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Abstract. The closure ordinal of a μ-calculus formula ϕ(x) is the least
ordinal α, if it exists, such that, in any model, the least fixed point of ϕ(x)
can be computed in at most α many steps, by iteration of the meaning
function associated with ϕ(x), starting from the empty set. In this paper
we focus on closure ordinals of the two-way modal μ-calculus. Our main
technical contribution is the construction of a two-way formula ϕn with
closure ordinal ωn for an arbitrary n ∈ ω. Building on this construction,
as our main result we define a two-way formula ϕα with closure ordinal
α for an arbitrary α < ωω.

Keywords: Modal logic · Fixed points · Closure ordinals ·
Two-way μ-calculus

1 Introduction

The modal μ-calculus μML, introduced by Kozen [11] in the form known today,
is an extension of basic modal logic with explicit least- and greatest fixed point
operators. The addition of these operators significantly increases the expressive
power of the formalism, enabling it to deal with various forms of recursion, as
required by applications in for instance the area of program verification. In fact,
the modal μ-calculus was shown to be expressively complete with respect to
the bisimulation-invariant fragment of monadic second-order logic [10], and it
embeds many other logics such as pdl, ctl, and ctl∗. Despite this expressive
power, the modal μ-calculus has remarkably fine computational properties, such
as a quasi-polynomial model checking problem [3] and a satisfiability problem
that can be solved in exponential time [6].

In addition, the system admits a nice logical meta-theory: it has the finite
model property, uniform interpolation, and a decent model theory [5,8,12]. The
set of all valid μ-calculus formulas admits an elegant axiomatisation, which was
already introduced by Kozen in his original paper [11], and proved to be complete
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some years later by Walukiewicz [15]. Recently, a cut-free proof system was
introduced by Afshari and Leigh [2].

Over the years, the modal μ-calculus has developed into the ‘canonical’ or
‘universal’ modal fixed point logic. This status motivates the full development
of the meta-logical theory of the logic μML, and of its variants such as the two-
way μ-calculus, which features both forward- and backward modalities, to be
interpreted by the corresponding directions of the model’s accessibility relation.

A relatively recent line of research on the modal μ-calculus concerns its clo-
sure ordinals. For an introduction to this notion, consider a formula ϕ(x) (with
only positive occurrences of the variable x) and a Kripke model S = (S,R, V ). We
may define a monotone function ϕS

x : ℘(S) → ℘(S), which intuitively expresses
how in S the meaning of ϕ depends on the valuation of x. The formula μx.ϕ is
then interpreted in S as the least fixed point of this map ϕS

x – that is, as the least
subset L ⊆ S such that ϕS

x(L) = L – and the point is that this least fixed point
can be ‘computed’ by performing an iterative process involving the function ϕS

x.
Starting from the empty set, we define the following ordinal-indexed sequence
(ϕα

S
)α∈On of subsets of S:

ϕ0
S := ∅, ϕβ+1

S
:= ϕS

x(ϕβ
S
), ϕλ

S :=
⋃

β<λ

ϕS

x(ϕβ
S
),

where λ denotes an arbitrary limit ordinal. By monotonicity of the function ϕS
x,

the sequence (ϕα
S
)α∈On converges: there must be a least ordinal α such that

ϕα
S

= ϕα+1
S

. The element ϕα
S

of the sequence then coincides with the least fixed
point of ϕS

x so that we say that the function ϕS
x converges to its least fixed point

in α many steps.
The closure ordinal of a formula ϕ(x) is the least ordinal α such that the

function ϕS
x converges to its least fixed point in at most α many steps across

every model S, if such an ordinal exists. In other words, we are interested in
the least number of steps that a least fixed point formula needs to converge to
its meaning in every model. Not every formula will have a closure ordinal; for
instance, let Sα = (Sα, >) be the structure where Sα is the set of all ordinals
smaller than α and the accessibility relation is the converse order relation on
these ordinals. It is not hard to see that on this model, the formula �x needs
exactly α steps to converge to its least fixed point. Clearly then, this formula
does not have a closure ordinal across all models.

Intuitively, the closure ordinal of a formula is some measure of its complexity.
For instance, a (basic) modal logic formula ϕ(x) has a finite closure ordinal if
and only if μx.ϕ is definable in (basic) modal logic [14]. Another interesting
example is obtained if we involve the first infinite ordinal ω: call a formula ϕ(x)
constructive in x it has a closure ordinal α ≤ ω. The name ‘constructive’ is taken
loosely here, motivated by the observation that since ϕω

S
=

⋃
n<ω ϕn

S
in every

model, a formula ϕ(x) is constructive iff for each model S and for each point s
in S we only need finitely many iterations of the map ϕS

x in order to find out
whether s satisfies the formula μx.ϕ or not.
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Generally, there are many interesting questions to ask about closure ordinals,
and at this moment only few of these have been answered. In fact, it seems that
we can summarize our knowledge in one paragraph. Otto [14] proved that it
is decidable whether a modal μ-calculus formula can equivalently be expressed
in (basic) modal logic. As a corollary, we can also decide whether a formula of
modal logic has a finite closure ordinal. Czarnecki [4] showed how to construct a
formula ϕα with closure ordinal α for an arbitrary α < ω2. An interesting result
by Afshari and Leigh [1] confirms the intuition that closure ordinals are an
indication of the complexity of a formula: they proved that the closure ordinals
reached by formulas in the alternation-free fragment of the μ-calculus are all
smaller than the ordinal ω2. Gouveia and Santocanale [9] presented a formula
with closure ordinal ω1 and proved that closure ordinals are closed under ordinal
sum.

