∈
A ×T are encountered. Indeed, if this was not the case, then either ∃ would get stuck or
the highest priority occurring infinitely often would be odd, since states from ℘A all have
priority 1.

It follows that enforcing a relation between the two matches as in (‡) suffices to prove
that the defined strategy f ′ is winning for ∃ in π ′. For this purpose, first observe that
(‡).1 holds at the initial round, where the positions visited in π ′ and π are, respectively,
(aI , sI) ∈ A ×T and ({aI }, sI) ∈ AF ×T . Inductively, consider any round zi that is played
in π ′ and π , respectively, with basic positions (a, s) ∈ A ×T and (q, s) ∈ AF ×T . To define
the suggestion of f ′ in π ′, we distinguish two cases.
—First suppose that (q, s) is of the form (Q, s) ∈ ℘A ×T . By (‡) we can assume that a

is in Q . Let VQ,s : AF → ℘(R[s]) be the valuation suggested by f , verifying the sen-
tence ΔF (Q,κ (s)). We distinguish two further cases, depending on which disjunct of
ΔF (Q,κ (s)) is made true by VQ,s .
(i) If (R[s],VQ,s) |= ∧b ∈Q Δ(b,κ (s)), then we let ∃ pick the restriction to A of the val-

uation VQ,s .

(ii) If (R[s],VQ,s) |= Δ� (Q,κ (s)), then we let ∃ pick a valuationVa,s : A→ ℘(R[s]) de-
fined by putting, for each b ∈ A:

Va,s (b) :=
⋃

b ∈Q ′

{t ∈ R[s] | t ∈ VQ,s (Q ′)} ∪ {t ∈ R[s] | t ∈ VQ,s (b)}.

It can be readily checked that the suggested move is legitimate for ∃ in π , i.e., it makes
Δ(a,κ (s)) true in R[s].

For case (ii), observe that the nodes assigned to b by VQ,s have to be assigned to b
also byVa,s , as they may be necessary to fulfill the condition, expressed with ∃∞ and ∀∞
in Δ� , that infinitely many nodes witness (or that finitely many nodes do not witness)
some type.

We now show that (‡) holds at round zi+1. If (i) is the case, then any next position
(b, t) ∈ A ×T picked by player ∀ in π ′ is also available for ∀ in π , and we end up in
case (‡.2). Suppose instead that (ii) is the case. Given a move (b, t) ∈ A ×T by ∀, by
definition of Va,s there are two possibilities. First, (b, t) is also an available choice for
∀ in π , and we end up in case (‡.2) as before. Otherwise, there is some Q ′ ∈ ℘A such
that b is in Q ′ and ∀ can choose (Q ′, t) in the shadow match π . By letting π advance at
round zi+1 with such a move, we are able to maintain (‡.1) also in zi+1.

—In the remaining case, inductively we are given the same basic position (a, s) ∈ A ×T
both in π and in π ′. The valuationV suggested by f in π verifies ΔF (a,κ (s)) = Δ(a,κ (s)),
and thus we can let the restriction of V to A be the valuation chosen by ∃ in the match
π ′. It is immediate that any next move of ∀ in π ′ can be mirrored by the same move in

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:30 F. Carreiro et al.

π , meaning that we are able to maintain the same position—whence the relation (‡.1)—
also in the next round.

In both cases, the suggestion of strategy f ′ was a legitimate move for ∃ maintaining the
relation (‡) between the two matches for any next round zi+1. It follows that f ′ is a win-
ning strategy for ∃ in G. �

5.2 From Formulas to Automata

In this subsection, we conclude the proof of Theorem 5.2. We first focus on the case of projection
with respect to finite sets, which exploits our simulation result, Theorem 5.10. The next definition
yields a projection construction for WMSO-automata.

Definition 5.11. Let A = 〈A,Δ,Ω,aI 〉 be a WMSO-automaton on alphabet ℘(P ∪ {p}), and AF =

〈AF ,ΔF ,ΩF ,aF

I 〉 the finitary construct over A, as given in Definition 5.7. Recall that AF = A ∪ ℘A.

We define the automaton ∃p.A = 〈AF ,Δ∃,Ω,aI 〉 on alphabet ℘P by putting, for each a ∈ A and
Q ∈ ℘A,

Δ∃ (a, c) := ΔF (a, c) Δ∃ (Q, c) := ΔF (Q, c) ∨ ΔF (Q, c ∪ {p}).
The automaton ∃p.A is called the finitary projection construct of A over p.

Lemma 5.12. Let A be a WMSO-automaton on alphabet ℘(P ∪ {p}). Then A is a WMSO-
automaton on alphabet ℘P satisfying

TMod(∃p.A) ≡ ∃Fp.TMod(A).

Proof. By definition, we need to show that for any tree T = 〈T ,R,κ : P → ℘T , sI 〉:
∃p.A accepts T iff there is a finite p -variant T ′of T such that A accepts T ′.

For the direction from left to right, by the equivalence between A and AF it suffices to show
that if ∃p.A accepts T then there is a finite p-variant T ′ of T such that AF accepts T ′. First,
we first observe that the properties stated by Theorem 5.10, which hold for AF by assumption, by
construction hold for ∃p.A as well. Thus we can assume that the given winning strategy f for ∃ in
G∃ = A (∃Fp.AF ,T)@(aF

I , sI) is functional and finitary in ℘A. Functionality allows us to associate
with each node s either none or a unique state Qs ∈ ℘A such that (Qs , s) is winning for ∃. We
now want to isolate the nodes that f treats “as if they were labeled with p.” For this purpose, let
Vs be the valuation suggested by f from a position (Qs , s) ∈ ℘A ×T . As f is winning, Vs makes
Δ∃ (Q,κ (s)) true in R[s]. We define a p-variant T ′ = 〈T ,R,κ ′ : P ∪ {p} → ℘T , sI 〉 of T by defining
κ ′ := κ[p �→ Xp], that is, by colouring with p all nodes in the following set:

Xp := {s ∈ T | (R[s],Vs) |= ΔF (Qs ,κ (s) ∪ {p})}. (28)

The fact that f is finitary in ℘A guarantees that Xp is finite, whence T ′ is a finite p-variant. It re-
mains to show thatAF acceptsT ′: We claim that f itself is winning for ∃ in G = (AF ,T ′)@(aI , sI).
To see that, let us construct in stages an f -guided match π of G and an f -guided shadow match
π̃ of G∃. The inductive hypothesis we want to bring from one round to the next is that the same
basic position occurs in both matches, as this suffices to prove that f is winning for ∃ in G.

First, we consider the case of a basic position (Q, s) ∈ AF ×T , where Q ∈ ℘A. By assumption f
provides a valuation Vs that makes Δ∃ (Q,κ (s)) true in R[s]. Thus, Vs verifies either ΔF (Q,κ (s))
or ΔF (Q,κ (s) ∪ {p}). Now, the match π F is played on the p-variant T ′, where the labeling κ ′(s) is
decided by the membership of s to Xp . According to Equation (28), ifVs verifies ΔF (Q,κ (s) ∪ {p}),
then s is in Xp , meaning that it is labeled with p in T ′, i.e., κ ′(s) = κ (s) ∪ {p}. Therefore Vs also
verifies ΔF (Q,κ ′(s)) and it is a legitimate move for ∃ in match π F . In the remaining case,Vs verifies
ΔF (Q,κ (s)) but falsifies ΔF (Q,κ (s) ∪ {p}), implying by definition that s is not in Xp . This means

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:31

that s is not labeled with p in T ′, i.e., κ ′(s) = κ (s). Thus again Vs verifies ΔF (Q,κ ′(s)) and it is a
legitimate move for ∃ in match π F .

It remains to consider the case of a basic position (a, s) ∈ AF ×T with a ∈ A a state. By definition
Δ∃ (a,κ (s)) is just ΔF (a,κ (s)). As (a, s) is winning, we can assume that no position (Q, s) with Q
a macro-state is winning according to the same f , as making Δ∃-sentences true never forces ∃ to
mark a node both with a state and a macro-state. Therefore, s is not in Xp either, meaning that
it it is not labeled with p in the p-variant T ′ and thus κ ′(s) = κ (s). This implies that f makes
ΔF (a,κ ′(s)) = ΔF (a,κ (s)) true in R[s] and its suggestion is a legitimate move for ∃ in match π F . To
conclude the proof, observe that for all positions that we consider the same valuation is suggested
to ∃ in both games: This means that any next position that is picked by player ∀ in π F is also
available for ∀ in the shadow match π̃ .

