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which, as shown in earlier work, algebraically corresponds to the notion of a
subordination on Boolean algebras. Our base system is a strict implication calculus
SIC, to which we associate a variety SIA of strict implication algebras. We also study
the symmetric strict implication calculus S?IC, which is an extension of SIC, and
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1. Introduction

Extending Stone’s seminal representation theorems for Boolean algebras [25] and distributive lattices [26],
categorical dualities linking algebra and topology have been of fundamental importance in the development
of the 20th century mathematics in general [22], and of logic and theoretical computer science in particular
[18]. With algebras corresponding to the syntactic, deductive side of logical systems, and topological spaces
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to their semantics, Stone-type duality theory provides an elegant and useful mathematical framework for
studying various properties of logical systems. In many particular cases, one sees natural specimens of
logics, classes of algebras, and classes of topologies coming together. Out of a multitude of examples of such
triples, we mention: (i) classical logic/Boolean algebras/Stone spaces [2]; (ii) intuitionistic logic/Heyting
algebras/Esakia spaces [15]; and (iii) modal logic/modal algebras/topological Kripke frames [7].

Our aim is to add to the study of these ‘logic/algebra/topology’ triples by providing a simple logical
calculus for reasoning about compact Hausdorff spaces—a widely studied class of spaces, properly containing
the class of Stone spaces. We do this by generalizing the classical setting. Namely, we extend the classical
propositional language with a new logical connective of strict implication, which admits a natural topological
interpretation; and we design a calculus consisting of finitely many axioms and rules that is sound and
complete with respect to a category of algebras which is dual to the category KHaus of compact Hausdorff
spaces and continuous maps. Our framework is built on de Vries duality, which we will now discuss in more
detail.

A subordination on a Boolean algebra B is a binary relation < on B satisfying certain conditions (see
Definition 2.1). Subordinations were introduced in [6]. They are in one-to-one correspondence with quasi-
modal operators of [9] and pre-contact relations of [13]. Subordinations can be modeled dually by closed
relations on Stone spaces. This leads to a duality between the category Sub of subordination algebras and
the category StR of pairs (X, R) where X is a Stone space and R is a closed relation on X (see [6, Sec. 2.1]).
Further conditions on < characterize when the relation R is reflexive or symmetric. This yields the subcate-
gories RSub and Con of Sub consisting of reflexive subordination algebras and contact algebras, respectively.
As the name suggests, reflexive subordinations dually correspond to reflexive closed relations; while contact
relations correspond to reflexive and symmetric closed relations.

Compingent algebras, introduced by de Vries [12], are obtained by adding two additional conditions to
the definition of contact algebras. As was shown in [6, Lem. 6.3], they are dually characterized by irreducible
equivalence relations (the definition is given in Section 2). Thus, the category Com of compingent algebras
is dually equivalent to the subcategory of StR consisting of the pairs (X, R) where R is an irreducible
equivalence relation. A de Vries algebra is a complete compingent algebra. Since complete Boolean algebras
dually correspond to extremally disconnected Stone spaces, we conclude that the category DeV of de Vries
algebras is dually equivalent to the subcategory of StR consisting of the pairs (X, R) where the Stone space
X is extremally disconnected and R is an irreducible equivalence relation. Such pairs were called Gleason
spaces in [6] since they are closely related to Gleason covers of compact Hausdorff spaces. A key result of
[6, Thm. 6.13] is that this close correspondence between Gleason spaces and Gleason covers yields that the
category Gle of Gleason spaces is equivalent to KHaus. Since Gle is dually equivalent to DeV, we arrive at
de Vries duality: KHaus is dually equivalent to DeV.

It was pointed out in [6, Sec. 3] that subordinations on a Boolean algebra B can alternatively be de-
scribed by binary operations on B called strict implications. In this paper we study the resulting variety
of strict implication algebras. The study simplifies considerably if we work with the strict implications that
correspond to reflexive subordinations. In Section 3 we prove that the resulting variety SIA of strict im-
plication algebras is a discriminator variety, and we give its axiomatization. We also prove that SIA is a
locally finite variety. In Section 4 we develop the corresponding strict implication calculus SIC, which is a
modal logic with one binary modality that corresponds to the strict implication. Section 5 is devoted to the
symmetric strict implication calculus S?IC which is an extension of SIC. The corresponding variety S2IA is
the subvariety of SIA generated by the strict implication algebras that correspond to contact algebras. One
of our main results is that S?IA is generated by the strict implication algebras that correspond to de Vries
algebras. This yields that S?IC is complete with respect to DeV, which coupled with de Vries duality, yields
that S?IC is the logic of compact Hausdorff spaces.

Our approach is closely related to that of Balbiani et al. [1], which along with [6] inspired the current
paper. Balbiani et al. develop two-sorted logical calculi for region-based theories of space. Our calculus is
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simpler as we work with one-sorted propositional modal logic with one binary modality. In Section 7 we
show how to translate the language of [1] into our language.

Two of the defining axioms of de Vries algebras are universal-existential statements or Ily-statements.
They can be expressed in our language by use of non-standard rules, which we call IIo-rules. That S2IC
is complete with respect to de Vries algebras shows that these ITo-rules are admissible in S2IC. This is
again closely related to Balbiani et al. [1] who use similar non-standard rules in the context of region-based
theories of space and prove their admissibility. In Section 6 we develop the theory of II-rules, show that they
define inductive elementary subclasses of RSub, and that every derivation system axiomatized by Ils-rules
is strongly sound and complete with respect to the subclass of RSub it defines. We also give a criterion of
when a Ils-rule is admissible. We prove that being a zero-dimensional de Vries algebra is definable by a
II,-rule, and that this rule is admissible in S?IC. As a consequence, we obtain that S?IC is complete with
respect to zero-dimensional de Vries algebra, and hence with respect to zero-dimensional compact Hausdorff
spaces, also known as Stone spaces. On the other side of the spectrum from zero-dimensional spaces are
connected spaces. We define the connected symmetric strict implication calculus CS?IC by adding one axiom
to S?IC, and prove that CS?IC is complete with respect to connected de Vries algebras, and consequently
with respect to connected compact Hausdorff spaces.

2. Subordinations, contact algebras, and de Vries algebras

In this section we recall the definitions of subordination, contact algebra, compingent algebra, and de
Vries algebra, as well as the duality theory for these algebras. We also connect the duality theory for de
Vries algebras to de Vries duality for compact Hausdorff spaces via Gleason spaces.

Definition 2.1. ([6])

(1) A subordination on a Boolean algebra B is a binary relation < satisfying:

(S1) 0 <0and 1< 1;

(S2) a < b,cimplies a < bAc;
(S3) a,b < c implies a V b < ¢;
(S4) a <b < c¢<dimplies a < d.

(2) We call (B, <) a subordination algebra, and let Sub be the class of all subordination algebras.

By Stone duality, Boolean algebras correspond to zero-dimensional compact Hausdorff spaces, known
as Stone spaces. Given a Boolean algebra B, its dual Stone space is the space X of ultrafilters of B, the
topology on which is given by the basis {8(a) | a € B}, where f(a) = {x € X | a € z}. Then g is an
isomorphism from B to the Boolean algebra Clop(X) of clopen subsets of X.

We say that a binary relation R on a Stone space X is closed if R is a closed subset of X x X in the
product topology. Let StR be the class of pairs (X, R) where X is a Stone space and R is a closed relation
on X. There is a one-to-one correspondence between Sub and StR, which extends to a categorical duality;
see [6, Sec. 2.1]. This one-to-one correspondence can be obtained as follows. As usual, for a binary relation
Ronaset X and S C X, we write

R[S] .= {x € X | sRx for some s € S}.
Let B be a Boolean algebra and X the Stone space of B. If R is a closed relation on X, then the binary

relation < defined by a < b iff R[5(a)] C B(b) is a subordination on B. Conversely, let < be a subordination
on B. For S C B, write
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1S :={a€ B|s<a for some s € S},

and define a binary relation R on X by xRy iff fo C y. Then R is a closed relation on X, and this
correspondence is one-to-one.
We next consider the following additional properties of <:
(S5) a < b implies a < b;
(S6) a < b implies —b < —a;
(S7) a < b implies there is ¢ € B with a < ¢ < b;
(S8) a # 0 implies there is b # 0 with b < a.