In this paper we contribute to the theory of closure ordinals by taking a look
at the two-way modal μ-calculus. After recalling the syntax and semantics of
the logic and providing some definitions concerning closure ordinals in Sect. 2,
in the following section we show how to define a formula ϕn with closure ordinal
ωn for every n ∈ ω (some of the technical proofs of this section are delayed to
the appendix of the paper). In Sect. 4 we build on this result by proving that
every ordinal smaller than ωω is a closure ordinal in the two-way setting. One
way to achieve this is via transferring a result by Gouveia and Santocanale [9] –
stating that the class of closure ordinals is closed under taking ordinal sum – to
the two-way setting. We also define, given a representation α = ωn · k1 + ωn−1 ·
k2 + . . . + ω · kn + kn+1 of an arbitrary ordinal α < ωω, an explicit formula ϕα

with closure ordinal α. We finish the paper with mentioning some questions for
further research.

Source. The results in this paper are taken from the MSc thesis [13], which was
written by the first author under the supervision of the second.

2 Preliminaries

Definition 1. The language μTML of the two-way modal μ-calculus is given by
the following grammar:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Fϕ | Pϕ | μx.ϕ

where p, x ∈ PROP and the formation of the formula μx.ϕ is subject to the con-
straint that the variable x is positive in ϕ, that is, every occurrence of x in ϕ is
under the scope of an even number of negations.

We can define 	, ∧ and the box operators by letting Gϕ := ¬F¬ϕ and Hϕ :=
¬P¬ϕ, as well as the greatest fixed point operator as νx.ϕ := ¬μx.¬ϕ(¬x). The
intended interpretation of a formula Fϕ is ‘ϕ is true at some (one-step) future
state’, while that of Pϕ is ‘ϕ is true at some (one-step) past state’.
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Formulas of this language will be interpreted in two-way models. These can
be defined as Kripke models featuring a pair of accessibility relations that are
each other’s converse, where we recall that the converse of a relation R is the
relation R−1 := {(s, t) | (t, s) ∈ R}. It will be more convenient to simply identify
two-way models with standard Kripke models with one single relation, and make
sure that the diamonds F and P access this relation in its two different directions.

Definition 2. A Kripke model is a triple S = (S,R, V ) where S, the domain or
underlying set, is a set of points or states, R is a binary relation on S, and V
is a valuation on S, that is, a function V : PROP → ℘(S).

Given a model S = (S,R, V ), a propositional variable x and a subset X ⊆ S,
we define V [x �→ X] as the valuation given by V [x �→ X](p) = X if p = x,
and V [x �→ X](p) = V (p) otherwise. We denote the model (S,R, V [x �→ X]) by
S[x �→ X].

Given a subset S′ ⊆ S, the submodel of S induced by S′ is the model S′ =
(S′, R′, V ′), where R′ = R ∩ (S′ × S′) and V ′(p) = V (p) ∩ S′ for all p ∈ PROP.

We now inductively define the meaning of a formula ϕ in a model S as the
set of states where this formula is true, or satisfied. At the same time we define
the function ϕS

x, which intuitively expresses how in S the meaning of the formula
ϕ varies depending on the meaning of the variable x.

Definition 3. Given a μTML-formula ϕ and a model S = (S,R, V ), we define the
meaning [[ϕ]]S of ϕ in S, together with the function ϕS

x : ℘(S) → ℘(S) mapping
a subset X ⊆ S to [[ϕ]]S[x�→X], by the following simultaneous induction:

[[⊥]]S = ∅, [[p]]S = V (p),
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S, [[¬ϕ]]S = S\[[ϕ]]S,
[[Fϕ]]S = {s ∈ S | R[s] ∩ [[ϕ]]S �= ∅}, [[Pϕ]]S = {s ∈ S | R−1[s] ∩ [[ϕ]]S �= ∅},
[[μx.ϕ]]S =

⋂{U ⊆ S | ϕS
x(U) ⊆ U},

where R[s] := {t ∈ S | (s, t) ∈ R} and similarly for R−1. For an element s ∈ S
we write S, s � ϕ if s ∈ [[ϕ]]S.

Let ϕ ∈ μTML be a formula in which the variable x occurs only positively
and let S be a model. By induction on ϕ one can prove that ϕS

x : ℘(S) →
℘(S) is a monotone operation. Consequently, by the Knaster-Tarski theorem
we obtain that [[μx.ϕ]]S is the least fixed point of ϕS

x, denoted by LFP.ϕS
x. As

we saw in the introduction, the meaning of μx.ϕ in a model S can also be
computed by performing an iteration of the function ϕS

x starting from the empty
set, resulting in the ordinal-indexed sequence (ϕα

S
)α∈On. When the model S is

clear from context we will write ϕα instead of ϕα
S
; we shall also exclusively take

x as the fixed point variable of the formulas that we are looking at, so that we
need not mention this explicitly in the sequel.

In this paper we are interested in the number of times we need to iterate the
function ϕα

S
before we reach its least fixed point.
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Definition 4. Let ϕ(x) be a formula which is positive in x. Then for a Kripke
model S, we let γx(ϕ,S) denote the closure ordinal of ϕ in S with respect to x,
that is, the least ordinal α such that ϕα

S
= ϕα+1

S
.

The closure ordinal of ϕ with respect to the variable x is the least ordinal α
such that γx(ϕ,S) ≤ α for every model S, if it exists. If α is the closure ordinal
of some (two-way) formula, we say that α is a (two-way) closure ordinal.

When proving results about closure ordinals an equivalent characterisation,
given in Proposition 1, is often useful.

Proposition 1. An ordinal α is the closure ordinal of ϕ(x) if and only if (1)
γx(ϕ,S) ≤ α for every model S and (2) γx(ϕ,S) = α for some model S.

Proof. The only nontrivial observation in the proof concerns the case, in the
direction from left to right, where the closure ordinal α of ϕ is a limit ordinal.
In order to prove (2), let B be the set of ordinals β < α for which there is a
model Sβ with γx(ϕ,Sβ) = β. This set must be cofinal in α, and it is then easy
to show that if we take S to be the disjoint union of the collection {Sβ | β ∈ B},
we find γx(ϕ,S) = α as required.