We now show the direction right to left of the statement. Let T ′ be a finite p-variant of T ,
with labeling function κ ′, and д a winning strategy for ∃ in G = A (A,T ′)@(aI , sI). Our goal is to
define a strategy д′ for ∃ in G∃. д′ will be constructed in stages, while playing a match π ′ in G∃.
In parallel to π ′, a bundle B of д-guided shadow matches in G is maintained, with the following
condition enforced for each round zi :

(1) If the current basic position in π ′ is of the form (Q, s) ∈ ℘A ×T , then for each a ∈ Q
there is an д-guided (partial) shadow match πa at basic position (a, s) ∈ A ×T in the
current bundle Bi . Also, either T ′

s is not p-free (i.e., it does contain a node s ′ with
p ∈ κ ′(s ′)) or s has some sibling t such that T ′

t is not p-free.
(2) Otherwise, the current basic position in π ′ is of the form (a, s) ∈ A ×T and T ′

s is p-
free. Also, the bundle Bi only consists of a single д-guided match πa whose current
basic position is also (a, s).

(‡)

We recall the idea behind (‡). Point (‡.1) describes the part of match π ′ where it is still possible
to encounter nodes that are labeled with p in T ′. As Δ∃ only takes the letter p into account when
defined on macro-states in ℘A, we want π ′ to visit only positions of the form (Q, s) ∈ ℘A ×T in
that situation. Anytime we visit such a position (Q, s) in π ′, the role of the bundle is to provide
one д-guided shadow match at position (a, s) for each a ∈ Q . Then д′ is defined in terms of what
д suggests from those positions.

Point (‡.2) describes how we want the match π ′ to be played on a p-free subtree: As any node
that one might encounter has the same label inT andT ′, it is safe to let∃Fp.AF behave asA in such
situation. Provided that the two matches visit the same basic positions, of the form (a, s) ∈ A ×T ,
we can let д′ just copy д.

The key observation is that, as T ′ is a finite p-variant of T , nodes labeled with p are reachable
only for finitely many rounds of π ′. This means that, provided that (‡) hold at each round, (‡.1)
will describe an initial segment of π ′, whereas (‡.2) will describe the remaining part. Thus our
proof that д′ is a winning strategy for ∃ in G∃ is concluded by showing that (‡) holds for each
stage of construction of π ′ and B.

For this purpose, we initialize π ′ from position (a�
I
, s) ∈ ℘A ×T and the bundle B as B0 = {πaI

},
with πaI

the partial д-guided match consisting only of the position (aI , s) ∈ A ×T . The situation
described by (‡.1) holds at the initial stage of the construction. Inductively, suppose that at round
zi we are given a position (q, s) ∈ AF ×T in π F and a bundle Bi as in (‡). To show that (‡) can be
maintained at round zi+1, we distinguish two cases, corresponding, respectively, to situation (‡.1)
and (‡.2) holding at round zi .

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:32 F. Carreiro et al.

(A) If (q, s) is of the form (Q, s) ∈ ℘A ×T , then by inductive hypothesis we are given д-guided
shadow matches {πa }a∈Q in Bi . For each match πa in the bundle, we are provided with
a valuation Va,s : A→ ℘(R[s]) making Δ(a,κ ′(s)) true. Then we further distinguish the
following two cases.
(i) Suppose first that T ′

s is not p-free. We let the suggestionV ′ : AF → ℘(R[s]) of д′ from
position (Q, s) be defined as follows:

V ′(q′) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⋂
b ∈q′,
a∈Q

{t ∈ R[s] | t ∈ Va,s (b)} q′ ∈ ℘A

⋃
a∈Q

{t ∈ R[s] | t ∈ Va,s (q′) and T ′.t is p-free} q′ ∈ A
.

The definition of V ′ on q′ ∈ ℘A is standard (cf. Zanasi [2012, Prop. 2.21]) and guar-
antees a correspondence between the states assigned by the valuations {Va,s }a∈Q and
the macro-states assigned by V ′. The definition of V ′ on q′ ∈ A aims at fulfilling the
conditions, expressed via ∃∞ and ∀∞, on the number of nodes in R[s] witnessing (or

not) some A-types. Those conditions are the ones that Δ� (Q,κ ′(s))—and thus also

ΔF (Q,κ ′(s))—“inherits” by
∧

a∈R Δ(a,κ ′(s)), by definition of Δ� . Notice that we re-
strict V ′(q′) to the nodes t ∈ Va,s (q′) such that T ′.t is p-free. As T ′ is a finite p-
variant, only finitely many nodes in Va,s (q′) will not have this property. Therefore
their exclusion, which is crucial for maintaining condition (‡) (cf. case (a) below),
does not influence the fulfilling of the cardinality conditions expressed via ∃∞ and

∀∞ in Δ� (Q,κ ′(s)).
On the base of these observations, one can check that V ′ makes Δ� (Q,κ ′(s))—

and thus also ΔF (Q,κ ′(s))—true in R[s]. In fact, to be a legitimate move for ∃ in
π ′, V ′ should make Δ∃ (Q,κ (s)) true: This is the case for ΔF (Q,κ ′(s)) is either equal
to ΔF (Q,κ (s)), if p � κ ′(s), or to ΔF (Q,κ (s) ∪ {p}) otherwise. To check that, we can
maintain (‡) and let (q′, t) ∈ AF ×T be any next position picked by ∀ in π ′ at round
zi+1. As before, we distinguish two cases:
(a) If q′ is in A, then, by definition of V ′, ∀ can choose (q′, t) in some shadow match

πa in the bundle Bi . We dismiss the bundle—i.e., make it a singleton—and bring
only πa to the next round in the same position (q′, t). Observe that, by definition
of V ′, T ′.t is p-free and thus (‡.2) holds at round zi+1.

(b) Otherwise, q′ is in ℘A. The new bundle Bi+1 is given in terms of the bundle Bi :
For each πa ∈ Bi with a ∈ Q , we determine for some b ∈ q′ the position (b, t) is
a legitimate move for ∀ at round zi+1; if so, then we bring πa to round zi+1 at
position (b, t) and put the resulting (partial) shadow match πb in Bi+1. Observe
that if ∀ is able to pick such position (q′, t) in π ′, then by definition ofV ′ the new
bundle Bi+1 is non-empty and consists of a д-guided (partial) shadow match πb

for each b ∈ q′. In this way, we are able to keep condition (‡.1) at round zi+1.
(ii) Let us now consider the case in which T ′

s is p-free. We let д′ suggest the valuation
V ′ that assigns to each node t ∈ R[s] all states in

⋃
a∈Q {b ∈ A | t ∈ Va,s (b)}. It can

be checked thatV ′ makes
∧

a∈Q Δ(a,κ ′(s))—and then also ΔF (Q,κ ′(s))—true in R[s].

As p � κ (s) = κ ′(s), it follows that V ′ also makes Δ∃ (Q,κ (s)) true, whence it is a le-
gitimate choice for ∃ in π ′. Any next basic position picked by ∀ in π ′ is of the form
(b, t) ∈ A ×T , and thus condition (‡.2) holds at round zi+1 as shown in (i.a).

(B) In the remaining case, (q, s) is of the form (a, s) ∈ A ×T and by inductive hypothesis
we are given with a bundle Bi consisting of a single f -guided (partial) shadow match

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:33

πa at the same position (a, s). Let Va,s be the suggestion of ∃ from position (a, s) in πa .
Since by assumption s is p-free, we have that κ ′(s) = κ (s), meaning that Δ∃ (a,κ (s)) is just
Δ(a,κ (s)) = Δ(a,κ ′(s)). Thus the restriction V ′ of V to A makes Δ(a,κ ′(t)) true, and we
let it be the choice for ∃ in π̃ . It follows that any next move made by∀ in π̃ can be mirrored
by ∀ in the shadow match πa . �

5.2.1 Closure under Boolean Operations. Here we show that the collection of Aut (WMSO)-
recognizable classes of tree models is closed under the Boolean operations. For union, we use the
following result, leaving the straightforward proof as an exercise to the reader.

Lemma 5.13. Let A0 and A1 be WMSO-automata. Then there is a WMSO-automaton A such that
TMod(A) is the union of TMod(A0) and TMod(A1).

For closure under complementation, we reuse the general results established in Section 4 for
parity automata.

Lemma 5.14. Let A be an WMSO-automaton. Then the automaton A defined in Definition 4.19 is
a WMSO-automaton recognizing the complement of TMod(A).

Proof. It suffices to check that Proposition 4.20 restricts to the class Autwc (FOE∞1) of WMSO-
automata. First, the fact that FOE∞1 is closed under Boolean duals (Definition 4.6) implies that it

holds for the class Aut (FOE∞1). It then remains to check that the dual automata construction (·)
preserves weakness and continuity. But this is straightforward, given the self-dual nature of these
properties. �

We are now finally able to conclude the direction from formulas to automata of the characteri-
sation theorem.