The next lemma gives a dual characterization of (S5)-(S7).

Lemma 2.2 ([13]). Let B be a Boolean algebra, X the Stone space of B, < a subordination on B, and R the
corresponding closed relation on X.

(1) (B, =) satisfies (S5) iff R is reflexive.
(2) (B, =) satisfies (S6) iff R is symmetric.
(3) (B, =) satisfies (S7) iff R is transitive.

Definition 2.3. Let (B, <) be a subordination algebra.

(1) We call (B, <) reflexive if (B, <) satisfies (S5), and let RSub be the class of reflexive subordination
algebras.?

(2) ([27]) We call (B, <) a contact algebra if (B, <) satisfies (S5) and (S6), and let Con be the class of
contact algebras.

We clearly have that Con C RSub C Sub, that reflexive subordination algebras dually correspond to the
subclass of StR consisting of reflexive closed relations on Stone spaces, and that contact algebras dually
correspond to the subclass of StR consisting of reflexive and symmetric closed relations on Stone spaces.

Definition 2.4.

(1) ([12]) We call a contact algebra (B, <) a compingent algebra if it satisfies (S7) and (S8).
(2) ([4]) We call a compingent algebra (B, <) a de Vries algebra if B is a complete Boolean algebra.
(3) Let Com be the class of compingent algebras and DeV the class of de Vries algebras.

We clearly have that DeV C Com C Con. Let (B, <) be a contact algebra and let (X, R) be its dual. As
follows from Lemma 2.2, R is a reflexive and symmetric closed relation. Moreover, (B, <) satisfies (S7) iff R
is an equivalence relation. By [6, Lem. 6.3], (B, <) satisfies (S8) iff R is an irreducible equivalence relation,
where we recall (see [6, Def. 6.1 and Rem. 6.2]) that R is irreducible provided R[U] is a proper subset of X
for each proper clopen subset U of X.

To characterize dually de Vries algebras we recall that a Boolean algebra B is complete iff its Stone
space X is extremally disconnected, where a space is extremally disconnected provided the closure of each
open set is clopen. Thus, compingent algebras dually correspond to pairs (X, R) where X is a Stone space
and R is an irreducible equivalence relation, while de Vries algebras correspond to pairs (X, R) where X
is an extremally disconnected Stone space and R is an irreducible equivalence relation. Such pairs were

2 We point out that (B, <) being reflexive does not mean that < is a reflexive relation, rather that the corresponding closed
relation on the Stone space is reflexive (see Lemma 2.2(1)).
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called Gleason spaces in [6, Def. 6.6] because of the close connection to Gleason covers of compact Hausdorff
spaces.’

Let X be a compact Hausdorff space, and let (Y, 7) be the Gleason cover of X. Define R on Y by xRy iff
m(x) = 7(y). Then (Y, R) is a Gleason space. Conversely, if (Y, R) is a Gleason space, then the quotient space
X :=Y/R is compact Hausdorff. This establishes a one-to-one correspondence between Gleason spaces and
compact Hausdorff spaces, which extends to a categorical duality (see [6, Sec. 6] for details).

Since DeV dually corresponds to the class of Gleason spaces, it follows that DeV dually corresponds to
the class KHaus of compact Hausdorff spaces, which is the object level of the celebrated de Vries duality
[12]. The correspondence between DeV and KHaus can be obtained directly, as was done by de Vries.

For a compact Hausdorff space X, let RO(X) be the complete Boolean algebra of regular open subsets
of X. Define < on RO(X) by

U<V iff C(U) C V.

Then (RO(X), <) is a de Vries algebra (that it validates (S7) and (S8) follows from the fact that every
compact Hausdorff space is regular and normal; see, e.g., [14, Sec. 3.1]).

Conversely, suppose (B, <) is a compingent algebra. A round filter of (B, <) is a filter F' of B satisfying
TF = F. An end of (B, <) is a maximal proper round filter. Let X be the set of ends of (B, <). For a € B,
let f(a) ={x € X | a € x}. Then {B(a) | a € B} generates a compact Hausdorff topology on X. Moreover,
if X is compact Hausdorff, then it is homeomorphic to the dual of (RO(X), <). If (B, <) is a compingent
algebra and X is its dual, then (B, <) embeds into (RO(X), <), and (B, <) is isomorphic to (RO(X), <)
iff (B, <) is a de Vries algebra. These correspondences extend to contravariant functors, which yield a dual
equivalence of the categories KHaus and DeV. We refer to [12] for missing details and proofs.

3. The variety of strict implication algebras

As was pointed out in [6, Sec. 3], subordinations on B can be described by means of binary operations
~+: B x B — B with values in {0, 1} satisfying
M) 0~a=a~1=1;
(I12) (aVb) ~c=(a~c)N (b~ c);
(I3) a~> (bAc)=(a~b)A(a~ c).
If < is a subordination on B, then define ~»: B x B — B by

d b 1 ifa<b
A p—
0 otherwise.

It is easy to see that ~~ has values in {0,1} and satisfies (I1)—(I3). Conversely, given ~-, define < by setting
a<biffa~b=1

It is easy to see that < is a subordination on B, and that this correspondence is one-to-one.
Moreover, the axioms (S5)—(S8) correspond, respectively, to the axioms:

(T4) a~b<a— b

(I5) a~> b= b~ —q;

(I6) a~>b=11implies Ic:a~c=1and c~ b= 1;

3 For details on Gleason covers we refer to [19] and [22, Sec. III1.3]. They are not crucial for the content of this paper.
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(I7) a# 0 implies I £ 0: b~ a = 1.

Note that (I2)-(I3) correspond to (S2)-(S4) which explains why the numbering of the I-axioms is one off
the numbering of the S-axioms. As we will see, adding (I4) to (I1)—(I3) is very useful in algebraic as well as
logical calculations. Therefore, as our base variety, we will consider the variety generated by the algebras
(B,~>), where B is a Boolean algebra and ~ is a binary operation on B with values in {0,1} satisfying
(I1)—(14). From now on, when we write (B, ~+) € RSub, we mean that the corresponding (B, <) is reflexive
(see Definition 2.3(1)).

Definition 3.1. We call (B,~) a strict implication algebra if (B,~) belongs to the variety generated by
RSub. Let SIA be the variety of strict implication algebras.

Remark 3.2. While ~~ is not a normal and additive operator on B, it gives rise to the normal and additive
operator A(a, b) := —(a ~» =b). Then (B, A) is a BAO (Boolean algebra with operators), and ~ is definable
from A by a ~» b = =A(a, —b). We prefer to work with ~~ since it arises from subordinations more naturally.

Let (B,~) € SIA. For a € B, define
Oa=1~a.
By (I1), 01 =1~ 1=1;and by (I3), O(aAb) =1~ (aAb) = (1~ a) A (1~ b) =0aA0b. Thus, (B,0)
is a (normal) modal algebra.
Suppose (B,~) € RSub. If a =1, then Oa = 1. If a # 1, then by (I4), Da=1~a<1—a=a # 1,

so Oa # 1. But since (B,~») € RSub, we have that ~» only takes values in {0,1}. Therefore, O only takes
values in {0,1}. Thus, Oa = 0, and so

Qg Jrifa=1
~ 0ifa# 1.
We let & be the dual of O, i.e., $a = ~O-a. Then

0ifa=0
<> =
@ {1Ha#Q

and so < is the so-called unary discriminator term [21]. From this, and the fact that the class RSub is
axiomatized by universal first-order formulas, the following observations are immediate [29, Sec. 8.2.].

Proposition 3.3.

(1) The variety SIA is a discriminator variety, and hence a semisimple variety.
(2) The simple algebras in SIA are exactly the members of RSub.

We next turn to the axiomatization of SIA. First we observe that Oa < a by (I4). Let V be the variety
of algebras (B, ~) axiomatized by the equations defining Boolean algebras, (11)—(I4), and the axioms:

(18
(19
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We recall that a modal algebra (B, 0) is an S5-algebra if its satisfies Oa < a, Oa < OOa, and —-0Oa < O-0a.
Thus, if (B,~) € V, then (B, 0) is an S5-algebra.

Theorem 3.4. SIA =Y.