Example 1. The closure ordinal of ϕ := (G⊥ ∨ Fx) is ω. It is not hard to prove
that γx(ϕ,S) ≤ ω for every model S, and that ϕ converges to its least fixed
point in exactly ω steps in the model S depicted in Fig. 1. Indeed, one can show
that ϕn = {m ∈ ω | m < n} for all n ∈ ω: the iteration of ϕ in S traverses
the ordinal ω by adding each finite ordinal to the iteration, one by one. After ω
many steps in the iteration we observe that ϕω =

⋃
n<ω ϕn = {0, 1, 2, . . .} = ω

and ϕω+1 = ϕS
x(ϕω) = ϕω, so that the iteration converges in exactly ω steps.

0 1 2 3

Fig. 1. Model where G⊥ ∨ Fx converges in ω many steps

3 Two-Way Formulas: Closure Ordinal ωn

In this section we define a two-way formula ϕn with closure ordinal ωn for an
arbitrary n ∈ ω. We first need to define colours, which are essentially conjunc-
tions of literals as specified in the next definition.

Definition 5. Fix a subset {qi | i ∈ ω} of propositional variables. For every 0 <
n < ω we define the colour cn as the conjunction of literals cn :=

∧
0<i<n ¬qi∧qn.

For example, c1 = q1 and c2 = ¬q1 ∧ q2. Clearly, ci ∧ cj ≡ ⊥ for every i �= j.
We now define, for all 0 < n < ω, a two-way formula ϕn.
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0 c1

1
c1

2
c1

3

c2ω c1

ω + 1
c1

ω + 2
c1

ω + 3

c2ω · 2 c1

ω · 2 + 1
c1

ω · 2 + 2
c1

ω · 2 + 3

Fig. 2. Model corresponding to ω2

Definition 6. By induction on i ∈ ω we define the formulas π∞
i as follows:

π∞
0 := 	,

π∞
i+1 := νyi+1.(P (yi+1 ∧ ci+1) ∧ π∞

i ).

For all n ∈ ω let ϕn be the formula

ϕn := G⊥ ∨ (c1 ∧ Fx) ∨
n∨

i=2

(ci ∧ π∞
i−1 ∧ F (νy.P (y ∧ x ∧ ci−1))).

Example 2. Consider the formula

ϕ2 = G⊥ ∨ (c1 ∧ Fx) ∨ (c2 ∧ π∞
1 ∧ F (νy.P (y ∧ x ∧ c1)))

and the model S depicted in Fig. 2, consisting of ω many copies of ω, thus
intuitively corresponding to the ordinal ω2.

The formula ϕ2 crucially involves the formula νy.P (y∧x∧c1), which expresses
the existence of an infinite R−1-path of points where x and c1 are always true
starting from the R−1-next state, and which allows the iteration to move from
a copy of ω to the next, as we shall now see. The iteration of ϕ2 in this model
starts similarly as the one in Example 1, by including the state 0 through the
disjunct G⊥ and then adding, one by one, each state labelled with a finite ordinal
through the disjunct (c1∧Fx). After ω many steps in the iteration we have ϕω =
{0, 1, 2, . . .} = ω, so that every state labelled with a finite ordinal is inside the
iteration. Now it holds that S[x �→ ϕω], ω � (c2∧π∞

1 ∧F (νy.P (y∧x∧c1))), so that
ϕω+1 = [[ϕ]]S[x�→ϕω ] = ω∪{ω}: the state ω is added to the iteration. The iteration
continues through the disjunct (c1 ∧ Fx), with ϕω+n = ω ∪ {ω, . . . , ω + (n − 1)},
arriving at ϕω·2 = ω ∪ {ω, ω + 1, ω + 2, . . .}, at which point the state ω · 2 will
satisfy (c2 ∧ π∞

1 ∧ F (νy.P (y ∧ x ∧ c1))), and so on. The iteration will progress in
a similar way, traversing all the copies of ω and converging in exactly ω2 steps.
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The following example concerns the formulas of shape π∞
i that appear as sub-

formulas of ϕn. These formulas will make sure that the models of ϕn have a par-
ticular grid-like shape: we will need that whenever a state s in a model makes
ϕn true and has colour ci, then this state is the starting point of an infinite
R−1-path of points where ci−1 is always true, and from every point on this path
an infinite R−1-path starts of points where ci−2 is always true, and so on.

Example 3. Consider for instance

π∞
3 = νy3.(P (y3 ∧ c3) ∧ νy2.(P (y2 ∧ c2) ∧ νy1.(P (y1 ∧ c1) ∧ 	))).

This formula expresses the existence of an infinite R−1-path t0t1t2 . . . such that
(i) c3 is true at every ti with i > 0; (ii) every ti makes νy2.(P (y2∧c2)∧νy1.P (y1∧
c1)) true, so from each ti there is an infinite R−1-path u0u1u2 . . . where u0 = ti
and c2 is true at every uj with j > 0; (iii) every uj makes νy1.P (y1 ∧ c1) true,
so from each uj there exists a R−1-path v0v1 . . ., with v0 = uj , such that c1 is
true at vk for every k > 0. For example, the point 0 in the model of Fig. 3 makes
π∞

3 true (as does every state of the form ω2 · n for n ∈ ω).

0 c1 c1 c1

c2ω c1 c1 c1

c2ω · 2 c1 c1 c1

c3

ω2

c3

ω2 · 2

c1 c1 c1

c2 c1 c1 c1

c2 c1 c1 c1

Fig. 3. Model corresponding to ω3

Example 4. As a further example, consider the formula

ϕ3 = ϕ2 ∨ (c3 ∧ π∞
2 ∧ F (νy.P (y ∧ x ∧ c2)))

and the model pictured in Fig. 3, which consists of ω many copies of the model
from Fig. 2, each attached to a state of the infinite path 0R−1ω2R−1ω2 · 2 . . ..
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The iteration of ϕ3 in this model starts similarly as the one in Example 2, but
after ω2 many steps, when the first copy of ω2 is inside the approximating set
ϕω2

, the state ω2 will satisfy the disjunct (c3 ∧ π∞
2 ∧ F (νy.P (y ∧ x ∧ c2))) of

ϕ3, so that the iteration will move to the second copy of ω2 and continue in an
analogous way, with convergence in exactly ω3 steps.