Proof of Theorem 5.2. The proof is by induction on φ.

—For the base case, we consider the atomic formulas ⇓p, p � q and R (p,q).
—The WMSO-automaton A⇓p = 〈A,Δ,Ω,aI 〉 is given by putting

A := {a0,a1} aI := a0 Ω(a0) := 0 Ω(a1) := 0

Δ(a0, c) :=

{
∀x .a1 (x) if p ∈ c
⊥ otherwise

Δ(a1, c) :=

{
∀x .a1 (x) if p � c
⊥ otherwise

.

—The WMSO-automaton Ap�q = 〈A,Δ,Ω,aI 〉 is given by A := {a}, aI := a, Ω(a) := 0 and
Δ(a, c) := ∀x a(x) if p � c or q ∈ c , and Δ(a, c) := ⊥ otherwise.

—The WMSO-automaton AR (p,q) = 〈A,Δ,Ω,aI 〉 is given below:

A := {a0,a1} aI := a0 Ω(a0) := 0 Ω(a1) := 1

Δ(a0, c) :=

{
∃x .a1 (x) ∧ ∀y.a0 (y) if p ∈ c
∀x (a0 (x)) otherwise

Δ(a1, c) :=

{
� if q ∈ c
⊥ otherwise

.

—For the Boolean cases, where φ = ψ1 ∨ψ2 or φ = ¬ψ we refer to the Boolean closure prop-
erties that we just established in the Lemmas 5.13 and 5.14, respectively.

—The case φ = ∃p.ψ follows by the following chain of equivalences, where Aψ is given by
the inductive hypothesis and ∃Fp.Aψ is constructed according to Definition 5.11:

∃Fp.Aψ accepts T iff Aψ accepts T [p �→ X], for some X ⊆ω T (Lemma 5.12)

iff T [p �→ X] |= ψ , for some X ⊆ω T (induction hyp.)

iff T |= ∃p.ψ (semantics WMSO)

�

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:34 F. Carreiro et al.

6 AUTOMATA FOR NMSO

In this section, we introduce the automata that capture NMSO. These will be the weak automata
associated with the one-step language FOE∞1 , cf. Definition 4.23.

Definition 6.1. An NMSO-automaton is an automaton in the class Autw (FOE∞1).

Analogous to the previous section, our main goal here is to construct an equivalent NMSO-
automaton for each NMSO-formula.

Theorem 6.2. There is an effective construction transforming an NMSO-formulaφ into an NMSO-
automaton Aφ that is equivalent to φ on the class of trees.

The proof for Theorem 6.2 will closely follow the steps for proving the analogous result for
WMSO (Theorem 5.2). Again, the crux of the matter is to show that the collection of classes of
tree models that are recognisable by some NMSO-automaton is closed under the relevant notion
of projection. Where this was finitary projection for WMSO (Definition 5.3), the notion mimicking
NMSO-quantification is noetherian projection.

Definition 6.3. Given a set P of proposition letters, p � P and a class C of P∪{p}-labeled trees,
we define the noetherian projection of C over p as the language of P-labeled trees given as

∃Np.C := {T | there is a noetherian p-variant T ′ of T with T ′ ∈ C}.
A collection of classes of tree models is closed under noetherian projection over p if it contains the
class ∃Np.C whenever it contains the class C itself.

6.1 Simulation Theorem for NMSO-automata

Just as for WMSO-automata, also for NMSO-automata the projection construction will rely on a
simulation theorem, constructing a two-sorted automaton AN consisting of a copy of the original
automaton, based on states A, and a variation of its powerset construction, based on macro-states
℘A. For any accepted T , we want any match π of A (AN ,T) to split in two parts:

(Non-deterministic mode). For finitely many rounds π is played on macro-states, i.e., positions
are of the form ℘A ×T . The strategy of player ∃ is functional in ℘A, i.e., it assigns at most
one macro-state to each node.

(Alternating mode). At a certain round, π abandons macro-states and turns into a match of
the game A (A,T), i.e., all next positions are from A ×T (and are played according to a
non-necessarily functional strategy).

The only difference with the two-sorted construction for WMSO-automata is that, in the non-
deterministic mode, the cardinality of nodes to which ∃’s strategy assigns macro-states is irrel-
evant. Indeed, NMSO’s finiteness is only on the vertical dimension: Assigning an odd priority
to macro-states will suffice to guarantee that the non-deterministic mode processes just a well-
founded portion of any accepted tree.

We now proceed in steps toward the construction of AN . First, the following lifting from states
to macro-states parallels Definition 5.5, but for the one-step language FOE1 proper of NMSO-
automata. It is based on the basic form for FOE1-formulas, see Definition 4.11.

Definition 6.4. Let φ ∈ FOE1
+ (A) be of shape ∇+FOE (T,Π) for some Π ⊆ ℘A and T =

{T1, . . . ,Tk } ⊆ ℘A. We define φN as ∇+FOE (T
⇑
,Π⇑) ∈ FOE1

+ (℘A), that means

φN := ∃x.
��
�diff (x) ∧

∧
0≤i≤n

τ+
T
⇑
i

(xi) ∧ ∀z.(diff (x, z) →
∨

S ∈Π⇑

τ+S (z))
�� . (29)

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:35

It is instructive to compare (29) with its WMSO-counterpart (27): The difference is that, because
the quantifiers ∃∞ and ∀∞ are missing, the sentence does not impose any cardinality requirement
but only enforces ℘A-separability—cf. Section 4.1.

Lemma 6.5. Let φ ∈ FOE1
+ (A) and φN ∈ FOE1

+ (℘A) be as in Definition 6.4. Then φN is separating
in ℘A.

Proof. Each element of T
⇑

and Π⇑ is by definition either the empty set or a singleton {Q } for
some Q ∈ ℘A. Then the statement follows from Proposition 4.17. �

We are now ready to define the transition function for macro-states. The following adapts Def-
inition 5.6 to the one-step language FOE1 of NMSO-automata and its normal form result, Theo-
rem 4.12.

Definition 6.6. LetA = 〈A,Δ,Ω,aI 〉 be an NMSO-automaton. Fix any c ∈ C andQ ∈ ℘A. By The-

orem 4.12 there is a sentence ΨQ,c ∈ FOE1
+ (A) in the basic form

∨∇FOE (T,Π), for some Π ⊆ ℘A
and Ti ⊆ A, such that

∧
a∈Q Δ(a, c) ≡ ΨQ,c . By definition, ΨQ,c =

∨
n φn , with each φn of shape

∇FOE (T,Π). We put Δ� (Q, c) :=
∨

n φ
N
n ∈ FOE1

+ (℘A), where the translation (·)N is as in Defini-
tion 6.4.

We now have all the ingredients for the two-sorted construction over NMSO-automata.

Definition 6.7. Let A = 〈A,Δ,Ω,aI 〉 be an NMSO-automaton. We define the noetherian construct
over A as the automaton AN = 〈AN ,ΔN ,ΩN ,aN

I
〉 given by

AN := A ∪ ℘A
aN

I
:= {aI }

ΩN (a) := Ω(a)
ΩN (R) := 1

ΔN (a, c) := Δ(a, c)
ΔN (Q, c) := Δ� (Q, c) ∨∧a∈QΔ(a, c).

The construction is the same as the one for WMSO-automata (Definition 5.7) but for the defini-
tion of the transition function for macro-states, which is now free of any cardinality requirement.

Definition 6.8. We say that a strategy f in an acceptance game A (A,T) is noetherian in B ⊆ A
when in any f -guided match there can be only finitely many rounds played at a position of shape
(q, s) with q ∈ B.

Theorem 6.9 (Simulation Theorem for NMSO-automata). Let A be an NMSO-automaton
and AN its noetherian construct.

(1) AN is an NMSO-automaton.
(2) For any T , if ∃ has a winning strategy in A (AN ,T) from position (aN

I
, sI) then she has one

that is functional in ℘A and noetherian in ℘A.
(3) A ≡ AN .

Proof. The proof follows the same steps as the one of Proposition 5.10, minus all the concerns
about continuity of the constructed automaton and any associated winning strategy f being fini-
tary. One still has to show that f is noetherian in ℘A (“vertically finitary”), but this is enforced by
macro-states having an odd parity: Visiting one of them infinitely often would mean ∃’s loss. �

Remark 6.10. As mentioned, the class Aut (FOE1) of automata characterising SMSO [Janin and
Walukiewicz 1996] also enjoys a simulation theorem [Walukiewicz 1996], turning any automa-
ton into an equivalent non-deterministic one. Given that the class Autw (FOE1) only differs for
the weakness constraint, one may wonder whether the simulation result for Aut (FOE1) could not
actually be restricted to Autw (FOE1), making our two-sorted construction redundant. This is ac-
tually not the case: Not only does Walukiewicz’s simulation theorem [Walukiewicz 1996] fail to

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:36 F. Carreiro et al.

preserve the weakness constraint, but even without this failure our purposes would not be served:
A fully non-deterministic automaton is instrumental in guessing a p-variant of any accepted tree,
but it does not guarantee that the p-variant is also noetherian, as the two-sorted construct does.