Proof. It is straightforward to see that (I8)—(I11) hold in each member of RSub. Since SIA is generated by
RSub, it follows that SIA C V. For the reverse inclusion, we utilize [21, Thm. 3], by which a unary term <
is a discriminator term in subdirectly irreducible members of a variety V iff V satisfies four equations that
in our setting amount to:

e Oa < O0Oa;

e —Oa < O-0Oa;
e Oa < —0a ~ 0
e —0a < Oa ~ 0.

Clearly each (B, ~) € V satisfies the first three. To see that it also satisfies the fourth, observe that by (14)
and (I9) we have -Oa = O—0Oa. This together with (I11) yields

—0Oa = O0-0a < -0-0a ~» 0 = -—0a ~ 0 = Oda ~ 0.

Thus, [21, Thm. 3] applies, by which < is a unary discriminator in all subdirectly irreducible members of
V. So if (B, ~) is a subdirectly irreducible member of V, then 0O only takes the values 0 and 1. Since (I10)
holds in (B, ~~), we have that ~ also only takes the values 0 and 1. Therefore, as (I1)—(I4) hold in (B, ~),
it follows from the definition of RSub that (B, ~+) € RSub. Thus, each subdirectly irreducible member of V
belongs to SIA. Since V is generated by its subdirectly irreducible algebras, we conclude that V C SIA. O

We next give an alternate axiomatization of SIA, which will be useful in Section 4. Let W be the variety
axiomatized by (I1)—(I4) and the axioms:

) O(a—=bd)A(b~c) <a~c
) (a~b)ADOb—=c)<a~c
114) a~b< e~ (a~Db);
I15) —(a ~ b) < ¢~ =(a~ D).
To prove that SIA = W, we require the following lemma.

Lemma 3.5. (I12) and (I3) imply a <b= (b~ c<a~candc~a<c~b).

Proof. By (I12), b ~» ¢ = (aVb) ~ ¢ = (a ~ ¢) A (b ~ ¢). Therefore, b ~ ¢ < a ~» c. Also, by (I3),
cwa=c~ (aNb)=(c~a)A(c~Db). Thus,c~~a<c~b O

Theorem 3.6. SIA = W.

Proof. First we show that SIA C W. For this it is sufficient to see that (I112)—(I15) hold in each strict
implication algebra (B, ~-). To see that (I112) holds, by (I11),

O(a = b) A (b~ c) < (=O(a — b) ~ 0) A (b~ c).

Since 0 < ¢, by Lemma 3.5 and (12),
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(-m0(a = b) ~ 0) A (b~ ¢) < (-O(a = b) ~¢c) A (b~ ¢)
=(—-0(a—=b)Vb)~c

= (0O(a = b) = b) ~ ¢
Because O(a — b) < a — b, we have (a — b) — b < O(a — b) — b. Therefore, by Lemma 3.5,
(O(a—=b) = b) ~c<((a—>b) = b)~c
But (a = b) = b=—(-aVb)Vb=aVb, so applying Lemma 3.5 again yields
((a—=b) = b)~c=(aVd)~c<a~c

Thus, (I12) holds in (B, ~).
To see that (I13) holds, by Lemma 3.5 and (I3),

(a~b)AOb—c)=(a~b)A(l~ (b—c))
<(a~b)A(a~ (b—c))
=a~ (bA(b—0).

Since b A (b — ¢) < ¢, applying Lemma 3.5 again yields
a~(bAD—=c) <a~c

Thus, (I13) holds in (B, ~).
To see that (I14) holds, by (I10) and Lemma 3.5,

a~b=0(a~b) =1~ (a~b) <c~ (a~Db).

Thus, (I14) holds in (B, ~).
To see that (I15) holds, since (B, 0O) is an S5-algebra, by (I10) and Lemma 3.5,
=(a ~b) =-0(a ~ b) =0-0(a ~ b)
=0-(a~b) =1~ =(a~b)
< ¢~ a(a~b).
Thus, (I15) holds in (B, ~-). Consequently, SIA C W.
It is left to show that W C SIA. For this it is sufficient to see that (I8)—(I11) hold in each (B,~») € W.
It follows from (I14) that a ~» b < O(a ~ b), and it follows from (I4) that O(a ~» b) < a ~» b. Thus, (I10)

holds in (B, ~).
That (I8) holds in (B, ~~) is immediate from (I10):

Oa=1~a=0(1~ a)=00a.

To see that (I11) holds, substituting in (I12) —-Oa for a and 0 for both b and ¢ yields O(—-0a — 0) A (0 ~
0) < —0a ~» 0. Now, using (I1) and (I8), we have:

O(—0a — 0) A (0~ 0) = O(—-—0a) A 1 = O0a = Oa.



G. Bezhanishvili et al. / Annals of Pure and Applied Logic 170 (2019) 102714 9

Thus, Oa < —Oa ~ 0, and so (I11) holds in (B, ~).
Finally, it follows from (I15) that —(a ~~ b) < O—=(a ~~ b). Thus,

—0a = (1~ a) <0O-(1 v a) = 0-0a,
and hence (19) holds in (B, ~). Consequently, W C SIA. O

We next show that our base variety SIA is locally finite, and consider subvarieties and inductive subclasses
of SIA.

Proposition 3.7. The variety SIA is locally finite.

Proof. Let (B,~+) € RSub be n-generated, with generators aq,...,a, € B. For each a € B, there is a term
t(x1,...,x,) such that a = t(ay,...,a,). Since (B,~>) € RSub, for each b,c € B, we have b ~ ¢ € {0,1}.
Therefore, by replacing each subterm of ¢(x1,...,x,) of the form x ~» y with either 0 or 1, we obtain a
Boolean term t'(z1,...,x,) such that a = t'(ay, ..., a,). Thus, B is n-generated as a Boolean algebra, and
hence has at most 22" elements. Since RSub is the class of simple algebras in SIA, which is a semisimple
variety (see Proposition 3.3), there is a uniform bound m(n) = 22" on all n-generated subdirectly irreducible
members of SIA. Consequently, by [3, Thm. 3.7(4)], SIA is locally finite. O

As an immediate consequence we obtain:
Corollary 3.8. Every subvariety of SIA is generated by its finite members.

While SIA has many subvarieties, we will be interested in the subvariety obtained by postulating the
identity (I5). Our interest is motivated by the fact that this variety is exactly the subvariety of SIA generated
by the class Con of contact algebras. We further restrict Con to the class Com of compingent algebras, by
postulating (I6) and (I7). But unlike (I5), neither (I6) nor (I7) is an identity. However, both (I6) and
(I7) are IIp-statements (i.e., statements of the form VZ3g®(z,7y), where T,y are tuples of variables and
®(z,7) is a quantifier-free formula). By the Chang-f.os-Suszko Theorem (see, e.g., [11, Thm. 3.2.3]), the
elementary classes corresponding to Ils-statements are inductive classes, where we recall that a class is
inductive provided it is closed under unions of chains (equivalently, closed under directed limits). While we
will be mainly interested in the inductive class Com, in Section 6 we will show that all elementary inductive
subclasses of RSub can be axiomatized by non-standard rules.

We conclude this section by observing that, unlike subvarieties of SIA, not every inductive subclass of
SIA is determined by its finite algebras. For example, the inductive elementary class Com is not determined
by its finite algebras. To see this, let Dis be the subclass of Com consisting of those algebras in Com that
validate the equation a ~ a = 1. Then Dis is an inductive elementary subclass of Com. To see that Dis is a
proper subclass of Com, let X = [0,1]. Then the de Vries algebra (RO(X), <) falsifies a ~ a = 1. Indeed,
if we put a = [0, 3), then the closure of a is [0, %} ¢ a. So a £ a, and hence a ~» a # 1. On the other hand,
we show that every finite algebra in Com validates the equation a ~» a = 1. Since every finite compingent
algebra is a finite de Vries algebra, by de Vries duality, every finite compingent algebra (B, <) is isomorphic
to the powerset of a finite discrete space X. Because every subset of a discrete space is clopen, we have
a < a,s0 a~ a =1 for each a € B. Therefore, Dis and Com have the same finite algebras, yet Dis is a
proper subclass of Com. Thus, Com is not determined by its finite algebras.