The last example also suggests a recipe for constructing a model where the
formula ϕn converges in exactly ωn steps. For n = 4, we could take an infinite
R−1-chain of c4-states, where to each such state is attached a copy of ω3 (that
is, a copy of the model of Fig. 3): the disjunct (c4 ∧ π∞

3 ∧ F (νy.P (y ∧ x ∧ c3)))
of the formula ϕ4 would allow the iteration to move between the copies of ω3,
exactly as the disjunct (c3 ∧π∞

2 ∧F (νy.P (y∧x∧c2))) of ϕ3 allowed the iteration
to move from a copy of ω2 to the next. For n = 5 we could consider an infinite
R−1-chain of c5-states, where to each such state is attached a copy of the model
we have just described, and so on.

Lemma 1. Let 0 < n < ω be a finite ordinal. Then there is a model S where
γx(ϕn,S) = ωn.

Up to this point we have only focused on one of the two conditions that the
ordinal ωn must satisfy in order to qualify as the closure ordinal of ϕn, namely
the one concerning convergence in exactly ωn steps in some model. It is less
intuitive to see why ωn should be an upper bound for the number of steps in
the iteration of ϕn in an arbitrary model. Indeed, the previous models present
a particular grid-like structure, which allows the iteration to progress in a very
controlled way: if a state is added to the iteration at some step α, then the chain
of c1-states attached to it is included in the iteration in at most ω more steps,
the chain of c2-states attached to it is included in the iteration in at most ω2

more steps, and the chain of c3-states attached to it is included in the iteration
in at most ω3 more steps (in case these chains exist). This is formulated in a
more general way in the next lemma, which states that if we have an infinite
R−1-path of ci-states presenting the desired grid-like structure (that is, each
satisfying π∞

i−1) and the first state of this path belongs to the approximating set
ϕα

n, then all the states of the path will be inside the iteration after at most ωi

more steps. Put differently, if a state t0 in a model satisfies π∞
i and is in the

approximating set ϕα
n, then all the states forming the R−1-path that witnesses

the truth of π∞
i at t0 will belong to ϕα+ωi

n .

Lemma 2. Let S = (S,R, V ) be a model and let n ∈ ω. For 1 ≤ i ≤ n, let
t0t1t2 . . . be an infinite R−1-path such that

S, t0 � π∞
i−1 and, for all j > 0,S, tj � ci ∧ π∞

i−1.

Then, for any ordinal α: if t0 ∈ ϕα
n then tj ∈ ϕα+ωi−1·j+1

n for all j ∈ ω.

In order to make sure that something similar also happens in an arbitrary
model, the presence in ϕn of the subformulas π∞

i+1’s from Definition 6 is neces-
sary: by the definition of ϕn, if a state s in a model S satisfies (ϕn ∧ ci ∧ F	),
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then it must also satisfy π∞
i−1, so that the model S will present the desired grid-

like structure. This fact and Lemma 2 are essential for proving that indeed ϕn

converges to its least fixed point in at most ωn steps in every model.

Lemma 3. For an arbitrary model S and 0 < n < ω: γx(ϕn,S) ≤ ωn.

By Proposition 1, and the Lemmas 1 and 3, the following is immediate.

Theorem 1. For all 0 < n < ω, the two-way closure ordinal of ϕn(x) is ωn.

The proofs of all the statements of this section can be found in the appendix.

4 Two-Way Formulas: Closure Ordinals Below ωω

This section is devoted to the main result of our paper, stating that every ordinal
below ωω is a closure ordinal in the two-way setting. In the next subsection we
transfer a result by Gouveia and Santocanale [9] to the two-way setting. That
is, we show that for two-way formulas ϕ0(x) and ϕ1(x) with closure ordinals
α0 and α1, respectively, we can define a two-way formula ψ(x) with closure
ordinal α0 + α1. From this observation and Theorem1, our main result follows,
since every ordinal α below ωω can be written as a finite sum of ordinals of
the form ωn. In the following subsection we improve on this result by defining,
for an arbitrary ordinal α < ωω, an explicit two-way formula ϕα with closure
ordinal α.

4.1 Two-Way Formulas: Sum of Ordinals

In the introduction we already mentioned that Gouveia and Santocanale showed
the class of closure ordinals to be closed under taking ordinal sums [9]. We will
now see that their result also holds in the two-way setting.

Theorem 2. There is an effective construction transforming a pair of two-way
formulas ϕ0(x) and ϕ1(x) into a formula ψ such that, if ϕ0(x) and ϕ1(x) have
closure ordinals α0 and α1, respectively, then ψ(x) has closure ordinal α0 + α1.

Our proof follows the approach from [9], but we provide some proof details
here in order to keep our presentation self-contained, and because we can make
some simplifications in the two-way setting. We confine ourselves to a proof
sketch, focusing on intuitions rather than on technicalities. One concept we will
need is that of a strong closure ordinal.

Definition 7. An ordinal α is a strong closure ordinal for a (two-way) μ-
calculus formula ϕ(x) if γ(ϕ,S) ≤ α for all models S, while there is a model
S = (S,R, V ) such that

S = [[μx.ϕ]]S = ϕα
S and ϕα

S �= ϕβ
S

for every β < α.

