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one-step language. Generalizing earlier work, our main general result states that in 
case a coalgebraic modal logic admits such a disjunctive basis, then soundness and 
completeness at the one-step level transfer to the level of the full coalgebraic modal 
mu-calculus.
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1. Introduction

1.1. Modal μ-calculi

Over the past fifty years, the formalism of modal logic has developed into what is undoubtedly the most 
widely applied branch of logic. Phenomena from a wide spectrum of application areas, ranging from meta-
physics in philosophy to game theory in economics, and from arithmetic in mathematics to the semantics of 
natural language in linguistics, have been modeled in some version or variant of modal logic. This success 
is largely due to the fine balance that modal formalisms strike between expressiveness and computational 
feasibility, but also to the well-behaved (and well-understood) unifying meta-logical theory of modal logic [5].

Many applications of modal logic require that the basic modal language is extended to express some kind 
of recursion. This can be taken care of in the form of fixpoint connectives (such as the common knowledge 
operator in epistemic logic, or the until operator in linear time temporal logic), or via explicit (least- and 
greatest) fixpoint operators. In the latter case we will speak of a μ-calculus extending the more basic modal 
logic, the prime example being the ‘standard’ modal μ-calculus as introduced by Kozen [22]. Other examples 
include the linear time μ-calculus [4], the μ-calculus on ranked trees, the graded modal μ-calculus [23], and 
the monotone μ-calculus [10].

Our earlier remark on the balance between expressiveness and computational feasibility still applies 
to such propositional modal μ-calculi. In the setting of specification and verification of various kinds of 
processes, adding this powerful yet tractable form of recursion to the language of basic modal logic enables 
us to express and reason about the behavior of state-based evolving systems in a manner that goes far 
beyond the more local properties that can be expressed in the basic formalism, while on the other hand, 
this additional expressive behavior comes at a very low computational cost: the Exptime complexity of the 
satisfiability problem for the full modal μ-calculus [9] is no worse than that of virtually any extension of 
basic modal logic.

Given this importance of modal fixpoint logics (which include logics like ltl of ctl that are obtained 
from more basic modal logics by adding fixpoint connectives rather than explicit fixpoint operators), there 
is a clear need to study and further develop their general theory.

1.2. Completeness

The question that we address here concerns the axiomatization problem for modal μ-calculi. That is, our 
goal is to find, for each member of the above-mentioned ‘family of μ-calculi’, a (finite) set of axioms and 
derivation rules that generate the class of valid formulas in the associated class of models. For the time being 
we take this ‘associated class’ to consist of all models for the language, that is, we do not impose additional 
conditions on the models such as, in the case of standard Kripke models, reflexivity or transitivity. Even 
without such additional constraints the axiomatization problem for modal fixpoint logics is notoriously 
difficult,2 and there seems to be very little in the way of general results (as an exception we mention results 
on so-called flat fixpoint logics [33,37]). In fact, while many results are known about axiomatizations for 
concrete logics based on fixpoint connectives, until recently, only two completeness results for μ-calculi 
were known: the Kozen–Walukiewicz completeness theorem for the standard μ-calculus [39], and Kaivola’s 
completeness result for the linear time μ-calculus [21].

Note that in both cases, the axiomatization is as simple and natural as the μ-calculus itself: add, to a 
sound and complete axiomatization of the basic (i.e., fixpoint-free) language, a single axiom schema and 
a rule schema. Together these capture the least fixpoint operator in the sense that the pre-fixpoint axiom 
schema

2 We refer to the introduction of our earlier work [12] for a more detailed analysis.
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ϕ[μp.ϕ/p]→ μp.ϕ (1)

simply states that μx.ϕ is a pre-fixpoint of ϕ, while the Kozen–Park induction rule:

ϕ[ψ/p]→ ψ

μp.ϕ→ ψ
(2)

expresses that μx.ϕ is indeed its least pre-fixpoint.
This naturally raises the question whether other μ-calculi can be axiomatized in an equally simple way, 

and our paper will provide a positive answer. Our goal, in fact, is to set up a general framework for proving 
completeness for variants of the standard modal μ-calculus. This framework will be founded on two pillars, 
viz., the theories of coalgebra and automata operating on (possibly infinite) objects, respectively.

1.3. Coalgebras, modal logic & automata

A suitable abstraction level for studying various μ-calculi in a unified framework is provided by the 
theory of (universal) coalgebra [31,18], which has found a place in theoretical computer science as a natural 
mathematical environment for modeling various sorts of state-based evolving systems, such as, indeed, 
streams, labeled transition systems, Markov chains, etc. The attraction of the coalgebraic approach lies 
in its combination of mathematical simplicity with wide applicability: many features of (computational) 
processes, such as nondeterminism, input/output or probability, can be elegantly and naturally encoded in 
the coalgebraic type T (which formally is an endofunctor on some suitable category). This makes the theory 
of universal coalgebra well-equipped for a uniform study of various notions that are salient in the study of 
(possibly infinite) behavior, such as invariance or behavioral equivalence.

Almost since its emergence in logic and computer science, coalgebra has been firmly linked to modal logic: 
Aczel [1] already noted that Kripke models are natural examples of co-algebras, and Moss [26] initiated the 
application of modal-type languages for reasoning about coalgebras of arbitrary type. The idea is that 
the role of equations in algebra is played by modal formulas in coalgebra — and in case infinite behavior 
is to be specified, modal fixpoint formulas are called for. Note that the link works in both directions: the 
theory of coalgebraic modal logic can be applied to design suitable modal languages for the specification and 
verification of coalgebraic behavior, but it can also be instrumental in the study of modal logic, by providing 
modal formalisms with a coalgebraic semantics. Currently, the most common approach to coalgebraic modal 
logic, going back to the work of Pattinson [30] and others, is based on a categorical analysis of the semantics 
of modalities in terms of so-called predicate liftings for the type functor T (see section 2.2 for the details). 
That is, in line with the uniform and parametric approach of universal coalgebra, a generic coalgebraic 
modal logic may be given as a pair consisting of a functor T (providing the semantics of T-coalgebras), 
together with a set Λ of predicate liftings for T (providing the modalities and their interpretation). As we 
will see in section 2, all of the mentioned μ-calculi are instances of the coalgebraic μ-calculus introduced by 
Cîrstea, Kupke & Pattinson [6], that is, they are extensions of such coalgebraic modal logics with explicit 
fixpoint operators.

All our proofs involve automata in an essential way. This should not come as a surprise, as the use of 
automata (more specifically: finite state devices operating on potentially infinite objects such as infinite 
words, trees, and Kripke models) is well established in the study of fixpoint logics [16]. Pertinent to our 
work here is the realization that much of the theory of modal (fixpoint) logic and automata is essentially 
coalgebraic in nature. The coalgebra automata that we will employ here were developed by Fontaine, Leal 
& the third author [14] as the automata-theoretic counterpart of the coalgebraic μ-calculi that we just 
discussed.

The key observation underlying the links between coalgebra, modal logic and automata is that many 
of the properties of modal fixpoint logic are already manifest at the one-step level, that is, at the level of 
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formulas of modal depth one and one-step unfoldings of coalgebra states. For instance, this observation 
was the guiding principle in the authors’ work on Janin–Walukiewicz style expressive completeness results 
for coalgebraic μ-calculi [10]. Here our approach will follow the same track: a pivotal role in our proofs 
will be played by the notion of a one-step logic associated with a pair (T, Λ), stemming from the work 
on coalgebraic logic by Cîrstea, Pattinson, Schröder and others [7,30,35,36]. Generalizing earlier results 
on specific coalgebraic fixpoint logics (viz., the ones based on Moss’ coalgebraic modality [11]), our main 
aim will be to show that, under some conditions, the completeness of a coalgebraic μ-calculus is already 
determined by the completeness of the associated one-step logic.

1.4. Contribution

The contribution of this paper is threefold. First of all, our coalgebraic analysis of one-step logic for non-
deterministic automata has led us to isolate the concept of a disjunctive one-step formula (Definition 3.15), 
and the related notion of a disjunctive basis for a set of modalities (Definition 3.20). Disjunctivity is the 
property of one-step formulas that ensures nondeterministic behavior of the corresponding automata; essen-
tially, a one-step formula is disjunctive if it only admits special, ‘harmless’ conjunctions. A set of modalities 
(predicate liftings) admits a disjunctive basis if there are sufficiently many disjunctive formulas; intuitively, 
what this achieves is that we may eliminate conjunctions, by proving a simulation theorem stating that every 
alternating Λ-automaton can be transformed into an equivalent nondeterministic one. Our approach here 
can be seen as a continuation and generalization of work by Muller & Schupp [28], Janin & Walukiewicz [20], 
and, in particular, Arnold & Niwiński [3]. In the main result of this paper we will see an important applica-
tion of disjunctivity, but we believe there to be many more (a first study by the first and the third author 
can be found in [13]).

Our second contribution comprises a general completeness theorem for modal μ-calculi. Formulated 
in coalgebraic terminology, it states that, in case a coalgebraic modal logic admits a disjunctive basis, 
then soundness and completeness at the one-step level transfers to the level of the full coalgebraic modal 
mu-calculus. Note that we may speak of such a transfer since every one-step axiomatization H naturally 
induces an axiom system μH for the corresponding μ-calculus (Definition 4.5).

Theorem 1.1. Let T be a set functor, let Λ be a monotone modal signature for T, and let H be a one-step 
axiomatization for Λ and T. If H is one-step sound and complete and Λ admits a disjunctive basis, then μH
is a sound and complete axiom system for the μMLΛ-formulas that are valid in the class of all T-coalgebras.

For a proof of this theorem: much of the technical ground-work was carried out in [12], where we provided 
a fully automata-theoretic proof of the Kozen–Walukiewicz completeness theorem for the standard modal 
μ-calculus, and in [11], where the authors extended this approach to coalgebraic μ-calculi based on Moss-style 
modalities. While Theorem 1.1 significantly generalizes the latter result, its proof is fairly similar to that of 
the earlier results. Because of this, and for reasons of space limitations, we confine ourselves to a high-level 
proof sketch in section 9.

As a direct corollary to Theorem 1.1, we obtain the following completeness result that directly transfers 
soundness and completeness from a coalgebraic modal logic to its fixpoint extension.

Corollary 1.2. Let T be a set functor, let Λ be a monotone modal signature for T which admits a disjunctive 
basis. If L is a sound and complete axiomatization for the (fixpoint-free) MLΛ-formulas that are valid in the 
class of all T-coalgebras, then so is μL for the set of μMLΛ-validities.

Third, as corollaries of Theorem 1.1 we obtain concrete completeness results, for various modal μ-calculi. 
Some of these are well known, such as the Kozen–Walukiewicz result for the standard modal μ-calculus, or 
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Kaivola’s completeness theorem for the linear-time μ-calculus. Others are, as far as we are aware, new; as 
explicit examples we mention our results on graded and monotone modal logic.

In the case of graded modal logic, our completeness result is a fairly direct consequence of the general 
theorem, since graded modal logic corresponds to a coalgebraic modal logic for the bag functor B (Exam-
ple 2.6(d)), and we will show that this similarity type admits a disjunctive basis.

Theorem 1.3. Let B be the axioms for graded modal logic given in Definition 4.3. Then the induced axiom-
atization μB is sound and complete for the valid formulas of the graded modal μ-calculus.

Axiomatizing the validities of the monotone modal μ-calculus is more challenging, since the monotone 
neighborhood functor M interpreting this system (cf. Example 2.6(c)) does not admit a disjunctive basis 
itself. Fortunately, we may take a detour via its so-called supported companion M, which does allow a 
disjunctive basis. Analyzing the relation between the two functors and their associated μ-calculi, in the final 
section we will prove the following completeness result. Following our definitions, μM is the axiomatization 
for monotone modal logic given by the monotonicity and duality axioms for � and � (cf. Definition 4.1).

Theorem 1.4. The axiomatization μM is sound and complete for the valid formulas of the monotone modal 
μ-calculus.

2. A coalgebraic approach to μ-calculi

In this section we introduce a coalgebraic framework for modal μ-calculi. The presentation here can be 
seen as a summary of previous work done in coalgebraic fixpoint logic and automata theory (see [6,14] and 
references therein).

We assume familiarity with basic notions from category theory, not going beyond categories, functors, 
natural transformations, and simple operations on these. (Some more information is provided in the ap-
pendix.) We let Set denote the category with sets as objects and functions as arrows. An endofunctor on Set
will simply be called a set functor.3 Three functors that feature prominently in this paper are the identity 
functor Id, and the co- and contravariant power set functor, P and P̆, respectively. Both act on objects by 
mapping a set S to its power set PS = P̆S; a function f : S′ → S is mapped by P to the direct image 
function Pf : PS′ → PS given by (Pf)X ′ := {fs′ ∈ S | s′ ∈ X ′}, and by P̆ to the inverse image function 
P̆f : PS → PS′ given by (P̆f)X := {s′ ∈ S′ | fs′ ∈ X}.

2.1. Coalgebra

In the introduction we described coalgebra as a mathematical framework for modeling various kinds of 
state-based evolving systems. Formally, this is captured by letting the transition type of such a system be 
determined by an endofunctor on some suitable category. For our purposes, we can restrict attention to the 
category Set.

Definition 2.1. Let T : Set→ Set be a set functor. A T-coalgebra, or coalgebra of type T, is a pair S = (S, σ)
where S is a set of objects called states or points and σ : S → TS is the transition or coalgebra map of S. 
We will call σ(s) the (one-step) unfolding of the state s. A pointed T-coalgebra is a pair (S, s) consisting of 
a T-coalgebra and a state s ∈ S.

3 Without loss of generality and for technical convenience, we will assume in this paper that every set functor preserves inclusions, 
see [14].
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We call a function f : S′ → S a coalgebra homomorphism

S′

σ′

f
S

σ

TS′ Tf
TS

from (S′, σ′) to (S, σ) if the above diagram commutes. �
Many mathematical structures featuring in computer science and in modal logic can be naturally pre-

sented as coalgebras. The following list is by no means exhaustive.

Example 2.2. Throughout this example we let X denote a fixed set of proposition letters.
(a) Streams (infinite words) over an alphabet or color set C are coalgebras for the functor IdC := Id×C, 

which maps a set S to the product S × C. A stream (an)n∈ω can then be modeled as the coalgebra (ω, σ)
where σ maps a state n ∈ ω to the pair consisting of its successor succ(n) and its color an. As a special 
case, a (natural-numbers based) linear time model over a set X of proposition letters can be identified with 
a PX-stream, and hence, with a coalgebra for the functor IdPX.

(b) Kripke frames are coalgebras for the power set functor P. That is, a Kripke frame (S, R) can be 
represented as the P-coalgebra (S, σR), where σR : s �→ R[s] maps a state s to its successor set. It is not 
hard to verify that the notion of a bounded morphism between two Kripke frames coincides with that of a 
coalgebra morphism for P-coalgebras.

(c) With L denoting a set of atomic actions, we may see a transition system (S, (R�)�∈L), where each 
atomic action � is interpreted as a binary relation R� ⊆ S × S, as a coalgebra for the functor PL.

(d) For k ∈ ω with k > 1, the k-ary tree is the structure (k∗, (succi)i<k, where k∗ is the set of all finite 
sequences of natural numbers smaller than k, and succi is the i-th successor function mapping a sequence 
s ∈ k∗ to the sequence s · i. We may present this structure as a coalgebra for the functor Idk.

(e) Define the neighborhood functor N : Set→ Set as the composition of the contravariant power set with 
itself, N := P̆ ◦ P̆. Coalgebras for this functor correspond to the so-called neighborhood frames in modal 
logic, but they do not play an important role here.

However, restrictions of this functor also yield various interesting classes of structures. In particular, we 
will consider the monotone neighborhood functor M given by MS := {U ∈ NS | U is upward closed with 
respect to ⊆ } and Mf := Nf . M-coalgebras are well known in modal logic as monotone neighborhood 
frames.

(f) Of significant interest here is the finitary multiset of bag functor B. This functor takes an object S to the 
collection BS of weight functions σ : S → ω with finite support (that is, for which the set {s ∈ S | σ(s) > 0}
is finite). Its action on arrows is as follows: given a map f : S → S′ and a weight function σ ∈ BS, we define 
the weight function (Bf)σ : S′ → ω by setting ((Bf)σ)(s′) :=

∑
{σ(s) | f(s) = s′}.

Coalgebras for this functor are weighted transition systems, where each transition from one state to 
another carries a weight given by a natural number. Note that a finitely branching Kripke frame (S, R)
can be seen as a B-coalgebra (S, ρR), if we define, for any state s, a weight function ρR(s) on S given by 
ρR(s)(t) = 1 if Rst and ρR(s)(t) = 0 otherwise. �

We can generalize the distinction, of Kripke models as opposed to Kripke frames, to coalgebras of arbitrary 
type.

Definition 2.3. Let T be a set functor and let X be a set of proposition letters. We define the set functor 
TX := PX ×T. A T-model over X is a pair (S, V ) consisting of a T-coalgebra S = (S, σ) and a X-valuation V
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on S, that is, a function V : X → PS. The marking associated with V is the transpose map V � : S → PX
given by

V �(s) := {p ∈ X | s ∈ V (p)}.

Hence the pair (S, V ) induces a TX-coalgebra (S, (V �, σ)). �
2.2. Modalities as predicate liftings

The most common approach to coalgebraic modal logic these days proceeds from a formal analysis of 
what a “modality” is, in a very generally setting. The idea is to view a modal operator as a proposition 
(dependent on a number of variables), about a single unfolding step of a state in a coalgebra.

Example 2.4. Using the notation of Example 2.2, we may formulate the semantics of the standard modal 
operators � and � in a Kripke model S = (S, R, V ) as follows:

S, s � �ϕ iff σR(s) ∩ �ϕ�S �= ∅

S, s � �ϕ iff σR(s) ⊆ �ϕ�S,

where �ϕ�S := {s ∈ S | S, s � ϕ}. Thus the coalgebraic perspective on standard modal logic is that the 
modalities � and � express statements about the unfolding σR(s) of s. We can make this more explicit by 
defining the following maps λ�, λ� : PS → PPS:

λ� : U �→ {T ∈ PS | T ∩ U �= ∅}
λ� : U �→ {T ∈ PS | T ⊆ U}.

Now we may formulate the semantics of � via the map λ�:

S, s � �ϕ iff σR(s) ∈ λ�(�ϕ�S), (3)

and similarly for � and λ�. �
Generalizing this to coalgebras of arbitrary type, the idea underlying coalgebraic modal logic is that (the 

semantics of) modalities are given by so-called predicate liftings.

Definition 2.5. Given a set functor T and n ∈ ω, an n-place predicate lifting λ for T is an assignment4 of a 
map

λS : (PS)n → PTS,

to each set S, subject to the constraint that for any map f : S′ → S and any n-tuple Z = (Z1, ..., Zn) ∈ (PS)n
we have, for all σ ∈ TS:

σ ∈ λS′(f−1[Z]) iff Tf(σ) ∈ λS(Z) (4)

where f−1[Z] abbreviates (f−1[Z1], . . . , f−1[Zn]). �
4 In categorical terms, an n-ary predicate lifting is simply a natural transformation λ : P̆n ⇒ P̆T, see Remark 2.7.
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To obtain a suitable modal language for describing coalgebraic behavior, with each predicate lifting λ we 
associate a modality ♥λ with the same arity as λ. The semantics of ♥λ in a T-model S = (S, σ, V ) is given 
by the following generalization of (3):

S, s � ♥λ(ϕ) if σ(s) ∈ λS(�ϕ1�S, . . . , �ϕn�S). (5)

The reason to impose condition (4) on predicate liftings is to ensure that, generalizing bisimulation invariance 
of modal logic, every modality ♥λ will be invariant under coalgebra morphisms.

Example 2.6. Besides the standard diamond and box operators of Kripke models, the operators of many 
well-known variants of modal logic are in fact instances of modalities that are induced by predicate liftings.

(a) The next-time operator © of linear temporal logic can be obtained as the modality associated with 
the identity map, seen as a unary predicate lifting λ© : U �→ U for the identity functor Id.

(b) Let ©i be the modality that, interpreted over tree models of branching degree k, has the following 
meaning: S, s � ©iϕ iff S, succi(s) � ϕ. This modality is induced by the unary predicate lifting λ©i

S : PS →
P(Sk) given by

λ
©i : U �→ {(s0, . . . , sk−1) ∈ Sk | si ∈ U}.

(c) With respect to the monotone neighborhood functor M, we define two unary predicate liftings, ε and ε∂ :

εS : U �→
{
α ∈ MS | U ∈ α

}
ε∂S : U �→

{
α ∈ MS | S \ U /∈ α

}
.

It is now easy to verify that the induced operators ♥ε and ♥ε∂ coincide with the standard monotone 
modalities � and �:

S, s � �ϕ iff U ⊆ �ϕ�S, for some U ∈ σ(s)
S, s � �ϕ iff U ∩ �ϕ�S �= ∅, for all U ∈ σ(s).

(d) Finally, we consider the bag functor B. Given a natural number k, we define the predicate liftings k
and k by putting

kS : U �→
{
σ ∈ BS |

∑
u∈U σ(u) ≥ k

}
kS : U �→ {σ ∈ BS |

∑
u/∈U σ(u) < k

}
.

Interpreted over standard Kripke models (seen as B-coalgebras as specified in Example 2.2(f)), the modal-
ities associated with these liftings are the counting modalities of graded modal logic:

S, s � ♥kϕ iff s has ≥ k successors t with S, t � ϕ

S, s � ♥kϕ iff s has < k successors t with S, t � ϕ.

In the sequel we use the standard notation for these modalities, i.e., �k and �k for ♥k and ♥k, respectively. 
�

Remark 2.7. In categorical terms, an n-ary predicate lifting is a natural transformation λ : P̆n ⇒ P̆T: 
(4) simply means that the following diagram commutes:
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S (PS)n

(P̆f)n

λS PTS

P̆Tf

S′

f

(PS′)n
λS′

PTS′

for every function f : S′ → S. �
2.3. Moss’ modalities

As mentioned in the introduction, an important role in this paper is played by so-called disjunctive
formulas, and a key example of such formulas is provided by the so-called cover modality from standard 
modal logic. It is a slightly non-standard connective that takes a finite set of formulas as its argument.

Definition 2.8. Given a finite set Φ, we let ∇Φ abbreviate the formula

∇Φ :=
∧�Φ ∧�∨

Φ,

where �Φ denotes the set {�ϕ | ϕ ∈ Φ}. �
As a primitive operator, this modality was independently introduced by Janin & Walukiewicz [20] in 

automata theory (with a different notation), and by Moss [26] in coalgebraic logic, where in fact it provided 
the starting point of the use of modal logic for coalgebras. Here we provide the basic syntactic and semantic 
definitions for these generalized, coalgebraic modalities; for a more detailed discussion we refer to Kupke, 
Kurz & Venema [24]. The key concept needed to work with the ∇ modalities is that of a relation lifting. 
(For notation related to binary relations we refer to the appendix.)

Definition 2.9. Let T be a set functor. Given a binary relation R between two sets X1 and X2, we define 
the T-lifting of R as the relation TR ⊆ TX1 × TX2 given as:

TR := {((TπR
1 )ρ, (TπR

2 )ρ) | ρ ∈ TR}.

Here πi : R→ Si for i = 1, 2 are the projection functions. �
Fact 2.10. The relation lifting T associated with a set functor T has the following properties:

(1) T extends T: Tf = Tf for all functions f : X1 → X2;
(2) T preserves the diagonal: TIdX = IdTX for any set X;
(3) T is monotone: R ⊆ Q implies TR ⊆ TQ for all relations R, Q ⊆ X1 ×X2;
(4) T commutes with taking converse: TR◦ = (TR)◦ for all relations R ⊆ X1 ×X2;
(5) T distributes over relation composition: T(R ; Q) = TR ; TQ, for all relations R ⊆ X1 × X2 and 

Q ⊆ X2 ×X3, provided the functor T preserves weak pullbacks.