4. The strict implication calculus

We next present a sound and complete deductive system for SIA. We will work with the language of clas-
sical propositional logic, with a countably infinite supply of propositional letters and primitive connectives
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A, =, which we will enrich with one binary connective ~» of strict implication. Then T, 1V, —, <+ are usual
abbreviations, and O¢ abbreviates T ~» ¢.

A wvaluation on (B, ~) is an assignment of elements of B to propositional letters of our language £, which
extends to all formulas of £ in the usual way. We say that a valuation v on (B, ~>) satisfies a formula ¢
if v(¢) = 1. In such a case we write (B, ~+,v) = ¢. If all valuations on (B, ~-) satisfy ¢, then we say that
(B, ~>) validates o, and write (B, ~) |= ¢. For a set of formulas T', we write (B,~) =T if (B,~) |= ¢ for
every o € I'.

Suppose U C SIA, ¢ is a formula, and T' is a set of formulas. We say that ¢ is a semantic consequence of
T over U, and write T" = o, provided for each (B,~+) € U and each valuation v on (B, ~), if v(y) =1 for
each v € T, then v(p) = 1.

Consider the following axiom schemes:

(L~ @) Alp~T),

[(p V) ~ x] > [(0 ~ x) A (¥~ X)),
[o~> (@ AX)] < ({0~ ) A~ X)),
() = (¢ = 1),

(o~ ) & (¢ ~ ),

-Op — O-0,

(o ~ ) « O(p ~ 1),
Op — (=0¢p ~ 1),

Clearly (A1)-(A5) correspond to (I1)—(I5) and (A8)—-(A15) to (I8)—(I15).
Definition 4.1. The strict implication calculus SIC is the derivation system containing:

« all the theorems of the classical propositional calculus CPC,
o the axiom schemes (A1)—(A5) and (A8)-(All),

and closed under the inference rules:

o Y
(MP)ww
(N) 0o

The definition of derivability in SIC is standard:

Definition 4.2.

(1) A proof of a formula ¢ from a set of formulas I' is a finite sequence 1, ..., such that ¥, = ¢ and
each ; is in I' or is an instance of an axiom of SIC or is obtained from 1),y for some j,k < i by
applying (MP), or is obtained from ; for some j < i by applying (N). Elements of I" are referred to as
assumptions.

(2) If there is a proof of ¢ from I', then we say that ¢ is derivable in SIC from I' and write I' Fgic .

(3) If I' = @, then we say that ¢ is derivable in SIC and write Fgic .
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Remark 4.3. Since O(¢ A ) + (O¢ A OY) is an instance of (A3) and Oy — ¢ is an instance of (A4),
we see that all the theorems of the modal system S5 are derivable in SIC. In particular, the (K) axiom
O(p = ¥) — (Op — Ovy) is derivable in SIC.

The deduction theorem for SIC is proved as for Sb:

Theorem 4.4. For any set of formulas I’ and for any formulas ¢,1, we have:

'y {(p} Fsic ’t/) < I'hgc Op — w

Proof. (<) This is the easy direction since a proof 91, ..., 9, of Op — 1 from I' can easily be extended to
a proof of ¢ from I' U {¢} as follows:

n. Op =

n+ 1. ¢ (assumption)

n+ 2. Op (by (N) from n + 1)

n+ 3. ¢ (by (MP) from n and n + 2).

(=) Suppose there is a proof ¥1,...,1, of ¥ from I' U {p}. We show by induction on ¢ = 1,...,n that
we can obtain a proof of Oy — ; from I'. If ¥; = ¢, then I' Fgic Op — ¥; since Fgic Op — . If ¢, € T
or 1; is an instance of an axiom of SIC, then since Fgic ¥; — (Og — 1;), by applying (MP) we obtain
I Fsic Op — ;. If 1; is obtained by applying (MP) to ¢; and ¢y = ¢; — ¢; with j, k < 4, then by the
inductive hypothesis, I' Fsic O — ¥, 0¢ — (¥; — ;). But then I' Fgic Op — ¥;,¢; — (e — ¥i),
which yields I' Fsic Op — (Op — ), so I' Fsic Og — ;. Finally, if ¢; is obtained by applying (N) to ¢,
with j < ¢, then by the inductive hypothesis, I Fgic Op — ;. Applying (N) yields I' Fgic O(Op — ;).
Therefore, by applying the (K) axiom (see Remark 4.3) and (MP), we obtain I' Fgic OO¢ — O;. Thus,
since Fsic Op — OOy, we have I' Fsic Dy — Ov;, and so I' Fgic O¢ — 1;, concluding the proof. O

Since each axiom of SIC has an equational counterpart in the axiomatization of SIA, the standard Lin-
denbaum construction (see, e.g., [23]) yields the following.

Proposition 4.5. SIC is strongly sound and complete with respect to SIA; that is, for a set of formulas ' and
a formula @,

['Fsic @ iff T FEsia .

Remark 4.6. As follows from Theorem 3.6, SIA can be axiomatized by replacing (I8)—(I11) with (I112)—(115).
Thus, by Proposition 4.5, SIC can be axiomatized by replacing (A8)—(A11) with (A12)—(A15).

We next show that SIC is in fact strongly sound and complete with respect to RSub. For this we first
characterize congruences of strict implication algebras. It is well known that congruences of Boolean algebras
correspond to filters, and this correspondence is obtained as follows. If # is a congruence on a Boolean algebra
B, then Fy = {a € B | afl} is a filter of B. If F is a filter of B, then 6 defined by afpbiff a <> b€ F is a
congruence of B. Moreover, 0p, = 6 and Fyp, = F.

Proposition 4.7. For (B,~+) € SIA, there is a one-to-one correspondence between
(1) congruences of (B,~);

(2) congruences 0 of B such that afb implies (a ~ ¢)0(b ~ ¢) and (¢ ~» a)f(c ~ b);
(3) filters F' of B such that a € F implies Oa € F;
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(4) filters F' of B such that a — b € F implies (b~ ¢) = (a ~ ¢), (¢~ a) = (c~b) € F;
(5) filters F' of B such that a — b,b~> c,c > d € F imply a ~>d € F.

Proof. (1)=-(2) This is obvious.

(2)=-(1) Suppose abb and cfd. By (2), (a ~ ¢)0(b ~ ¢) and (b ~> ¢)0(b ~> d). Therefore, (a ~ ¢)0(b ~~ d).
Thus, 6 is a congruence of (B, ~).

(3)=(4) Suppose F satisfies (3) and a — b € F. Then O(a — b) € F. By (I12) and (I13), for any
¢ € B, we have O(a — b) < (b ~ ¢) = (a ~ ¢) and O(a — b) < (¢ ~ a) — (¢ ~ b). Therefore,
(b~c¢) = (a~c),(c~a)— (c~Db) € F, and so F satisfies (4).

(4)=(5) Suppose F satisfies (4) and a — b,b ~ ¢,c — d € F. From a — b € F it follows that
(b~ ¢) = (a ~ ¢) € F. Therefore, since b ~» ¢ € F, we have a ~ ¢ € F. Also, from ¢ — d € F it follows
that (a ~» ¢) — (a ~» d) € F. This together with a ~» ¢ € F yields a ~ d € F. Thus, F satisfies (5).

(5)=(3) Suppose F satisfies (5) and @ € F. Since 1 - 1 =1+~ 1=1and 1 — a = a, we have
1— 1,1~ 1,1 — a € F. Therefore, by (5), Oa =1~ a € F. Thus, F satisfies (3).

(2)=-(3) Suppose 0 is a congruence of B and a € Fp. Then adl. Therefore, (1 ~~ a)d(1 ~» 1). Thus, Oabl,
and so Oa € Fy.

(4)=(2) Suppose F satisfies (4), afrb, and ¢ € B. Then a — b € F and b — a € F. Therefore, by (4),
(b~¢c)—= (a~c)(c~a)— (¢c~b) e Fand (a ~c)—= (b~ c)(c~ b — (¢~ a) e F. Thus,
(a ~c) < (b~ ¢),(c~ a) <« (¢c~b) € F. Consequently, (a ~ ¢)0p(b ~ ¢) and (¢ ~ a)fp(c ~ b), and
hence 0 satisfies (2). O

Definition 4.8. Let (B,~-) be a strict implication algebra. We call a filter F' of B a O-filter provided F
satisfies Proposition 4.7(3); that is, a € F' implies Oa € F.