6.2 From Formulas to Automata

We can now conclude one direction of the automata characterisation of NMSO. Analogously to
the case of WMSO-automata, we can define the noeatherian projection construct of an NMSO-
automaton A, on alphabet ℘(P ∪ {p}), as an NMSO-automaton ∃p.A, on alphabet ℘P: The only
difference with Definition 5.11 is that ∃p.A is based on the noetherian construct AN over A.

Lemma 6.11. For each NMSO-automaton A on alphabet ℘(P ∪ {p}),
TMod(∃p.A) ≡ ∃Np.TMod(A).

Proof. The argument is the same as for WMSO-automata (Lemma 5.12). As in that proof, the
inclusion from left to right relies on the simulation result (Theorem 6.9): ∃p.A is two-sorted and
its non-deterministic mode can be used to guess a noetherian p-variant of any accepted tree. �

Proof of Theorem 6.2. As for its WMSO-counterpart Theorem 5.2, the proof is by induction
on φ ∈ NMSO. The Boolean inductive cases are handled by the NMSO-versions of Lemma 5.13
and 5.14. The projection case follows from Lemma 6.11. �

7 FIXPOINT OPERATORS AND SECOND-ORDER QUANTIFIERS

In this section, we will show how to translate some of the mu-calculi that we encountered until now
into the appropriate second-order logics. Given the equivalence between automata and fixpoint
logics that we established in Section 4, and the embeddings of WMSO and NMSO into, respectively,
the automata classes Autwc (FOE∞1) and Autw (FOE1) that we provided in the Sections 5 and 6
for the class of tree models, the results here provide the missing link in the automata-theoretic
characterizations of the monadic second-order logics WMSO and NMSO:

μC (FOE∞1) ≡ WMSO (over the class of all tree models)

μN (FOE1) ≡ NMSO (over the class of all tree models).

7.1 Translating μ-calculi into Second-order Logics

More specifically, our aim in this section is to prove the following result.

Theorem 7.1.

(1) There is an effective translation (·)∗ : μN FOE1 → NMSO such that φ ≡ φ∗ for every φ ∈
μN FOE1; that is:

μN FOE1 ≤ NMSO.

(2) There is an effective translation (·)∗ : μC FOE∞1 → WMSO such that φ ≡ φ∗ for every φ ∈
μC FOE∞1 ; that is:

μC FOE∞1 ≤ WMSO.

Two immediate observations on this Theorem are in order. First, note that we use the same
notation (·)∗ for both translations; this should not cause any confusion, since the maps agree on
formulas belonging to their common domain. Consequently, in the remainder, we will speak of
a single translation (·)∗. Second, as the target language of the translation (·)∗ we will take the
two-sorted version of second-order logic, as discussed in Section 3.1, and thus we will need Propo-
sition 3.5 to obtain the result as formulated in Theorem 7.1, that is, for the one-sorted versions of
MSO. We reserve a fixed individual variable v for this target language, i.e., every formula of the

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:37

form φ∗ will have this v as its unique free variable; the equivalence φ ≡ φ∗ is to be understood
accordingly.

The translation (·)∗ will be defined by a straightforward induction on the complexity of fixpoint
formulas. The two clauses of this definition that deserve some special attention are the ones related
to the fixpoint operators and the modalities.

Fixpoint operators. It is important to realise that our clause for the fixpoint operators differs from
the one used in the standard inductive translation (·)s of μML into standard MSO, where we would
inductively translate (μp.φ)∗ as

∀p (∀w (φ∗[w/v] → p (w)) → p (v)), (30)

which states that v belongs to any prefixpoint of φ with respect to p. To understand the problem
with this translation in the current context, suppose, for instance, that we want to translate some
continuous μ-calculus into WMSO. Then the formula in Equation (30) expresses that v belongs
to the intersection of all finite prefixpoints of φ, whereas the least fixpoint is identical to the in-
tersection of all prefixpoints. As a result, Equation (30) does not give the right translation for the
formula μp.φ into WMSO.

To overcome this problem, we will prove that least fixpoints in restricted calculi like μN FOE1,
μC FOE∞1 and many others in fact satisfy a rather special property, which enables an alternative
translation. We need the following definition to formulate this property.

Definition 7.2. Let F : ℘(S) → ℘(S) be a functional; for a given X ⊆ S , we define the restricted
map F�X

: ℘(S) → ℘(S) by putting F�X
(Y) := FY ∩ X . In case F is monotone, we will use LFP .F to

denote its least fixpoint.

The observations formulated in the proposition below provide the crucial insight underlying
our embedding of various alternation-free and continuous μ-calculi into, respectively, NMSO and
WMSO.

Proposition 7.3. Let S be an LTS, and let r be a point in S.

(1) For any formula φ with μp.φ ∈ μN FOE1 we have

r ∈ �μp.φ�S iff there is a noetherian set X such that r ∈ LFP .(φSp)�X
. (31)

(2) For any formula φ with μp.φ ∈ μC FOE∞1 we have

r ∈ �μp.φ�S iff there is a finite set X such that r ∈ LFP .(φSp)�X
. (32)

Remark 7.4. In fact, the statements in Proposition 7.3 can be generalised to the setting of a
fixpoint logic μL1 associated with an arbitrary one-step language L1.

The right-to-left direction of both Equations (31) and (32) follow from the following, more gen-
eral, statement, which can be proved by a routine argument.

Proposition 7.5. Let F ,G : ℘(S) → ℘(S) be monotone, and assume that F (Y) ⊆ G (Y) for every
Y ∈ ℘(S). Then LFP .F ⊆ LFP .G.

The left-to-right direction of Equations (31) and (32) will be proved in the next two subsections.
Note that in the continuous case we will in fact prove a slightly stronger result, which applies to
arbitrary continuous functionals.

The point of Proposition 7.3 is that it naturally suggests the following translation for the least
fixpoint operator, as a subtle but important variation of Equation (30):

(μp.φ)∗ := ∃q
(
∀p ⊆ q.

(
p ∈ PRE((φSp)�q

) → p (v)
))
, (33)

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:38 F. Carreiro et al.

where p ∈ PRE((φSp)�q
) expresses that p ⊆ q is a prefixpoint of the map (φSp)�q

, that is,

p ∈ PRE((φSp)�q
) := ∀w ((q(w) ∧ φ∗[w/v]) → p (w)).

Modalities. Finally, before we can give the definition of the translation (·)∗, we briefly discuss
the clause involving the modalities. Here we need to understand the role of the one-step formulas
in the translation. First, an auxiliary definition.

Definition 7.6. Let S = 〈T ,R,κ, sI 〉 be a P-LTS, let A be a set of new variables, and let V : A→
℘(X) be a valuation on a subsetX ⊆ T . The (P ∪A)-LTS SV := 〈T ,R,κV , sI 〉, given by defining the
marking κV : T → ℘(P ∪A), where

κV (s) :=

{
κ (s) if s � X
κ (s) ∪ {a ∈ A | s ∈ V (a)} else

,

is called the V -expansion of S.

The following proposition states that at the one-step level, the formulas that provide the seman-
tics of the modalities of μFOE1 and μFOE∞1 can indeed be translated into, respectively, NMSO and
WMSO.

Proposition 7.7. There is a translation (·)† : FOE∞1 (A) → WMSO such that for every model S
and every valuation V : A→ ℘(R[sI]):

(R[sI],V) |= α iff SV |= α†[sI].

Moreover, (·)† restricts to first-order logic, i.e., α† is a first-order formula if α ∈ FOE1.

Proof. Basically, the translation (·)† restricts all quantifiers to the collection of successors of
v . In other words, (·)† is the identity on basic formulas, as it commutes with the propositional
connectives, and for the quantifiers ∃ and ∃∞ we define:

(∃x α)† := ∃x (Rvx ∧ α†)
(∃∞x α)† := ∀p∃x (Rvx ∧ ¬p (x) ∧ α†).

We leave it for the reader to verify the correctness of this definition—observe that the clause for
the infinity quantifier ∃∞ is based on the equivalence between WMSO and FOE∞, established by
Väänänen [1977]. �

We are now ready to define the translation used in the main result of this section.