We can now introduce the coalgebraic cover modality ∇T, for an arbitrary set functor T.

Definition 2.11. Let T be some set functor. For any finite set L0 of formulas, and any element Γ ∈ TL0, we 
let ∇TΓ denote a new formula.

For the semantics of this formula in a T-model S = (S, σ, V ), we define

S, s � ∇TΓ iff (σ(s),Γ) ∈ T(�),

where we inductively assume that the satisfaction relation � ⊆ S × L0 has been defined. �
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2.4. Coalgebraic μ-calculi

Associating a modality ♥λ with each predicate lifting λ, we obtain a modal language MLΛ geared towards 
T-coalgebras, for any set Λ of predicate liftings for T. In fact, the relation between predicate liftings and 
modalities is so tight that in parlance we will often be sloppy and blur the distinctions between the two 
notions. Here we are interested in coalgebraic μ-calculi, that is, extensions of such coalgebraic modal logics 
with fixpoint operators.

Definition 2.12. Given a set Λ of predicate liftings, the formulas of the modal fixpoint language μMLΛ are 
given by the following grammar:

ϕ ::= p | ⊥ | ¬ϕ | ϕ0 ∨ ϕ1 | ♥λ(ϕ1, . . . , ϕn) | μx.ϕ′

where p and x are propositional variables, λ ∈ Λ has arity n, and the application of the fixpoint operator μx
is under the proviso that all occurrences of x in ϕ′ are positive (i.e., under an even number of negations). �

We will employ various syntactic notions such as subformulas, free and bound variables, substitutions etc. 
All of these admit standard definitions and notations, and due to space limitations we refrain from giving 
details.

Definition 2.13. Given a set Λ of predicate liftings and a set X of proposition letters, we let μMLΛ(X) denote 
the set of μMLΛ-formulas ϕ of which all free variables belong to X. �

Turning to the semantics of these languages, in order to guarantee well-definedness we restrict attention 
to predicate liftings that are monotone.

Definition 2.14. A predicate lifting λ : Pn ⇒ PT is monotone if for every set S, the map λS : (PS)n → PTS
is order-preserving in each coordinate (with respect to the subset order). The induced predicate lifting 
λ∂ : Pn ⇒ PT, given by

λ∂
S(X1, . . . , Xn) := TS \ λS(S \X1, . . . , S \X1),

is called the (Boolean) dual of λ. �
All predicate liftings discussed in Example 2.6 are monotone, and come in dual pairs (note that the 

operators © and ©i are self-dual).

Definition 2.15. A monotone modal signature, or briefly: a signature for a set functor T is a set Λ of monotone 
predicate liftings for T, that is closed under taking boolean duals. In this setting we refer to the triple 
(T, Λ, μMLΛ) as the (coalgebraic) μ-calculus associated with Λ and T. �

We will often work with fixpoint formulas in negation normal form.

Definition 2.16. Let Λ be a monotone modal signature for a set functor T. A μMLΛ-formula is in negation 
normal form if it can be generated by the following grammar:

ϕ ::= p | ¬p | ⊥ | � | ϕ0 ∨ ϕ1 | ϕ0 ∧ ϕ1 | ♥λ(ϕ1, . . . , ϕn) | μx.ϕ′ | νx.ϕ′

where p and x are propositional variables, λ ∈ Λ has arity n, and the application of the fixpoint operators μx
and νx is under the proviso that all occurrences of x in ϕ′ are positive (i.e., not in the scope of a negation). 

�
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Formulas of such coalgebraic μ-calculi are interpreted in coalgebraic models, as follows.

Definition 2.17. Let S = (S, σ, V ) be a T-model over a set X of proposition letters. By induction on the 
complexity of formulas, we define a meaning function �·�S : μMLΛ(X) → PS, together with an associated 
satisfaction relation � ⊆ S × μMLΛ(X) given by S, s � ϕ iff s ∈ �ϕ�S. Most clauses of this definition are 
standard; the one for the modality ♥λ is given by (5). For the least fixpoint operator we apply the standard 
description of least fixpoints of monotone maps from the Knaster–Tarski theorem and take

�μx.ϕ�S :=
⋂{

U ∈ PS | �ϕ�(S,R,V [x�→U ]) ⊆ U
}
,

where the valuation V [x �→ U ] is given by V [x �→ U ](x) = U while V [x �→ U ](p) = V (p) for p �= x. �
Example 2.18. The table below shows how the standard modal μ-calculus and some of its variants can be 
presented in this format. We also take this table as canonically defining a fixed signature ΣT for the functors 
listed.

T ΣT-modalities Name
Id {©} linear time μ-calculus
Idk {©i | 0 ≤ i < k} tree μ-calculus
P {�,�} standard (mono-)modal μ-calculus
PL {��,�� | � ∈ L} standard (poly-)modal μ-calculus
B {�k,�k | k ∈ ω} graded μ-calculus
M {�,�} monotone (mono-)modal μ-calculus
ML {��,�� | � ∈ L} monotone (poly-)modal μ-calculus

In the case of the graded μ-calculus, it is not hard to prove that a μMLΣB -formula (where ΣB is the signature 
of the counting modalities) is satisfiable in a Kripke model iff it is satisfiable in a finitely branching Kripke 
model iff it is satisfiable in a B-coalgebra model. This justifies us referring to the coalgebraic μ-calculus for 
B and ΣB as the graded modal μ-calculus. �
Remark 2.19. Some of these μ-calculi have a very tight connection with monadic second-order logic on trees: 
the μ-calculi based on modalities ©i, 0 ≤ i < k are expressively equivalent to monadic second-order logic 
on ranked trees of branching degree k [9]. The graded mu-calculus is expressively equivalent to monadic 
second-order logic on unranked trees with arbitrary branching, see [19]. �
3. One-step logic

3.1. One-step syntax and semantics

As mentioned in the introduction, a pivotal role in our approach is filled by the so-called one-step versions 
of our coalgebraic logics.

Definition 3.1. Given a set of predicate liftings Λ, and two disjoint sets A, X of variables, we define the set 
Bool(A) of boolean formulas over A and the set 1MLΛ(X, A) of one-step Λ-formulas over A and parameters X, 
by the following grammars:

Bool(A) � π ::= a | ⊥ | � | π ∨ π | π ∧ π | ¬π
1MLΛ(X, A) � α ::= p | ⊥ | � | ♥λπ | α ∨ α | α ∧ α | ¬α



S. Enqvist et al. / Annals of Pure and Applied Logic 170 (2019) 578–641 589
where a ∈ A, p ∈ X and λ ∈ Λ. The A-positive fragment of 1MLΛ(X, A), denoted 1ML+
Λ (X, A), consists of 

those formulas in 1MLΛ(X, A) in which no a ∈ A appears in the scope of a negation. We will denote the 
negation-free fragment of Bool(A) as Latt(A) and refer to its elements as lattice formulas over A.

In case X = ∅ we will write 1MLΛ(A) and 1ML+
Λ (A) rather than 1MLΛ(∅, A) and 1ML+

Λ (∅, A), respectively. 
�

A significant part of our work revolves around connections between one-step languages that are based on 
distinct (but related) sets of variables. Most of these connections are given by substitutions.

Definition 3.2. Given two sets A and B of variables, any substitution ρ : A → Bool(B) naturally induces a 
translation [ρ] mapping 1MLΛ(X, A)-formulas to 1MLΛ(X, B)-formulas. For this translation we shall use postfix 
notation, α[ρ] ∈ 1MLΛ(B) denoting the result of applying the substitution ρ : A → Bool(B) to the formula 
α ∈ 1MLΛ(A). In case ρ : A → Latt(B) maps variables to lattice formulas, we can and will assume that 
α[ρ] ∈ 1ML+

Λ (X, B) whenever α ∈ 1ML+
Λ (X, A).

We fix notation for the following concrete substitutions:

– χA : PA → Latt(A) will denote the map B �→
∧
B;

– θA,B : A ×B → Latt(A ∪B) will denote the map (a, b) �→ a ∧ b;
– given a ∈ A, τa : A → A ×A ⊆ Latt(A ×A) is the tagging substitution given by b �→ (a, b). �
One-step formulas are naturally interpreted in one-step models, which consist of a one-step frame together 

with a marking.

Definition 3.3. A one-step TX-frame is a pair (S, σ) with σ ∈ TXS. A one-step TX-model over a set A of 
variables is a triple (S, σ, m) such that (S, σ) is a one-step TX-frame and m : S → PA is an A-marking on S. 

�
Definition 3.4. Given a marking m : S → PA, we define the 0-step interpretation �π�0

m ⊆ S of π ∈ Bool(A)
by the obvious induction: �a�0

m := {v ∈ S | a ∈ m(v)}, ���0
m := S, �⊥�0

m := ∅, and the standard clauses for 
∧, ∨ and ¬. Similarly, the 1-step interpretation �α�1

m of α ∈ 1MLΛ(X, A) is defined as a subset of TXS, with 
�p�1

m := {(Y, τ) | p ∈ Y},

�♥λ(π1, . . . , πn)�1
m := {(Y, τ) | τ ∈ λS(�π1�0

m, . . . , �πn�0
m)},

and standard clauses for ⊥, �, ∧, ∨ and ¬. Given a one-step model (S, σ, m), we write S, σ, m �1 α for 
σ ∈ �α�1

m. �
Notions like one-step satisfiability, validity and equivalence are defined in the obvious way.

Definition 3.5. Let α and α′ be one-step formulas. The formula α is one-step satisfiable if there is a one-step 
model (S, σ, m) such that S, σ, m �1 α, and one-step valid if S, σ, m �1 α for all one-step models (S, σ, m). 
We say that α′ is a one-step consequence of α (written α �1 α′) if S, σ, m �1 α implies S, σ, m �1 α′, for 
all one-step models (S, σ, m), and that α and α′ are one-step equivalent, notation: α ≡1 α′, if α �1 α′ and 
α′ �1 α. �

The framework of one-step logic facilitates a concise definition of the following notion.

Definition 3.6. A monotone modal signature Λ for T is expressively complete if, for every monotone n-place 
predicate lifting λ /∈ Λ and variables a1, . . . , an there is a formula α ∈ 1ML+

Λ ({a1, . . . , an}) which is equivalent 
to ♥λa. �



590 S. Enqvist et al. / Annals of Pure and Applied Logic 170 (2019) 578–641
Note that expressive completeness requires every monotone predicate lifting to be definable by a positive
one-step formula. In [13] we used the term Lyndon completeness for this concept, to distinguish it from the 
weaker notion that we called expressive completeness there, which does not require defining formulas to be 
positive. Here, we will not be concerned with this subtle distinction and the technical problems that are 
related to it, so we will stick to the term expressive completeness throughout the paper.

We also need morphisms between one-step frames and models.

Definition 3.7. A one-step frame morphism between two one-step frames (S′, σ′) and (S, σ) is a map f :
S′ → S such that (TXf)σ′ = σ. In case such a map satisfies m′ = m ◦ f ,

S′

m′

f
S

m

PA

for some markings m and m′ on S and S′, respectively, we say that f is a one-step model morphism from 
(S′, σ′, m′) to (S, σ, m). �

The following proposition, stating that the truth of one-step formulas is invariant under one-step mor-
phisms, is fundamental. We will occasionally refer to this proposition as naturality, since this invariance 
essentially boils down to the naturality of the predicate liftings in Λ.

Proposition 3.8. Let f : (S′, σ′, m′) → (S, σ, m) be a morphism of one-step models over A. Then for every 
formula α ∈ 1MLΛ(A) we have

S′, σ′,m′ �1 α iff S, σ,m �1 α.

Formulating it differently, for any one-step frame (S′, σ′), any marking m : S → PA, and any map f :
S′ → S, we have

S′, σ′,m ◦ f �1 α iff S, (TXf)σ′,m �1 α.

As a specific instance of this invariance result we obtain the following corollary which we mention explicitly 
for future reference.

Corollary 3.9. Let (S, σ, m) be a one-step A-model, and let T ⊆ S be a subset of S such that σ ∈ TXT . Then 
for every formula α ∈ 1MLΛ(A) we have

S, σ,m �1 α iff T, σ,m�T �1 α.

Proof. Immediate from Proposition 3.8 by the observation that the inclusion map ι : T ↪→ S is a one-step 
model morphism. �

The following proposition states that the meaning of a one-step formula only depends on the variables 
occurring in it.

Proposition 3.10. Let (S, σ, m) be a one-step model over A, and let α ∈ 1MLΛ(A) be a one-step formula 
which belongs to the set 1MLΛ(B), for some subset B ⊆ A. Then we have
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S, σ,m �1 α iff S, σ,mB �1 α,

where mB is the B-marking given by mB(s) := m(s) ∩B.

For positive one-step formulas we have the following monotonicity property.

Proposition 3.11. Let (S, σ) be a one-step frame, and let m, m′ : S → PA be two markings such that 
m(s) ⊆ m′(s), for all s ∈ S. Then we have

S, σ,m �1 α implies S, σ,m′ �1 α,

for any formula α ∈ 1ML+
Λ (A).

Finally, we need a coalgebraic notion of bisimulation which is inspired by an idea of Gorín & Schröder [15].

Definition 3.12. Let (S, σ) and (S′, σ′) be one-step frames, and Λ a signature. If Z ⊆ S × S′ satisfies:

• for all U1, . . . , Un ⊆ S and λ ∈ Λ: σ ∈ λS(U1, . . . , Un) implies σ′ ∈ λS′(Z[U1], . . . , Z[Un]),
• for all U ′

1, . . . , U
′
n ⊆ S′ and λ ∈ Λ: σ′ ∈ λS′(U ′

1, . . . , U
′
n) implies σ ∈ λS(Z−1[U ′

1], . . . , Z−1[U ′
n]),

then we call Z a one-step Λ-bisimulation between these one-step frames, denoted as Z : (S, σ) ↔1
Λ (S′, σ′). 

In case DomZ = S and RanZ = S′, we call Z full, and write Z : (S, σ) ↔1
Λ,f (S′, σ′). �

Proposition 3.13. Let ↔1
Λ,∗ denote either ↔1

Λ or ↔1
Λ,f , and let (S, σ), (S′, σ′) and (S′′, σ′′) be one-step 

frames. Then
(1) IdS : (S, σ) ↔1

Λ,∗ (S, σ);
(2) if Z : (S, σ) ↔1

Λ,∗ (S′, σ′) then Z◦ : (S′, σ′) ↔1
Λ,∗ (S, σ);

(3) if Y : (S, σ) ↔1
Λ,∗ (S′, σ′) and Z : (S′, σ′) ↔1

Λ,∗ (S′′, σ′′) then Y ; Z : (S, σ) ↔1
Λ,∗ (S′′, σ′′);

(4) If f : (S, σ) → (S′, σ′) is a one-step frame morphism, then f : (S, σ) ↔1
Λ (S′, σ′), with f : (S, σ) ↔1

Λ,f

(S′, σ′) holding iff f is surjective.

The following observation, generalizing the Propositions 3.8 and 3.11, states that at the level of models, 
the truth of positive one-step formulas is transferred under one-step bisimulations, provided these interact 
properly with the markings.

Proposition 3.14. Let Z : (S, σ) ↔1
Λ (S′, σ′) and let m and m′ be A-markings on S and S′ such that

m(s) ⊆ m′(s′),

whenever (s, s′) ∈ Z. Then for all α ∈ 1ML+
Λ (X, A):

S, σ,m �1 α implies S′, σ′,m′ �1 α.

3.2. Disjunctive formulas

Definition 3.15. A one-step formula α ∈ 1ML+
Λ (X, A) is called disjunctive if for every one-step model (S, σ, m)

such that S, σ, m �1 α there is a one-step frame morphism f : (S′, σ′) → (S, σ) and a marking m′ : S′ → PA
such that:

(1) S′, σ′, m′ �1 α;
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(2) m′(s′) ⊆ m(f(s′)), for all s′ ∈ S′;
(3) |m′(s′)| ≤ 1, for all s′ ∈ S′. �
Intuitively, these conditions express that if a disjunctive formula is satisfiable, then it is satisfiable in a 

closely linked model where no point satisfies more than one variable in A simultaneously (and hence, no 
proper conjunction over A). Note that the map f mentioned in the above definition is not necessarily a 
one-step model morphism, since in clause (2) of the definition we do not require equality, and because of 
clause (3), the inclusion in clause (2) will generally be strict.

Remark 3.16. (1) Using Propositions 3.13 and 3.14, it is not difficult to show that for every one-step frame 
morphism f : (S′, σ′) → (S, σ) such that m′(s′) ⊆ m(fs′) for all s′ ∈ S′, then S′, σ′, m′ �1 α implies 
S, σ, m �1 α, for all one-step formulas α ∈ 1ML+

Λ (X, A).
From this it follows that we could have defined disjunctivity of a formula α equivalently by requiring, for 

an arbitrary one-step model (S, σ, m), that S, σ, m �1 α if and only if there is a one-step frame morphism f

satisfying the conditions of Definition 3.15.
(2) Consider two formulas α ∈ 1ML+

Λ(A) and π ∈ Bool(X). Provided π is consistent, it is easy to see that 
α is disjunctive iff π ∧ α is so. �
Example 3.17. (a) The formula ©a of linear time logic is easily seen to be disjunctive, as are the tree formulas 
©ia.

(b) The canonical example of a disjunctive formula is given by the cover modality ∇ of standard modal 
logic:

∇{a1, . . . , an} ≡ �a1 ∧ ...�an ∧�(a1 ∨ ... ∨ an).

(c) The above two examples can be generalized to arbitrary functors that preserve weak pullbacks. 
In fact, one may show that Moss’ modality ∇T (cf. section 2.3) provides disjunctive formulas, for every
weak-pullback preserving functor T. To see this, suppose that S, σ, m �1 ∇Tγ, for some γ ∈ TA. Define 
S′ := S ×A, let f : S ×A → S be the left projection map, and let m : S′ → PA be given by

m′(s, a) :=
{
{a} if a ∈ m(s)
∅ otherwise.

Let Z denote the relation Z := {(s, a) ∈ S×A | a ∈ m(s)}, and similarly define Z ′ := {(s′, a) ∈ S′×A | a ∈
m′(s′)}. It is easy to see that Z = f◦ ; Z ′, and so by Fact 2.10(5) we find TZ = (Tf)◦ ; TZ ′ (here we use the 
fact that T preserves weak pullbacks). But from S, σ, m �1 ∇Tγ it follows that (σ, γ) ∈ TZ = (Tf)◦ ; TZ ′, 
and so there must be an object σ′ ∈ TS′ such that σ = (Tf)σ′ and (σ′, γ) ∈ TZ ′, which means that 
S′, σ′, m′ �1 ∇Tγ, as required. Finally, it is obvious from its definition that m′ satisfies the conditions (2) 
and (3) of Definition 3.15.

(d) An interesting example is provided by the bag functor. We say that a one-step model for the finite 
multi-set functor is Kripkean if all states have multiplicity 1 or 0. Note that a Kripkean one-step model 
(S, σ, m) can also be seen as a structure (in the sense of standard first-order model theory) for a first-order 
signature consisting of a monadic predicate for each a ∈ A: Simply consider the pair (Base(σ), Vm), where 
Base(σ) := {s ∈ S | σ(s) > 0} and Vm : A → P(Base(σ)) is the interpretation given by putting Vm(a) :=
{s ∈ Base(σ) | a ∈ m(s)}. We consider special basic formulas of monadic first-order logic of the form:

γ(a,B) := ∃x(diff(x) ∧
∧

ai(xi) ∧ ∀y(diff(x, y)→
∨

b(y)))

1≤i≤n b∈B
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where a = (a1, . . . , an) and x = (x1, . . . , xn) are n-tuples of, respectively, elements of A and individual 
variables, and diff(x) abbreviates the formula 

∧
1≤i�=j≤n ¬xi = xj .

It is not hard to see that if the formula γ(a, B) holds in a Kripkean one-step B-model (S, σ, m), then it 
will continue to hold if we shrink m to a marking m′ ⊆ m such that |m(a)| ≤ 1, for all a ∈ A:

S, σ,m �1 γ(a,B) implies S, σ,m′ �1 γ(a,B) for some m′ ⊆ m with Ran(m′) ⊆ P≤1A. (6)

We can turn the formula γ(a, B) into a modality ∇(a;B) that can be interpreted in all one-step B-models, 
using the observation that every one-step B-frame (S, σ) has a unique Kripkean cover (S̃, ̃σ) defined by 
putting

S̃ :=
⋃
{s× σ(s) | s ∈ S},

and σ̃(s, i) := 1 for all s ∈ S and i ∈ σ(s) (here, we have viewed each finite ordinal in the standard manner 
as the set of all the smaller ordinals, so in particular 0 is defined to be the empty set). Then we can define, 
for an arbitrary one-step B-model (S, σ):

S, σ,m �1 ∇(a;B) if S̃, σ̃,m ◦ πS �1 γ(a,B), (7)

where πS is the projection map πS : S̃ → S. It is then an immediate consequence of (6) that ∇(a;B) is a 
disjunctive formula. �

The next two, rather technical results, will be needed further on, when we work with games associated 
with coalgebra automata.

Proposition 3.18. Let α ∈ 1ML+
Λ(A) be disjunctive, let (S, σ, m) be a one-step model over A such that 

S, σ, m �1 α, and let T ⊆ S be such that σ ∈ TXT . Then there is a frame homomorphism f : (S′, σ′) → (S, σ)
and some marking m′ satisfying, next to the clauses (1)–(3) in Definition 3.15, the condition that 
Ran(f) = T .

Proof. Let α, (S, σ, m) and T be as in the formulation of the proposition. Since σ ∈ TXT , the inclusion map 
ι : T ↪→ S is a one-step model morphism:

ι : (T, σ,m�T )→ (S, σ,m).

Then by naturality it follows that T, σ, m �T �1 α, so by disjunctivity of α we obtain a one-step model 
(S′, σ′, m′) and a one-step frame morphism g : (S′, σ′) → (T, σ) satisfying the clauses (1)–(3) in Defini-
tion 3.15. It is then easy to verify that the map f := ι ◦ g is a frame homomorphism f : (S′, σ′) → (S, σ)
that meets the requirements (1)–(3) of Definition 3.15, and satisfies Ran(f) ⊆ T .

In case the inclusion Ran(f) ⊆ T is proper, we extend S′ to a set S′′ := S′�(T \RanF ) by adding dummy 
elements to S′, we define an A-marking m′′ on S′′ by putting m′′(u) := m′(u) if u ∈ S′′ and m′′(u) := ∅

otherwise, and we define a map f ′ : S′′ → S by putting f ′(u) := f(u) if u ∈ S′, and f ′(u) := u otherwise. It 
is then a routine exercise to check that the one-step model (S′′, σ′, m′′), together with the map f ′, satisfies 
all the mentioned requirements. �
Proposition 3.19. Let α ∈ 1ML+

Λ(G) be disjunctive, where G ⊆ PA is a collection of subsets of A. Then 
for every one-step model (S, σ, m) over A such that S, σ, m �1 α[χA] there is a frame homomorphism 
f : (S′, σ′) → (S, σ) and an A-marking m′ : S′ → PA such that:

(1) S′, σ′, m′ �1 α[χA];
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(2) m′(s′) ⊆ m(f(s′)), for all s′ ∈ S′;
(3) m′(s′) ∈ G, for all s′ ∈ S′.

In case T ⊆ S is such that σ ∈ TXT , we may additionally assume that
(4) Ranf = T .

Proof. Fix α0 ∈ 1ML+
Λ (G), and assume that S, σ, m �1 α0[χA] for some one-step A-model (S, σ, m).

Our first step is to turn (S, σ, m) into a G-model by defining the G-marking mG by

mG(s) := {B ∈ G | B ⊆ m(s)}.