By Proposition 4.7, congruences of strict implication algebras correspond to their O-filters. This is a
generalization of a similar characterization of congruences of modal algebras (see, e.g., [10, Sec. 7.7]). For a
strict implication algebra (B,~-) and a € B, we use the usual abbreviation

ta:={be B|a<b}.

Lemma 4.9. Let (B,~) be a strict implication algebra, a € B, and F a O-filter. Then the filter generated
by FU{DOa} is a O-filter. In particular, we have that T0a and t—0a are O-filters.

Proof. Let F’ be the filter generated by FU{DOa}, and let b € F’. Then there is ¢ € F such that ¢cAOa < b.
As O is an S5-operator, we have O(c A Oa) < Ob. Since F' is a O-filter, Oc € F. Therefore, again using the
fact that O is an S5-operator, we obtain O(c A Oa) = Oc A OOa = Oc A Oa € F'. Thus, Ob € F’, which
shows that F’ is a O-filter.

In particular, as {1} is a O-filter, it follows that 10« is a O-filter, and by (1I9) the same holds for 1-0a. O

For a strict implication algebra (B,~-) and a O-filter F, let (B/F,~>r) be the quotient algebra. For
a € B, we let [a] be the corresponding element of B/F.

Lemma 4.10. Let (B,~) € SIA.
(1) For a proper O-filter F in (B,~), the following are equivalent:

(a) F is a mazimal proper O-filter.
(b) For each a € B, we have Oa € F or =0Oa € F.
(¢) (B/F,~p) € RSub.

(2) If F is a O-filter and a ¢ F, then there is a mazimal O-filter M such that F C M and a ¢ M.
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Proof. (1) (a)=-(b) Suppose Oa ¢ F. Let G be the filter generated by F' and Oa. By Lemma 4.9, G is a
O-filter. Since F' is a maximal O-filter, G is improper. Therefore, 0 = Oa A b for some b € F. Thus, b < —-0Oa,
and so -Oa € F.

(b)=(c) Let a € B. Then Oa € F or =Oa € F. If Oa € F, then Op[a] = [Da] = 1p, where Opla] =
1p ~»F [a]. On the other hand, if Oa ¢ F, then —0Oa € F, so ~pOp[a] = [-0a] = 1, and hence Opfa] = Op.
This implies that {1p} and B/F are the only two Op-filters in (B/F,~»p). Thus, (B/F,~F) is a simple
algebra, and hence (B/F,~+r) € RSub by Proposition 3.3(2).

(c)=(a) Suppose G is a O-filter properly containing F. Then there is a € G \ F. Since G is a O-filter
and Oa < a, we see that Oa € G \ F. Therefore, [TJa] # 1p. Since (B/F,~r) € RSub, we conclude that
[Da] = 0p. Thus, [-0Oa] = 1F, yielding that -Oa € F C G. Consequently, G is an improper O-filter, and
hence F' is a maximal O-filter.

(2) Since a ¢ F, by Zorn’s lemma there is a O-filter M such that ¥ C M, a ¢ M, and M is maximal with
this property. If M is not a maximal O-filter, then by (1), there is b € B such that 0Ob, ~0b ¢ M. Let G be
the filter generated by M and 0b and H the filter generated by M and —0b. By Lemma 4.9, both G and
H are O-filters that properly extend M. Therefore, a € G, H, so there exist ¢,d € M such that a > ObA ¢
and a > -0bAd. Thus, a > (ObAc)V (-ObAd) = (0bV —0b) A (ObV d) A (cV—-0Ob) A(cVd) € M. The
obtained contradiction proves that M is a maximal O-filter. O

Theorem 4.11. For a set of formulas T' and a formula @, we have:

IFksicy & TlEsiay & T Ersw @

Proof. We already observed in Proposition 4.5 that T Fgic ¢ < T |=sia ¢. This together with RSub C SIA
yields that I" Fsic ¢ implies I' Frsup ¢. Conversely, if I' ¥gic ¢, then in the Lindenbaum algebra (B, ~) of
SIC, the O-filter generated by {[¢] | ¥ € T'} does not contain [p]. By Lemma 4.10(2), there is a maximal
O-filter F such that {[¢)] | v € T} C F and [¢] ¢ F. But then (B/F,~p) satisfies I' and refutes ¢. By
Lemma 4.10(1), (B/F,~F) € RSub. Thus, T" jrsub . O

5. The symmetric strict implication calculus and its topological completeness

In this section we define the symmetric strict implication calculus S?IC obtained by adding (A5) to SIC,
and the corresponding variety S?IA of symmetric strict implication algebras. We prove that S?IC is strongly
sound and complete with respect to Con, as well as with respect to Com and DeV. The last completeness
together with de Vries duality allows us to introduce topological models for S?IC based on compact Hausdorff
spaces, and prove that S2IC is strongly sound and complete with respect to the class of compact Hausdorff
spaces.

Definition 5.1.

(1) We call a strict implication algebra (B,~) symmetric if it satisfies (I5). Let S?IA be the variety of
symmetric strict implication algebras.

(2) The symmetric strict implication calculus S?IC is obtained from the strict implication calculus SIC by
postulating (A5).

Since (A5) corresponds to (I5), it follows from Proposition 4.5 that S2IC is strongly sound and complete
with respect to S2IA. Moreover, since for (B, ~) € RSub we have (B,~) € Con iff (B, ~) satisfies (I5), the
following is an immediate consequence of Theorem 4.11.
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Theorem 5.2. For a set of formulas I' and a formula ¢, we have:

IF'toace & Tlheny < TEcne

We next show that each contact algebra can be embedded into a compingent algebra. For this we uti-
lize the representation of subordination algebras discussed in Section 2, as well as the following result
(cf. Lemma 2.2).

Lemma 5.3 ([13]). Let R be a binary relation on a set X. Define <g on P(X) by U <g V iff R[U] C V.
(1) <r is a subordination on P(X).

(2) R is reflexive iff (P(X),<r) satisfies (S5).

(3) R is symmetric iff (P(X),<gr) satisfies (S6).

(4) R is transitive iff (P(X), <r) satisfies (S7).

We use Lemma 5.3 to show an analogue of [1, Lem. 2.5] in our setting. Let (B, <) and (C, <) be in RSub.
We say that (B, <) is embedded into (C, <) if there is a Boolean embedding h : B — C such that a < b iff
h(a) < h(b) for each a,b € B.

Lemma 5.4.

(1) Every (B, <) € RSub can be embedded into some (C, <) € RSub satisfying (ST).
(2) Every (B, <) € Con can be embedded into some (C, <) € Con satisfying (S7).

Proof. (1) Suppose that (X, R) is the dual of (B, <). By Lemma 2.2(1), R is reflexive. Let Y = {{z,y} C
X | Ry} and let

X' ={(z,a) e X xY |z € a}.
Define R’ on X’ by
(z,a)R'(y,B) & zRy and o = f3.

We show that R’ is reflexive and transitive. That R’ is reflexive follows from the reflexivity of R. To see
that R’ is transitive, let (z,a)R/(y, 5)R'(z,7). Then xRyRz and o = 8 = . Therefore, either x =y, y = z,
or z = x. Since R is reflexive, we see that in each of these cases we have xRz. Thus, (z,a)R/(z,7), and so
R’ is transitive.

Define f : X’ — X by f(x,a) = z. Clearly f is onto. Therefore, f~! : Clop(X) — P(X’) is a Boolean
embedding.

Claim. For U,V € Clop(X), we have U <g V iff f~Y(U) <p f~1(V).

Proof of claim. It follows from the definition of R’ that (z,«)R’'(y,3) implies f(z,a)Rf(y,B). SoU <r V
implies f~Y(U) < f~'(V). For the converse, suppose U Ag V. Then R[U] ¢ V. Therefore, there are
x € U and y ¢ V such that xRy. Let o = {x,y}. Then (x,a)R'(y, ), (v,a) € f~1(U), and (y,a) ¢ f~1(V).
Thus, R'[f~4(U)] € f~*(V), and hence f~H(U) £p f~H(V). O

Let (C, <) = (P(X'), <r/). By Lemma 5.3, (C, <) satisfies (S1)—(S5) and (S7), and by the Claim, f~* is
an embedding of (B, <) into (C, <).