Proposition 2. If α is the two-way closure ordinal of some formula ϕ(x), then
it is a strong closure ordinal for the formula ϕ̂(x) := (μx.ϕ) → ϕ(x ∧ μx.ϕ).
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Proof. As in [9] the key observation is that in any model S = (S,R, V ) we have

ϕ̂γ
S

= (S \ LFP.ϕS

x) ∪ ϕγ
S
,

for any γ ≥ 1—this claim can be proved by a straightforward transfinite
induction. Consequently, for γ = α we obtain ϕ̂α

S
= (S \ LFP.ϕS

x) ∪ ϕα
S

=
(S \ LFP.ϕS

x) ∪ LFP.ϕS
x = S.

We now turn to the proof of Theorem2. Throughout this subsection we let
ϕ0(x) and ϕ1(x) be two-way formulas with closure ordinals α0 and α1, respec-
tively. Our aim is to define a two-way formula ψ(x) with closure ordinal α0 +α1.
Because of Proposition 2 we may without loss of generality assume that α0 is a
strong closure ordinal for ϕ0.

The idea underlying the definition of ψ(x) is that in any model S, in order to
calculate the least fixed point of ψ(x), one may first focus on ϕ0 and then move
on to ϕ1. More precisely, with each model S = (S,R, V ) we will associate two
submodels S0 and S1 such that

γ(ψ,S) ≤ γ(ϕ0,S0) + γ(ϕ1,S1). (1)

This implies that ψ has a closure ordinal β indeed, and that β ≤ α0 + α1. To
prove that β ≥ α0 + α1 we will employ a special model S such that, for each i,
Si is a model witnessing that αi is a strong closure ordinal for ϕi.

For the details of the construction of the submodels S0 and S1, note that the
formula ψ will use one fresh variable p (so that in particular, p occurs neither
in ϕ0 nor in ϕ1), and write PROPp = PROP ∪ {p}. Now, given a PROPp-model
S = (S,R, V ), we define S0 = S \ V (p) and S1 = V (p), and for i = 0, 1 let Si be
the submodel of S induced by the set Si (and with Vi restricted to the set PROP).

Syntactically, we need the following definition.

Definition 8. Let p /∈ PROP be a fresh variable and set p0 := ¬p and p1 := p.
For i ∈ {0, 1} we define the restriction of ϕ to pi as follows:

tri(y) := pi ∧ y tri(ψ0 ∧ ψ1) := tri(ψ0) ∧ tri(ψ1)
tri(¬y) := pi ∧ ¬y tri(ψ0 ∨ ψ1) := tri(ψ0) ∨ tri(ψ1)
tri(⊥) := ⊥ tri(Fψ) := pi ∧ F (pi ∧ tri(ψ))
tri(	) := pi tri(Gψ) := pi ∧ G(pi → tri(ψ))
tri(μz.ψ) := μz.tri(ψ) tri(Pψ) := pi ∧ P (pi ∧ tri(ψ))
tri(νz.ψ) := νz.tri(ψ) tri(Hψ) := pi ∧ H(pi → tri(ψ))

We need the following properties of these restriction formulas.

Proposition 3. Let ϕ(x) be a formula in the two-way μ-calculus and let S =
(S,R, V ) be an arbitrary model. Then for i = 0, 1 we have

1. [[tri(ϕ)]]S = [[ϕ]]Si

2. with x free in ϕ, (tri(ϕ))α
S

= ϕα
Si

, for every ordinal α.



508 G. C. Milanese and Y. Venema

We are now ready for the definition of the formula ψ(x). Consider the fol-
lowing formulas (which are somewhat simpler than the corresponding one-way
formulas of [9]):

ψ0 := ¬p ∧ tr0(ϕ0)(x)
ψ1 := p ∧ tr1(ϕ1)(x) ∧ G(¬p → x)
ψ(x) := ψ0(x) ∨ ψ1(x).
To compute the least fixed point of the formula ψ(x) on an arbitrary model

S, first consider its disjunct ψ0(x) = ¬p ∧ tr0(ϕ0)(x). By Proposition 3 we may
think of the computation of its least fixed point as taking place in the ¬p-part
S0 of S, parallel to that of μx.ϕ0 in S0, and so this computation finishes after
γ(ϕ0,S0) steps. Similarly, the iterative process approximating the least fixed
point of the formula ψ′

1 := p ∧ tr0(ϕ1)(x) can be fully executed in the p-part S1

of S, and this computation would finish after γ(ϕ1,S1) steps. The formula ψ1(x),
however, has an additional conjunct, viz., the formula G(¬p → x); this ensures
that a point in S1 will only be included in an approximating set ψα+1 if each
of its successors in S0 has been included in the set ψα. As a consequence, the
computation of the S1-part of the least fixed point of ψ(x) need not be (fully)
operational before the computation of the S0-part is completed. Nevertheless,
once the latter computation has terminated indeed, the conjunct G(¬p → x)
evaluates to true in every state in S1, and so from that moment on at most
γ(ϕ1,S1) steps are needed to finish the computation of [[μx.ψ]]S. This finishes a
proof sketch of the statement (1).

It remains to provide a model S where the closure ordinal of ψ(x) is actually
identical to α0 + α1. For this purpose, consider two models S0 and S1 such that
γ(ϕi,Si) = αi for i = 0, 1. Additionally, we require that [[μx.ϕ0]]S0 = S0—such
a model exists by our assumption that α0 is a strong closure ordinal for ϕ0.
Now take the disjoint union of S0 and S1, add an arrow from every state of S1

to every state of S0, and set V (p) := S1. Call the resulting model S; it is easy
to see that this definition does not cause notational confusion, since the models
S0 and S1 are identical to the submodels of S induced by the sets S0 = [[¬p]]S

and S1 = [[p]]S, respectively. The crux of this construction is that in the model
S, because every state s in S1 has the full set S0 among its successors, and we
need exactly α0 steps to get all S0-points in the least fixed point of ψ, we can
only start adding S1-states to the least fixed point of ψ(x) after we have added
all S0-states, that is, at stage α0 + 1. It is then not hard to see that another
α1 steps are needed to include all S1-states, so that all in all we need exactly
α0 + α1 steps for ψ(x) to converge. This shows that the closure ordinal of the
formula ψ(x) is α0 + α1 indeed.