Claim 1. For all α ∈ 1ML+
Λ (G) we have

S, σ,m �1 α[χ] iff S, σ,mG �1 α. (8)

Proof of Claim. First we prove by induction on the complexity of formulas that

�π[χ]�0
m = �π�0

mG (9)

for all π ∈ Latt(G). For the base case of (9) we take an arbitrary π = B ∈ G, and we reason as follows. 
Unraveling the definitions on the left hand side of (9) we find that

�B[χ]�0
m = �

∧
B�0

m =
⋂
b∈B

�b�0
m = {s ∈ S | b ∈ m(s) for all b ∈ B} = {s ∈ S | B ⊆ m(s)}.

For the right hand side we find

�B�0
mG = mG(B) = {s ∈ S | B ⊆ m(s)},

and so (9) is immediate. The inductive steps are trivial and left for the reader.
The claim itself is also proved by a straightforward formula induction. The base case of this induction, 

where α is a formula of the form ♥λπ, is proved as follows:

S, σ,m �1 ♥λπ iff σ ∈ λ
(

�π[χ]�0
m

)
(definition �1)

iff σ ∈ λ
(

�π�0
mG

)
(9)

iff S, σ,mG �1 ♥λπ (definition �1)

We omit the routine induction steps of the proof (8). �

From our assumption that S, σ, m �1 α0[χA] it follows directly by Claim 1 that

S, σ,mG �1 α0. (10)

By the disjunctivity of α0 we then obtain a cover f : (S′, σ′) → (S, σ) and a G-marking m′
G such that 

(S′, σ′, m′
G) �1 α0 and, for all s′ ∈ S′, m′

G(s′) ⊆ mG ◦ f(s′) and |m′
G(s′)| ≤ 1. Furthermore, observe that in 

case T ⊆ S is such that σ ∈ TXT , by Proposition 3.18 we may take f to be such that Ran(f) = T , taking 
care of clause (4) in the proposition.

Now define an A-marking m′ on S′ by putting

m′(s′) :=
{

B if m′
G(s′) = {B}

∅ if m′
G(s′) = ∅.
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Claim 2. For all α ∈ 1ML+
Λ (G) we have

S′, σ′,m′
G �1 α only if S′, σ′,m′ �1 α[χ]. (11)

Proof of Claim. As in the previous claim, we first look at zero-step formulas. By induction on the complexity 
of formulas we will prove that

�π�0
m′

G
⊆ �π[χ]�0

m′ (12)

for all π ∈ Latt(G). For the base case of (12) we calculate, for an arbitrary π = B ∈ G:

�B�0
m′

G
= {s′ ∈ S′ | B ∈ m′

G(s′)} (definition �·�0)
= {s′ ∈ S′ | {B} = m′

G(s′)} (|m′
G(s′)| ≤ 1)

⊆ {s′ ∈ S′ | B = m′(s′)} (definition m′)
⊆ {s′ ∈ S′ | B ⊆ m′(s′)} (obvious)
= �B[χ]�0

m′ (as in proof Claim 1)

This proves the base case of (12). As usual, we omit the trivial inductive steps.
Turning to the claim itself, we observe that in the base case of the inductive proof, where α is a formula 

of the form ♥λπ, we may reason as follows:

S′, σ′,m′
G �1 ♥λπ iff σ′ ∈ λ

(
�π[χ]�0

m′
G

)
(definition �1)

only if σ′ ∈ λ
(

�π�0
m′

)
((12), monotonicity of λ)

iff S′, σ′,m′ �1 ♥λπ (definition �1)

Since the inductive steps of the proof are routine, this establishes the Claim. �

As an immediate consequence of Claim 2 and (10) we obtain that S′, σ′, m′ �1 α0[χ], which establishes 
the first part of Proposition 3.19. The second part follows by the definitions of the respective markings 
mG , m′

G and m′: let B := m′(s′), then m′
G(s′) = {B}, so B ∈ mG(fs′) which then implies that B ⊆ m(s). 

The third and last part of the proposition is immediate by the definition of m′ and the fact that m′
G is a 

G-marking. �
3.3. Disjunctive bases

A key concept in our approach is that of a disjunctive basis, which we define now. It is very close in spirit 
to Arnold & Niwiński’s notion of distributivity [3, Chapter 9]. For the definition, it will be convenient to 
introduce the abbreviation:

A ∪× B := (A×B) ∪A ∪B

for any two sets A, B.

Definition 3.20. Let D be an assignment of a set of positive one-step formulas D(A) ⊆ 1ML+
Λ(A) for all sets 

of variables A. Then D is called a disjunctive basis for Λ if each formula in D(A) is disjunctive, and the 
following conditions hold:

(1) D(A) contains � and is closed under finite disjunctions (in particular, also ⊥ =
∨
∅ ∈ D(A)).

(2) D is distributive over Λ: for every one-step formula of the form ♥λπ in 1ML+
Λ (A) there is a formula 

δ ∈ D(P(A)) such that ♥λπ ≡1 δ[χA].
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(3) D admits a binary distributive law: for any two formulas α ∈ D(A) and β ∈ D(B), there is a formula 
γ ∈ D(A ∪× B) such that α ∧ β ≡1 γ[θA,B ]. �

Intuitively, what a disjunctive basis achieves is to allow us to eliminate conjunctions in a certain sense.

Proposition 3.21. Let D be an assignment of a set of disjunctive one-step formulas D(A) ⊆ 1ML+
Λ (A) for all 

finite sets A, satisfying clauses (1) and (3) from Definition 3.20. Then D is a disjunctive basis for Λ iff for 
any formula α ∈ 1ML+

Λ(A), there is a formula δ ∈ D(PA) such that α ≡1 δ[χA].

In passing we note the following consequence of the binary distributive law. We use the term “distributive 
law” informally here, leaving the question aside whether it allows a category-theoretic formulation.

Proposition 3.22. Any binary distributive law δ for D induces a distributive law δ̂ : PωD → DPω, in the sense 
that ∧

Δ ≡1 δ̂A(Δ)[χA]

for any finite set Δ of formulas in D(A).

There is a wealth of functors that admit a disjunctive basis; several of these are presented and examined 
in detail in the related paper [13] by the first and third authors, where the relationship between disjunctive 
formulas and nabla formulas is also clarified. Here, we only present a brief summary of the results in [13].

Disjunctive bases via cover modalities. Let Λ be an expressively complete signature for a weak-pullback 
preserving functor T. Then Λ admits a disjunctive basis. This is due to the fact that, when Λ is expressively 
complete, the one-step language can express predicate liftings that correspond to arbitrary disjunctions of 
Moss-style ∇-formulas. A more precise explanation can be found in [13].

It follows that the signatures we have associated in Example 2.18 with the identity functor Id, the tree 
functor Idk, and the functors P and PL, all admit disjunctive bases. Furthermore, whenever the functor T
preserves weak pullbacks and restricts to finite sets, (the finitary version of) Moss’ language for T is ex-
pressively complete. This means that our main result in [11] fits into the present framework as a special 
case.

An example without expressive completeness. Consider the functor T = L × Id, where L is a countably 
infinite set of labels. For this functor, T-coalgebras are (up to unfolding) just L-streams, or infinite words 
for which the alphabet is contained in L. They can be viewed as triples (S, σ1, σ2) where σ1 : S → Σ and 
σ2 : S → S. A natural modal signature Λ for this functor is the following: we have one nullary modality 
!l for each l ∈ Σ with the interpretation: S, s � !l iff σ1(s) = l, and we have a single one-place modality ©

with the interpretation S, s � ©ϕ iff S, σ2(s) � ϕ. The signature Λ is not expressively complete, but still 
has a disjunctive basis.

An example without weak pullback preservation. We now give an example of a functor that does not 
preserve weak pullbacks, but still has a natural modal signature that admits a disjunctive basis. Let F be 
the subfunctor of P2 given by setting FX to be the set of pairs (Y, Z) ∈ (PX)2 such that at least one of the 
sets Y, Z is finite. That is:

FX = (PωX × PX) ∪ (PX × PωX).

This is a well defined subfunctor of P2, and F does not preserve weak pullbacks. Consider the modal signature 
consisting of the usual labeled diamond modalities �0 and �1, quantifying over the left and right set in 
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a pair (Y, Z) ∈ FX respectively, and their dual box modalities. This signature has a disjunctive basis, in 
fact the usual cover modalities still give a disjunctive basis even though the functor does not preserve weak 
pullbacks.

Graded modal logic. Finally, we consider the example of graded modal logic. This case provides another 
example of a signature that is not expressively complete, yet has a disjunctive basis. To start with, it is not 
hard to see that the signature ΣB of the counting modalities for the bag functor B (which does preserve weak 
pullbacks) is not expressively complete. For a simple example showing this, just consider the (monotone) 
predicate lifting maj given by:

majX(Z) = {ξ ∈ BX |
∑
v∈Z

ξ(v) ≥
∑

v∈X\Z
ξ(v)}.

It was shown by Pacuit & Salame [29] that the corresponding formula ♥majϕ (which in a finitely branching 
Kripke model states that at least half the successors satisfy ϕ) cannot be expressed in the language of graded 
modal logic. Nevertheless, ΣB does admit a disjunctive basis [13]. The proof is not trivial and we believe 
the result has independent interest, so we list it as a theorem:

Theorem 3.23. The signature ΣB has a disjunctive basis.

4. Derivation systems

In this section we introduce our one-step derivation systems, and we discuss their relation with the 
derivation systems for coalgebraic μ-calculi. The idea of one-step logics and one-step completeness, however, 
has been studied extensively in the literature on coalgebraic modal logic by various authors, including 
Cîrstea, Pattinson, and Schröder, see [30,34,35,6] for some selected references.

4.1. One-step soundness and completeness

In this subsection we will see that there is really logic to be done at the level of one-step formulas. Recall 
that in Definition 3.5 we introduced some standard semantic notions pertaining to one-step formulas. With 
these in place, we now consider derivation systems for one-step logics.

Definition 4.1. Given a signature Λ for T, a one-step axiomatization H is just a set of formulas H ⊆
1MLΛ(Var), where Var is a fixed countable set of propositional variables.

The one-step derivation system H1 associated with H consists of the following axioms and rules.

(H) All formulas in H are axioms of H1.
(MP) From α→ β and α, derive β, where α, β ∈ 1MLΛ(Var).
(CT) All substitution instances α ∈ 1MLΛ(Var) of propositional tautologies are axioms.
(Cg) For all π, ρ ∈ Bool(Var), if each πi ↔ ρi is a substitution instance of a propositional tautology then 

♥λπ ↔ ♥λρ is an axiom.
(US) Given any substitution τ : Var→ Bool(Var) and α ∈ 1MLΛ(Var), derive α[τ ] from α.
(Du) The formula ♥λ∂ (a0, . . . , an−1) ↔ ¬♥λ(¬a0, . . . , ¬an−1) is an axiom, for all λ ∈ Λ and a ∈ Var.

(Mon) For all λ ∈ Λ and a, b ∈ Var, the formula ♥λ(a0, . . . , an−1) → ♥λ(a0 ∨ b0, . . . , an−1 ∨ bn−1) is an 
axiom.
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Table 1
Axioms for various μ-calculi.

H T Axioms
I Id a. ¬©a ↔ ©¬a

b. ©


Ik Idk a. ¬©ia ↔ ©i¬a
b. ©i


K P a. �(a ∧ b) ↔ (�a ∧ �b)
b. �


KL PL a. [l](a ∧ b) ↔ ([l]a ∧ [l]b)
b. [l]


B B a. �n+1a → �na
b. �1(a → b) → (�na → �nb)
c. �0!(a ∧ b) ∧ �k1 !a ∧ �k2 !b → �k1+k2 !(a ∨ b)
d. �1


We write �1
H α and say that α is one-step H-derivable if α is provable in the Hilbert-style system consisting 

of the axioms and rules of H1. We write α �1
H β for �1

H α → β. We also write α ≡1
H β for α �1

H β and 
β �1

H α. �
We now introduce one of the central ingredients of our framework:

Definition 4.2. A one-step axiomatization H is said to be one-step sound if �1 α whenever �1
H α, for 

α ∈ 1MLΛ(A). The system H is said to be one-step complete if �1
H α whenever �1 α, for α ∈ 1MLΛ(A). �

Definition 4.3. Table 1 presents one-step axiomatizations for a number of coalgebraic signatures, associated 
with the functors in the table as presented in Example 2.18.

Here, �k+1!π abbreviates �kπ ∧ ¬�k+1π, and �0!π abbreviates ¬�0π. �
Proposition 4.4. All of the axiomatizations given in Definition 4.3 are one-step sound and complete.

With one exception, we omit the proof of one-step completeness for these systems; the proofs for I and 
Ik are very easy, and the other cases are more or less just re-stating results from [35].

Proof. We focus on the most difficult case, the system B for graded modal logic.
First, given a subset B of some fixed finite set A, we define the full type of B to be the propositional 

formula

τB :=
∧
a∈B

a ∧
∧

a∈A\B
¬a,

and we define a simple conjunction over A to be a formula of the shape:

(∗) �k1τ1 ∧ ... ∧�knτn ∧�k′
1 !τ ′1 ∧ ... ∧�k′

m !τ ′m

where each τi and each τ ′i is a full type.

Claim 1. Any consistent simple conjunction is one-step satisfiable.

Proof of Claim. Given a consistent simple conjunction γ of the shape (∗), it follows by definition of the 
operator �k! and the axiom B(a) that τ ′i �= τ ′j whenever k′i �= k′j , for 1 ≤ i ≤ j ≤ m, and that τi = τ ′j
implies ki ≤ k′j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
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We now consider the one-step A-model (PA, Γγ, id) on the power set PA of A, where the marking is 
the canonical marking given by the identity map on PA, and Γγ ∈ BPA is the weight function given by 
Γγ(B) = k′j if τB is the full type τ ′j for 1 ≤ j ≤ n; otherwise set Γγ(τ) to be the largest k such that �kτB is 
a conjunct of γ (where we may think of �0ϕ = � as a conjunct of every formula γ of shape (*)). It is then 
straightforward to check that the conjunction (∗) is true in (PA, Γγ , id), as required. �

Claim 2. Every one-step formula in 1MLΣB(A) is provably equivalent in B to a disjunction of simple con-
junctions.

Proof of Claim. First, a simple disjunctive normal form argument, together with the observation that every 
formula in Bool(A) is equivalent to a disjunction of full types and applying the axioms B(b&d), we can 
write any one-step formula as a disjunction of conjunctions of the shape:

�k1
∨

Φ1 ∧ ... ∧�kn

∨
Φn ∧�k′

1π1 ∧ ... ∧�k′
mπm,

where each Φi is a set of full types. It now suffices to show that each conjunct �ki
∨

Φi and each �k′
j
∨

Φ′
j can 

be replaced by equivalent disjunctions of the right shape, and then distribute conjunctions over disjunctions 
to put the formula back in disjunctive normal form. This is proved using the following two claims:

(I) Let π1, π2 be mutually inconsistent formulas in Bool(A). Then the formula �k(π1 ∨ π2) is provably 
equivalent to the disjunction: ∨

{�k1π1 ∧�k2π2 | k1 + k2 = k}

(II) Let π be any formula in Bool(A). Then �kπ is provably equivalent to the disjunction of all formulas 
of the form:

�k1 !τ1 ∧ ... ∧�kn !τn

such that k1 + ... + kn < k and {τ1, ..., τn} is the set of all full types that are inconsistent with π.
In each of the proofs of these two claims the central role is played by the axiom B(c). We omit the details. 

�

Finally, the completeness result directly follows from these two claims. �
4.2. Linked derivation systems

With a one-step axiomatization H we may not only associate a one-step derivation system H1, H also 
induces an axiom system for the μ-calculus based on the signature of H.

Definition 4.5. Let H be any one-step axiomatization. We define the Hilbert system μH as follows: as axioms 
we take all axioms in H, the axioms (Du) and (Mon), all substitution instances of propositional tautologies, 
and the pre-fixpoint schema (1) given in the introduction. As rules, we take modus ponens, the uniform 
substitution rule (derive ϕ[τ ] from ϕ, where τ : Var→ μMLΛ), the congruence rule:

ϕ↔ ψ

♥λϕ↔ ♥λψ

and, finally, the Kozen–Park induction rule (2) discussed in the introduction.
We write �H ϕ to say that ϕ is provable in the system μH, ϕ �H ψ for �H ϕ → ψ and ϕ ≡H ψ for 

�H ϕ ↔ ψ. �
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The following proposition will provide a crucial link between the associated derivation systems at the 
one-step level and at the μ-calculus level, in our completeness proof.

Proposition 4.6 (Consistency reduction). Suppose that D is a disjunctive basis for Λ. Furthermore, suppose 
H is a one-step sound and complete axiomatization, and let σ : A → μMLΛ be a map assigning some formula 
in μMLΛ to every variable in A. If α is a formula in 1ML+

Λ (A) such that �H ¬α[σ], then there exists a one-step 
model X, ξ, m �1 α (where ξ ∈ TXX) such that for each u ∈ X, we have �H ¬ 

∧
σ[m(u)].

Proof. To keep notation simple we take all predicate liftings to be unary. Using expressive completeness 
of the disjunctive fragment D(A) and applying distributivity for D as supplied by Proposition 3.21, we can 
rewrite the formula α as a disjunction ξ of formulas of the form δ[χA] for δ ∈ D(PA).

Pick a disjunct δ[χA] of ξ such that δ[χA][σ] is consistent in μH, which must exist since otherwise the 
whole disjunction ξ[σ] is inconsistent and hence α[σ] is inconsistent contrary to assumption. It can be 
checked that:

δ[χA][σ] ≡H δ[τ ][χA][σ] (13)

where the map τ : PA → μMLΛ is defined by:

τ(B) =
{
B if

∧
σ[B] is μH-consistent

⊥ otherwise.

To see this, we first prove by induction on the complexity of a lattice formula π over PA that:

π[χA][σ] ≡H π[τ ][χA][σ] (14)

Using this we can prove by induction on one-step formulas α over A that:

α[χA][σ] ≡H α[τ ][χA][σ]

We only consider the case where α is of the form ♥λπ, and since π is a lattice formula over PA we can 
reason as follows:

(♥λπ)[χA][σ] = ♥λ(π[χA][σ])

≡H ♥λ(π[τ ][χA][σ])

= (♥λπ)[τ ][χA][σ].

For the second step here we have used the congruence rule. This finishes the proof of (14). We now see that 
δ[τ ][χA][σ] is consistent in μH (since δ[χA][σ] was consistent), and it follows immediately that �1

H ¬δ[τ ][χA]
by contraposition.

Using the substitution property for H (contrapositively) we find that �1
H ¬δ[τ ]. From one-step complete-

ness we get �1 ¬δ[τ ], so we find a set X and a marking m : X → PPA such that �δ�1
m �= ∅. Hence we find 

ξ ∈ TXX such that X, ξ, m �1 δ[τ ].
We now change the marking m to a new marking n as follows: for u ∈ X we set

n(u) := {B ⊆ A | B ∈ m(u) & τ(B) �= ⊥}.

Then for each B ⊆ A we clearly have �τ(B)�0
n = �B�0

m, and we get for all positive one-step formulas β over 
PA that:
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X, ξ,m �1 β[τ ] iff X, ξ, n �1 β.

Hence, in particular, we get:

X, ξ, n �1 δ.

By disjunctivity of δ we can now pick a cover f : (X ′, ξ′) → (X, ξ) and a marking n′ : X ′ → PPA with 
n′(v) ⊆ n(f(v)) for each v ∈ X ′, where each n′(v) for v ∈ X ′ is either empty or a singleton, and such that 
X ′, ξ′, n′ �1 δ. Define a new marking n† : X ′ → PA by setting:

n†(u) :=
{
B if n′(u) = {B}
∅ if n′(u) = ∅

Then one can check that for each B ⊆ A we have:

�B�0
n′ ⊆ �χA(B)�0

n†

So by a monotonicity argument we get for all formulas β ∈ 1ML+
Λ (PA, X) that X ′, ξ′, n′ �1 β implies 

X ′, ξ′, n† �1 β[χA]. In particular, we get X ′, ξ′, n† �1 δ[χA]. It follows that X ′, ξ′, n† �1 ξ, hence 
X ′, ξ′, n† �1 α, and it can be checked that 

∧
σ[n†(u)] is consistent for each u ∈ X. �

5. Coalgebra automata

5.1. Λ-automata

As mentioned in the introduction, our approach is essentially automata-theoretic in nature. In this section 
we introduce the specific kind of coalgebra automata that we will use in this paper — these originate with 
Fontaine, Leal & Venema [14].

Throughout this section we fix a set X of proposition letters.

Definition 5.1. A X-automaton structure for Λ, or briefly, a Λ-automaton structure, is a triple (A, Θ, Ω) where 
A is a finite set of states, Ω : A → ω is the priority map of the automaton, while the transition map

Θ : A→ 1ML+
Λ(X, A)

maps states to one-step formulas. We turn such a structure into a modal X-automaton for Λ, or briefly, 
a Λ-automaton by expanding the structure with a starting state aI ∈ A. In case we discuss automata for 
an arbitrary or unknown signature Λ, we will use the term coalgebra automata rather than Λ-automata.

The underlying structure of an automaton A = (A, Θ, Ω, aI) is the triple (A, Θ, Ω). With b ∈ A, let A〈b〉
denote the variant of A that takes b as its starting state, i.e., A〈b〉 = (A, Θ, Ω, b). �

The semantics of coalgebra automata is given in terms of a two-player infinite parity game [16].

Definition 5.2. Let A = (A, Θ, Ω, aI) be a Λ-automaton, and let S = (S, σ, V ) be a T-model, both over 
the set X of proposition letters. The acceptance game A(A, S) for A with respect to S is defined as in the 
following table:

Position Player Admissible moves
(a, s) ∃ {m : S → PA | (S, σ(s),m) �1 Θ(a)}
m ∀ {(b, t) | b ∈ m(t)}
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The winning conditions are as usual for parity games. That is, the loser of a finite play is the player who 
got stuck. An infinite play (a1, s1)m1(a2, s2)m2(a3, s3)m3 . . . induces a stream a1a2a3 . . . over the alphabet 
A, and we declare the winner of this play to be ∃ if the highest priority that appears infinitely often in the 
stream Ω(a1)Ω(a2)Ω(a3) . . . is even, and ∀ is the winner otherwise.

We say that A accepts the pointed T-model (S, s), notation: S, s � A, if (aI , s) is a winning position for 
∃ in the acceptance game A(A, S). The language L(A) recognized by A is the class of pointed T-models 
accepted by A. �

To gain some intuitions, note that the acceptance game A(A, S) moves in rounds from one basic position 
of the form (a, s) to another. Each round starts with ∃ picking an A-marking m on S that turns the 
one-step unfolding of s into a one-step model (S, σ(s), m) that is supposed to satisfy the one-step formula 
Θ(a). Looking at this marking m as a binary relation of witnesses, ∀ then finishes by picking a new basic 
position from this set.

Definition 5.3. Let A and A′ be two modal automata. We say that A (semantically) implies A
′, notation: 

A � A
′, if L(A) ⊆ L(A′), and that A and A′ are equivalent, notation: A ≡ A

′, if they recognize the same 
language, i.e., if L(A) = L(A′). The two automata are one-step equivalent, notation: A ≡1

A
′, if A = A′, 

Ω = Ω′, aI = a′I , and Θ(a) ≡1 Θ(a) for all a ∈ A. A Λ-automaton A is equivalent to a formula ϕ ∈ μMLΛ if 
any pointed T-model (S, s) is accepted by A iff S, s � ϕ. �
It is obvious that one-step equivalence implies equivalence.

In the remainder of this subsection we introduce various concepts and notations pertaining to Λ-automata 
and automaton structures.

Definition 5.4. The (directed) graph of an automaton structure A = (A, Θ, Ω) is the pair (G, �A), where 
a �A b if b occurs in the formula Θ(a), and we let �A denote the transitive closure of �A. If a �A b we say 
that b is active in a. We write a ��A b if a �A b and b �A a.

A cluster of A is a cell of the equivalence relation generated by ��A (i.e., the smallest equivalence relation 
on A containing ��A). A cluster C is degenerate if it is of the form C = {a} with a ���A a; by extension we 
will also call the state a degenerate. The unique cluster to which a state a ∈ A belongs is denoted as Ca.