(2) If (B, <) € Con, then by Lemma 2.2(2), R is also symmetric. Therefore, so is R’, and hence R’ is an
equivalence relation. Thus, by Lemma 5.3, (C, <) satisfies (S1)—(S7), concluding the proof. O
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Lemma 5.5. Suppose (B, <) € RSub. Let B = B x B and define <’ on B’ by
(a,b) <’ (¢,d) & a < c and b < d.
Then (B',<’) € RSub. Moreover, if (B, <) € Con, then (B’,<’) € Con.

Proof. Since (B, <) € RSub, it satisfies (S1)—(S5). We show that (B’, <) also satisfies (S1)—(S5).

(S1) Since 0 < 0 and 1 < 1, it is obvious that (0,0) <’ (0,0) and (1,1) <’ (1,1).

(S2) Suppose (a,b) < (¢,d),(¢',d’). Then a < ¢,¢" and b < d,d’. Therefore, a < ¢ A and b < dAd'.
Thus, (a,b) <" (¢,c') A (d,d).

(S3) Suppose (a,bd), (a’,b") <’ (¢,d). Then a,a’ < ¢ and b,b’ < d. Therefore, a Va' < cand bV b < d.
Thus, (a,b) V (a/,b") <’ (c,d).

(S4) Suppose (a,b) < (a’,b') < (¢,d") < (¢,d). Thena < a’ < <cand b <V < d <d. Thus, a < ¢
and b < d, and so (a,b) <’ (¢,d).

(S5) Suppose (a,b) <’ (¢,d). Then a < ¢ and b < d. From a < ¢ it follows that a < ¢. Thus, (a,b) < (¢, d).

Now suppose that in addition (B, <) € Con. Then (B, <) satisfies (S6). We show that (B’,<’) also
satisfies (S6).

(S6) Suppose (a,b) <’ (¢,d). Then a < ¢ and b < d. Therefore, ~¢ < —a and —d < —b. Thus, —(c,d) <’
=(a,b).

Consequently, if (B, <) € Con, then (B’,<’) € Con. O

Lemma 5.6.

(1) Every (B, <) € RSub can be embedded into (C, <) € RSub satisfying (S8).
(2) In addition, if (B, <) satisfies either (S6) or (ST), then so does (C,<).

Proof. (1) Starting from (B, <), we inductively build a chain
(B, <) = (B1,<) = (B2, <) = (B3, <) — - -~

in RSub such that the union (C, <) := J,,c,,(Bn, <) satisfies (S8).

If (B,, <) is already defined, define (B, 41, <) := (B, <) X (Bp,<). By Lemma 5.5, (Bp4+1, <) € RSub.
Moreover, a — (a,a) is an embedding of (B, <) into (B,+1,<). We prove that (C, <) satisfies (S8).

Let 0 # a € C. Then there is n such that a € B,. Therefore, (a,a) € B,y1. Let b:= (0,a) € B, y1. We
have b # 0 and b < (a,a). Thus, (C, <) satisfies (S8).

(2) If (B, <) satisfies (S6), then each (B, <) satisfies (S6) by Lemma 5.5. Therefore, so does (C, <).

Finally, suppose that in addition (B, <) satisfies (S7). We show that if (B, <) satisfies (S7), then so
does (By41,<). Let (a1,a2) < (b1,b2) in (Bpt1,<). Then a; < by and as < by in B,,. By (S7), there exists
¢ € By, such that a1 < ¢ and ¢ < by. So, for (¢,as) € Byy1, we have (a1,a2) < (¢,a2) < (b1, bs). Therefore,
(Bn1, <) satisfies (S7). Thus, by induction, each (B, <) satisfies (S7). By the Chang-¥.0os-Suszko theorem
(see, e.g., [11, Thm. 3.2.3]), IIz-sentences are preserved by direct limits. Since (S7) is a IIp-sentence, the
direct limit (C, <) of the chain also satisfies (S7). O

Let (B, ~) and (C, ~) be the strict implication algebras corresponding to (B, <) and (C, <), respectively.
It is straightforward to check that h: B — C' is an embedding of (B, <) into (C, <) iff h is an isomorphism
from (B, ~~) to a subalgebra of (C,~). For a class I of strict implication algebras, let IS(X) be the class
of isomorphic copies of subalgebras of algebras in K.

Theorem 5.7. IS(Com) = Con.
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Proof. Obviously, Com C Con and as Con is a universal class, we have that IS(Com) C Con. Conversely,
suppose (B,~) € Con. Then by Lemmas 5.4(2) and 5.6 it is isomorphic to a subalgebra of (C,~+) € Com.
Therefore, Con C IS(Com). O

Theorem 5.8. S?IC is strongly sound and complete with respect to Com i.e., for a set of formulas T' and a
formula ¢, we have:

Ikeice & T Ecom ¢

Proof. The left to right direction follows from Theorem 5.2 and the fact that Com C Con. Now suppose
I' #s2ic. Applying Theorem 5.2 again yields a contact algebra (B,~») and a valuation v on B such that
v(y) = 1p for each v € T and v(p) # 1p. By Theorem 5.7, there is (C,~) € Com such that (B,~) is
isomorphic to a subalgebra of (C,~). We may view v as a valuation on C, so v(y) = 1¢ for each v € T and

v(p) # 1¢. Thus, T Fcom . O

We recall that the de Vries algebra of a compact Hausdorff space X is the pair (RO(X), <), where
RO(X) is the complete Boolean algebra of regular open subsets of X and U < V iff CI(U) C V. By de Vries
duality [12], every de Vries algebra is isomorphic to the de Vries algebra of some compact Hausdorff space.
This allows us to define topological semantics for our language.

Definition 5.9. A compact Hausdorff model is a pair (X, v), where X is a compact Hausdorff space and v is
a valuation assigning a regular open set to each propositional letter.

If ~~ is the strict implication corresponding to <, then the formulas of our language are interpreted in
(RO(X),~) € DeV.

Theorem 5.10.

(1) The system S2IC is strongly sound and complete with respect to DeV.
(2) The system S2IC is strongly sound and complete with respect to compact Hausdorff models.

Proof. (1) Since DeV C Com, by Theorem 5.8, we have I Fg2c ¢ implies T' Epey ¢. Conversely, suppose
I Fs21c . Applying Theorem 5.8 again yields a compingent algebra (B,~) and a valuation v on B such
that v(y) = 1 for each v € I' and v(yp) # 1p. By de Vries duality, there is a compact Hausdorff space X
such that (B,~) embeds into (RO(X),~>). We may view v as a valuation on RO(X), so v(y) = X for
each v € I" and v(p) # X. Since (RO(X),~) € DeV, we conclude that I" Fpev .

(2) This follows from (1) and de Vries duality. O

Remark 5.11. Let (B, <) € Com and let 8 : B — RO(X) be the embedding. By [12, Thm. 1.3.9], for
U,V € RO(X) with U < V, there are a,b € B with a < b, U C 8(a), and 5(b) C V. From this it follows
that RO(X) is isomorphic to the MacNeille completion of B. Thus, it is possible to prove Theorem 5.10(1)
without using the de Vries representation of compingent algebras. Namely, for (B, <) € Com, let B be the
MacNeille completion of B. By identifying B with its image, we may view B as a subalgebra of B, and
define <1 on B by setting

x <y iff there exist a,b € B such that z <a <b<y.

A direct verification shows that (B, <) € DeV, which yields a point-free proof of Theorem 5.10(1); see [5,
Lem. 6.5] for details.
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6. IT-rules, admissibility, and further completeness results
6.1. TIy-rules

As we saw in the previous section, S?IC is strongly sound and complete with respect to DeV, and hence
S21C is the strict implication logic of compact Hausdorff models. Note that neither (I6) nor (I7) is expressible
in our logic as S?IC is also strongly sound and complete with respect to Con. This generates an interesting
question of what logical formalism to use when reasining about compact Hausdorff models (see Remark 6.23
for more discussion). In this section we show that we can express (I6) and (I7) in our propositional language
by means of IIy-rules. For this we first rewrite (I6) and (I7) in the following form.

(T16) V:m,xz,y(:m o Ly = 3zt (11~ 2) A (2~ 1) £y>’
(I17) Vx,y(mﬁy—)Elz:z/\(zwx) gy)

Lemma 6.1. Let (B,~+) € RSub.