Definition 7.8. By an induction on the complexity of formulas we define the following transla-
tion (·)∗ from μFOE∞-formulas to formulas of monadic second-order logic:

p∗ := p (v)
(¬φ)∗ := ¬φ∗
(φ ∨ψ)∗ := φ∗ ∨ψ ∗

(©α (φ))∗ := α†[φ∗i /ai | i ∈ I],

where α† is as in Proposition 7.7 and [φ∗i /ai | i ∈ I] is the substitution that replaces every occur-
rence of an atomic formula of the form ai (x) with the formula φ∗i (x) (i.e., the formula φ∗i but with
the free variable v substituted by x).

Finally, the inductive clause for a formula of the form μp.φ is given as in Equation (33).

Proof of Theorem 7.1. First, it is clear that in both cases the translation (·)∗ lands in the cor-
rect language. For both parts of the theorem, we thence prove that (·)∗ is truth preserving by a

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:39

straightforward formula induction. For example, for part (2) we need to show that, for an arbitrary
formula φ ∈ μC FOE∞1 and an arbitrary model S:

S � φ iff S |= φ∗[sI]. (34)

As discussed in the main text, the two critical cases concern the inductive steps for the modalities
and the least fixpoint operators. Let L+1 ∈ {FOE1, FOE∞1 }. We start verifying the case of modalities.
Hence, consider the formula ©α (φ1, . . . ,φn) with α (a1, . . . ,an) ∈ L+1 . By induction hypothesis,
φ� ≡ φ∗

�
for � = 1, . . . ,n. Now, let S be a transition system. We have that

S � ©α (φ1, . . . ,φn) iff (R[sI],Vφ) |= α (a1, . . . ,an) (by (25))

iff SVφ |= α†[sI] (by Prop. 7.7)

iff S |= α†[φ∗i /ai | i ∈ I][sI] (by Equation (26), Definition 7.6 and IH)

The inductive step for the least fixpoint operator will be justified by Proposition 7.3. In more
detail, given a formula of the form μx .ψ ∈ μYL

+
1 , with Y = D for L+1 = FOE1, and Y = C for L+1 =

FOE∞1 , consider the following chain of equivalences:

sI ∈ �μp.ψ �S

iff sI ∈ LFP .(ψS
p)�Q

for some

{
finite
noetherian

set Q (by (31)/(32))

iff sI ∈
⋂{

P ⊆ Q | P ∈ PRE((ψS
p)�Q

)
}

for some

{
finite
noetherian

set Q

iff S |= ∃q.
(
∀p ⊆ q.

(
p ∈ PRE((ψS

p)�q
) → p (sI)

))
iff S |= (μp.ψ)∗[sI]. (IH)

This concludes the proof of Equation (34). �

7.2 Fixpoints of Continuous Maps

It is well known that continuous functionals are constructive. That is, if we construct the
least fixpoint of a continuous functional F : ℘(S) → ℘(S) using the ordinal approximation
∅, F∅, F 2

∅, . . . , Fα
∅, . . ., then we reach convergence after at most ω many steps, implying that

LFP .F = Fω
∅. We will see now that this fact can be strengthened to the following observation,

which is the crucial result needed in the proof of Proposition 7.3.

Theorem 7.9. Let F : ℘(S) → ℘(S) be a continuous functional. Then for any s ∈ S :

s ∈ LFP .F iff s ∈ LFP .F�X
, for some finite X ⊆ S . (35)

Proof. The direction from right to left of Equation (35) is a special case of Proposition 7.5. For
the opposite direction of Equation (35), a bit more work is needed. Assume that s ∈ LFP .F ; we claim
that there are sets U1, . . . ,Un , for some n ∈ ω, such that s ∈ Un , U1 ⊆ω F (∅), and Ui+1 ⊆ω F (Ui)
for all i with 1 ≤ i < n.

To see this, first observe that since F is continuous, we have LFP .F = Fω (∅) =
⋃

n∈ω Fn (∅), and
so we may take n to be the least natural number such that s ∈ Fn (∅). By a downward induction,
we now define sets Un , . . . ,U1, with Ui ⊆ F i (∅) for each i . We set up the induction by putting
Un := {s}, and thenUn ⊆ Fn (∅) by our assumption on n. For i < n, we defineUi as follows. Using
the inductive fact that Ui+1 ⊆ω F i+1 (∅) = F (F i (∅)), it follows by continuity of F that for each
u ∈ Ui+1 there is a set Vu ⊆ω F i (∅) such that u ∈ F (Vu). We then define Ui :=

⋃{Vu | u ∈ Ui+1},

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:40 F. Carreiro et al.

so that clearlyUi+1 ⊆ω F (Ui) andUi ⊆ω F i (∅). Continuing like this, ultimately we arrive at stage
i = 1, where we find U1 ⊆ F (∅) as required.

Finally, given the sequenceUn , . . . ,U1, we define

X :=
⋃

0<i≤n

Ui .

It is then straightforward to prove that Ui ⊆ LFP .F�X
, for each i with 0 < i ≤ n, and so in partic-

ular we find that s ∈ Un ⊆ LFP .F�X
. This finishes the proof of the implication from left to right in

Equation (35). �

As an almost immediate corollary of this result, we obtain the second part of Proposition 7.3.

Proof of Proposition 7.3(2). Take an arbitrary formula μp.φ ∈ μC FOE∞1 , and then by defini-
tion we haveφ ∈ μC FOE∞1 ∩ Conp (μFOE∞1). But it follows from a routine inductive proof that every
formula ψ ∈ μC FOE∞1 ∩ ConQ (μFOE∞1) is continuous in each variable in Q . Thus φ is continuous
in p, and so the result is immediate by Theorem 7.9. �

7.3 Fixpoints of Noetherian Maps

We will now see how to prove Proposition 7.3(1), which is the key result that we need to embed
alternation-free μ-calculi such as μN FOE1 and μN ML into noetherian second-order logic. Perhaps
suprisingly, this case is slightly more subtle than the characterisation of fixpoints of continuous
maps.

We start with stating some auxiliary definitions and results on monotone functionals, starting
with a game-theoretic characterisation of their least fixpoints [Venema 2012].

Definition 7.10. Given a monotone functional F : ℘(S) → ℘(S), we define the unfolding game
UF as follows:

—at any position s ∈ S , ∃ needs to pick a set X such that s ∈ FX ;
—at any position X ∈ ℘(S), ∀ needs to pick an element of X
—all infinite matches are won by ∀.

A positional strategy f : S → ℘(S) for ∃ in UF is descending if, for all ordinals α ,

s ∈ Fα+1 (∅) implies f (s) ⊆ Fα (∅). (36)

It is not the case that all positional winning strategies for ∃ in UF are descending, but the next
result shows that there always is one.

Proposition 7.11. Let F : ℘(S) → ℘(S) be a monotone functional.

(1) For all s ∈ S , s ∈ Win∃ (UF) iff s ∈ LFP .F ;
(2) If s ∈ LFP .F , then ∃ has a descending winning strategy in UF @s .

Proof. Point (1) corresponds to Venema [2012, Theorem 3.14(2)]. For part (2) one can simply
take the following strategy. Given s ∈ LFP .F , let α be the least ordinal such that s ∈ Fα (∅); it is
easy to see that α must be a successor ordinal, say, α = β + 1. Now, simply put, f (s) := F β (∅). �

Definition 7.12. Let F : ℘(S) → ℘(S) be a monotone functional, let f be a positional winning
strategy for ∃ in UF , and let r ∈ S . DefineTf ,r ⊆ S to be the set of states in S that are f -reachable
in UF @r . This set has a tree structure induced by the map f itself, where the children of s ∈ Tf ,r

are given by the set f (s); we will refer to Tf ,r as the strategy tree of f .

Note that a strategy tree Tf ,r will have no infinite paths, since we define the notion only for a
winning strategy f .