The concepts introduced here in fact pertain to pairs of the form (A, Θ), where Θ : A → 1ML+
Λ (X, A); for 

such structures we will use the same terminology, writing �Θ, �Θ rather than �A, �A, etc. �
Definition 5.5. Fix a Λ-automaton structure A = (A, Θ, Ω). The size |A| of A is defined as the cardinality 
of its carrier A.

We write a �A b if Ω(a) < Ω(b), and a �A b if Ω(a) ≤ Ω(b). When clear from context we sometimes write 
� and � instead, dropping the explicit reference to A.

Given a state a of A, we write ηa = μ if Ω(a) is odd, and ηa = ν if Ω(a) is even, and we call a an ηa-state. 
The sets of μ- and ν-states are denoted with Aμ and Aν , respectively.

We say that A is positive in a proposition letter p ∈ X if each occurrence of p in each formula Θ(a) is 
positive, that is, not in the scope of a negation.

A state a ∈ A is called a true state of A if Θ(a) = �. �
5.2. From formulas to automata

Generalizing the automata-theoretic perspective on the modal μ-calculus as in [40], Λ-automata are the 
counterpart of the coalgebraic μ-calculus associated with Λ, in the sense that there are effective constructions 
transforming μMLΛ-formulas into equivalent Λ-automata, and vice versa [14]. In this section and the next, 
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we have a closer look at these transformations. For some more detail and motivation of these definitions we 
refer the reader to [12].

First we consider some operations on automata that correspond to the connectives of our language. For 
the definition of the complementation operation on automata, we need the following auxiliary definition.

Definition 5.6. The (boolean) dual α∂ of a one-step formula α ∈ 1ML+
Λ(X, A) is the formula we obtain from α

by simultaneously replacing all occurrences of p ∈ X with ¬p, ∧ with ∨, ♥λ with ♥λ∂ , and vice versa. �
Definition 5.7. Let A = (A, ΘA, ΩA, aI) and B = (B, ΘB , ΩB , bI) be two Λ-automata over X.

(1) With � ∈ {∧, ∨}, we let A �B denote the automaton (C, ΘC , ΩC , iA�B), where iA�B is some arbitrarily 
chosen object, C := A � B � {iA�B}, ΘC and ΩC agree with, respectively, ΘA and ΩA on A and with, 
respectively ΘB and ΩB on B, whereas for the initial state iA�B we define

ΘC(iA�B) := ΘA(aI)�ΘB(bI)
ΩC(iA�B) := k + 1,

where k is the maximum priority of A, B.
(2) We let ¬A denote the automaton (A, Θ∂

A, Ω¬A, aI), where Θ∂
A maps a state a to the boolean dual of 

Θ(a) (see Definition 5.6), and Ω¬A is given by

Ω¬A(a) := 1 + ΩA(a).

(3) For λ ∈ Λ (assumed to be unary, for simplicity) we define ♥λA = (C, ΘC , ΩC , iC) as the automaton 
given by C := A �{iC}, ΘC and ΩC agree with, respectively, ΘA and ΩA on A, whereas for the initial state 
iC we define

ΘC(iC) := ♥λaI
ΩC(iC) := k + 1,

where k is the maximum priority of A. We leave it to the reader to carry out the straightforward general-
ization of this construction to arbitrary, n-ary predicate liftings. �

Next we define a substitution operation on automata.

Definition 5.8. Let A = (A, ΘA, ΩA, aI) and B = (B, ΘB , ΩB , bI) be two Λ-automata over the sets X �
{p} and X, respectively, and assume that A is positive in p. We define A[B/p] = (C, ΘC , ΩC , iC) as the 
Λ-automaton over X defined by C := A �B, whereas ΘC is given by

ΘC(c) :=
{

ΘA(c)[ΘB(bI)/p] if c ∈ A

ΘB(b) if c ∈ B.

Finally, we set ΩC(b) := ΩB(b) for b ∈ B and Ω(a) := n + Ω(a) for a ∈ A, where n is the least even number 
greater than any priority in B. �

In order to define least and greatest fixpoint operators on automata we need the following proposition, 
where we recall that ≡1

H denotes the relation of one-step provable equivalence with respect to the ambient 
one-step derivation system H, cf. Definition 4.1.

Proposition 5.9. For every Λ-automaton A positive in x, and any state a ∈ A, there are formulas θa0 and θa1
in which x does not appear, such that

Θ(a) ≡1
H (x ∧ θa0) ∨ θa1 .
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Table 2
The automata Ax, μx.A and νx.A.

Automaton Θ(ai) Θ(x) Ω(ai) Ω(x) i

A
x θa

i [κ] x ΩA(a) 0 x
μx.A θa

i [κ] θaI
1 [κ] ΩA(a) m + 1 x

νx.A θa
i [κ] θaI

0 [κ] ∨ θaI
1 [κ] ΩA(a) m + 2 x

Definition 5.10. Let A = (A, ΘA, ΩA, aI) be a Λ-automaton over the set X � {x}, and assume that A is 
positive in x. By Proposition 5.9 for each a ∈ A we may fix formulas θa0 , θa1 ∈ 1ML+

Λ(X, A) such that 
Θ(a) ≡1

H (x ∧ θa0) ∨ θa1 . We now define automata Ax, μx.A and νx.A. All three structures are based on the 
same carrier, viz., the set (A ×{0, 1}) � {x}; we will denote states of the form (a, i) as ai, if no confusion is 
likely. Of all these three automata, we specify their transition map Θ, priority map Ω and initial state i in 
Table 2. In this table, κ denotes the substitution

κ : a �→ (x ∧ a0) ∨ a1,

while m is the smallest even number that is greater than the maximum priority of A. �
Definition 5.11. By induction on the complexity of a modal μ-formula ϕ ∈ μMLΛ we define a Λ-automaton Aϕ.

First of all, we need to consider atomic formulas: given any propositional variable p, we take some 
arbitrary object a distinct from p to be the one and only state of Ap, and define Θp(a) = p, and Ωp(a) = 0.

With this in place, we can complete the translation as follows:

A¬ϕ := ¬Aϕ

Aϕ∨ψ := Aϕ ∨ Aψ

A♥λϕ := ♥λAϕ

Aμx.ϕ := μx.Aϕ,

i.e., by applying the operations we have defined above to handle the various connectives of the coalgebraic 
μ-calculus. �
5.3. From automata to formulas

In the opposite direction we will need an actual map transforming an initialized modal automaton into 
an equivalent μ-calculus formula. For our definition of such a map, which is a variation of the one found 
in [16], we need some preparations. For a proper inductive formulation of this definition it is convenient to 
extend the class of automata, allowing states of the automaton to appear in the scope of a modality in a 
one-step formula.

Definition 5.12. A generalized automaton structure over X is a triple A = (A, Θ, Ω) such that A is a finite 
set of states, Ω : A → ω is a priority map, and Θ : A → 1ML+

Λ (X, A ∪ X) maps states of A to generalized 
one-step formulas. �

Whenever possible, we will apply concepts that have been defined for automata structures to these 
generalized structures without explicit notification. For the operational semantics of generalized modal 
automata we may extend the notion of a one-step model in the obvious way. Readers who are interested in 
the details may consult [12].

Definition 5.13. A (generalized) automaton structure A = (A, Θ, Ω) is called linear if the relation �A is a 
linear order (i.e., the priority map Ω is injective), and satisfies Ω(a) > Ω(b) in case b is active in a but not 
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vice versa. A linearization of A is a linear automaton A′ = (A, Θ, Ω′) such that (1) for all a ∈ A, Ω′(a) has 
the same parity as Ω(a), and (2) for all a, b ∈ A that belong to the same cluster we have Ω′(a) < Ω′(b) iff 
Ω(a) < Ω(b). �

Our focus on linear automaton structures is justified by Proposition 5.14; for the definitions of the 
satisfiability and consequence games involved in this definition, see Section 6. It is easy to prove this 
Proposition, based on the observation that, given a linearization A′ = (A, Θ, Ω′) of an automaton A =
(A, Θ, Ω), any stream α ∈ Aω is winning for ∃/∀ relative to Ω iff it is winning for the same player relative 
to Ω′.

Proposition 5.14. Every automaton structure A has a linearization Al such that, for all a ∈ A,
(1) A〈a〉 �G A

l〈a〉 and Al〈a〉 �G A〈a〉;
(2) each player Π ∈ {∃, ∀} has a winning strategy in S(A〈a〉) (resp. Sthin(A〈a〉)) iff she/he has a winning 

strategy in S(Al〈a〉) (resp. Sthin(Al〈a〉)).

Definition 5.15. We introduce a map

trA : A→ μMLΛ(X)

for any linear generalized X-automaton structure A = (A, Θ, Ω). These maps are defined by induction on 
the size of A.

In case |A| = 1, we set

trA(a) := ηaa.Θ(a),

where a is the unique state of A.
In case |A| > 1, by linearity there is a unique state m reaching the maximal priority of A, that is, 

with Ω(m) = max(Ran(Ω)). Let A− = (A−, Θ−, Ω−) be the X ∪ {m}-automaton structure given by A− :=
A \ {m}, while Θ− and Ω− are defined as the restrictions of, respectively, Θ and Ω to A−. Since |A−| < |A|, 
inductively5 we may assume a map trA− : A → μMLΛ(X ∪ {m}).

Now we first define

trA(m) := ηmm.Θ(m)[trA−(a)/a | a ∈ A−],

and then set

trA(a) := trA−(a)[trA(m)/m]

for the states a �= m. �
We now turn to the translation map for arbitrary automaton structures. We already saw that every 

automaton structure has at least one linearization. Furthermore, by the following result the translation 
maps of different linearizations of the same structure are provably equivalent.

5 Observe that since m is a proposition letter and not a variable in A−, the latter structure need not be a Λ-automaton, even if 
A is. It is for this reason that we introduced the notion of a generalized Λ-automaton.
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Proposition 5.16. Let A′ = (A, Θ, Ω′) and A′′ = (A, Θ, Ω′′) be two linearizations of the automaton structure 
A = (A, Θ, Ω). Then

trA′(a) ≡H trA′′(a)

for all a ∈ A.

Proposition 5.16 ensures that modulo provable equivalence the following definition of tr(A) for an arbi-
trary automaton A does not depend on the particular choice of a linearization for the underlying automaton 
structure of A.

Definition 5.17. With each automaton structure A = (A, Θ, Ω) we associate an arbitrary but fixed lineariza-
tion Al of A (with the understanding that Al = A in case A itself is linear). We then define trA := trAl . 
Finally, given an arbitrary Λ-automaton A = (A, Θ, Ω, aI), we let

tr(A) := trAl(aI)

define the translation of the automaton A itself. �
Proposition 5.18. The following claims hold, for all Λ-automata A, B:

(1) tr(A � B) ≡H tr(A) � tr(B) for � ∈ {∧, ∨};
(2) tr(¬A) ≡H ¬tr(A);
(3) tr(♥λA) ≡H ♥λtr(A) for all λ ∈ Λ;
(4) if A is positive in p then tr(ηp.A) ≡H ηp.tr(A) for η ∈ {μ, ν};
(5) if A is positive in p then tr(A[B/p]) ≡H tr(A)[tr(B)/p];
(6) tr(μx.A) ≡H μx.tr(Ax).

The following theorem establishes the central property of the translations from formulas to automata 
and back that links these constructions with the proof theory of coalgebraic μ-calculi in the appropriate 
way:

Theorem 5.19. For every formula ϕ, we have ϕ ≡H tr(Aϕ).

Remark 5.20. This theorem allows us pass freely between μMLΛ-formulas and Λ-automata without losing 
information about consistency or provability, and to apply proof-theoretic concepts to automata. For ex-
ample we say that the automaton A is consistent if μH � ¬tr(A), we may write A � B to abbreviate 
μH � tr(A) → tr(A) etc. �
6. Games for coalgebra automata

Our completeness result is based on a number of automata-theoretic concepts, specifically, two games
played with automata that we call the satisfiability game and the consequence game. The satisfiability game 
related to an automaton A is played between players ∃ (“Eloise”) and ∀ (“Abélard”), and the aim of Eloise is 
to construct a model accepted by A step by step. The consequence game related to two automata, A and B, 
is also played between two players, now prosaically called ‘player I’ and ‘player II’; here the aim of the second 
player is to systematically show that the first automaton implies the second one, in some strong, structural 
sense. Both games proceed in rounds, moving from one basic position to another, and these moves all involve 
one-step models over the collection A� of binary relations over the carrier set of the automaton A (and of 
the collection B� of binary relations over the carrier set of the second automaton, in case of the consequence 
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game). Furthermore, for both kinds of games, infinite plays naturally induce streams of binary relations, 
and the winning conditions of both games are expressed in terms of the collection of traces through such 
streams. For a more detailed introduction of these games, in the setting of the standard modal μ-calculus, 
we refer to Enqvist, Seifan & Venema [12].

6.1. Traces and canonical one-step models

We first introduce some terminology and notation for the auxiliary notions of traces and canonical 
one-step models.

Definition 6.1. Fix a set A. We let A� denote the set of binary relations over A, that is, A� := P(A ×A).
Given a finite word Σ = R1R2R3 . . . Rk over the set A�, a trace through Σ is a finite A-word α =

a0a1a2 . . . ak such that aiRi+1ai+1 for all i < k. A trace through an A�-stream Σ = R1R2R3 . . . is an 
A-stream α = a0a1a2 . . . , such that aiRi+1ai+1 for all i < ω). In both cases we denote the set of traces 
through Σ as TrΣ.

Given a stream Σ = R1R2R3 . . . over A� we denote by Σ|k the word R1 . . . Rk, and for a trace τ =
a0a1a2 . . . on Σ we denote by τ |k the restricted trace a0 . . . ak on Σ|k. We use similar notation for restrictions 
of finite words over A�. �
Definition 6.2. Fix a finite set A and a priority map Ω : A → ω. We let NBTΩ denote the set of A�-streams 
that contain no bad trace, that is, no trace τ = a0a1 . . . such that max(Ω[Inf (τ)]), the highest priority 
occurring infinitely often on τ , is odd. In case Ω is the priority map of a coalgebra automaton A, we will 
usually write NBTA instead of NBTΩ. �

It is easy to define a stream automaton that recognizes exactly the complement of the set NBTA, for any 
parity automaton A; by closure under complementation it then follows that NBTA itself is also an ω-regular 
language; details can be found in [38].

Proposition 6.3. Given a finite set A and a priority map Ω : A → ω, there is a parity stream automaton 
recognizing the set NBTΩ, seen as a stream language over A�.

Now we consider the one-step models based on the set A� of binary relations over A.

Definition 6.4. Given a set A and a state a ∈ A, the natural or canonical a-marking on the set A� is defined 
as the map nA

a : A� → PA given by

nA
a : R �→ R[a].

In case A is known from context, we will usually write na rather than nA
a , and define, for a one-step formula 

α ∈ 1ML+
Λ (X, A), �α�1

a := {Γ ∈ TXA
� | A�, Γ, na �1 α}. �

Remark 6.5. The notation �α�1
a may seem to be somewhat ambiguous, since it does not refer to the ambient 

variable set A. However, by Proposition 3.10 and Corollary 3.9 it follows that, for any pair of sets A, B such 
that α ∈ 1ML+

Λ (X, A) ∩ 1ML+
Λ (X, B) we have

{Γ ∈ TXA
� | A�,Γ, nA

a �1 α} = {Γ ∈ TXB
� | B�,Γ, nB

a �1 α}.

As another instance of Corollary 3.9, for any subset R ⊆ A� and for any object Γ ∈ TXR we have

A�,Γ, na �1 α iff R,Γ, na�R �1 α,
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where na�R is the natural a-marking on A�, restricted to R. If no confusion is likely, we will often denote 
the marking na�R simply by na. �
Remark 6.6. We may think of any object Γ ∈ TXA

� as a family {(A�, Γ, na) | a ∈ A} of one-step models on 
the same one-step frame (A�, Γ). It may occasionally be useful, however, to consider this ‘family of one-step 
models’ as one single model. To do so, we involve, for each a ∈ A, the substitution τa : A → A × A that 
tags each variable b ∈ A with its ‘origin’ a, that is, τa : b �→ (a, b). One may verify, on the basis of a 
straightforward formula induction, that

A�,Γ, na �1 α iff A�,Γ, idA� �1 α[τa]

for each one-step formula α ∈ 1ML+
Λ (X, A). In particular, it follows that

Γ ∈
⋂
a∈B

�Θ(a)�1
a iff A�,Γ, idA� �1

∧
a∈B

α[τa],

for any family {Θ(a) | a ∈ B} of formulas. �
The following rather technical lemma will be needed to ensure that we can make simplifying assumptions 

on the strategies that players use in the games that we are about to introduce. Recall that ↔1
Λ,f is the 

one-step bisimulation relation introduced in Definition 3.12, and that �Θ is the relation of one state being 
active in another relative to Θ, as introduced in Definition 5.4.

Proposition 6.7. Let Θ : A → 1ML+
Λ(X, A) be some map, and fix some R ∈ A� and some Q ⊆ A�, Γ ∈ TXQ

such that

Γ ∈
⋂

a∈RanR
�Θ(a)�1

a.

(1) There are Q′ ⊆ A� and Γ′ ∈ TXQ′ such that Γ′ ∈
⋂

a∈RanR�Θ(a)�1
a, ⊆ : (Q′, Γ′) ↔1

Λ,f (Q, Γ), and for 
each Q ∈ Q′: DomQ ⊆ RanR.

(2) There are Q′ ⊆ A� and Γ′ ∈ TXQ′ such that Γ′ ∈
⋂

a∈RanR�Θ(a)�1
a, ⊆ : (Q′, Γ′) ↔1

Λ,f (Q, Γ), and for 
each Q ∈ Q′: b �Θ a whenever (a, b) ∈ Q.

(3) Let there be, for some subset B ⊆ A, a collection {Gb ⊆ PA | b ∈ B} such that for every C ∈ PA
there is a C ′ ∈ Gb such that C ′ ⊆ C. Furthermore, assume that, for each b ∈ B:

Θ(b) ∈ {α[χ] | α ∈ D(Gb)}.

Then there are Q′ ⊆ A� and Γ′ ∈ TXQ′ such that Γ′ ∈
⋂

a∈RanR�Θ(a)�1
a, ⊆ : (Q′, Γ′) ↔1

Λ,f (Q, Γ), and for 
each Q ∈ Q′: Q[b] ∈ Gb, for all b ∈ B.

Proof. For part (1), consider the map F : A� → A� given by

F (Q) := Q ∩ (RanR×A).

We leave it for the reader to verify that the pair (Ran(F ), (TXF )Γ) meets the requirements. Part (2) is 
proved similarly, using the map Q �→ Q ∩�.

For part (3), we will prove the statement for the special case where B is a singleton B = {b}, while we 
show that Q′ additionally satisfies
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{Q[a] | Q ∈ Q′} ⊆ {Q[a] | Q ∈ Q} (15)

for all a �= b. The general case can then be obtained from the special one by a straightforward iteration, 
taking care of B’s elements one by one. The role of (15) is to ensure that new iterations do not spoil the 
progress booked in earlier rounds.

So let b ∈ A be such that Θ(b) is of the form αb[χ] for some αb ∈ D(Gb). By assumption on Γ and 
Corollary 3.9 we have Q, Γ, nb �1 αb[χ]. Applying Proposition 3.19 we obtain a one-step model (S, σ, m)
and a map F : S → Q such that (TXF )σ = Γ, Ran(F ) = Q, S, σ, m �1 αb[χ] and, for all s ∈ S we have 
m(s) ⊆ nb(Fs) = Fs[b] and m(s) ∈ Gb.

Now define the map G : S → A� by setting

Gs[a] :=
{

m(s) if a = b

Fs[a] if a �= b.

We claim that the object Γ′ ∈ TXA
�, given as

Γ′ := (TXG)σ,

together with the set Q′ := RanG, has all the desired properties.
To start with, it is easy to see that F : (S, σ) → (Q, Γ) and G : (S, σ) → (Q′, Γ′) are surjective one-step 

homomorphisms, so that it follows from Proposition 3.13 and the fact that G(s) ⊆ F (s) for all s ∈ S that 
⊆ : (Q′, Γ′) ↔1

Λ,f (Q, Γ).
Our next step is to prove that Γ′ ∈

⋂
a∈RanR�Θ(a)�1

a, or equivalently, that

A�,Γ′, na �1 Θ(a) for all a ∈ RanR. (16)

To see this, make a case distinction. If a = b, it follows from the definitions that (nb ◦ G)(s) = nb(Gs) =
Gs[b] = m(s), so that G is a one-step model homomorphism

G : (S, σ,m)→ (A�,Γ′, nb).

From this (16) is immediate by S, σ, m �1 αb[χ].
In case a �= b we have to do a bit more work. Define the A-marking ma : S → PA by putting ma(s) :=

Fs[a]. It is easy to check that this turns F into a one-step model homomorphism

F : (S, σ,ma)→ (A�,Γ, na)

and G into a one-step model homomorphism

G : (S, σ,ma)→ (A�,Γ′, na).

But then by naturality we immediately obtain that

A�,Γ, na �1 α iff S, σ,ma �1 α

iff A�,Γ′, na �1 α

for all one-step formulas α ∈ 1ML+
Λ (A), so in particular for α = Θ(a). Thus (16) follows by the assumption 

that A�, Γ, na �1 Θ(a).
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Table 3
Admissible moves in the satisfiability game S(A).

Position Player Admissible moves

R ∈ A� ∃ {(R,Γ) ∈ PA� × TXA
� | Γ ∈ TXR ∩

⋂
a∈RanR�Θ(a)�1

a}
(R,Γ) ∀ {R ∈ A� | R ⊆ R′ for some R′ ∈ R}

Having established (16) we continue with proving that

Q′[b] ∈ Gb (17)

for each Q′ ∈ Q′. This is in fact easy, since each such Q′ is by definition of the form Gs, for some s ∈ S. 
Hence Q′[b] = m(s) ∈ Gb by the assumptions on the one-step model (S, σ, m).

This leaves (15) to take care of. Let a ∈ A be distinct from b, and take an arbitrary Q′ ∈ Q′, say, Q′ = Gs

for s ∈ S. Then by definition of G : S → A� we have Gs[a] = Fs[a], and since Ran(F ) ⊆ Q we are done. �
6.2. The satisfiability game

We now turn to the definition and technical details of the satisfiability game S(A) associated with an 
automaton A. As we shall see, it is rather similar to a tableau in that the aim of ∃ is to step-by-step construct 
a model that is accepted by A.

Definition 6.8. Let A = (A, Θ, Ω, aI) be a modal automaton. Then the satisfiability game S(A) is the graph 
game of which the moves are given by Table 3. Positions of the form R ∈ A� are called basic.

The winner of an infinite play of the satisfiability game is given by the induced stream Σ = R0R1 . . . ∈
(A�)ω of basic positions. This winner is ∃ if Σ belongs to the set NBTΩ, that is, if Σ contains no bad traces, 
and it is ∀ otherwise. A winning strategy of ∀ in S(A) may be called a refutation of A. �

The satisfiability game is sound and complete in the following sense. For a proof of this Proposition we 
refer to [14].

Proposition 6.9 (Adequacy). Let A = (A, Θ, Ω, aI) be a modal automaton A. Then ∃ has a winning strategy 
in S(A) iff the language recognized by A is non-empty.

The purpose of the following Proposition is to justify some simplifying assumptions on the strategies 
employed by ∃ in the satisfiability game. Here P denotes the relation lifting associated to P as in Defini-
tion A.3.

Proposition 6.10. Let A = (A, Θ, Ω, aI) be a Λ-automaton, and let N ⊆ A� be a set of relations. Assume 
that for every basic position R ∈ A� of the satisfiability game, and every legitimate move (R, Γ) of ∃ there 
is a legitimate move (R′, Γ′) such that R′ ⊆ N and R′ P⊆ R. Then for any winning position in S(A) ∃ has 
a winning strategy that restricts her moves to pairs (R, Γ) with R ⊆ N .