(1) (B,~) [= (16) iff (B,~) = (II6).
(2) (B,~) = (I7) iff (B,~) |= (II7).

Proof. (1) (=) Suppose (B,~) |= (I6). Let a,b,d € B be such that a ~ b £ d. Then d # 1 and a ~» b # 0,
so a ~» b = 1 since (B,~>) € RSub. By (I6), there is ¢ € B such that a ~» ¢ = ¢ ~» b = 1. Therefore,
1= (a~c)A(c~ b) £d. Thus, (B,~) [ (1I6).

(<) Suppose (B,~+) [= (II6). Let a,b € B be such that a ~» b = 1. Then a ~» b £ 0. By (II6), there is
¢ € B such that (a ~ ¢) A (¢ ~ b) £ 0. Therefore, since (B, ~) € RSub, we have a ~» ¢ = ¢ ~» b = 1. Thus,
(B, ) = (16).

(2) (=) Suppose (B,~) k= (I7). Let a,c € B be such that a £ ¢. Then a A —¢ # 0. By (I7), there is
b # 0 such that b ~ (a A =¢) = 1. By (I3), b ~ (a A =¢) = (b~ a) A (b ~ —¢). Therefore, b ~ a = 1 and
b ~» =¢ = 1. The latter equality, by (I4), yields b < —c¢. Since b # 0, we must have b % c. Thus, we have
found b € B such that b A (b~ a) = b % ¢. This shows that (B,~) = (II7).

(<) Suppose (B,~) = (II7). Let a # 0 be an element of B. By (II7), there is b € B such that
bA (b~ a) % 0. Therefore, b # 0 and b ~» a = 1. Thus, (B,~) = (I7). O

We next show that V3-statements can be expressed by means of non-standard rules, which we call ITo-rules.
The use of non-standard rules in modal logic is not new. One of the pioneers of this approach was Gabbay
[16], who introduced a non-standard rule for irreflexivity. A precursor to this work was Burgess [8] who used
such rules in the context of branching time logic. We also refer to [17] for the application of non-standard
rules to axiomatize the logic of the real line in the language with the Since and Until modalities, and to [28]
for a general completeness result for modal languages that are sufficiently expressive to define the so-called
difference modality. Our approach is closest to that of Balbiani et al. [1] who use similar non-standard rules
in the context of region-based theories of space.

Definition 6.2 (IIy-rule). A IIs-rule is a rule of the form

F(®,p) = x
©) T ox

where F,G are formulas, @ is a tuple of formulas, x is a formula, and P is a tuple of propositional letters
which do not occur in @ and x.
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To each Ils-rule p, we associate the V3-statement
II(p) := VE,Z(G(E) £ z—3Jy: F(T,7) £ z)

Definition 6.3. We say that a strict implication algebra (B, ~) validates a IlIa-rule p, and write (B, ~) = p,
provided (B, ~-) satisfies II(p).

Consider the IIs-rules:
(p~>p)AP~Y) = x
6 ;
(68) (p~9) = x

) PN (P~ ) = x
=X
It is easy to see that II(p6) = (II6) and II(p7) = (II7), so by Lemma 6.1, for each (B,~>) € RSub, we
have:

(p7

(B,~) | (p6) iff (B,~) = (16);
(B,~) = (o7) iff (B,~) |= (I7).

Definition 6.4 (Proofs with IIo-rules). Let ¥ be a set of IIy-rules. For a set of formulas I and a formula ¢,
we say that ¢ is derivable from T' in SIC using the Ils-rules in ¥, and write I' Fx ¢, provided there is a
proof 1, ...,1, such that ¢,, = ¢ and each v; is in ', or is an instance of an axiom of SIC, or is obtained
either by (MP) or (N) from some previous 1);’s, or there is j < ¢ such that ¢; is obtained from ; by an
application of one of the Ilo-rules p € ¥ that is, 1; = F(£,p) — x and ¢; = G(§) — x, where F,G are
formulas, € is a tuple of formulas, y is a formula, and P is a tuple of propositional letters not occurring in
&, x or any of the formulas from I' that are used in v, ..., %;_1 as assumptions.

We next show that the deduction theorem remains true when proofs also involve ITs-rules.
Lemma 6.5. For any set I' of formulas and for any formulas p,, we have:
Tu{ptrsy <& ThkxoOp—1.

Proof. (<) Same as the corresponding proof of Lemma 4.4.

(=) The only step that is not covered in the corresponding proof of Lemma 4.4 is the step of applying
some Ilp-rule p € X: Suppose there is j < i such that ¢; = F(£,p) — x and ¥; = G(£) — x for some
formulas F, G, a tuple of formulas £, a formula y, and a tuple p of fresh propositional letters not occurring
in any of the formulas involved in the proof. We may assume without loss of generality that p also does not
occur in ¢. If this is not the case, then we can rewrite a proof of ¢; from I' U {¢} so that the propositional
letters p are replaced with fresh propositional letters. By inductive hypothesis, I' s, Ogp — (F(£,5) — X).
Thus, I' Fy F(£,5) — (Op — X). Applying p yields T' by G(€) — (O¢ — x). From this we conclude that

I'kFy 0Op — (G(€) — x), as desired. O

Let S be the system obtained by adding the IIa-rules {p, | n € N} to SIC. Let also U be the inductive
subclass of RSub defined by the V3-statements {II(p,) | n € N}. We next show that S is strongly sound
and complete with respect to U. The proof is a modification of the standard Lindenbaum construction (see,
e.g., [23]). The modification follows a similar pattern to the one given in [1, Lem. 7.10].

Theorem 6.6. Let S = SIC+{p,, | n € N}, let U be the inductive subclass of RSub defined by {II(p,) | n € N},
and let V be the variety generated by U. For a set of formulas T’ and a formula @, we have:
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(1) Trso T Ey e
(2) Fsp & Fv e

Proof. (1) That I' ks ¢ = I' =y ¢ is a straightforward inductive proof on the length of derivations. We
only consider the case of IIs-rules.

Suppose p is a IIp-rule in S as defined in Definition 6.2, v is a valuation into (B,~+) € SIA satisfying
II(p), and v(y) = 1 for each v € T'. For simplicity of notation we will write v(TI") = 1 when v(y) = 1 for
each v € T'. We may assume without loss of generality (by re-enumerating all the propositional letters if
need be) that the propositional letters p do not occur in any of the formulas in T. If G(v(€)) % v(x), then
since (B, ~) satisfies II(p), there is a tuple ¢ in B such that F(v(€),¢) £ v(x). Consider the valuation v’
which coincides with v everywhere, except maps p to @ Then v'(F(£,p)) = F(v(€),¢) £ v(x) = v'(x), so
v'(F(€,p) = x) # 1. Since v’ coincides with v on all propositional letters except p and since we assumed
that P do not occur in I', we have v/(I') = v(I') = 1. So we have found a valuation v’ such that v/(T") = 1
and v'(F(€,p) — x) # 1, contradicting the inductive hypothesis.

To complete the proof of (1), it remains to show that I' ¥s ¢ = T & ¢. We do this by slightly modifying
the construction of the Lindenbaum algebra. Suppose I' s ¢. For each rule p;, we add a countably infinite
set of fresh propositional letters to the set of existing propositional letters. Then we build the Lindenbaum
algebra (B,~>) over the expanded set of propositional letters, where the elements are the equivalence
classes [p] under provable equivalence in S. Next we construct a maximal O-filter M of (B, ~») such that
{[¥] | ¥ € TYU{[-Op]} € M and for every rule p; and formulas @, x:

(1) if [Gi(®) — x| ¢ M, then there is a tuple P such that [F;(,P) — x] ¢ M.

To construct M, let Ag := T'U{—-0O¢}, a consistent set. We enumerate all formulas ¢ as (¢ : k € N) and
all tuples (i, P, x) where ¢ € N and @, x are as in the particular rule p;, and we build the sets Ag C A; C
... C A, C... as follows:

e Forn =2k, if A, ¥s Opg, let A1 = A, U{—-0Opy}; otherwise let A,11 = A,.

o Forn=2k+1,let (1,5, x) be the k-th tuple. If A,, ¥s G1(P) — X, let Apy1 = A, U{=(F1(%,D) = X)},
where P is a tuple of propositional letters for p; not occurring in @, x, and any of ¢ with ¢ € A,, (we
can take p from the countably infinite additional propositional letters which we have reserved for the
rule p;). Otherwise, let A, 11 = A,.