4.2 An Explicit Formula for Every Ordinal Below ωω

In this section we shall provide, for every ordinal α < ωω, an explicit two-way
formula ϕα with closure ordinal α.

In the case α is finite, it is not hard to see that n is the closure ordinal of
ϕn := (Gx ∧ Gn⊥) for every n ∈ ω, so that in the sequel we confine attention to
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the infinite case. Recall that every ordinal α with ω ≤ α < ωω can be written in
a unique normal form

α = ωn · k1 + ωn−1 · k2 + . . . + ω · kn + kn+1 (2)

for some finite ordinals n, k1, . . . , kn+1 with n, k1 > 0. We may then use the
Theorems 1 and 2 to construct, for every such ordinal α, an explicit two-way
formula taking α as its closure ordinal.

Alternatively, in Definition 11 below we provide a different two-way formula
ϕα with closure ordinal α; this definition is directly based on the normal form
(2). In order to achieve this, we need to define a second set of colours.

Definition 9. Fix a subset {pi | i ∈ ω} of propositional variables that is disjoint
from the set {qi | i ∈ ω} from Definition 5. For every 0 < n < ω we define the
colour fn as the conjunction of literals fn :=

∧
0<i<n ¬pi ∧ pn.

Definition 10. For every i, k ∈ ω we define a formula π∞
i,k inductively on i as

follows:

π∞
0,k := fk

π∞
i+1,k := νyi+1.(P (yi+1 ∧ ci+1 ∧ fk ∧ Gfk) ∧ π∞

i ).

We finally state the definition of the formula ϕα.

Definition 11. For n, k ∈ ω define the formulas

ϕ(n,k) := (Fx ∧ c1 ∧ fk ∧ Gfk)∨
n∨

i=2

(ci ∧ fk ∧ Gfk ∧ π∞
i−1,k ∧ F (νy.fk ∧ P (y ∧ x ∧ Gfk ∧ ci−1))),

χk := (Gx ∧ fk+1 ∧ Gfk).

Now let, for n > 0, α = ωn ·k1 +ωn−1 ·k2 + . . .+ω ·kn +kn+1. For all 0 ≤ m ≤ n

define k(−→m) :=
m∑

i=0

ki, where we let k0 := 0. The formula ϕα is defined by letting

ψ :=
kn+1−1∨

i=0

(Gx ∧
i∧

j=0

Gjfk(−→n )+1 ∧ Gi+1fk(−→n )),

ϕα := G⊥ ∨
k(−→n )−1∨

k=1

χk ∨
n−1∨
m=0

(
k(

−−−→
m+1)∨

k=k(−→m)+1

ϕ(n−m,k)

)
∨ ψ.

Example 5. Consider the formulas

ϕ(2,i) := (Fx ∧ c1 ∧ fi ∧ Gfi)∨
(c2 ∧ fi ∧ Gfi ∧ π∞

1,i ∧ F (νy.fi ∧ P (y ∧ x ∧ Gfi ∧ c1))),

ϕω2·2 := G⊥ ∨ (Gx ∧ f2 ∧ Gf1) ∨ ϕ(2,1) ∨ ϕ(2,2)
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0 c1 c1

c2 c1 c1

c2 c1 c1

0 c1 c1

c2 c1 c1

c2 c1 c1

f1 f2

Fig. 4. Model corresponding to ω2 · 2

and a model S consisting of two submodels S1 and S2, both copies of the model
of Fig. 2, such that from the point corresponding to 0 in S2 there is an arrow
to every state of S1, and moreover S1 = [[f1]]S1 and S2 = [[f2]]S2 , as shown in
Fig. 4. The colours f1 and f2 work similarly as the fuses used by Czarnecki in [4]:
these force the iteration of ϕω2·2 to first traverse the f1-copy S1 of ω2 through
the disjuncts G⊥ and ϕ(2,1), then move to the state 0 of the f2-copy S2 of ω2

through the disjunct (Gx ∧ f2 ∧ Gf1), and finally traverse all S2 through the
disjunct ϕ(2,2).

Theorem 3 below states that the two-way formula ϕα has closure ordinal α
indeed. Due to space limitations, we have to omit the rather tedious proof; the
interested reader can find the details in [13].

Theorem 3. For every ordinal α with ω ≤ α < ωω, the two-way closure ordinal
of ϕα is α.

5 Further Research

The research regarding closure ordinals of the μ-calculus has barely scratched
the surface, and many questions remain open. We point out some possible future
research lines.

Generally, we would like to understand better which ordinals feature as clo-
sure ordinals, and which ones don’t. In particular, is there a two-way formula
with closure ordinal at least ωω? Is there a standard (i.e., ‘one-way’) formula
with a countable closure ordinal α at least ω2? The approach taken here does
not seem to work in the one-way setting—we refer to [13] for the details.

Another research direction involves decidability results. Given a formula
ϕ(x), is it decidable whether it has a closure ordinal, and can this be read off
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from its syntactic shape? Given an ordinal α, is it decidable whether a formula
has closure ordinal α?