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:41

Proposition 7.13. Let F : ℘(S) → ℘(S) be a monotone functional, let r ∈ S , and let f be a de-
scending winning strategy for ∃ in UF . Then

r ∈ LFP .F implies r ∈ LFP .F�Tf ,r
. (37)

Proof. Let F , r , and f be as in the formulation of the proposition. Assume that r ∈ LFP .F ,
and then clearly r ∈ Fα (∅) for some ordinal α ; furthermore, Tf ,r is defined, and clearly we have
r ∈ Tf ,r . Abbreviate T := Tf ,r . It then suffices to show that for all ordinals α we have

Fα (∅) ∩T ⊆ (F�T
)α (∅). (38)

We will prove Equation (38) by transfinite induction. The base case, where α = 0, and the inductive
case where α is a limit ordinal are straightforward, so we focus on the case where α is a successor
ordinal, say, α = β + 1. Take an arbitrary state u ∈ F β+1 (∅) ∩T ; then, we find f (u) ⊆ F β (∅) by
our assumption (36) and f (u) ⊆ T by definition of T . Then the induction hypothesis yields that
f (u) ⊆ (F�T

)β (∅), and so we have f (u) ⊆ (F�T
)β (∅) ∩T . But since f is a winning strategy, and

u is a winning position for ∃ in UF by Claim 7.11(i), f (u) is a legitimate move for ∃, and so we
have u ∈ F (f (u)). Thus by monotonicity of F we obtain u ∈ F ((F�T

)β (∅) ∩T), and since u ∈ T by

assumption, this means that u ∈ (F�T
)β+1 (∅) as required. �

We now turn to the specific case where we consider the least fixed point of a functional F , which
is induced by some formula φ (p) ∈ μNL1 on some LTS S. By Proposition 7.11 and Fact 4.29, ∃ has a
winning strategy in E (μp.φ (p),S)@(μp.φ (p), s) if and only if she has a winning strategy inUF @s ,
too, where F := φSp is the monotone functional defined by φ (p). The next Proposition makes this
correspondence explicit when L1 = FOE.

First, we need to introduce some auxiliary concepts and notations. Given a winning strategy f
for ∃ in E (μp.φ,S)@(μp.φ, s), we denote by B (f) the set of all finite f -guided, possibly partial,
matches in E (ψ ,S)@(ψ , s) in which no position of the form (νq.ψ , r) is visited. Let f be a positional
winning strategies for ∃ in UF @s and f ′ a winning strategy for her in E (μp.φ,S)@(μp.φ, s). We
call f and f ′ compatible if each point in Tf ,s occurs on some path belonging to B (f ′).

Proposition 7.14. Let φ (p) ∈ μN FOEp and s ∈ �μp.φ�S. Then there is a descending winning
strategy for ∃ in UF @s compatible with a winning strategy for ∃ in E (μp.φ,S)@(μp.φ, s).

Proof. Let F := φSp be the monotone functional defined by φ (p). From s ∈ �μp.φ�S, we get that
s ∈ LFP .F . Applying Proposition 7.11 to the fact that s ∈ LFP .F yields that ∃ has a descending
winning strategy f : S → ℘(S) inUF @s . We define ∃’s strategies f ′ in E (μp.φ,S)@(μp.φ, s), and
f ∗ in UF @s as follows:

(1) In the evaluation games E, after the initial automatic move, the position of the match
is (φ, s); there ∃ first plays her positional winning strategy fs from E (φ (p),S[p �→
f (s)])@(φ (p), s), and we define her move f ∗ (s) in the unfolding game U as the set of
all nodes t ∈ f (s) such that there is a fs -guided match in B (fs), whose last position is
(p, t).

(2) Each time a position (p, t) is reached in the evaluation games E, distinguish cases:
(a) If t ∈ Win∃ (UF), then ∃ continues with the positional winning strategy ft from

E (φ (p),S[p �→ f (t)])@(φ (p), t), and we define her move f ∗ (t) in U as the set of all
nodesw ∈ f (t) such that there is a ft -guided match inB (ft) whose last position (p,w);

(b) If t � Win∃ (UF), then ∃ continues with a random positional strategy, and we define
f ∗ (t) := ∅.

(3) For any position (p, t) that was not reached in the previous steps, ∃ sets f ∗ (t) := ∅.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:42 F. Carreiro et al.

By construction, f ′ and f ∗ are compatible. Moreover, f ∗ (t) ⊆ f (t), for t ∈ S , meaning that f ∗ is
descending. We verify that both f ′ and f ∗ are actually winning strategies for ∃ in the respective
games.

First, observe that in every position of the form (p, t) reached during a f ′-guided match, we
have t ∈ Win∃ (UF). This can be proved by induction on the number of position of the form (p, t)
visited during an f ′-guided match. For the inductive step, assume w ∈ Win∃ (UF). Hence fw is
winning for ∃ in E (φ,S[p �→ f (w)])@(φ,w). This means that if a position of the form (p, t) is
reached, then the variable p must be true at t in the model S[p �→ f (w)], meaning that it belongs
to the set f (w). By assumption f is a winning strategy for ∃ in UF , and therefore any element of
f (w) is again a member of the set Win∃ (UF).

Finally, let π be an arbitrary f ′-guided match of E (φ,S[p �→ f (w)])@(φ,w). We verify that π
is winning for ∃. First observe that since f is winning for her in UF @s , the fixpoint variable p
is unfolded only finitely many times during π . Let (p, t) be the last basic position in π where p
occurs. Then, from now on, f ′ and ft coincide, yielding that the match is winning for ∃.

We finally verify that f ∗ is winning for ∃ in the unfolding game UF @s . First, since f ′ is
winning, B (f ′) does not contain an infinite ascending chain of f ′-guided matches, and thence
any f ∗-guided match in UF @s is finite. It therefore remains to verify that for every f ∗-guided
match π in UF @s such that last(π) is an ∃ position, she can always move. We do it by in-
duction on the length of a f ∗-guided match. At each step, we use compatibility and thus keep
track of the corresponding position in the evaluation game E (μp.φ,S)@(μp.φ, s). The initial po-
sition for her is s ∈ S . Notice that f ∗ (s) = f (s) ∩ B (ξ ′) and therefore f ′ corresponds to fs on
E (φ (p),S[p �→ f ∗ (s)])@(φ (p), s) and it is therefore winning for ∃. In particular, this means that
s ∈ F (f ∗ (s)). Hence, as initial move, ∃ is allowed to play f ∗ (s). Moreover, any subsequent choice
for∀ is such that there is a winning match π ∈ B (ξs) for ∃ such that last(π) = (p,w). For the induc-
tion step, assume∀ has chosen t ∈ f ∗ (w), where f ∗ (w) = f (w) ∩ B (ξ ′), f ′ corresponds to the win-
ning strategy fw on E (φ (p),S[p �→ f ∗ (w)])@(φ (p),w), and there is a winning match π ∈ B (ξw)
for ∃ such that last(π) = (p,w). By construction, f ′ corresponds to the winning strategy ft for
∃ on E (φ (p),S[p �→ f (t)])@(φ (p), t). Because f ∗ (t) = f (s) ∩ B (ξ ′), ft is also winning for her in
E (φ (p),S[p �→ f ∗ (t)])@(φ (p), t), meaning that s ∈ F (f ∗ (s)). The move f ∗ (t) is therefore admis-
sible, and any subsequent choice for ∀ is such that there is a winning match π ∈ B (ξt) for ∃ with
last(π) = (p,w). �

Proof of Proposition 7.3(1). Let S be an LTS and φ (p) ∈ μN FOE1p.
The right-to-left direction of Equation (31) being proved by Proposition 7.5, we check the left-to-

right direction. We first verify that winning strategies in evaluation games for noetherian fixpoint
formulas naturally induce bundles. More precisely: �

Claim. Let BS (f) be the projection of B (f) on S , that is, the set of all paths inS that are a projection
on S of a f -guided (partial) match in B (f). Then BS (f) is a bundle.

Proof Of Claim. Assume toward a contradiction that BS (f) contains an infinite ascending
chain π0 � π1 � · · · . Let π be the limit of this chain and consider the set of elements in B (f) that,
projected on S , are prefixes of π . By König’s Lemma, this set contains an infinite ascending chain
whose limit is an infinite f -guided match in E (μp.φ,S), which starts at (μp.φ, s) and of which π is
the projection on S . By definition of B (f), the highest bound variable of μp.φ that gets unravelled
infinitely often in ρ is a μ-variable, meaning that the match is winning for ∀, a contradiction. �

Assume that s ∈ �μp.φ�S, and let F := φSp be the monotone functional defined by φ (p).
By Proposition 7.14, ∃ has a winning strategy f ′ in E (μp.φ,S)@(μp.φ, s) compatible with a
descending winning strategy f in UF @s . By Proposition 7.13, we obtain that s ∈ LFP .F�Tf ,s

.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:43

Because of compatibility, every node in Tf ,s occurs on some path of B (f ′). From the Claim, we

know that BS (f ′) is a bundle, meaning that Tf ,s is noetherian as required.

8 EXPRESSIVENESS MODULO BISIMILARITY

In this section, we use the tools developed in the previous parts to prove the main results of the
article on expressiveness modulo bisimilarity, viz., Theorem 1.1 stating

μN ML ≡ NMSO/↔, (39)

μC ML ≡ WMSO/↔. (40)

Proof of Theorem 1.1. The structure of the proof is the same for the statements (39) and (40).
In both cases, we will need three steps to establish a link between the modal language on the left-
hand side of the equation to the bisimulation-invariant fragment of the second-order logic on the
right-hand side.