Proof. Assume that ∃ has a winning strategy f in the game S(A) initialized at position R0. We need to 
provide her with a winning N -strategy, that is, a strategy f that always selects moves (R, Γ) with R ⊆ N .

We will define this strategy f by induction on the length of partial S(A)-plays. Simultaneously, for any 
such play

Σ = R0(R0,Γ0)R1(R1,Γ1) . . . Rk

which is f -guided, we will define a parallel play
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Table 4
Admissible moves in the alternative satisfiability game.

Position Player Admissible moves

R ∈ A� ∃
⋂

a∈RanR�Θ(a)�1
a

Γ ∈ TXA
� ∀ Base(Γ)

Σ∗ = R0(R∗
0,Γ∗

0)R1(R∗
1,Γ∗

1) . . . Rk

which is guided by ∃’s winning strategy f . If we can maintain such a shadow play infinitely long, it is routine 
to prove that f is winning for ∃.

For the case where k = 0 there is nothing to prove, so assume inductively that there are partial plays Σ
and Σ∗ as above. Observe that since the last positions of Σ and Σ∗ are identical, the set of ∃’s legitimate 
moves in Σ and Σ∗ are the same. Let (R, Γ) be the move prescribed by ∃’s winning strategy f in the partial 
play Σ∗, then by assumption there is a legitimate move (R′, Γ′) such that R′ ⊆ N and R′ P⊆ R. Then we 
let

f(Σ) := (R′,Γ′)

be ∃’s move in Σ. This defines the strategy f .
To finish the inductive step, consider an arbitrary continuation of the play Σ · (R′, Γ′), say, where ∀ plays 

some relation Q. By definition, Q is a subset of some Q′ ∈ R′, while by R′ P⊆ R we may find some Q′′ ∈ R
such that Q′ ⊆ Q′′. But then it follows from Q ⊆ Q′′ that Q is also a legitimate move for ∀ in Σ∗ · (R, Γ). In 
other words, the two k+1-length plays Σ · (R′, Γ′) ·Q and Σ∗ · (R, Γ) ·Q satisfy the required conditions. �
Remark 6.11. As a consequence of Proposition 6.10, we can always make some minimality assumptions on 
∃’s strategy in the satisfiability game. In particular, suppose that ∃, at some position R ∈ A� in a play of 
S(A), picks a move (R, Γ) ∈ PA� × TXA

�. Then by the Propositions 6.7 and 6.10 we can assume without 
loss of generality that, for all Q ∈ R:

(1) Dom(Q) ⊆ Ran(R);
(2) b occurs in Θ(a), for all (a, b) ∈ Q;
(3) |Q[a]| ≤ 1, whenever Θ(a) is a disjunctive formula. �

Remark 6.12. We remark in passing that the moves made by ∃ can always be assumed without loss of 
generality to be of the form (R, Γ) where R is the unique smallest subset of A� with Γ ∈ TXR; this set is 
called the base of Γ, and denoted as Base(Γ) (cf. Definition A.11). (That this set exists follows from standard 
results in coalgebra, together with the assumption that T (and hence TX) preserves inclusion maps.) Based 
on this, an alternative but equivalent formulation of the satisfiability game (more compatible with the 
versions used in [11,12]) is given in Table 4. �
6.3. Consequence game

The consequence game C(A, A′) is played between two players I (female) and II (male). To provide some 
intuitions, the aim of the second player is to provide “step-by-step” a construction that systematically turns 
any winning strategy for ∃ in S(A) into a winning strategy in S(A′). A strategy for player II thus provides 
a tight structural connection between the two automata. More in detail, the basic positions of the game are 
pairs (R, R′) ∈ A� × A′�, and at such a position Player I picks an admissible move (R, Γ) for ∃ in S(A) at 
the position R. After this Player II must respond with an admissible move (R′, Γ′) for ∃ in S(A′) at the 
position R′, but also, crucially, with a full one-step bisimulation Z ⊆ R ×R′ linking Γ and Γ′. This round 
of the play finishes with player I picking an element (Q, Q′) of Z as the next basic position.
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Table 5
Admissible moves in the consequence game C(A, A′).

Position P Moves
(R,R′) I {((R,Γ), R′) | Γ ∈ TXR ∩

⋂
a∈RanR�Θ(a)�1

a}
((R,Γ), R′) II {((R,Γ), (R′,Γ′)) | Γ′ ∈ TXR′ ∩

⋂
b∈RanR′ �Θ(b)�1

b}
((R,Γ), (R′,Γ′)) II {Z | Z : (R,Γ) ↔1

Λ,f (R′,Γ′)}
Z ⊆ A� × A′� I Z

We can now provide the formal definition of the consequence game C(A, A′). Note that this version of the 
game differs from the one given in [11,12] in that it explicitly refers to support sets for the objects Γ and 
Γ′, and in that it allows player II to come up with a binary relation rather than with a partial function.

Definition 6.13. Let A = (A, Θ, Ω, aI) and A′ = (A′, Θ′, Ω′, a′I) be Λ-automata. The rules of the consequence 
game C(A, A′) are given by Table 5. Positions of the form (R, R′) ∈ A�×A′� are called basic. For the winning 
conditions of this game, consider an infinite play Σ of C(A, A′), and let

(R0, R
′
0)(R1, R

′
1)(R2, R

′
2) . . .

be the induced stream of basic positions in Σ. Then player I is the winner of Σ if R0R1 . . . ∈ NBTΩ but 
R′

0R
′
1 . . . /∈ NBTΩ′ ; that is, if there is a bad trace on the A′-side but not on the A-side.

If the position 
(
{(aI , aI)}, {(a′I , a′I)}

)
is a winning position for player II in C(A, A′), we say that A′ is a 

game consequence of A, notation: A �G A
′. �

We have the following soundness result for this game.

Proposition 6.14. For any two modal automata A and A′ it holds that

A �G A
′ implies A � A

′. (18)

For future reference we give the following proposition, stating that the consequence relation �G is reflexive 
and transitive.

Proposition 6.15. Let A, A′ and A′′ be modal automata.
(1) A �G A;
(2) if A �G A

′ and A′ �G A
′′ then A �G A

′′.

Proof. Clearly, the proof of the first item is trivial. Concerning the transitivity of �G, it is a routine exercise 
to verify that player II can compose any two winning strategies in the games C(A, A′) and C(A′, A′′), 
respectively, to obtain a winning strategy in the game C(A, A′′). �
Remark 6.16. Note that by Proposition 3.13 we always have F : (R, Γ) ↔1

Λ,f (F [R], TXF (Γ)), for any map 
F having R as its domain. A strategy for player II in the consequence game C(A, B) is said to be functional
if his response to any play ending in a position ((R, Γ), R′) is of the form (F [R], TXF (Γ)) followed by (the 
graph of) F for some map F : R → B�. �

Similar to the satisfiability game, we will often want to make certain assumptions on the strategy of 
player I in the consequence game. These assumptions will be justified by the following analog of Proposi-
tion 6.10.

Proposition 6.17. Let A = (A, ΘA, ΩA, aI) and B = (B, ΘB , ΩB , bI) be Λ-automata, and let N ⊆ A� be a 
set of relations. Assume that for every basic position (Q, R) ∈ A� ×B� of the consequence game, and every 
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legitimate move (Q′, Γ′) of player I, she has a legitimate move (Q, Γ) such that Q ⊆ N and ⊆ : (Q, Γ) ↔1
Λ,f

(Q′, Γ′).
Then for any winning position in C(A, B), player I has a winning strategy that restricts her moves to 

pairs (Q, Γ) with Q ⊆ N .

Proof. We write Q0 := {(aI , aI)}, R0 := {(bI , bI)}, and abbreviate C := C(A, B)@(Q0, R0) (check Defini-
tion A.13 for notation). Let f be a winning strategy for player I in C. In the same game we will provide I 
with a winning strategy f , that restricts her moves to pairs (Q, Γ) with Q ⊆ N . This strategy f will be 
defined by induction on the length of a partial f-guided play, while by a simultaneous induction we will (†) 
associate with each f -guided play Σ = (Qn, Rn)n≤k an f -guided shadow play Σ′ = (Q′

n, Rn)n≤k such that 
Qn ⊆ Q′

n for all n ≤ k.
Clearly this holds at the start of every C-play if we take Q′

0 := Q0. For the inductive step of the definition, 
fix a partial f -guided play Σ = (Qn, Rn)n≤k, and let Σ′ = (Q′

n, Rn)n≤k be the inductively given shadow 
play. In order to provide player I with a move in Σ, first consider the move (Q′, Γ′) ∈ PA� ×TXA

� provided 
by f in the shadow play Σ′. By assumption there is a legitimate move (Q, Γ) at position (Q′

k, Rk) such that 
Q ⊆ N and ⊆ : (Q, Γ) ↔1

Λ,f (Q′, Γ′). Since Qk ⊆ Q′
k (and hence, RanQk ⊆ RanQ′

k), it is easy to see that 
this move (Q, Γ) is also legitimate at the last position (Qk, Rk) of Σ. Hence we may take this pair (Q, Γ) to 
be the move suggested by the strategy f .

Continuing the inductive definition, suppose that player II’s answers to I’s move (Q, Γ) are, successively, 
(R, Δ) ∈ PB� × TXB

� and Z ⊆ A� × B�. Now consider the relation Z ′ ⊆ A� × B� defined by Z ′ := ⊇; Z. 
We claim that

(R,Δ) and Z ′ are legitimate moves for II at position ((Q′,Γ′), R) (19)

and

for all (Q′, R) ∈ Z ′ there is a (Q,R) ∈ Z such that Q ⊆ Q′. (20)

For a proof of (19), observe that the legitimacy of (R, Δ) is obvious. For the legitimacy of Z ′ we have to 
prove that Z ′ : (Q′, Γ′) ↔1

Λ,f (R, Δ); but by Proposition 3.13 this follows from ⊇ : (Q′, Γ′) ↔1
Λ,f (Q, Γ) and 

Z : (Q, Γ) ↔1
Λ,f (R, Δ). The claim (20) is immediate from the definitions.

Based on the statements (19) and (20), we can finish our inductive definition: Suppose that in the play 
Σ′ · ((Q′, Γ′), Rk) · ((Q′, Γ′), (R, Δ)) · Z ′, player I’s winning strategy f tells her to pick a pair (Q′, R) ∈ Z; 
then in the play Σ · ((Q, Γ), Rk) · ((Q, Γ), (R, Δ)) · Z we let the strategy f pick a pair (Q, R) ∈ Z as given 
by (20). Clearly this is a legitimate move for player I. Finally, where Σ · (Q, R) is the continuation of Σ in 
terms of basic positions, the associated continuation of the shadow play is Σ′ · (Q′, R), and so it is obvious 
that player I has been able to maintain the constraint (†).

It should be clear that the thus defined strategy f always picks legitimate moves of the right type. It 
remains to check that it is a winning strategy in C.

It is straightforward to verify that player I will never get stuck in an f-guided play, so we confine our 
attention to infinite plays. Let Σ = (Qn, Rn)n<ω be an infinite f -guided play, then clearly there is an infinite 
f -guided shadow play Σ′ = (Q′

n, Rn)n<ω such that Qn ⊆ Q′
n for all n < ω. By our assumption that f is 

a winning strategy in C, the play Σ′ is a win for player I. That is, all traces through (Q′
n)n<ω are good, 

while there is a bad trace through (Rn)n<ω. Obviously then, all traces through (Qn)n<ω are good, and so 
the existence of a bad trace through (Rn)n<ω means that Σ as well is a win for player I. �
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7. Taming traces

7.1. Disjunctive and semi-disjunctive automata

We now introduce two classes of special Λ-automata, for which the satisfiability game simplifies signif-
icantly. Essentially, these automata are designed to prevent that the number of traces that we need to 
consider in a play of the satisfiability game multiplies uncontrollably, making the combinatorics involved in 
keeping track of these traces un-manageable.

Definition 7.1. A Λ-automaton A = (A, Θ, Ω, aI) with free variables X is said to be disjunctive (relative to 
a disjunctive basis D) if for all a ∈ A, the formula Θ(a) ∈ 1MLΛ(X, A) is of the form π ∧ δ with π ∈ Bool(X)
and δ ∈ D(A). �

Note that if A = (A, Θ, Ω, aI) is disjunctive, every one-step formula Θ(a) is disjunctive indeed (cf. Re-
mark 3.16).

The weaker concept of a semi-disjunctive automaton, which is similar to Walukiewicz’ weakly aconjunctive 
formulas, is more subtle. They are designed to control the branching of traces in the satisfiability game, 
within each given cluster of the automaton.

Definition 7.2. Given an automaton A and a state a ∈ A, a subset B ⊆ A is called a-safe if, for all b �= b′

in B, at least one of b, b′ either belongs to a different cluster than a, or has an even priority, which is higher 
than all odd properties that are reached in the cluster of a. We let Sfa ⊆ P(A) denote the set of a-safe 
subsets of A.

The automaton A is said to be semi-disjunctive if, for all a ∈ A, Θ(a) is of the form π ∧ δ[χA] with 
π ∈ Bool(X) and δ ∈ D(Sfa). �

Semi-disjunctive automata are tightly related to what we call the thin satisfiability game, in which the 
moves of ∀ are restricted in order to control the branching of traces. As we showed in [12] (cf. Proposition 6.6), 
in a play of the thin satisfiability game essentially there will be at most finitely many bad traces.

Definition 7.3. Let A = (A, Θ, Ω, aI) be a Λ-automaton. Given a state a ∈ A, we call a relation R ∈ A� thin
with respect to A and a, or a-thin (with respect to A), if:

(1) for all b ∈ A with aRb, we have b � a;
(2) R[a] ⊆ A is Ca-safe.

Given a subset B ⊆ A, we call R B-thin if it is b-thin for all b ∈ B. We denote the collection of A-thin 
relations in A� by A�

thin. �
Definition 7.4. The thin satisfiability game Sthin(A) is defined just as S(A), except that admissible moves 
R of ∀ are subject to the additional thinness constraint: R ∈ A�

thin. �
Proposition 7.5. Let A be semi-disjunctive. Then for each player Π ∈ {∃, ∀}, a position is winning for Π in 
S(A) iff it is winning for Π in Sthin(A).

We note the following closure properties for disjunctive and semi-disjunctive automata. Here we say 
that an automaton is (semi-)disjunctive modulo provable equivalence if it is provably equivalent to a
(semi-)disjunctive automaton. We omit the proof of this Proposition, since it is completely similar to that 
of Proposition 6.15 in [12].

Proposition 7.6. Let A and B be two Λ-automata, where the modal signature Λ admits a disjunctive basis.
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(1) If A is disjunctive, then it is also semi-disjunctive.
(2) If A and B are disjunctive, then so is A ∨ B.
(3) If A and B are semi-disjunctive, then so is A ∨ B.
(4) If A and B are semi-disjunctive, then so is A ∧ B, modulo provable equivalence.
(5) If A and B are semi-disjunctive, then so is A[B/x], modulo provable equivalence.
(6) If A is disjunctive and positive in x, then Ax and νx.A are semi-disjunctive, modulo provable equiv-

alence.

7.2. A key lemma

The following lemma is central in that it links together our two main automata-theoretic tools, the 
satisfiability game and the consequence game:

Proposition 7.7. Let A and D be respectively a semi-disjunctive and an arbitrary Λ-automaton, and assume 
that A �G D. Then the automaton A ∧ ¬D has a thin refutation.

Before we prove this proposition, we formulate an auxiliary lemma. Recall that the transition map of the 
automaton ¬D is defined by taking boolean duals of the formulas assigned by the transition map of D, and 
the priority map is defined by simply raising all priorities by 1. We shall need the following fact on boolean 
duals, which is a straightforward consequence of the definitions.

Proposition 7.8. Let (S, σ) be a one-step TX-frame, let α be a one-step formula in 1ML+
Λ (X, A) and let m, m′ :

S → P(A) be two markings such that S, σ, m �1 α and S, σ, m′ �1 α∂ . Then for some a ∈ A and some s ∈ S

we have a ∈ m(s) ∩m′(s).

Proof of Proposition 7.7. To fix notation, let A = (A, ΘA, ΩA, aI), D = (D, ΘD, ΩD, dI) and let B denote the 
automaton A ∧ ¬D. We write B = (B, ΘB, ΩB, bI) and recall that B = A �D � {bI}.

Assume that player II has a winning strategy χ in the consequence game C(A, D) starting at position (
{(aI , aI)}, {(dI , dI)}

)
. Our aim is to provide a thin refutation for the automaton B, that is, a winning 

strategy for player ∀ in the thin satisfiability game for the automaton A ∧ ¬D. It will be convenient to 
make some simplifying assumptions on ∃’s strategy in this game. The proof of this claim follows from 
Proposition 6.7 and Proposition 6.10.

Claim 1. Without loss of generality we may assume that in any play of Sthin(A ∧ ¬D), ∃ only picks moves 
(Q, Γ) such that each R ∈ Q is A-thin and, after two rounds of the play, satisfies R = ResAR ∪ ResDR.

We will now define a strategy σ for ∀ in S(B), inductively making sure that the following two conditions 
are maintained, for any σ-guided partial play Σ = R0 . . . Rn:

(†) Rn is thin, and for n ≥ 1 satisfies |Ran(Rn) ∩D| = 1;
(‡) There is a χ-guided shadow C(A, D)-play of the form (S0, S′

0)(S1, S′
1)...(Sn, S′

n), where
(a) S0 = {(aI , aI)} and S′

0 = {(dI , dI)};
(b) S1 = {(aI , a) ∈ A ×A | (bI , a) ∈ R1} and {(dI , d) ∈ D ×D | (bI , d) ∈ R1} ⊆ S′

1;
(c) for each i > 1 we have Ri ∩ (A × A) = Si and Ri ∩ (D × D) is a singleton {(d, d′)} with d ∈

Ran(Ri−1) ∩D and (d, d′) ∈ S′
i.

For n = 0 by definition we have R0 = {bI , bI}, S0 = {(aI , aI)} and S′
0 = {(dI , dI)}, so that the conditions 

(†) and (‡) hold. We leave it for the reader to verify that the case where n = 1 can be seen as a notational 
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variant of the general case, and focus on showing how ∀ can extend the play R0 . . . Rn to R0 . . . RnRn+1
and maintain the above two conditions in the case that n > 1.

Suppose that the inductive hypothesis has been maintained for the partial play Σ consisting of the 
positions R0R1 . . . Rn where n > 1, with shadow play (S0, S′

0)(S1, S′
1) . . . (Sn, S′

n), and let (Q, Γ) ∈ PB� ×
TXB

� be an arbitrary move chosen by ∃ at Σ. By Claim 1 we may assume that each member of Q is thin 
relative to A. By legitimacy of (Q, Γ) as a move for ∃ we have

B�,Γ, nB
b �1 ΘB(b) for all b ∈ RanRn, (21)

where we recall that nB
b : B� → PB denotes the natural B-marking on B�, given by nB

b : R �→ R[b]. Then 
by Corollary 3.9 and Proposition 3.10 we obtain that

Q,Γ, nD
d �1 ΘD(d)∂ , (22)

where d is the unique element of Ran(Rn) ∩D, and

B�,Γ, nA
a �1 ΘA(a) for all a ∈ A ∩ RanRn. (23)

Recall that ResA : B� → A� is the map sending a relation R to its restriction R ∩ (A × A). By Proposi-
tion 3.8 we may infer from (23) that

A�, (TXResA)Γ, nA
a �1 ΘA(a), for all a ∈ A ∩ RanRn, (24)

while it follows from Proposition A.10 that (TXResA)Γ ∈ TX(ResA[Q]). But then by Proposition 3.10 we 
have that

ResA[Q], (TXResA)Γ, nA
a �1 ΘA(a), for all a ∈ A ∩ RanRn, (25)

and hence the pair ((TXResA)Γ, ResA[Q]) is admissible as a move for player I in the consequence game at 
position (Sn, S′

n). Thus Player II’s winning strategy χ in C(A, D) provides a pair (Q′, Γ′) ∈ PD� × TXD
�

such that Γ′ ∈ TXQ′ and

Q′,Γ′, nD
d �1 ΘD(d), (26)

followed by a relation Z ⊆ ResA[Q] ×Q′ such that ResA[Q], Γ ↔1
Λ,f Q′, Γ′.

We shall prove the following claim:

Claim 2. There are S ∈ Q, S′ ∈ Q′, and c ∈ D with (ResAS, S′) ∈ Z and (d, c) ∈ S′ ∩ ResDS.

Proof of Claim. It follows from Proposition 3.13 that the composition Z ′ of (the graph of) the map ResA
and Z is a full one-step Λ-bisimulation Z ′ : Q, Γ ↔1

Λ,f Q′, Γ′. Hence, if we define a marking m : Q → P(D)
by setting

m(S) :=
⋃
{S′[d] | (ResAS, S′) ∈ Z},

then we may apply Proposition 3.14 to (26) and obtain

Q,Γ,m �1 ΘD(d). (27)
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But then by Proposition 7.8, it follows from (22) and (27) that there is some c ∈ D and some S ∈ Q such 
that c ∈ nD

d (S) ∩m(S). Unraveling the definitions of nD
d and m we find that, respectively, (d, c) ∈ ResDS

and (d, c) ∈ S′ for some S′ with (ResAS, S′) ∈ Z, as required. �

With this claim in place, we define the next move for ∀ prescribed by the strategy σ to be the relation 
Rn+1 := ResAS∪{(d, c)}, where S ∈ Q and c ∈ D are as described in the claim, so that (d, c) ∈ F (ResAS) ∩
ResDS. Note that this is a legitimate move in response to (Q, Γ) since Rn+1 ⊆ S ∈ Q. The shadow play 
is then extended by the pair (Sn+1, S′

n+1) := (ResAS, F (ResAS)) so that condition (‡c) of the induction 
hypothesis holds as an immediate consequence of the claim. For condition (†), it is obvious that |Ran(Rn+1) ∩
D| = 1; thinness of the relation Rn+1 follows from the assumption that S ∈ Q was thin relative to A.

To show that the thus defined strategy σ is winning for ∀, first observe that he never gets stuck, so that 
we may focus on infinite plays. It suffices to prove that every infinite σ-guided play contains a bad trace, so 
consider an arbitrary such play Σ = (Ri)i≥0.

Clearly we may assume that all initial parts of Σ, corresponding to the partial plays (Ri)0≤i≤n, satisfy 
the conditions (†) and (‡). From this it follows that Σ itself has an infinite χ-guided shadow play (Si, S′

i)i≥0
satisfying the condition (‡a–c). In addition, it follows from (†) that Σ will contain a unique trace in D, 
which by (‡) will also be a trace on the right side of the shadow play in the consequence game. That is, 
the play R0R1Rn . . . contains a unique trace of the form bId1d2d3 . . . with each di in D, and this is a trace 
through the stream S′

0S
′
1S

′
2 . . . as well. If this trace is bad, then we are done. If not, then given the priorities 

assigned to states in ¬D it must be bad as a trace in D since parities are swapped in ¬D. Hence there must 
be a bad trace bIa1a2a3 . . . on the left side S0S1S2 . . . of the shadow play in the consequence game, since 
this shadow play was guided by the winning strategy χ of Player II. But then this trace bIa1a2a3 . . . is also 
a bad trace in the play R0R1R2 . . . of the satisfiability game. Summarizing, we see that either the unique 
trace through D in Σ is bad or there is some bad trace through A in Σ. In either case, Σ is a loss for ∃ as 
required. �
8. A strong simulation theorem for Λ-automata

The goal of this section is to prove a strengthened simulation theorem for coalgebra automata: we will 
provide a construction sim(·) transforming an arbitrary Λ-automaton A into a disjunctive automaton sim(A)
that is not only semantically equivalent to A, but in fact game-equivalent to A in the strong sense as stated 
in Theorem 8.2 below. The definition of sim(A) essentially uses the disjunctive basis of the signature.