A more specific question concerns the number of proposition letters that is
needed to characterize closure ordinals. In our approach we need an infinite set
of atomic propositions to capture all ordinals below ωω. It is an interesting
question to see whether this can be done with a finite set as well. We conjecture
that this is indeed the case, by replacing the colors and fuses of Definition 11 by
suitably chosen (basic) two-way formulas.1

Gouveia and Santocanale proved that closure ordinals are closed under ordi-
nal sum [9] and we have transferred this result to the two-way setting. Is the class
of closure ordinals closed under other ordinal operations as well, such as multi-
plication? Conversely, one may ask whether the formulas ϕ∨ψ,ϕ∧ψ,ϕ[ψ/x], . . .
have a closure ordinal whenever ϕ(x) and ψ(x) do.2

Finally, we mentioned the property of constructivity in the introduction. An
interesting research direction involves the relationship between this property and
that of continuity, where a formula ϕ(x) is said to be (Scott) continuous in the
variable x if, for an arbitrary model S: S, s � ϕ iff S[x �→ V (p) ∩ F ], s � ϕ, for
some finite subset F ⊆ S. In particular, the second author [7,8] has formulated
the question whether for every formula ϕ(x) that is constructive in x one may
find some formula ψ(x) that is continuous in x, and equivalent to ϕ(x) ‘modulo
an application of the least fixed point operator’ (i.e., such that μx.ϕ ≡ μx.ψ).
Some evidence supporting a positive answer can be found in [8,13].

A Proof of the Main Result in Section 3

The statement of Theorem 1 from Sect. 3 is a direct consequence of the following
lemmas.

Lemma 1. Let 0 < n < ω be a finite ordinal. Then there is a model S where
γx(ϕn,S) = ωn.

Proof. For the rest of the proof we adopt the following notation: since every
ordinal α < ωn can be written as ωn−1 · k1 + . . . + ω · kn−1 + kn, we also denote
α as (k1, . . . , kn). From now on, if we write α = (k1, . . . , kn) we mean that
α = ωn−1 · k1 + . . . + ω · kn−1 + kn. Also, if a tuple (k1, . . . , kn) is of the form
(k1, . . . , ki, 0, . . . , 0), we mean that kj = 0 for i + 1 ≤ j ≤ n.
Fix n > 0 and let ϕ := ϕn as an abbreviation. We define S = (S,R, V ) to be the
model where:

– S := ωn = {(k1, . . . , kn) | kj ∈ ω};
– R :=

⋃
1≤i≤n

{((k1, . . . , ki + 1, 0, . . . , 0), (k1, . . . , ki, 0, . . . , 0)) | kj ∈ ω};

– for 1 ≤ i ≤ n, V (qi) := {(k1, . . . , kn−i+1 + 1, 0, . . . , 0) | kj ∈ ω}.

1 This suggestion was raised by one of the referees.
2 One of the reviewers pointed out that the formulas p ∧ �(¬p ∧ x) and ¬p ∧ �(p ∧ x)
both have closure ordinals, but their disjunction, behaving similarly to the formula
�x, does not.
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Note that R[(0, . . . , 0)] = ∅ and that (0, . . . , 0) falsifies qi for every 1 ≤ i ≤ n.
Before proving the key claim we make an observation about notation. Note

that an ordinal β < ωn can both be seen as an element β ∈ S = ωn of the model
and as a subset β = {γ | γ < β} ⊆ S = ωn. To avoid confusion, until the end of
the proof we write β when we consider it as an element of the domain, and Sβ

when we consider it as a subset of the domain (Sβ = β holds in any case).

Claim. For every α < ωn, ϕα = Sα.

Proof of Claim. The proof goes by induction on α. The case for α = 0 is imme-
diate. If α is a limit ordinal, then ϕα =

⋃
β<α ϕβ =IH

⋃
β<α Sβ = Sα.

Now suppose that α = β + 1. We want to show that ϕβ+1 = Sβ+1. We have
that ϕβ+1 = ϕS

x(ϕβ) =IH ϕS
x(Sβ): we show

ϕS

x(Sβ) = Sβ+1. (3)

For the ⊇ inclusion of (3) it suffices to show that S[x �→ Sβ ], β � ϕ, since
Sβ+1 = Sβ ∪ {β} and Sβ = ϕβ ⊆ ϕβ+1 = ϕS

x(ϕβ). If β = 0 = (0, . . . , 0) we are
done. If β = (k1, . . . , kn + 1), then β ∈ V (q1) and (k1, . . . , kn) ∈ Sβ ∩ R[β], so
S[x �→ Sβ ], β � c1 ∧ Fx and β ∈ ϕS

x(Sβ).
Otherwise let β = (k1, . . . , ki + 1, 0, . . . , 0) for some 1 ≤ i < n, so that

β ∈ V (qn−i+1). Note that

(k1, . . . , ki, k, 0, . . . , 0) ∈ Sβ for all k ∈ ω,

(k1, . . . , ki, 0, 0, . . . , 0) ∈ R[β] and
(k1, . . . , ki, k, 0, . . . , 0) ∈ R[(k1, . . . , ki, k + 1, 0, . . . , 0)] ∩ V (qn−i) for all k > 0.

By construction of the model β � π∞
n−i also holds: then S[x �→ Sβ ], β � cn−i+1 ∧

π∞
n−i ∧ F (νy.P (x ∧ y ∧ cn−i)), so β ∈ ϕS

x(Sβ).
Now we move to the ⊆ inclusion of (3). Let γ ∈ ϕS

x(Sβ). We want to show
that γ ∈ Sβ+1. Since S[x �→ Sβ ], γ � ϕ holds, we proceed by case distinction as to
which disjunct of ϕ is satisfied by γ. If γ � G⊥ then γ = 0 ∈ Sβ+1. If γ � c1∧Fx,
then γ ∈ V (q1), so that γ = (k1, . . . , kn + 1) and γ′ = (k1, . . . , kn) ∈ R[γ] ∩ Sβ :
as γ′ ∈ Sβ , then γ = γ′ + 1 ∈ Sβ+1.

Now suppose γ � ci ∧ π∞
i−1 ∧ F (νy.P (y ∧ x ∧ ci−1)) for some 2 ≤ i ≤ n. Then

γ ∈ V (qi), so γ = (k1, . . . , kn−i+1 + 1, 0, . . . , 0). For j ∈ ω let

δj := (k1, . . . , kn−i+1, j, 0, . . . , 0).