The first step is to connect the fragments μN ML and μC ML of the modal μ-calculus to, respec-
tively, the weak and the continuous-weak automata for first-order logic without equality. That is,
in Theorem 8.1 below we prove the following:

μN ML ≡ Autw (FO1), (41)

μC ML ≡ Autwc (FO1). (42)

Second, the main observation that we shall make in this section is that

Autw (FO1) ≡ Autw (FOE1)/↔, (43)

Autwc (FO1) ≡ Autwc (FOE∞1)/↔. (44)

That is, for Equation (43) we shall see in Theorem 8.4 below that a weak FOE1-automaton A is
bisimulation invariant iff it is equivalent to a weak FO1-automaton A� (effectively obtained from
A) and similarly for Equation (44).

Finally, we use the automata-theoretic characterisations of NMSO and WMSO that we obtained
in earlier sections:

Autw (FOE1) ≡ NMSO, (45)

Autwc (FOE∞1) ≡ WMSO. (46)

Then it is obvious that Equation (39) follows from Equations (41), (43), and (45), while similarly
Equation (40) follows from Equations (42), (44), and (46). �

It is left to prove Equations (41) and (42) and Equations (43) and (44); we will take care of this in
the two subsections below.

8.1 Automata for μN ML and μC ML

In this subsection, we consider the automata corresponding to the continuous and the alternation-
free μ-calculus. That is, we verify Equations (41) and (42).

Theorem 8.1.

(1) There is an effective construction transforming a formula φ ∈ μML into an equivalent au-
tomaton in Aut (FO1) and vice versa.

(2) There is an effective construction transforming a formula φ ∈ μN ML into an equivalent au-
tomaton in Autw (FO1) and vice versa.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:44 F. Carreiro et al.

(3) There is an effective construction transforming a formula φ ∈ μC ML into an equivalent au-
tomaton in Autwc (FO1) and vice versa.

Proof. In each of these cases, the direction from left to right is easy to verify, so we omit
details. For the opposite direction, we focus on the hardest case, that is, we will only prove that
Autwc (FO1) ≤ μC ML. By Theorem 4.33, it suffices to show that μC FO1 ≤ μC ML, and we will in fact
provide a direct, inductively defined, truth-preserving translation (·)t from μC FO1 (P) to μC ML(P).
Inductively, we will ensure that, for every set Q ⊆ P,

φ ∈ ConQ (μFO1) implies φt ∈ ConQ (μML) (47)

and that the dual property holds for cocontinuity.
Most of the clauses of the definition of the translation (·)t are completely standard: For the

atomic clause we takept := p and (¬p)t := ¬p, for the Boolean connectives we define (φ0 ∨ φ1)t :=
φt

0 ∨ φt
1 and (φ0 ∧ φ1)t := φt

0 ∧ φt
1, and for the fixpoint operators we take (μp.φ)t := μp.φt and

(νp.φ)t := νp.φt —to see that the latter clauses indeed provide formulas in μC ML we use Equa-
tion (47) and its dual. In all of these cases, it is easy to show that Equation (47) holds (or remains
true, in the inductive cases).

The only interesting case is where φ is of the form ©α (φ1, . . . ,φn). By definition of the lan-
guage μC FO1, we may assume that α (a1, . . . ,an) ∈ ConB (FO1 (A)), where A = {a1, . . . ,an } and
B = {a1, . . . ,ak }, that for each 1 ≤ i ≤ k the formula φi belongs to the set ConQ (μCFO1), and
that for each k + 1 ≤ j ≤ n the formula φ j is Q-free. It follows by the induction hypothesis that
φl ≡ φt

l
∈ μC ML for each l , that φt

i ∈ ConQ (μML) for each 1 ≤ i ≤ k , and that the formula φt
j is

Q-free for each k + 1 ≤ j ≤ n. The key observation is now that by Theorem 4.13 we may without
loss of generality assume that α is in normal form; that is, a disjunction of formulas of the form
αΣ,Π = ∇+FO (Σ,Π), where every Σ and Π is a subset of ℘(A), B ∩⋃Π = ∅ for every Π, and

∇+FO (Σ,Π) :=
∧
S ∈Σ

∃x
∧
a∈S

a(x) ∧ ∀x
∨
S ∈Π

∧
a∈S

a(x).

We now define (
©αΣ,Π (φ)

)t
:=
∧

S ∈Σ �
∧

al ∈S φ
t
l
∧ �∨S ∈Π

∧
aj ∈S φ

t
j

φt :=
∨(

©αΣ,Π (φ)
)t
.

It is then obvious that φ and φt are equivalent, so it remains to verify Equation (47). But this is
immediate by the observation that all formulas φt

j in the scope of the � are associated with an aj

belonging to a set S ⊆ A that has an empty intersection with the set B; that is, each aj belongs to
the set {ak+1, . . . ,an } and so φt

j is Q-free. �

8.2 Bisimulation Invariance, One Step at a Time

In this subsection, we will show how the bisimulation invariance results in this article can be
proved by automata-theoretic means. Following Janin and Walukiewicz [1996], we will define a
construction that, for L1 ∈ {FOE1, FOE∞1 }, transforms an arbitrary L1-automaton A into an FO1-
automaton A� such that A is bisimulation invariant iff it is equivalent to A� . In addition, we will
make sure that this transformation preserves both the weakness and the continuity condition. The
operation (·)� is completely determined by the following translation at the one-step level.

Definition 8.2. Recall from Theorem 4.12 that any formula in FOE1
+ (A) is equivalent to a dis-

junction of formulas of the form ∇+FOE (T, Σ), whereas any formula in FOE∞1
+ (A) is equivalent to

a disjunction of formulas of the form ∇+
FOE∞ (T,Π, Σ). Based on these normal forms, for both one-

step languages L1 = FOE1 and L1 = FOE∞1 , we define the translation (·)� : L1
+ (A) → FO+1 (A) by

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

The Power of the Weak 15:45

setting (
∇+FOE (T, Σ)

)�
(
∇+

FOE∞ (T,Π, Σ)
)�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
:=
∧

i

∃xi .τ
+
Ti

(xi) ∧ ∀x .
∨
S ∈Σ

τ+S (x),

and for α =
∨

i αi we define α� :=
∨
α�i .

This definition propagates to the level of automata in the obvious way.

Definition 8.3. Let L1 ∈ {FOE1, FOE∞1 } be a one-step language. Given an automaton A =
〈A,Δ,Ω,aI 〉 in Aut (L1), define the automaton A� := 〈A,Δ�,Ω,aI 〉 in Aut (FO1) by putting, for
each (a, c) ∈ A ×C:

Δ� (a, c) := (Δ(a, c))� .

The main result of this section is the theorem below. For its formulation, recall that Sω is the
ω-unravelling of the model S (as defined in the preliminaries). As an immediate corollary of this
result, we see that Equations (43) and (44) hold.

Theorem 8.4. Let L1 ∈ {FOE1, FOE∞1 } be a one-step language and let A be an L1-automaton.

(1) The automata A and A� are related as follows, for every model S:

A� accepts S iff A accepts Sω . (48)

(2) The automaton A is bisimulation invariant iff A ≡ A� .
(3) IfA ∈ Autw (L1), thenA� ∈ Autw (FO1), and ifA ∈ Autwc (FOE∞1), thenA� ∈ Autwc (FO1).

The remainder of this section is devoted to the proof of Theorem 8.4. The key proposition is
the following observation on the one-step translation, which we take from the companion paper
[Carreiro et al. 2018].

Proposition 8.5. Let L1 ∈ {FOE1, FOE∞1 }. For every one-step model (D,V) and every α ∈ L+1 (A)
we have

(D,V) |= α� iff (D × ω,Vπ) |= α , (49)

where Vπ is the induced valuation given by Vπ (a) := {(d,k) | d ∈ V (a),k ∈ ω}.

Proof of Theorem 8.4. The proof of the first part is based on a fairly routine comparison, based
on Proposition 8.5, of the acceptance games A (A�,S) and A (A,Sω). (In a slightly more general
setting, the details of this proof can be found in Venema [2014].)