The construction of sim(A) takes place in two steps, a ‘pre-simulation’ step that produces a disjunctive 
automaton A� with a non-standard acceptance condition, and a second ‘synchronization’ step that turns 
this acceptance condition into a parity condition. Both steps of the construction involve a ‘change of base’ 
in the sense that we obtain the transition map of the new automaton via a substitution relating its carrier 
to the carrier of the old automaton.

The construction of the pre-simulation of an automaton A is very closely related to the satisfiability game 
for Λ-automata; in particular, states of the pre-simulation of A are the same as the basic positions of S(A), 
namely binary relations in A�, and the initial state RI is {(aI , aI)}. For the definition of the transition map 
Θ� of the pre-simulation automaton, we remind the reader of Remark 6.6, where we showed how to think 
of the admissibility criterion of ∃’s moves in the satisfiability game in terms of the satisfaction of a single 
formula:

Γ ∈
⋂

a∈RanR
�Θ(a)�1

a iff A�,Γ, idA� �1
∧

a∈RanR
α[τa].

The acceptance condition NBTA ⊆ (A�)ω consists of the streams over A� that do not contain any bad traces. 
Finally, the simulation sim(A) is produced by forming a certain kind of product of the pre-simulation of A
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with a deterministic stream automaton that recognizes the stream language NBTA; we refer to [12] for the 
details.

Definition 8.1. Assume that D is expressively complete for Λ, and let A = (A, Θ, Ω, aI) be a Λ-automaton. 
Define Θ� : A → 1ML+

Λ (X, A ×A) by putting, for each a ∈ A,

Θ�(a) := Θ(a)[τa],

where τa : A → Latt(A ×A) is the tagging substitution given in Remark 6.6 by

τa : b �→ (a, b).

Now consider a binary relation R ∈ A�; as an easy consequence of Proposition 3.21 we may pick formulas 
πR ∈ Bool(X) and δR ∈ D(P(A ×A)) = D(A�) such that

πR ∧ δR[χA×A] ≡1
∧

a∈RanR
Θ�(a).

Then, using these formulas for the definition of the following map Θ� : A� → D(X, A�):

Θ�(R) := πR ∧ δR,

we obtain the pre-simulation of A as the automaton pre(A) = (A�, Θ�, NBTA, RI), where RI := {(aI , aI)}.
Since the acceptance condition NBTA is an ω-regular language with alphabet A� as we noted in Section 6, 

we may pick some deterministic parity automaton Z = (Z, δ, Ω′, zI) that recognizes NBTA. Finally we define 
sim(A) to be the structure (D, Θ′′, Ω′′, dI) where:

– D := A� × Z,
– dI := (RI , zI),
– Θ′′(R, z) := Θ�(R)[(Q, δ(R, z)/Q | Q ∈ A�] and
– Ω′′(R, z) := Ω′(z).

We also define a “forgetful” map GA : D → A� by mapping (R, z) to R. �
Theorem 8.2. The map sim(·) assigns to each modal automaton A a disjunctive modal automaton sim(A)
such that

(1) A �G sim(A) and sim(A) �G A;
(2) B[sim(A)/p] �G B[A/p], for any modal X-automaton B which is positive in p ∈ X.

Proof. To show that A �G sim(A) is easy: fix the stream automaton Z that recognizes NBTA. Then ev-
ery finite word R0 . . . Rk over A� determines an associated state of Z by simply running Z on the word 
R0 . . . Rk; so for R0 the associated state is zI , for R0R1 the associated state is ζ(R0, zI) etc. Since every 
k-length partial play Σ of the consequence game C(A, sim(A)) determines a word R0 . . . Rk over A� in the 
obvious way, we can associate a state zΣ of Z with each such partial play. If Player I continues the play Σ
consisting of basic positions (R0, R′

0) . . . (Rk, R′
k) by choosing the move (R, Γ) ∈ PA� × TXA

�, then we let 
Player II respond with the function F : R → (A� × Z)� that is defined by mapping R ∈ R to the singleton 
{((Rk, zΣ), (R, ζ(Rk, zΣ))}. It can be checked that this defines a functional winning strategy for Player II, 
and we leave the details to the reader.

The direction sim(A) �G A of clause (1), which can be seen as a simple special case of clause (2), will 
follow from the Propositions 8.5 and 8.6, as will clause (2) itself. �
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The difficult part of Theorem 8.2 is to prove clause (2), and this will be the focus of the rest of this 
section. It will be convenient to state more abstractly what the crucial properties are of the automaton 
sim(A) that we have associated with an arbitrary automaton A. First we need an auxiliary definition, for 
which we recall the notion of a true state from Definition 5.5.

Definition 8.3. Given a disjunctive automaton D = (D, Θ, Ω, dI), and a fixed true state d
 of D, we let

sing
(d) :=
{

∅ if d = d

{d} if d �= d


define the D-marking sing
 : D → PD. �
Definition 8.4. Let A = (A, ΘA, ΩA, aI) and D = (D, ΘD, ΩD, dI) be an arbitrary and a disjunctive 
Λ-automaton, respectively. We say that D is a disjunctive companion of A if D has a true state d
, and 
there is a map G : D → A� satisfying the following conditions:

(DC1) G(dI) = {(aI , aI)} and G(d
) = ∅.
(DC2) Let δ ∈ TXD be such that D, δ, sing
 �1 ΘD(d). Then (TXG)δ ∈

⋂
a∈Ran(Gd)�ΘA(a)�1

a.
(DC3) If G(di)i∈ω ∈ (A�)ω contains a bad A-trace, then (di)i∈ω is itself a bad D-trace. �

Proposition 8.5. The simulation map sim(·) assigns a disjunctive companion to any modal automaton.

Proof. It is fairly straightforward to check that the projection map GA : D → A� specified in Definition 8.1, 
which simply forgets the states of the stream automaton used in the product construction, has all the 
properties required to witness that sim(A) is a disjunctive companion of A. �
Proposition 8.6. Let A and B be arbitrary modal automata, let D be a disjunctive companion of A, and 
assume that B is positive in p. Then

B[D/p] �G B[A/p].

Before we set out to prove this proposition we prove an auxiliary result, which we need to make a 
simplifying assumption on the moves player I makes in the consequence game associated with B[D/p] and 
B[A/p].

Proposition 8.7. Let ΘBD denote the transition map of the automaton B[D/p], where B is an arbitrary 
Λ-automaton (positive in p), and D is a disjunctive Λ-automaton. Fix some R ∈ A�, Q ⊆ (B ∪D)�, some 
C ⊆ RanR and Γ ∈ TXQ such that

Γ ∈
⋂

a∈RanR
�Θ(a)�1

a.

Then there are Q′ ⊆ A� and Γ′ ∈ TXQ′ such that Γ′ ∈
⋂

a∈RanR�Θ(a)�1
a, ⊆ : (Q′, Γ′) ↔1

Λ,f (Q, Γ), and for 
each Q ∈ Q′ and c ∈ C, we have |Q[c] ∩D| ≤ 1.

Proof. As in the proof of Proposition 6.7(3), we will prove the statement for the special case where C is a 
singleton, C = {c}, while we show that Q′ additionally satisfies

{Q[a] | Q ∈ Q′} ⊆ {Q[a] | Q ∈ Q} (28)
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for all a �= c. The general case can then be obtained from the special one by a straightforward iteration, 
taking care of C’s elements one by one. The role of (28) is to ensure that new iterations do not spoil the 
progress booked in earlier rounds.

In order to prove the proposition in this simplified case, we make a case distinction as to whether c ∈ B

or c ∈ D. The case where c ∈ D is in fact a special case of Proposition 6.7(3), and easier than the case where 
c ∈ B, and so we focus on the latter one. Assuming that c ∈ B, observe that ΘBD(c) = ΘB(c)[ΘD(dI)/p]. 
We now make a further case distinction.

If Γ /∈ �ΘD(dI)�1
c , then consider the map F : Q → (B ∪D)� given by

F (Q) := {(a, a′) ∈ Q | a �= c or a′ ∈ B},

and set Q′ := RanF and Γ′ := (TXF )Γ. Clearly F is a surjective one-step frame homomorphism, F :
(Q, Γ) → (Q′, Γ′), satisfying F (Q) ⊆ Q, for all Q ∈ Q. From this it is immediate by Proposition 3.13 that 
⊆ : (Q′, Γ′) ↔1

Λ,f (Q, Γ). We now show that

Q′,Γ′, na �1 ΘBD(a), for all a ∈ RanR. (29)

This is trivial in case a �= c, and so we focus on the case where a = c. In this case (29) follows by the following 
observation, which can be proved by a straightforward induction on the complexity of α ∈ 1ML+

Λ(X, B):

Q,Γ, nc �1 α[ΘD(dI)/p] implies Q′,Γ′, nc �1 α[ΘD(dI)/p].

If Γ ∈ �ΘD(dI)�1
c , then by disjunctivity of D, the proposition follows by a variation of the proof of 

Proposition 6.7(3). �
We are now ready to prove Proposition 8.6; our proof generalizes the proof of the analogous proposition 

in [12]. We do provide all details here, since there are some subtle differences with the mentioned proof, due 
to the fact that here we work with a slightly modified definition of the consequence game.

Proof of Proposition 8.6. Starting with notation, let A = (A, ΘA, ΩA, aI), B = (B, ΘB , ΩB , bI) and D =
(D, ΘD, ΩD, dI), and let G : D → A� be the map witnessing that D is a disjunctive companion of A.

Our goal is to provide player II with a winning strategy χ in the consequence game C between B[D/p]
and B[A/p]. It will be convenient to make some simplifying assumptions on player I’s moves in the game.

Claim 1. Without loss of generality we may assume that at any position (R, R′), player I always plays a 
move (Q, Γ) such that
(Ass1) Dom(Q) ⊆ Ran(R) for all Q ∈ Q;
(Ass2) Q ∩ (D ×B) = ∅, for all Q ∈ Q;
(Ass3) |Q[c] ∩D| ≤ 1 for all c ∈ B ∪D and all Q ∈ Q.

Proof of Claim. Immediate by the Propositions 6.17, 6.7, and 8.7. �

Consider an arbitrary partial play

Σ = (R0, R
′
0), . . . , (Rk, R

′
k),

with R0 = R′
0 = {(bI , bI)}. It follows by Claim 1 that we may assume each element c ∈ RanRk to lie on some 

trace through R0, . . . , Rk, and that every trace through R0, . . . , Rk is either a B-trace, or else it consists 
of an initial, non-empty B-trace, followed by a non-empty D-trace. By the second and third assumption of 
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the claim, traces are D-functional, in the sense that if d ∈ D ∩ RanRn for some n < k, then d has at most 
one Rn+1-successor, that we will denote as d+, if it exists. As a consequence, every trace τ on R0, . . . , Rn

ending at d has at most one continuation through Rn+1, . . . , Rk.
A key role in our proof is played by a Σ-induced total order on RanDRk that we will introduce now. 

Intuitively, we say, for d, d′ ∈ RanDRk, that d is Σ-older than d′ if d lies on a trace τ that entered D at an 
earlier stage than any trace arriving at d′.

For a formal definition of this ordering, we need to assume some arbitrary but fixed total order on D, 
given by an injective map mb : D → ω; we call mb(d) the birth minute of d. The reason is that there may be 
“ties”, i.e. situations where the longest D-trace leading to two different states in D are of the same length. 
Following the analogy: we can have cases where two states have the same “birth date”, and we then refer 
to the birth minute to decide which is the oldest.

Given a state d ∈ RanDRk, by Claim 1(1) there is a trace τ through R0, . . . , Rk such that τ(k) = d. By 
Claim 1(2), all such traces start in B and at some moment j move to the D-part of the automaton. We let 
tbΣ(d) be the smallest pair of natural numbers (j, l) in the lexicographic order on ω × ω such that there is 
some e ∈ RanDRj with mb(e) = l and such that the unique trace on Rj . . . Rk beginning with e ends with d
(this trace is unique because of trace functionality in D). The pair tbΣ(d) = (j, l) is called the time of birth
of d relative to the play Σ; we simply write tb(d) if Σ is clear from context.

Note that tbΣ is always an injective map. To see this, suppose that tbΣ(d) = tbΣ(d′) = (j, l). Then there 
are e, e′ ∈ RanDRj such that the unique trace on Rj, . . . , Rk beginning with e ends with d, and the unique 
trace beginning with e′ ends with d′, and such that mb(e) = mb(e′) = l. By injectivity of mb, we get e = e′, 
and so we get d = d′ by uniqueness of traces in the D-part of R0, . . . , Rk.

Finally, we define a strict total ordering on RanDRk relative to Σ by saying that d is Σ-older than d′

if tb(d) is smaller than tb(d′) (in the lexicographic order). We leave it for the reader to verify that, for 
d ∈ RanRn with n < k, it holds that tb(d+) ≤ tb(d).

We now turn to the definition of player II’s winning strategy χ. By a simultaneous induction on the 
length of a partial χ-play

Σ = (R0, R
′
0), . . . , (Rn, R

′
n),

with R0 = R′
0 = {(bI , bI)}, we will define maps

Fn : (B ∪D)� → (B ∪A)�

and

gn : RanAR′
n → RanDRn.

We let the F -maps determine player II’s strategy in the following sense. Suppose that in the mentioned 
partial play Σ, player I legitimately picks an element (R, Γ). Then player II’s response will be the map 
Fn+1 �R , that is, the map Fn+1, restricted to the set R ⊆ (B ∪D)�, together with the one-step frame 
(Fn+1[R], TX(Fn+1�R )Γ).
Inductively we will ensure that the following conditions are maintained:

(*) FnRn = R′
n,

(†0) R′
n = ResBR′

n ∪ (R′
n ∩ (B ×A)) ∪ ResAR′

n,
(†1) ResBR′

n = ResBRn,
(†2) R′

n ∩ (B ×A) ⊆
⋃

d∈D{(b, a) | (b, d) ∈ Rn ∩ (B ×D) & (aI , a) ∈ G(d)},
(†3) ResAR′

n ⊆
⋃
{G(d) | d ∈ RanDRn},

(‡) a ∈ RanG(gna), for all a ∈ RanARn.
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For some explanation and motivation of these conditions, observe that (*) indicates that Σ itself is 
indeed χ-guided. For condition (†), first observe that while by Claim 1, all B[D/p]-traces consist of an 
initial B-part followed by an D-tail, condition (†0) states that similarly, all B[A/p]-traces consist of an initial 
B-part followed by an A-tail. Condition (†1) then states that the B-part on the left and right side of a 
C(B[D/p], B[A/p]-play is the same, and condition (†3) states that every pair (a, b) ∈ ResARanR′

n is ‘covered’ 
or ‘implied’ by some d ∈ RanDRn. Finally, (‡) states that, for every a ∈ RanR′

n, the map gn picks a specific 
element d ∈ RanDRn such that a ∈ Ran(Gd). As we will see in Claim 4 below, it will be this condition, 
together with the condition on the reflection of traces in Definition 8.4 and the actual definition of the maps 
gn, that is pivotal in proving that player II wins all infinite plays.

Setting up the induction, observe that R0 = R′
0 = {(bI , bI)}. Defining F0 as the map R �→ ResBR and g0

as the empty map, we can easily check that (*), (†) and (‡) hold.
In the inductive case we will define the maps Fn+1 and gn+1 for a partial play Σ as above. For the 

definition of Fn+1 : (B ∪D)� → (B ∪A)�, first observe that by (†0) we are only interested in relations 
R ∈ (B ∪D)� that are of the form R = ResBR ∪ (R ∩ (B ×D)) ∪ ResDR. We will define Fn+1 by treating 
these three parts of R separately, using, respectively, the identity map on B� and two auxiliary maps that 
we define now.

For the D-part of R, we define an auxiliary map Hn+1 : D ×D → A�:

Hn+1(d, d′) := G(d′) ∩ (g−1
n (d)×A),

that is, Hn+1(d, d′) consists of those pairs (a, a′) ∈ G(d′) for which gn(a) = d. For the B ×D-part of R, we 
need a second auxiliary map L : B ×D → P(B ×A), given by

L(b, d) := {(b, a) ∈ B ×A | (aI , a) ∈ G(d)}.

Now we define Fn+1 : (B ∪D)� → (B ∪A)� as follows:

Fn+1(R) := ResBR

∪
⋃
{L(b, d) | (b, d) ∈ R ∩ (B ×D)}

∪
⋃
{Hn+1(d, d+) | (d, d+) ∈ ResDR}.

That is, we define Fn+1(R) as the union of three disjoint parts: a B×B-part, a B×A-part and an A ×A-part.
For the definition of gn+1, let (Rn+1, R′

n+1) be an arbitrary next basic position following the partial play 
Σ. Note that we may assume that Rn+1 satisfies the assumptions formulated in Claim 1, and that we have 
R′

n+1 = Fn+1(Rn+1) by the fact that player II’s strategy is given by the map Fn+1. Given a ∈ RanAR′
n+1, 

distinguish cases:

Case 1 If a has no R′
n+1-predecessor in A, then by definition of Fn+1 and L, the set of states d ∈ D for 

which there is a b ∈ B with (b, d) ∈ Rn+1 and (aI , a) ∈ G(d) is non-empty. We define gn+1a to be 
the oldest element of this set, that is, in this case, the element with the earliest birth minute.

Case 2 If a does have an R′
n+1-predecessor in A, that is, the set {b ∈ A | (b, a) ∈ R′

n+1} is non-empty, then 
we can define gn+1a to be the oldest element (with respect to the play Σ · (Rn+1, R′

n+1)) of the set 
{(gnb)+ | (b, a) ∈ R′

n+1} ⊆ D. Note that this set is indeed non-empty, by definition of Fn+1.

To gain some intuitions concerning this definition, observe that in the first case, we cannot define gn+1a

inductively on the basis of the map gn applied to an R′
n+1-predecessor of a: we have to start from scratch. 

This case only applies, however, in a situation where a does have an R′
n+1-successor b ∈ B such that in Rn+1, 
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Fig. 1. A trace merge results in a trace jump.

this same b has a Rn+1-successor d ∈ D such that (aI , a) ∈ Gd. In this case we simply define gn+1a := d, 
and if there are more such pairs (b, d), then for gn+1a we may pick any of these d’s, for instance the one 
with the earliest birth minute.

We now turn to the second clause of the definition of gn+1 — here lies, in fact, the heart of the proof 
of Proposition 8.6. Consider a situation where a0 and a1, both in A, are the two Rn+1-predecessors of 
a ∈ A. Both gna0 and gna1 are states in D, and therefore their Rn+1-successors in D, if existing, are unique, 
and will be denoted by (gna0)+ and (gna1)+, respectively. We want to define gn+1a as either (gna0)+ or 
(gna1)+, but then we are facing a choice between these two states of D in case they are distinct. It is 
here that our play-dependent ordering of states in D comes in: we will define gn+1a as the oldest element 
of the two, relative to the (extended) play Σ · (Rn+1, R′

n+1). Suppose (without loss of generality) it holds 
that (gna0)+ is older than (gna1)+, so that we put gn+1a := (gna0)+. In this case we say that the trace 
through gna0 is continued, while there is also a trace jump witnessed by the fact that (a1, a) ∈ R′

n+1 but 
(gna1, gn+1a) /∈ Rn+1 (see Fig. 1, where the dashed lines represent the g-maps, and the partial trace of 
white points on the right is not mapped to a partial trace on the left, due to a trace jump).

Claim 2. By playing according to the strategy χ, player II indeed maintains the conditions (*), (†) and (‡).

Proof of Claim.6 Let Σ be a partial χ-play satisfying the conditions (*), (†) and (‡), and let (Rn+1, R′
n+1) ∈

Gr(Fn+1) be any possible next position. It suffices to show that (Rn+1, R′
n+1) also satisfies (*), (†) and (‡).

The conditions (*), (†0), (†1) and (†2) are direct consequences of the definition of Fn+1, while (†3) is 
immediate by the fact that

(b, a) ∈ Fn+1Rn+1 ⇐⇒ (b, a) ∈ G((gnb)+) (30)

for all b, a ∈ A. To prove (30), consider the following chain of equivalences, which hold for all b, a ∈ A:

(b, a) ∈ Fn+1Rn+1 ⇐⇒ (b, a) ∈ Hn+1(d, d+), some (d, d+) ∈ ResDRn (Def. Fn+1)

⇐⇒ (b, a) ∈ G(d+), some (d, d+) ∈ ResDRn with d = gnb (Def. Hn+1)

⇐⇒ (b, a) ∈ G((gnb)+). (obvious)

Finally, for condition (‡), let a ∈ RanAR′
n+1 be arbitrary. If a has an R′

n+1-predecessor in A, then we are 
in case 2 of the definition of gn+1a, where gn+1a is of the form (gnb)+ for some b with (b, a) ∈ ResAR′

n+1. 
But then (b, a) ∈ G((gnb)+) by (30), so that indeed we find a ∈ RanG(gn+1a). If, on the other hand, a has 
no Rn+1-predecessor in A, then we are in case 1 of the definition of gn+1a. In this case, gn+1a is an element 
of a set, each of whose elements d satisfies a ∈ RanG(d); so we certainly have a ∈ RanG(gn+1a). �

6 The proof of this Claim is verbatim the same as that of Claim 2 in the proof of Proposition 7.4 in [12].
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Claim 3. The moves for player II prescribed by the strategy χ are legitimate.

Proof of Claim. Let ΘBD and ΘBA denote the transition maps of the automata B[D/p] and B[A/p], re-
spectively. Consider a partial play Σ ending with the position (Rn, R′

n) and a subsequent move (R, Γ) ∈
P((B ∪D)�) × TX(B ∪D)� by player I such that

(B ∪D)�,Γ, nB∪D
e �1 ΘBD(e), (31)

for all e ∈ RanRn. By Proposition 3.13, in order to prove the claim it suffices to show that, for an arbitrary 
element c ∈ RanR′

n = Ran(Fn+1Rn), we have

(B ∪A)�, (TXFn+1)Γ, nB∪A
c �1 ΘBA(c). (32)

But since c ∈ B ∪A by definition of B[A/p], one of the following two cases applies:

Case 1: c ∈ A. Then by (‡) we find c ∈ Ran(G(d)), where d := gnc belongs to RanDRn. As an immediate 
consequence of (31) and the fact that ΘBD(d) = ΘD(d), we find

(B ∪D)�,Γ, nB∪D
d �1 ΘD(d), (33)

from which it follows by naturality that

R,Γ, nB∪D
d �R �1 ΘD(d). (34)

Let the map succd : R → D be given by

succd(Q) :=
{

e if Q[d] = {e},
d
 if Q[d] = ∅.

Observe that this provides a well-defined (total) map by (Ass3) in Claim 1, and an easy calculation reveals 
that the diagram below commutes:

R

nB∪D
d �R

succd
D

sing�

PD

so that we may conclude that succd is a one-step model morphism:

succd : (R,Γ, nB∪D
d �R )→ (succd[R], (TXsuccd)Γ, sing
).

From this, (34), the fact that ΘD(d) is a one-step formula in D, and Corollary 3.9 we conclude that

D, (TXsuccd)Γ, sing
 �1 ΘD(d). (35)

Now we may use the assumption that (D, d) is a disjunctive companion of (A, a), obtaining from clause 
(DC2) that

A�, (TXG)(TXsuccd)Γ, nA
c �1 ΘA(c). (36)
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By functoriality of TX and the fact that ΘA(c) = ΘBA(c), this is equivalent to

A�, (TX(G ◦ succd))Γ, nA
c �1 ΘBA(c), (37)

and so by Corollary 3.9 and Proposition 3.10 we obtain

(B ∪A)�, (TX(G ◦ succd))Γ, nB∪A
c �1 ΘBA(c). (38)

From here on for conciseness we will write nc for nB∪A
c . We now claim that, comparing the two A-markings 

nc ◦ (G ◦ succd) and nc ◦ F , we have(
nc ◦ (G ◦ succd)

)
(Q) ⊆

(
nc ◦ Fn+1

)
(Q) (39)

for all Q ∈ R. To see this, assume that a ∈
(
nc ◦ (G ◦ succd)

)
(Q), that is, (c, a) ∈ G(succd(Q)). Observe 

that since G(d
) = ∅ by (DC1), by definition of the map succd it must be the case that succd(Q) = e for 
some unique e = d+

Q ∈ D such that Q[d] = {d+
Q}. Then (c, a) belongs to Hn+1(d, d+

Q) by definition of Hn+1, 
and to Fn+1Q by definition of Fn+1. But from (c, a) ∈ Fn+1(Q) we immediately obtain a ∈

(
nc ◦Fn+1

)
(Q). 