By construction δ0 ∈ R[γ] and δj ∈ R[δj+1] for all j ≥ 0. Since S[x �→ Sβ ], γ �
ci ∧ π∞

i−1 ∧ F (νy.P (y ∧ x ∧ ci−1)) then δj ∈ Sβ for all j > 0. Hence

β > (k1, . . . , kn−i+1, j, 0, . . . , 0) for all j > 0,

implying β ≥ (k1, . . . , kn−i+1 + 1, 0, . . . , 0) = γ, so γ ∈ Sβ+1. �
Now that we have the claim, it follows that there is a γ ∈ ϕωn\ϕβ for each
β < ωn.
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Proposition 4. For all m,n ∈ ω, if m ≥ n, then π∞
m |= π∞

n . Moreover, if S is
a model, S, s � π∞

m for some state s, and t0t1 . . . is an R−1-path witnessing the
truth of π∞

m at s, then tj � π∞
m for all j ∈ ω.

Lemma 2. Let S = (S,R, V ) be a model and let n ∈ ω. For 1 ≤ i ≤ n, let
t0t1t2 . . . be an infinite R−1-path such that

S, t0 � π∞
i−1 and, for all j > 0,S, tj � ci ∧ π∞

i−1.

Then, for any ordinal α: if t0 ∈ ϕα
n then tj ∈ ϕα+ωi−1·j+1

n for all j ∈ ω.

Proof. We prove the statement by induction on 1 ≤ i ≤ n.
As the base case take i = 1, so that by assumption we have an infinite

R−1-path t0t1t2 . . . such that S, tj � c1 for all j > 0. Let t0 ∈ ϕα
n. We want to

show that, for all j ∈ ω, tj ∈ ϕα+j+1
n : we prove this by induction on j ∈ ω.

If j = 0, then t0 ∈ ϕα
n ⊆ ϕα+1

n . Next, inductively assume that tj ∈ ϕα+j+1
n :

then, since tj ∈ R[tj+1], it follows that S[x �→ ϕα+j+1
n ], tj+1 � (c1 ∧ Fx), so

tj+1 ∈ ϕ
α+(j+1)+1
n .

For the inductive step assume that the statement holds for i. We prove it for
i+1, where i < n. Suppose then that t0t1t2 . . . is an infinite R−1-path such that
t0 � π∞

i and for all j > 0, tj � ci+1 ∧ π∞
i . Let t0 ∈ ϕα

n. We want to show that

for every j ∈ ω, tj ∈ ϕα+ωi·j+1
n .

The proof of this last statement goes by induction on j ∈ ω. The base case with
j = 0 follows immediately, as by assumption t0 ∈ ϕα

n.
Now suppose that tj ∈ ϕα+ωi·j+1

n : we show that tj+1 ∈ ϕ
α+ωi·(j+1)+1
n . By

assumption tj ∈ R[tj+1] and tj � π∞
i , which in particular means that there

is an infinite R−1-path u0u1 . . . (with u0 = tj) such that, for all k > 0, uk �
ci. But then this path satisfies the conditions of the inductive hypothesis: by
Proposition 4, since u0 � π∞

i , then u0 � π∞
i−1, and for every k > 0, uk � ci∧π∞

i−1.
Then, by inductive hypothesis, since u0 = tj ∈ ϕα+ωi·j+1

n it follows that, for
every k ∈ ω, uk ∈ ϕα+ωi·j+1+ωi−1·k+1

n . Since for all k ∈ ω it holds that

ωi · j + 1 + ωi−1 · k + 1 < ωi · j + 1 + ωi (as ωi−1 · k + 1 < ωi for i > 0)

= ωi · j + ωi (1 + ωi = ωi for i > 0)

= ωi · (j + 1)

then also

α + ωi · j + 1 + ωi−1 · k + 1 < α + ωi · (j + 1).

It follows that uk ∈ ϕ
α+ωi·(j+1)
n for all k ∈ ω, so that

S[x �→ ϕα+ωi·(j+1)
n ], tj+1 � ci+1 ∧ π∞

i ∧ F (νy.P (x ∧ y ∧ ci)).

We conclude that tj+1 ∈ ϕ
α+ωi·(j+1)+1
n as desired.
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Lemma 3. For an arbitrary model S and 0 < n < ω: γx(ϕn,S) ≤ ωn.

Proof. It is sufficient to prove that ϕωn+1
n ⊆ ϕωn

n for every model S. Let s ∈
ϕωn+1

n , that is, S[x �→ ϕωn

n ], s � ϕn. We proceed by case distinction as to which
disjunct of ϕn is satisfied by s to prove that s ∈ ϕωn

n . If s � G⊥ then s ∈
(ϕn)Sx(∅) ⊆ ϕωn

n , while if s � c1 ∧ Fx, then there is a t ∈ R[s] such that t ∈ ϕα
n

for some α < ωn, so that s ∈ ϕα+1
n ⊆ ϕωn

n .
Now suppose s � ci ∧ π∞

i−1 ∧ F (νy.P (y ∧ x ∧ ci−1)) for some 2 ≤ i ≤ n.
Then in particular there is a point t ∈ R[s] and a R−1-path t0t1 . . . such that:
(i) t ∈ R[t0], (ii) for all j ∈ ω, tj ∈ ϕωn

n and tj � ci−1. In particular, t0 ∈ ϕα
n for

some α < ωn. Observe that ϕn ∧ ci−1 ∧ F	 |= π∞
i−2: this implies that tj � π∞

i−2

for all j ∈ ω, since tj ∈ ϕωn

n , tj � ci−1 and R[tj ] �= ∅. This means that we can
apply Lemma 2 and it follows that tj ∈ ϕα+ωi−2·j+1

n ⊆ ϕα+ωi−1

n for all j ∈ ω.
Hence S[x �→ ϕα+ωi−1

], s � ϕn and s ∈ ϕα+ωi−1+1
n ⊆ ϕωn

n (since i ≤ n and
α < ωn imply α + ωi−1 + 1 < ωn).
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