For part 2, the direction from right to left is immediate by Theorem 8.1. The opposite direction
follows from the following equivalences, where we use the bisimilarity of S and Sω (Fact 2.4):

A accepts S iff A accepts Sω A bisimulation invariant

iff A� accepts S equivalence (48)

It remains to be checked that the construction (·)� , which has been defined for arbitrary au-
tomata in Aut (L1), transforms both WMSO-automata and NMSO-automata into automata of the
right kind. This can be verified by a straightforward inspection at the one-step level. �

Remark 8.6. In fact, we are dealing here with an instantiation of a more general phenomenon
that is essentially coalgebraic in nature. In Venema [2014], it is proved that if L1 and L′1 are two

one-step languages that are connected by a translation (·)� : L′1 → L1 satisfying a condition similar
to Equation (49), then we find that Aut (L1) corresponds to the bisimulation-invariant fragment of
Aut (L′1): Aut (L1) ≡ Aut (L′1)/↔. This subsection can be generalized to prove similar results relating
Autw (L1) to Autw (L′1) and Autwc (L1) to Autwc (L′1).

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

15:46 F. Carreiro et al.

REFERENCES

Samson Abramsky and Achim Jung. 1994. Domain theory. In Handbook for Logic in Computer Science, S. Abramsky,

M. Gabbay Dov, and T. S. M. Maibaum (Eds.). Clarendon Press, Oxford.

André Arnold and Damian Niwiński. 1992. Fixed point characterization of weak monadic logic definable sets of trees. In

Tree Automata and Languages. 159–188.

André Arnold and Damian Niwiński. 2001. Rudiments of μ-calculus. Studies in Logic and the Foundations of Mathematics,

Vol. 146. North-Holland, 1–39.

Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. 2017. Deciding parity games in

quasipolynomial time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computin (STOC’17),
Hamed Hatami, Pierre McKenzie, and Valerie King (Eds.). ACM, 252–263. DOI:https://doi.org/10.1145/3055399.3055409

Facundo Carreiro. 2015. Fragments of Fixpoint Logics. Ph.D. Dissertation. Institute for Logic, Language and Computation,

Universiteit van Amsterdam.

Facundo Carreiro, Alessandro Facchini, Yde Venema, and Fabio Zanasi. 2014. Weak MSO: Automata and expressiveness

modulo bisimilarity. In Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic and the 29th
Annual ACM/IEEE Symposium on Logic in Computer Science (CSL-LICS’14). 27:1–27:27. DOI:https://doi.org/10.1145/

2603088.2603101

Facundo Carreiro, Alessandro Facchini, Yde Venema, and Fabio Zanasi. 2018. Model theory of monadic predicate logic with

the infinity quantifier. CoRR abs/1809.03262 (2018). http://arxiv.org/abs/1809.03262.

Corina Cîrstea and Dirk Pattinson. 2004. Modular construction of modal logics. In Proceedings of the 15th International
Conference on Concurrency Theory (CONCUR’04), Ph. Gardner and N. Yoshida (Eds.), Lecture Notes in Computer Science,

Vol. 3170. Springer, 258–275.

Giovanna D’Agostino and Marco Hollenberg. 2000. Logical questions concerning the μ-calculus. J. Symbol. Logic 65, 1

(2000), 310–332.

Anuj Dawar and Martin Otto. 2009. Modal characterisation theorems over special classes of frames. Ann. Pure Appl. Logic
161, 1 (2009), 1–42.

Ernest Allen Emerson and Charanjit S. Jutla. 1991. Tree automata, μ-calculus and determinacy (extended abstract). In

Proceedings of the IEEE Annual Symposium on Foundations of Computer Science (FOCS’91). IEEE Computer Society, 368–

377.

Alessandro Facchini, Yde Venema, and Fabio Zanasi. 2013. A characterization theorem for the alternation-free fragment of

the modal μ-calculus. In Proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS’13). IEEE Computer

Society, 478–487.

Gaëlle Fontaine. 2008. Continuous fragment of the mu-calculus. In Proceedings of the Conference on Computer Science Logic
(CSL’08), Michael Kaminski and Simone Martini (Eds.), Lecture Notes in Computer Science, Vol. 5213. Springer, 139–153.

Gaëlle Fontaine and Yde Venema. 2018. Some model theory for the modal μ-calculus: Syntactic characterisations of semantic

properties. Logic. Methods Comput. Sci. 14, 1 (2018).

Erich Grädel, Wolfgang Thomas, and Thomas Wilke (Eds.). 2002. Automata, Logics, and Infinite Games: A Guide to Current
Research. Lecture Notes in Computer Science, Vol. 2500. Springer.

David Janin and Igor Walukiewicz. 1996. On the expressive completeness of the propositional μ-calculus with respect to

monadic second order logic. In Proceedings of the 7th International Conference on Concurrency Theory (CONCUR’96).
Springer-Verlag, London, UK, 263–277.

Christian Kissig and Yde Venema. 2009. Complementation of coalgebra automata. In Proceedings of the Conference on Algebra
and Coalgebra in Computer Science (CALCO’09), Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki (Eds.), Lecture

Notes in Computer Science, Vol. 5728. Springer, 81–96.

Orna Kupferman and Moshe Y. Vardi. 2003. Π2 ∩ Σ2 ≡ AFMC. In Proceedings of the International Colloquium on Automata,
Languages and Programming (ICALP’03). 697–713.

Andrzej Mostowski. 1957. On a generalization of quantifiers. Fundam. Math. 44, 1 (1957), 12–36. http://eudml.org/doc/

213418.

Andrzej Mostowski. 1991. Games with Forbidden Positions. Technical Report 78. University of Gdansk.

David E. Muller, Ahmed Saoudi, and Paul E. Schupp. 1992. Alternating automata, the weak monadic theory of trees and its

complexity. Theor. Comput. Sci. 97, 2 (1992), 233–244.

David E. Muller and Paul E. Schupp. 1987. Alternating automata on infinite trees. Theor. Comput. Sci. 54, 2–3 (1987), 267–276.

DOI:https://doi.org/10.1016/0304-3975(87)90133-2

Damian Niwiński. 1986. On fixed-point clones (extended abstract). In Proceedings of the International Colloquium on Au-
tomata, Languages and Programming (ICALP’86) Laurent Kott (Ed.), Lecture Notes in Computer Science, Vol. 226.

Springer, 464–473.

Michael O. Rabin. 1970. Weakly definable relations and special automata. In Proceedings of the Symposium on Mathematical
Logic and Foundations of Set Theory (SMLFST’70), Yehoshua Bar-Hillel (Ed.). North-Holland, 1–23.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/2603088.2603101
https://doi.org/10.1145/2603088.2603101
http://arxiv.org/abs/1809.03262
http://eudml.org/doc/213418
http://eudml.org/doc/213418
https://doi.org/10.1016/0304-3975(87)90133-2

The Power of the Weak 15:47

Eric Rosen. 1997. Modal logic over finite structures. J. Logic Lang. Inf. 6, 4 (1997), 427–439.

Balder ten Cate and Alessandro Facchini. 2011. Characterizing EF over infinite trees and modal logic on transitive graphs.

In Proceedings of the International Symposium on Mathematical Foundations of Computer Science (MFCS’11), Filip Murlak

and Piotr Sankowski (Eds.), Lecture Notes in Computer Science, Vol. 6907. Springer, 290–302.

Jouko Väänänen. 1977. Remarks on generalized quantifiers and second-order logics. In Set Theory and Hierarchy Theory.

Prace Naukowe Instytutu Matematyki Politechniki Wroclawskiej, Wroclaw, 117–123.

Johan van Benthem. 1977. Modal Correspondence Theory. Ph.D. Dissertation. Universiteit van Amsterdam.

Johan van Benthem. 2006. Modal frame correspondences and fixed-points. Stud. Logic. 83, 1–3 (2006), 133–155.

Yde Venema. 2014. Expressiveness modulo bisimilarity: A coalgebraic perspective. To appear in: A. Baltag and S. Smets

(eds.), Johan van Benthem on Logic and Information Dynamics. 33–65. DOI:10.1007/978-3-319-06025-5_2

Yde Venema. October 2012. Lectures on the modal μ-calculus. Lecture Notes, Institute for Logic, Language and Computa-

tion, University of Amsterdam.

Igor Walukiewicz. 1996. Monadic second order logic on tree-like structures. In Proceedings of the International Symposium
on Theoretical Aspects of Computer Science (STACS’96), Claude Puech and Rüdiger Reischuk (Eds.), Lecture Notes in

Computer Science, Vol. 1046. Springer, 401–413.

Igor Walukiewicz. 2002. Monadic second-order logic on tree-like structures. Theor. Comput. Sci. 275, 1–2 (2002), 311–346.

Fabio Zanasi. 2012. Expressiveness of Monadic Second Order Logics on Infinite Trees of Arbitrary Branching Degree. Master’s

thesis. ILLC, Universiteit van Amsterdam, the Netherlands.

Received September 2018; revised July 2019; accepted September 2019

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 15. Publication date: January 2020.

https://doi.org/10.1007/978-3-319-06025-5_2