This proves (39).
We use this observation in the following line of reasoning, where the key observation is that in fact both 

maps G ◦ succd and Fn+1 are one-step model morphisms.

(B∪A)�, (TX(G ◦ succd))Γ, nc �1 ΘBA(c)

⇔ (B ∪A)�,Γ, nc ◦ (G ◦ succd) �1 ΘBA(c) (Proposition 3.8)

⇔ R,Γ,
(
nc ◦ (G ◦ succd)

)
�R �1 ΘBA(c) (Corollary 3.9)

⇒ R,Γ,
(
nc ◦ Fn+1

)
�R �1 ΘBA(c) ((39), Proposition 3.11)

⇔ (B ∪A)�,Γ, nc ◦ Fn+1 �1 ΘBA(c) (Corollary 3.9)

⇔ (B ∪A)�, (TXFn+1)Γ, nc �1 ΘBA(c). (Proposition 3.8)

This proves (32), as required.

Case 2 c ∈ B. Note that in this case we have ΘBA(c) = ΘB(c)[ΘA(aI)/p] and ΘBD(c) = ΘB(c)[ΘD(dI)/p]. 
Thus by assumption we know that (B ∪D)�, Γ, nB∪D

c �1 ΘB(c)[ΘD(dI)/p], while we need to establish that 
(B ∪A)�, (TXFn+1)Γ, nB∪A

c �1 ΘB(c)[ΘA(aI)/p]. To achieve this it clearly suffices to show that

(B ∪D)�,Γ, nB∪D
c �1 α[ΘD(dI)/p] implies (B ∪A)�, (TXFn+1)Γ, nB∪A

c �1 α[ΘA(aI)/p] (40)

for all α ∈ 1ML+
Λ(X, B). We will prove (40) by induction on the one-step formula α, taken as a lattice term 

over the set {p} ∪ 1ML+
Λ (X \ {p}, B)). This perspective allows us to distinguish the following two cases in the 

induction base.

Base Case a: α = p. Here we find α[ΘD(dI)/p] = ΘD(dI) and α[ΘA(aI)/p] = ΘA(aI). In other words, in 
order to prove (40) we assume that

(B ∪D)�,Γ, nB∪D
c �1 ΘD(dI), (41)

and we need to show that

(B ∪A)�, (TXFn+1)Γ, nB∪A
c �1 ΘA(aI). (42)
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Our line of reasoning here will be close to that in Case 1, and for this reason we are a bit more sketchy. By 
(Ass3) we may define a map succc : R → D by setting succc(Q) to be the unique Q-successor of c if Q[c] is 
nonempty, and the true state d
 otherwise. As in Case 1 this map is a one-step morphism of models:

succc : (R,Γ, nB∪D
c �R )→ (D, (TXsuccc)Γ, sing
). (43)

We also claim that our definition of the map Fn+1 has been tailored towards the following inclusion:

(
nB∪A
aI

◦ (G ◦ succc)
)
(Q) ⊆

(
nB∪A
c ◦ Fn+1

)
(Q) (44)

for all Q ∈ R. For a proof of (44), assume that a ∈
(
nB∪A
aI

◦ (G ◦ succc)
)
(Q) for some Q ∈ Base(Γ). In other 

words, we have (aI , a) ∈ G(succc(Q)), and so by definition of succc there is a unique d �= d
 ∈ D such that 
(c, d) ∈ Q. But then we obtain (aI , a) ∈ L(b, d) by definition of the map L, and since (c, d) ∈ Q ∩(B×D) this 
gives (c, a) ∈ Fn+1Q by definition of Fn+1. But from (c, a) ∈ Fn+1Q we directly see that a ∈ nB∪A

c (Fn+1Q), 
as required. This proves (44).

We can now show how to prove (42) from (41):

(B ∪D)�,Γ, nB∪D
c �1 ΘD(dI)⇔R,Γ, nB∪D

c �R �1 ΘD(dI) (Corollary 3.9)

⇔ D, (TXsuccc)Γ, sing
 �1 ΘD(dI) (Proposition 3.8, (43))

⇒ A�, (TXG)((TXsuccc)Γ), nA
aI

�1 ΘA(aI) (DC1,DC2)

⇔ A�, (TX(G ◦ succc))Γ, nA
aI

�1 ΘA(aI) (functoriality)

⇔ (B ∪A)�, (TX(G ◦ succc))Γ, nB∪A
aI

�1 ΘA(aI) (as in Case 1)

⇔ (B ∪A)�, (TXFn+1)Γ, nB∪A
c �1 ΘA(aI). (as in Case 1, by (44))

Base Case b: α ∈ 1ML+
Λ (X \ {p}, B), that is, α is a p-free one-step formula over B. In this case the proof 

of (40) is straightforward: clearly the substitutions in (40) have no effect, so what we have to prove is that

(B ∪D)�,Γ, nB∪D
c �1 α implies (B ∪A)�, (TXFn+1)Γ, nB∪A

c �1 α. (45)

But intuitively this is clear, since α only uses variables from B, and ‘when restricted to B’, the two models 
in (45) are the same.

Formally, our proof of (45) proceeds as follows:

(B ∪D)�,Γ, nB∪D
c �1 α⇔ (B ∪D)�,Γ, nB

c ◦ ResB �1 α (Proposition 3.10)

⇔ B�, (TXResB)Γ, nB
c �1 α (Proposition 3.8)

⇔ B�, (TX(ResB ◦ Fn+1))Γ, nB
c �1 α (†1)

⇔ B�, (TXResB)((TXFn+1)Γ), nB
c �1 α (functoriality)

⇔ (B ∪A)�, (TXFn+1)Γ, nB
c ◦ ResB �1 α (Proposition 3.8)

⇔ (B ∪A)�, (TXFn+1)Γ, nB∪A
c �1 α (Proposition 3.10)

Inductive case: The inductive cases in the proof of (40), where α is of the form α0 ∨ α1 or α0 ∧ α1, are 
trivial.

This finishes the proof of Claim 3. �
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Claim 4. Suppose Σ is an infinite χ-guided play with basic positions

(R0, R
′
0)(R1, R

′
1)(R2, R

′
2) . . .

such that the stream R′
0R

′
1R

′
2 . . . contains a bad trace. Then there is a bad trace on R0R1R2 . . . as well.

Proof of Claim.7 Fix a χ-guided play Σ = (Ri, R′
i)i≥0 and a bad trace τ on (R′

i)i≥0, as above. We will show 
that there is a bad trace on the stream (Ri)i≥0 as well.

There are two possibilities for τ . In case τ stays entirely in B, then by (†1), τ is also a trace on R0R1R2 . . . , 
and so we are done. Hence we may focus on the second case, where from some finite stage onwards, τ stays 
entirely in A. So suppose τ is an infinite trace of the form

τ = b0b1 . . . bnan+1an+2an+3 . . . ,

where the bj are all in B, and the ai are all in A. Our key claim is the following:

there exists an index k > n such that gj+1aj+1 = (gjaj)+ for all j ≥ k. (46)

In order to prove (46), recall that a trace jump occurs at the index j > n if we have gj+1aj+1 �= (gjaj)+. 
We want to show that there can only be finitely many j at which a trace jump occurs. If no trace jump 
occurs at j, then we have

tb(gjaj) ≥ tb((gjaj)+) = tb(gj+1aj+1).

Hence, it suffices to prove that if a trace jump occurs at j then tb(gj+1aj+1) is strictly smaller than 
tb(gjaj) in the lexicographic order. It then follows that the stream

tb(gkak), tb(gk+1ak+1), tb(gk+2ak+2), . . .

is a stream of pairs of natural numbers that never increases, and strictly decreases at each j at which a 
trace jump occurs. By well-foundedness of the lexicographic order on ω× ω this can therefore only happen 
finitely many times, as required.

So we are left with the task of proving that tb is strictly decreasing at each index j for which a trace jump 
occurs. To see that this is indeed so, suppose that gj+1aj+1 �= (gjaj)+. Recall that we defined gj+1aj+1 to 
be the oldest element of the set

{(gjc)+ | (c, aj+1) ∈ R′
j+1}.

But since (aj , aj+1) ∈ R′
j+1, it follows that gj+1aj+1 must be older than (gjaj)+, with respect to the age 

relation induced by the play (R0, R′
0), . . . , (Rj+1, R′

j+1), and so tb(gj+1aj+1) must be strictly smaller than 
tb((gjaj)+) ≤ tb(gjaj), as required. This completes the proof of (46).

Let us finally see how (46) entails Claim 4. Suppose there exists an index k as in (46), and consider 
gkak ∈ RanDRk. Pick an arbitrary initial trace b0 . . . bndn+1 . . . dk of R0 . . . Rk leading up to gkak = dk (as 
mentioned already after Claim 1, the existence of such a trace follows from our assumptions on player I’s 
strategy). Then the stream

b0, . . . , dk−1, gkak, gk+1ak+1, gk+2ak+2, . . .

7 The proof of this Claim is verbatim the same as that of Claim 4 in the proof of Proposition 7.4 in [12].
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is a trace of R0R1R2 . . . by the property of the index k described in (46). Furthermore, it follows that 
akak+1ak+2 . . . is a trace of the stream

G(gkak), G(gk+1ak+1), G(gk+2ak+2), . . .

To see why, consider the pair (aj, aj+1) where j ≥ k. Then (aj , aj+1) ∈ R′
j+1 = Fk(Rj+1), so there is some 

(d, d′) ∈ Rj+1 with (aj , aj+1) ∈ Hj+1(d, d′). Hence d = gjaj and (aj , aj+1) ∈ G(d′).
But d′ = d+ by functionality of traces on D (which follows from the third assumption in Claim 1), and 

so we find d′ = d+ = (gjaj)+ = gj+1aj+1. From this we get (aj , aj+1) ∈ G(gj+1aj+1) as required. Note too 
that akak+1ak+2 . . . has the same tail as τ , and hence it is a bad trace too. It now follows from the trace 
reflection clause of Definition 8.4 that gkak, gk+1ak+1, gk+2ak+2, . . . is itself a bad trace, and so we have 
found a bad trace on R0R1R2 . . . as required. �

Finally, the proof of the Proposition is immediate by the last two claims: it follows from Claim 3 that 
player II never gets stuck, so that we need not worry about finite plays. But Claim 4 states that II wins all 
infinite plays of C(B[D/p], B[A/p]) as well. �
9. A generic completeness theorem for coalgebraic μ-calculi

We now set out to prove our generic completeness result, Theorem 1.1. Throughout this section we will 
fix a set functor T, a monotone signature Λ for T, and a one-step sound and complete axiomatization H.

After our preparatory work in the previous sections, we have almost all pieces in place; the one result 
that is missing is the analogue, in our setting, of Kozen’s completeness result for the aconjunctive fragment 
of the (standard) modal μ-calculus [22]. Here, and in the remainder of this section, we will freely apply 
proof-theoretic terminology and notation to Λ-automata, see Remark 5.20.

Proposition 9.1 (Kozen’s Lemma). If the Λ-automaton A is consistent, then ∃ has a winning strategy in 
Sthin(A) starting at {(aI , aI)}.

Proof. The proof of this Proposition is almost verbatim a copy of the proof of the analogous result, viz., 
Theorem 5, in [12]: the only difference is that here we need the Consistency Reduction Lemma, Proposi-
tion 4.6. �

As an immediate consequence of this result and Proposition 7.5, we find that for semi-disjunctive au-
tomata, consistency implies satisfiability (this is why we think of Proposition 9.1 as our analog of Kozen’s 
partial completeness result). So, since disjunctive automata are semi-disjunctive, we have left to prove the 
following theorem, which is the main technical result of this section.

Theorem 9.2. For every formula ϕ, there exists a semantically equivalent disjunctive automaton D such 
that ϕ �H D.

As an auxiliary result, we first prove the following proposition.

Proposition 9.3. Let A be any semi-disjunctive modal automaton. Then A �H sim(A).

Proof. It is clear from Theorem 8.2 that there is a winning strategy for Player II in the consequence game 
C(A, sim(A)). Since A is semi-disjunctive it follows by Lemma 7.7 that ∀ has a winning strategy in the 
thin satisfiability game for A ∧ ¬sim(A). But then by Kozen’s Lemma (Proposition 9.1), the automaton 
A ∧ ¬sim(A) is inconsistent. From this and the clauses 1 and 2 of Proposition 5.18, it is immediate that 
A �H sim(A). �
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Proof of Theorem 9.2. Since any fixpoint formula is provably equivalent to a formula in negation normal 
form, without loss of generality we may prove the theorem for formulas in this shape, and proceed by an 
induction on the complexity of such formulas. That is, the base cases of the induction are the literals, and 
we need to consider induction steps for conjunctions, disjunctions, both modal operators and both fixpoint 
operators.

The base case for literals follows immediately since it is easy to see that the modal automaton Aϕ

corresponding to a literal ϕ is already disjunctive. Disjunctions are easy since the operation ∨ on automata 
preserves the property of being disjunctive. For conjunctions: given formulas ϕ, ϕ′ we have semantically 
equivalent disjunctive automata D, D′ such that ϕ �H D and ϕ′ �H D

′. By the first clause of Proposition 5.18
we get ϕ ∧ϕ′ �H D ∧D′. But by Proposition 7.6(4) the automaton D ∧D′ is semi-disjunctive modulo provable 
equivalence, and we can apply Proposition 9.3 to obtain the desired conclusion. The cases for the modalities 
are easy since these operations on automata preserve the property of being disjunctive.

For the greatest fixpoint operator, consider the formula ϕ = νx.α(x), and assume inductively that there 
is a disjunctive automaton A for α such that α ≡ A and α �H A. It follows by Proposition 5.18(4) that 
ϕ = νx.α �H νx.A, and since νx.A is semidisjunctive modulo provable equivalence by Proposition 7.6(6), 
by Proposition 9.3 we are done.

Finally, we cover the crucial case for ϕ = μx.α(x). By the induction hypothesis there is a semantically 
equivalent disjunctive automaton A for α such that α �H A. Let D := sim(μx.A). This automaton is clearly 
semantically equivalent to ϕ. We want to show that

μx.A �H D, (47)

from which the result follows since ϕ = μx.α �H μx.A by Proposition 5.18(4) and the induction hypothesis.
In order to prove (47) we will work with the automaton Ax (see Definition 5.10). First observe that

A
x[D/x] �G A

x[μx.A/x],

by Theorem 8.2, and that

A
x[μx.A/x] �G μx.A,

as a straightforward argument shows (see Proposition 5.19 in [12]). But since

μx.A �G sim(μx.A) = D

by Theorem 8.2 again, we find by transitivity of the game consequence relation (Proposition 6.15) that

A
x[D/x] �G D.

By Proposition 7.6(5) the automaton Ax[D/x] is semi-disjunctive modulo provable equivalence, and so by 
Proposition 7.7 the automaton Ax[D/x] ∧ ¬D has a thin refutation, whence by Kozen’s Lemma (Proposi-
tion 9.1) and Proposition 5.18 this automaton is inconsistent. In other words, we have

A
x[D/x] �H D.

Then by Proposition 5.18(5) we obtain that

tr(Ax[tr(D)/x]) �H tr(D),

so that one application of the fixpoint rule yields



630 S. Enqvist et al. / Annals of Pure and Applied Logic 170 (2019) 578–641
μx.tr(Ax) �H D.

By Proposition 5.18(6) this suffices to prove (47). �
Finally we see how Theorem 9.2 implies completeness.

Proof of Theorem 1.1. Given a consistent formula ϕ, by Theorem 9.2 there exists a semantically equivalent 
disjunctive automaton D such that ϕ �H D. Clearly then, D is consistent too, whence by Proposition 9.1, 
∃ has a winning strategy in the thin satisfiability game for D. But D is disjunctive and hence semi-disjunctive, 
and so by Proposition 7.5 ∃ also has a winning strategy in S(D). It then follows by the adequacy of the 
satisfiability game (Proposition 6.9) that D is satisfiable, and so ϕ, being semantically equivalent to D, is 
satisfiable as well. �
10. Applications

As an immediate consequence of Theorem 1.1, we get a number of completeness results:

Theorem 10.1. The proof system μH is sound and complete for validity over T-models, where:

1. T = Id and H = I,
2. T = Idk and H = Ik,
3. T = PL and H = KL,
4. T = B and H = B.

The third item on this list is Walukiewicz’ completeness theorem for the modal μ-calculus. The first item is 
a completeness result for the linear-time μ-calculus, and thus places Kaivola’s theorem [21] under a common 
roof with Walukiewicz’ result. The second item, T = Idk, extends this to a completeness result for μ-calculi 
on trees of a fixed branching degree. The fourth item is Theorem 1.3, our completeness result for the graded 
μ-calculus, by an extension of known axioms for graded modal logic with the fixpoint axiom and Kozen–Park 
induction rule. Note that the proof of this result requires an application of Theorem 3.23.

10.1. Completeness for the monotone μ-calculus

For our next application, we will prove Theorem 1.4, stating the completeness for the monotone μ-calculus 
of the axiomatization below. In this section we let Σ = {�, �} denote the signature of monotone modal 
logic.

Definition 10.2. Let M be the axiomatization for Σ consisting of the empty set of axioms. �
Recall from Definition 4.1 that every one-step axiomatization contains the monotonicity and dual axioms, 

for all its operators. Consequently, the proof system μM induced by M basically consists of the axioms 
(Du) and (Mon) for the two modalities of the signature Σ. Just as for μB, the completeness of μM appears 
to be a new result.

Theorem 1.1 does not apply directly in this case, since in fact one can show that the monotone neigh-
borhood functor M does not admit a disjunctive basis (a proof of this can be found in [13]). However, 
the problem is really more apparent than substantial: using a trick from [10], we can easily “repair” the 
monotone neighborhood functor to obtain a companion functor M of M that preserves weak pullbacks. The 
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signature Σ can then be extended to a signature for Σ that does have a disjunctive basis, so that Theo-
rem 1.1 applies to this extended signature. The completeness result for the monotone μ-calculus can then 
be obtained via a relatively straightforward conservative extension theorem.

Definition 10.3. We define the supported companion functor M of M as the subfunctor of P ×M, given, on 
objects, by MS := {(S0, γ) ∈ PS × MS | S0 supports γ}. Here we say that a subset S0 ⊆ S supports an 
object γ ∈ MS whenever T ∈ γ iff T ∩ S0 ∈ γ, for all T ∈ PS. �

Note that an M-model can be taken as a structure S = (S, R, σ, V ), where R ⊆ S×S and U(S) := (S, σ, V )
is a neighborhood model, such that R[s] supports σ(s), for all s ∈ S. We will call the structure U(S) the 
underlying neighborhood model of S, and (S, R, V ) its supporting Kripke model.

The point of introducing this auxiliary functor is explained by the following result:

Proposition 10.4. The functor M preserves weak pullbacks.

Proof. We first establish the following claim, where L is the relation lifting defined by (γ, γ′) ∈ LR for 
R ⊆ X × Y and γ ∈ MX, γ′ ∈ MY , iff:

∀Z ∈ γ∃Z ′ ∈ γ′ : Z ′ ⊆ R[Z] & ∀Z ′ ∈ γ′∃Z ∈ γ : Z ⊆ R◦[Z ′]

In the proof we will make use of some basic laws for this relation lifting, see [25] for more details.

Claim 1. Let R ⊆ X×Y be any binary relation that is full on both X and Y , and let γX ∈ MX and γY ∈ MY

be such that (γX , γY ) ∈ LR. Then there exists a γR ∈ MR such that MπX(γR) = γX and MπY (γR) = γY , 
where πX : R→ X and πY : R→ Y are the two projection maps.

Proof of Claim. We set Z ∈ γR iff either there exists Z ′ ∈ γX such that π−1
X [Z ′] ⊆ Z or there exists Z ′ ∈ γY

such that π−1
Y [Z ′] ⊆ Z. We prove that MπX(γR) = γX , and leave out the completely analogous argument 

for γY .
We need to show that Z ∈ γX iff π−1

X [Z] ∈ γR. The direction from left to right is clear, so suppose 
π−1
X [Z] ∈ γR. We make a case division:

(Case 1:) π−1
X [Z ′] ⊆ π−1

X [Z] for some Z ′ ∈ γX . Since R was full on X the projection πX is surjective onto 
X, which means that in fact Z ′ ⊆ Z (since if y ∈ Z ′ \ Z then there is some y′ ∈ R with πX(y′) = y, hence 
y′ ∈ π−1

X [Z ′] \ π−1
X [Z]). Since Z ′ ∈ γX we now get Z ∈ γX too by monotonicity.

(Case 2:) π−1
Y [Z ′] ⊆ π−1

X [Z] for some Z ′ ∈ γY . Since (γX , γY ) ∈ LR, there is some Z ′′ ∈ γX such that for 
all z′′ ∈ Z ′′ there exists a z′ ∈ Z ′ such that z′′Rz′. So let z′′ ∈ Z ′′. Pick some z′ ∈ Z ′ with z′′Rz′. That is, 
(z′′, z′) ∈ R. Furthermore, πY (z′′, z′) ∈ Z ′, so (z′′, z′) ∈ π−1

Y [Z ′]. But we assumed that π−1
Y [Z ′] ⊆ π−1

X [Z] so 
we get (z′′, z′) ∈ π−1

X [Z], which means that πX(z′′, z′) = z′′ ∈ Z. We have shown that Z ′′ ⊆ Z, and since 
Z ′′ ∈ γX we get Z ∈ γX by monotonicity as required. �

Now, let f : X → W and g : Y → W be a span in Set, let (SX , γX) ∈ MX and (SY , γY ) ∈ MY be such 
that Mf(SX , γX) = Mg(SY , γY ). Let the relation R ⊆ X × Y together with projection maps πX , πY be the 
pullback of f, g as standardly constructed in Set, i.e. we take R = {(x, y) ∈ X×Y | f(x) = g(y)}. Consider 
the inclusion maps ιX : SX → X and ιY : SY → Y . Then we have

M(f ◦ ιX)(γX |SX
) = M(g ◦ ιY )(γY |SY

)

Hence we get:
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(γX |SX
, γY |SY

) ∈ M(f ◦ ιX); M(g ◦ ιY )†

⊆ L(f ◦ ιX);L(g ◦ ιY )†

= L(ιX ; f);L(g†; ι†Y )

⊆ L(ιX ; f ; g†; ι†Y )

= LR′

where we have used the identity:

ιX ; f ; g†; ι†Y = R′

which follows from the assumption that R was the pullback of W, f, g and the definition of R′. Here, we 
have denoted by γ|S for γ ∈ MX and S ⊆ X the unique γ′ ∈ MS with MιS,X(γ′) = γ, which is concretely 
given by γ|S = {Z ∩ S | Z ∈ γ}.

Let R′ = R∩(SX×SY ). Then R′ is full on both SX and SY since f [SX ] = g[SY ] and R is the pullback of f
and g. So by the Claim, we find some γR′ ∈ MR′ such that M(πX�R′ )(γR′) = γX and M(πY �R′ )(γR′) = γY . 
Now, let ιR′ : R′ → R be the inclusion map and set γR = MιR′(γR′). We have (R′, γR) ∈ MR. We also get:

MπX(γR) = MπX ◦MιR′(γR′)

= M(πX ◦ ιR′)(γR′)

= M(ιX ◦ (πX�R′ ))(γR′)

= MιX ◦M(πX�R′ ))(γR′)

= MιX(γX |SX
)

= γX

where we have used the obvious identity πX ◦ ιR′ = ιX ◦ (πX�R′ ). Furthermore we have PπX(R′) = SX since 
R′ was full on SX . So we get MπX(R′, γR) = (SX , γX). Similarly, we get MπY (R′, γR) = (SY , γY ). It now 
follows, by the usual characterization of weak pullback squares in Set (see the appendix), that M weakly 
preserves the pullback R, πX , πY . �
Definition 10.5. The signature Σ is an expansion of the language Σ with two modalities �, � that are 
interpreted as the standard diamond and box operators in the supporting Kripke models of a M-model. �
Definition 10.6. Let M be the axiomatization for Σ consisting of the following axioms:

a) �(a ∧ b) ↔ (�a ∧�b)
b) ��
c) (�a ∧�b) → �(a ∧ b) �
We have previously proved that Σ is expressively complete for M in [10]. Since M restricts to finite sets, and 

one-step completeness of M is straightforward, completeness of μM is a direct consequence of Theorem 1.1, 
Proposition 10.4 and the fact that expressively complete signatures for weak-pullback preserving functors 
always admit a disjunctive basis.

Theorem 10.7. The system μM is sound and complete for validity over M-models.

It turns out that completeness for M follows from this via a relatively easy argument. First, note that 
every pointed M-model (S, s) satisfies precisely the same μMLΣ-formulas as the underlying pointed M-model 
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(U(S), s). Furthermore, since it is easy to see that every M-model is of the form U(S) for some M-model S, 
it follows that a formula ϕ of μMLΣ is valid over M-models if and only if it is valid over M-models. So by 
Theorem 10.7, to axiomatize the valid formulas of μMLΣ over M-models, it suffices to show the following.

Proposition 10.8. The logic μM is a conservative extension of μM.

The proof of this result will make use of algebras for μ-calculi, which are called μ-algebras and have 
been thoroughly studied by Santocanale, see, e.g., [32]. Since our argument takes places in a fully Boolean 
context, we simplify our notation somewhat by working with the box modalities only.

Definition 10.9. An algebra A = (A, 0, 1, ∧, ¬, �) is a monotone modal algebra if its Boolean reduct 
(A, 0, 1, ∧, ¬) is a Boolean algebra, and � is a monotone (i.e., order preserving) operation on A. An al-
gebra A = (A, 0, 1, ∧, ¬, �, �) is a supported monotone modal algebra if its Σ-reduct (A, 0, 1, ∧, ¬, �) is a 
monotone modal algebra, and A satisfies the (equational versions of the) M-axioms a)–c) of Definition 10.6. 

�
Definition 10.10. A monotone modal algebra A is said to be a monotone modal μ-algebra if every map 
v : X → A uniquely extends to a map v∗ : μMLΣ → A which is a homomorphism with respect to all 
connectives, and which respects the least fixpoint operator in the following sense. Let ϕv

p : A → A denote 
the map defined by ϕv

p(a) = v[a/p]∗(ϕ) where v[a/p] is like v except it maps p to a. Then the map ϕv
p has 

a smallest pre-fixpoint m, and v∗(μp.ϕ) = m.
The notion of a supported monotone modal algebra is defined in a completely analogous way. �
We shall need the following simple little observation about fixpoints in lattices, the proof of which is a 

straightforward exercise:

Proposition 10.11. Let L be any lattice, and let f : L × L → L be a two-place map that is monotone in 
both its arguments. Suppose that, for all b ∈ L, the least prefixpoint lb of the map λx.f(x, b) exists. Suppose 
furthermore that the meet

m =
∧
{lb | f(b, b) ≤ b, b ∈ L}

exists. Then m is the least prefixpoint of the map λz.f(z, z).

Proof. First, note that m ≤ p for any prefixpoint p of the map λz.f(z, z): if f(p, p) ≤ p then m ≤ lp, but 
lp ≤ p since lp was the smallest prefixpoint of the map λx.f(x, p).

It now suffices to prove that m is a prefixpoint of λz.f(z, z), since it will then follow that it is the least 
prefixpoint. Let X := {b ∈ L | f(b, b) ≤ b}. If b ∈ X then m ≤ lb by definition of m, and furthermore lb ≤ b

since lb was the least prefixpoint of the map λx.f(x, b). So we get, for all b ∈ X:

f(m,m) ≤ f(lb, lb) (Monotonicity)
≤ f(lb, b) (Monotonicity & lb ≤ b)
≤ lb (Prefixpoint property of lb)

But since m =
∧
{lb | b ∈ X}, we now get f(m, m) ≤ m, as required. �

Using a standard Lindenbaum–Tarski algebra construction, one can prove the following algebraic com-
pleteness results.
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Proposition 10.12. Let ϕ be any formula of μMLΣ. Then μM � ϕ if, and only if, v∗(ϕ) = 1 for every 
monotone modal μ-algebra A and every valuation v : X → A.

Proposition 10.13. Let ϕ be any formula of μMLΣ. Then μM � ϕ if, and only if, v∗(ϕ) = 1 for every 
supported monotone modal μ-algebra A and every valuation v : X → A.

With these completeness results in place, the conservative extension theorem we want to prove boils down 
to the following statement:

Proposition 10.14. Every monotone modal μ-algebra is a reduct of some supported monotone modal 
μ-algebra.

Before we turn to the proof of this proposition, we show how it entails that μM is a conservative extension 
of μM: it is clear that every formula of μMLΣ provable in μM is provable in μM also. Conversely, suppose 
that ϕ ∈ μMLΣ is not provable in μM. Then by Proposition 10.12, there is a monotone modal μ-algebra 
A and a valuation v : X → A such that v∗(ϕ) �= 1. By Proposition 10.14 there is a supported monotone 
modal μ-algebra A′ over the same carrier, whose reduct is equal to A. So the map v extends uniquely to 
the map v† witnessing that A′ is a supported monotone modal μ-algebra, and clearly v†(ϕ) = v∗(ϕ) �= 1. 
So by Proposition 10.13, μM � ϕ as required.

We now turn to the proof of Proposition 10.14:

Proof of Proposition 10.14. Let A = (A, 0, 1, ∧, ¬, �) be a monotone modal μ-algebra. We want to define 
an operation � : A → A that makes A′ = (A, 0, 1, ∧, ¬, �, �) a supported monotone modal μ-algebra. The 
construction is straightforward: for each a ∈ A, set �a = 1 if a = 1, and �a = 0 otherwise. It is a purely 
mechanical task to check that this is in fact a supported monotone modal algebra. The argument showing 
that A′ is, in addition, a supported monotone modal μ-algebra is based on finding, for each μMLΣ(X)-formula 
ϕ with a positive variable p, and every map v : X → A, a formula t(ϕ, v) of μMLΣ(X) such that v∗(μp.t(ϕ, v))
is a least prefixpoint of the map ϕv

p. More precisely, the proof is based on the following claim, which is 
proved by induction on the complexity of formulas in μMLΣ:

Claim 1. There exists an assignment t(−, −) mapping every formula ϕ of μMLΣ, and every valuation v :
X → A, to a formula t(ϕ, v) in μMLΣ, such that:

• if ϕ is positive (negative) in p then so is t(ϕ, v),
• if ϕ is positive in p and a ≤ b then w∗(t(ϕ, v[a/p])) ≤ w∗(t(ϕ, v[b/p])) for every valuation w,
• if ϕ is negative in p and a ≤ b then w∗(t(ϕ, v[b/p])) ≤ w∗(t(ϕ, v[a/p])) for every valuation w,
• t(�ϕ, v) = � if v∗(t(ϕ, v)) = 1, t(�ϕ, v) = ⊥ otherwise,
• t(ϕ ∧ ψ, v) = t(ϕ, v) ∧ t(ψ, v),
• t(�ϕ, v) = �t(ϕ, v) and t(¬ϕ, v) = ¬t(ϕ, v),
• for every formula ϕ the set {t(ϕ, v) | v : X → A} is finite, and if ϕ is positive in p then:

t(μp.ϕ, v) =
∧
{μp.t(ϕ, v[a/p]) | v∗(t(ϕ, v[a/p])) ≤ a}

where the big conjunction on the right-hand side is defined since the set {t(ϕ, v[a/p]) | a ∈ A} is finite.

With this claim in place, we can define the map v† : μMLΣ → A by setting:

v†(ϕ) := v∗(t(ϕ, v))
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Note that this map commutes with all the connectives, including the operator �: to see why, we make a case 
distinction. If v∗(t(ϕ, v)) = 1 then t(�ϕ, v) = �, so v†(�ϕ) = v∗(�) = 1. But v∗(t(ϕ, v)) = 1 means that 
v†(ϕ) = 1, hence �v†(ϕ) = 1 by definition of the operation � in A′. On the other hand, if v∗(t(ϕ, v)) �= 1
then t(�ϕ, v) = ⊥, so v†(�ϕ) = v∗(⊥) = 0. But v∗(t(ϕ, v)) �= 1 means that v†(ϕ) �= 1, hence �v†(ϕ) = 0, 
again by definition of the operation � in A′.

Finally, we find that the value v†(μp.ϕ) is indeed a least pre-fixpoint of the map ϕv
p, as an instance of 

Proposition 10.11: just put f(a, b) := v[a/p]∗(t(ϕ, v[b/p])) and note that f(a, a) = v[a/p]†(ϕ). �
This concludes our proof of Theorem 1.4.

10.2. Transferring completeness from coalgebraic modal logics

As a final application, we prove Corollary 1.2 which allows one to transfer any previously established 
completeness result for a coalgebraic modal logic to a completeness result for its fixpoint extension. Formally, 
given a monotone modal signature Λ for a functor T, the formulas of the coalgebraic modal logic MLΛ are 
defined by the following grammar:

ϕ ::= p | ⊥ | ¬ϕ | ϕ0 ∨ ϕ1 | ♥λ(ϕ1, ..., ϕn)

Semantics of these formulas in a T-model are as before, and we say that a formula ϕ ∈ MLΛ is valid if it is 
true in every pointed T-model. We denote this by � ϕ as before.

We take a Hilbert-style axiom system L for MLΛ to be a set of formulas in MLΛ, and we say that a 
formula ϕ is derivable in the system, �L ϕ, if it is provable from axioms in L, substitution instances of 
propositional tautologies, (Mon) and (Du) using the rules of modus ponens, uniform substitution and the 
congruence rule. We define the derivation system μL for the extended language μMLΛ by simply adding the 
fixpoint axiom and Kozen–Park induction rule, i.e. we say that ϕ is derivable in μL, �μL ϕ, if it is derivable 
using axioms in L and the fixpoint axiom using the rules of L and the Kozen–Park induction rule.

Definition 10.15. The system L (μL) is said to be sound and complete if, for any formula ϕ ∈ MLΛ (ϕ ∈ μMLΛ), 
we have � ϕ iff �L ϕ (�μL ϕ). �

We can now prove our transfer result:

Proof of Corollary 1.2. Soundness clearly transfers from L to μL. To prove completeness, we define a one-
step axiom system H by setting, for a one-step formula α ∈ 1MLΛ(Var), α ∈ H if �L α. To prove that the 
system μH is sound, we need the following claim, the proof of which we leave to the reader:

� α iff �1 α, (48)

for any α ∈ 1MLΛ(Var). The proof of (48) basically consists of noting that every pointed T-model (S, s)
induces a one-step model by simply applying the map σ : S → TS to s, and conversely every one-step 
model (S, σ, m) can be viewed as a pointed T-model by simply adding a new point u and mapping this to 
σ (and mapping elements of S to arbitrary elements of TS).

It clearly follows from (48) that the one-step derivation system H1 is one-step complete, so by Theorem 1.1
the system μH is complete.
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It now suffices to prove that every formula ϕ that is provable in μH is also provable in μL. But this is 
in fact an easy consequence of the definition of H: given any axiom of μH of the form α[τ ] where α ∈ H
and τ : Var → μMLΛ, we have �L α by definition of H and so �μL α, hence �μL α[τ ] by an application of 
the uniform substitution rule. All other axioms of μH are axioms of μL too, and all rules in μH are in μL. 
Hence the system μL indeed proves all theorems of μH, and so is complete. �
11. Concluding remarks

We conclude the paper by mentioning a few topics for future investigation. Clearly, a question that is 
high on the priority list is whether the existence of a disjunctive basis is necessary to obtain completeness 
for modal μ-calculi, or if only one-step completeness suffices. It could be that one can prove a stronger 
generic completeness result, to the effect that one-step completeness always lifts to completeness for the 
full modal μ-calculus corresponding to some modal signature. This would provide us with a very powerful 
tool to prove completeness for modal fixpoint logics, which would make it a completely routine task in 
many cases. A possible path to such a result may have opened up due to very recent work by Afshari & 
Leigh [2], who proved completeness for the modal μ-calculus in a way that avoids the detour via disjunctive 
normal forms. Our hope, and belief, is that much of our technical machinery can be merged with their proof 
theoretic approach. In particular one of the first tasks would be to incorporate into their setting games for 
coalgebraic modal automata and the connection we set up between automata and proofs. This promises 
not only to put Afshari & Leigh’s result to use to obtain a stronger coalgebraic completeness result for 
μ-calculi, but it could also bring in conceptually interesting automata- and game-theoretic perspectives on 
their proof. It is even possible that this approach could streamline and simplify parts of the proof, as we 
previously tried to do for Walukiewicz’s original proof in [12].

But we want to stress that even if the approach via disjunctive bases and the simulation theorem for 
automata can ultimately be avoided, this does not mean that it is no longer interesting. Disjunctive normal 
forms and non-deterministic automata for the modal μ-calculus were originally invented for the purpose of 
proving completeness for the μ-calculus, but they have later gained a much wider significance, lying at the 
heart of much (or even most) of the metatheory that has been developed for the μ-calculus since then. So it 
certainly seems a significant fact that some of the most central features of Walukiewicz’s completeness proof 
turn out to be essentially coalgebraic, and have natural coalgebraic generalizations. Indeed, the first and 
third authors have recently explored some further applications of disjunctive bases in [13], where we used 
it to generalize the uniform interpolation and Lyndon theorems for the modal μ-calculus [8] to arbitrary 
coalgebraic modal μ-calculi. Furthermore, in our completeness proof we have come across a number of 
coalgebraic and automata-theoretic concepts that deserve a deeper further investigation. Especially, we 
think the consequence game for coalgebraic modal automata should be given special attention. As a first 
observation, it is easy to see that every modal automaton has a winning “identity strategy” for Player II, and 
that winning strategies for Player II can be composed. This suggests that we may identify an interesting 
category of coalgebraic modal automata, where the arrows are player II’s winning strategies (possibly 
modulo some suitable equivalence relation over strategies). Such a category would have a much richer 
structure than the poset category given by semantic consequence between automata. If so, this would open 
a range of questions, such as: Can disjunctive automata be characterized as objects in this category by some 
purely categorical property?

Finally, what is the proof-theoretic significance of the consequence game, the satisfiability game, the 
concept of semi-disjunctive automata etc.? Can these concepts be used to study the structure of proofs in 
the μ-calculus by automata theoretic methods? Or vice versa, perhaps the connection can be used to apply 
proof theoretic methods to address problems about the μ-calculus that up to now have been handled mainly 
using automata, like interpolation.
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Appendix A. Basic definitions

A.1. Basic mathematical concepts and notation

Definition A.1. Let A be some set. We denote its size as |A|, and its power set as PA. �
Since binary relations play an important role in our work, we will frequently use the following notation.

Definition A.2. The collection of binary relations over a set A is denoted as A�. Given a relation R ⊆ A ×A′, 
we let DomR and RanR denote its domain and range, respectively; for a subset B′ ⊆ A′, we define RanB′R :=
RanR ∩ B′. Furthermore, we denote the converse relation of R as R◦ := {(a′, a) ∈ A′ × A | (a, a′) ∈ R}, 
and we set R[a] := {a′ ∈ A′ | Raa′}. The composition of two relations R and S is denoted as R ; S, and 
the diagonal relation on a set S is denoted as IdS . Given a relation R ⊆ A ×A and a subset B ⊆ A, we let 
ResBR := R ∩ (B ×B) denote the restriction of R to B. �
Definition A.3. Given a relation R ⊆ A ×A′, we define the following relations between PA and PA′:

−→PR := {(B,B′) ∈ PA× PA′ | for all b ∈ B there is a b′ ∈ B′ with Rbb′}
←−PR := {(B,B′) ∈ PA× PA′ | for all b′ ∈ B′ there is a b ∈ B with Rbb′}
PR :=

−→PR ∩←−PR.

The relation PR is called the Egli–Milner lifting of R. �
Definition A.4. We write f : A → B to denote that f is a map from A to B, and we will frequently identify 
f with its graph Grf := {(a, fa) | a ∈ A}. The composition of two functions f : A → B and g : B → C is 
denoted as g ◦ f : A → C. �
Definition A.5. Given a set A, we let A∗ and Aω denote, respectively, the set of words (finite sequences) and 
streams (infinite sequences) over A. We will write both ww′ and w · w′ to denote the concatenation of the 
words w and w′, and similar for the concatenation of a word and a stream. The last symbol of a word w is 
denoted as last(w).

Two A-streams σ and τ are eventually equal, denoted as σ =∞ τ , if there is a k ∈ ω such that σ(j) = τ(j)
for all j ≥ k. �
A.2. Set functors

As mentioned in section 2, we let Set denote the category with sets as objects and functions as arrows. 
An endofunctor on Set will simply be called a set functor. In this section we briefly define and review some 
pertinent categorical notions regarding set functors.

Convention A.6. Throughout this paper we shall assume that T is a set functor that preserves injections. 
For convenience we will in fact assume that T preserves inclusions; that is, with ιAB : A ↪→ B denoting the 
inclusion map from a subset A of B to B, we have

TX ⊆ TY and T(ιXY ) = ιTX
TY

for all pairs X, Y of sets such that X ⊆ Y .

For completeness we recall some definitions related to the notion of a (weak) pullback.
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Definition A.7. Recall that a set P together with functions p1 : P → X1 and p2 : P → X2 is a pullback
of two functions f1 : X1 → X and f2 : X2 → X if f1 ◦ p1 = f2 ◦ p2 and for all sets P ′ and all functions 
p′1 : P ′ → X1, p′2 : P ′ → X2 such that f1 ◦ p′1 = f2 ◦ p′2 there exists a unique function e : P ′ → P such that 
pi ◦ e = p′i for i = 1, 2:

P ′

p′
1

p′
2

e

P
p2

p1

X2

f2

X1
f1

X

If the function e is not necessarily unique we call (P, p1, p2) a weak pullback. Furthermore we call a relation 
R ⊆ X1×X2 a (weak) pullback of f1 and f2 if R together with the projection maps πR

1 and πR
2 is a (weak) 

pullback of f1 and f2. �
In the category of sets, (weak) pullbacks have a straightforward characterization.

Fact A.8. [17]. Given two functions f1 : X1 → X3 and f2 : X2 → X3, let

pb(f1, f2) := {(x1, x2) | f1(x1) = f2(x2)}.

Furthermore, given a set P with functions p1 : P → X1 and p2 : P → X2, let

e : y �→ (p1(y), p2(y))

define a function e : P → pb(f1, f2). Then
(1) (P, p1, p2) is a pullback of f1 and f2 iff f1 ◦ p1 = f2 ◦ p2 and e is an isomorphism.
(2) (P, p1, p2) is a weak pullback of f1 and f2 iff f1 ◦ p1 = f2 ◦ p2 and e is surjective.

Definition A.9. A functor T preserves weak pullbacks if it transforms every weak pullback (P, p1, p2) for f1
and f2 into a weak pullback (TP, Tp1, Tp2) for Tf1 and Tf2. �

An equivalent characterization is to require T to weakly preserve pullbacks, that is, to turn pullbacks 
into weak pullbacks. In Fact 2.10 we give another, and probably more motivating, characterization of this 
property.

Proposition A.10. Let f : S → S′ be some map, and let X ⊆ S be a subset of S. Then for any ξ ∈ TX we 
have (Tf)ξ ∈ T(f [X]).

Proof. Since X ⊆ S and f [X] ⊆ S′ we have that T ⊆ TS and T(f [X]) ⊆ TS′. Now consider the following 
diagram:

TX
Tf�X T(f [X])

TS
Tf

TS′
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Chasing ξ in this diagram yields the statement of the proposition. �
Definition A.11. Given a finite set S we let

BaseS : σ �→
⋂
{X ⊆ S | σ ∈ TX}

define a map BaseS : TS → PS. �
Fact A.12. Let f : S → S′ be some map between finite sets S, S′, and let σ ∈ TS.

(1) BaseS(σ) is the smallest set X such that σ ∈ TX.
(2) BaseS′((Tf)σ) ⊆ (Pf)(Basex(α)).
(3) BaseS′((Tf)σ) = (Pf)(Basex(α)) if T is weak pullback preserving; hence in this case Base is a natural 

transformation, Base : Tω → Pω:

S

f

TS

Tf

BaseS PS

Pf

S′ TS′
BaseS′

PS′

A.3. Graph games

Definition A.13. A board game is a tuple G = (G∃, G∀, E, W ) where G∃ and G∀ are disjoint sets, and, with 
G := G∃ ∪ G∀ denoting the board of the game, the binary relation E ⊆ G2 encodes the moves that are 
admissible to the respective players, and W ⊆ Gω denotes the winning condition of the game. In a parity 
game, the winning condition is determined by a parity map Ω : G → ω with finite range, in the sense that 
the set WΩ is given as the set of G-streams ρ ∈ Gω such that the maximum value occurring infinitely often 
in the stream (Ωρi)i∈ω is even.

Elements of G∃ and G∀ are called positions for the players ∃ and ∀, respectively; given a position p for 
player Π ∈ {∃, ∀}, the set E[p] denotes the set of moves that are legitimate or admissible to Π at p. In case 
E[p] = ∅ we say that player Π gets stuck at p.

An initialized board game is a pair consisting of a board game G and an initial position p, usually denoted 
as G@p. �
Definition A.14. A play of a graph game G = (G∃, G∀, E, W ) is nothing but a (finite or infinite) path 
through the graph (G, E). Such a play ρ is called partial if it is finite and E[lastρ] �= ∅, and full otherwise. 
We let PMΠ denote the collection of partial plays ρ ending in a position last(ρ) ∈ GΠ, and define PMΠ@p

as the set of partial plays in PMΠ starting at position p.
The winner of a full play ρ is determined as follows. If ρ is finite, then by definition one of the two players 

got stuck at the position last(ρ), and so this player looses ρ, while the opponent wins. If ρ is infinite, we 
declare its winner to be ∃ if ρ ∈W , and ∀ otherwise. �
Definition A.15. A strategy for a player Π ∈ {∃, ∀} is a map χ : PMΠ → G. A strategy is positional if it 
only depends on the last position of a partial play, i.e., if χ(ρ) = χ(ρ′) whenever last(ρ) = last(ρ′); such a 
strategy can and will be presented as a map χ : GΠ → G.

A play ρ = (pi)i<κ is guided by a Π-strategy χ if χ(p0p1 . . . pn−1) = pn for all n < κ such that p0 . . . pn−1 ∈
PMΠ (that is, pn−1 ∈ GΠ). A Π-strategy χ is legitimate in G@p if the moves that it prescribes to χ-guided 
partial plays in PMΠ@p are always admissible to Π, and winning for Π in G@p if in addition all χ-guided 
full plays starting at p are won by Π.
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A position p is a winning position for player Π ∈ {∃, ∀} if Π has a winning strategy in the game G@p; 
the set of these positions is denoted as WinΠ. The game G = (G∃, G∀, E, W ) is determined if every position 
is winning for either ∃ or ∀. �

When defining a strategy χ for one of the players in a board game, we can and in practice will confine 
ourselves to defining χ for partial plays that are themselves guided by χ.

The following fact, independently due to Emerson & Jutla [9] and Mostowski [27], will be quite useful to 
us.

Fact A.16 (Positional Determinacy). Let G = (G∃, G∀, E, W ) be a graph game. If W is given by a parity 
condition, then G is determined, and both players have positional winning strategies.
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