Let A= J,cn An, Sa ={¥ | AlFs i}, and M = {[{] | ¢ € Sa}. It is easy to see that S s ¢ implies
w € S4, 50 M is a filter. Also, for any I' we have I' s ¢ = I' -5 Op. Therefore, M is a O-filter. Moreover,
all A,, are consistent, and hence so is S 4. This implies that M is a proper O-filter. Thus, by the even steps
of the construction of the sets A, and by Lemma 4.10(1), M is a maximal O-filter.

Because A C Sy4, we have {[¢] | ¥ € T}U{[-0O¢]} C M. Finally, the odd steps of the construction of the
sets A,, ensure that M satisfies (f). Therefore, we can conclude that M satisfies all the desired properties.

By (f), the quotient of (B,~+) by M satisfies each II(p;). By Lemma 4.10(1), the quotient belongs to
RSub. Therefore, the quotient belongs to U. Moreover, since [-~0O¢] € M, we have that [-O¢p] maps to 1,
so [O¢] maps to 0 in the quotient. Thus, [p] does not map to 1 in the quotient, while I' does, and hence
L .

(2) Observe that U consists of the subdirectly irreducible members of V, and apply (1). O

The class of subdirectly irreducible algebras in SIA validating a set of IIx-rules is an elementary inductive
subclass of RSub. We next show that the converse is also true. Namely, for every elementary inductive
subclass U of RSub, there is a set of Ilx-rules {p; | ¢ € I} such that S = SIC + {p; | ¢ € I} is strongly
sound and complete with respect to U. To obtain such a set of Ils-rules, it is sufficient to show that every
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ITo-statement is equivalent to a statement of the form II(p) for some Ilp-rule p. Without loss of generality
we may assume that all atomic formulas ®(Z,7) are of the form ¢(Z,y) = 1 for some term ¢.

Definition 6.7. Given a quantifier-free first-order formula ®(Z,7), we associate with the tuples of variables
T,y the tuples of propositional letters p, g, and define the formula ®*(p,q) in the language of SIC as follows:

(t(=,y) =1)" = 0t(p,q)
(=9)"(7,7) = ~¥*(p,q)
(W1 (z,9) A Ws(7,7))" = Vi(P,9) A V3(P:q)

Lemma 6.8. Let (B,~>) € RSub and ®(Z,7) be a quantifier-free formula.

(1) (B,~») satisfies ®(T,7) iff (B,~) satisfies the formula ®*(p,q).
(2) (B,~) satisfies VzIgP(Z,y) iff (B,~>) satisfies VT, z(l £ z— Jy: o*(z,7) £ z)

Proof. (1) For each term ¢(7,7), we evaluate 7,p as @ and 7,G as b, where @, b are tuples of elements of
B. Tt is obvious that t(@,b) = 1 implies Ot(@,b) = 1, and #(@,b) # 1 implies Ot(a@, b) = 0. This shows the
equivalence for atomic formulas, and an easy induction then proves it for all quantifier-free formulas.

(2) (=) Suppose (B,~) | VzIy®(Z, 7). Let @ be a tuple of elements of B and ¢ € B. By assumption,
there exists a tuple b in B such that (B, ~) = ®(z,y)[a, b]. Therefore, by (1), if 1 £ ¢, then ®*(@,b) =1 £ c.
Thus, (B, ~) = \ﬁ,z<1 £z g 5 (7,7) £ z)

(<) Suppose (B, ~) | Vz, z(l £z— Jy: D (T,7) £ z) Let @ be a tuple of elements of B. Since 1 £ 0,
there exists a tuple b in B such that ®*(@,b) £ 0. Therefore, since ®*(a@,b) evaluates only to 0 or 1, we
obtain ®*(@, b) = 1. Thus, by (1), (B,~) = ®(%,9)[a, b]. This shows that (B, ~) = Vz35®(7,7). O

Consequently, an arbitrary IIs-statement YZ3y®(Z, §) is equivalent to the Ilo-statement associated to the
II>-rule

Thus, by Theorem 6.6, we obtain:

Theorem 6.9. If T' is a Ils-theory of first-order logic axiomatizing an inductive subclass U of RSub, then
the system S = SIC + {pg | ® € T} is strongly sound and complete with respect to U; that is, for a set of
formulas T' and a formula ¢, we have:

'tse & Tlue
6.2. Admissibility of Tly-rules

By Theorem 5.8, S?IC is strongly sound and complete with respect to Com. On the other hand, it follows
from Theorem 6.9 that S?IC together with (p6) and (p7) is also strongly sound and complete with respect
to Com. Therefore, the rules (p6) and (p7) are admissible in S2IC. We next give a general criterion of
admissibility for TIy-rules in SIC and S?IC. This yields an alternative proof that (p6) and (p7) are admissible
in S2IC.

Definition 6.10. A rule p is admissible in a system & if for each formula ¢, from ks, ¢ it follows that 5 .
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Lemma 6.11. If a I15-rule

is admissible in S 2 SIC, then T'Fsi, p © T ks .

Proof. Tt suffices to show that for any set of formulas I' and any tuple @, x of formulas, if T" Fsic F(%,D) — X
and P does not occur in I', g, x, then I" Fgic G(P) — x.

Suppose T' Fgic F(%,p) — x and p does not occur in I', 5, x. Then there is a finite I'y C T" such that
Ty Fsic F(p,p) = x. Let v = AT, so {¢} Fsic F(®,D) = x. By Theorem 4.4, bgic Oy — (F($,D) = X),
so Fsic F(p,p) — (OY — x). Since p does not occur in @, 0t — X, by admissibility of p, we have
Fsic G(®) — (0¥ — x). Therefore, Fgic 0¥ — (G(®) — X), and applying Theorem 4.4 again yields
{Y} Fsic G(®) = x. Thus, I'Fgic G(®) = x. O

Theorem 6.12 (Admissibility Criterion).

(1) A Iy-rule p is admissible in SIC iff for each (B,~>) € RSub there is (C,~+) € RSub such that (B,~>)
is isomorphic to a substructure of (C,~) and (C,~) E I(p).

(2) A Ha-rule p is admissible in S?IC iff for each (B,~) € Con there is (C,~) € Con such that (B,~) is
isomorphic to a substructure of (C,~) and (C,~) = II(p).

Proof. (1) (=) Suppose p is admissible in SIC. Tt is sufficient to show that there exists a model (C,~~) of
the theory

T = Th(RSub) U {II(p)} U A(B,~)

where A(B,~>) is the diagram of (B,~>) [11, p. 68]. Suppose for a contradiction that 7" has no models,
hence is inconsistent. Then, by compactness, there exists a quantifier-free first-order formula ¥(Z) and a
tuple p, of propositional letters corresponding to @ € B such that

Th(RSub) U {I1(p)} k= ~(77) and (B, ~) = (@).

We enrich the language of SIC+p with {p, }. By Theorem 6.6, SIC+p is complete with respect to the algebras
in RSub satisfying II(p). Therefore, by Lemma 6.8(1), Fsic4+, (—¥(Pa))* where (—)* is the translation given
in Definition 6.7. By admissibility, Fsic (=% (Pg))*. Thus, for each valuation v into B that maps p, to a, we
have v((=¥(p5))*) = 1, so v((¥(pg))*) = 0. This contradicts the fact that (B,~) | ¥(a@). Consequently, T
must be consistent, and hence it has a model.

(<) To prove that p is admissible in SIC it is sufficient to show that if there is a proof of F(%,p) — X,
then there is a proof of G(¥) — x. Suppose Fsic F($,p) — x with P not occurring in @, x. Assume
(B,~>) € RSub and let v be a valuation on (B,~-). By assumption, there is (C,~+) € RSub such that
(B, ~>) is isomorphic to a substructure of (C,~) and (C,~>) = II(p). Let i : B — C be the embedding.
Then v := iow is a valuation on (C,~~). For any ¢ € C, let v be the valuation (v')¢. Since Fsic F(%,p) — X,
by Theorem 4.11, v"(F(%,p) — Xx) = lc. This means that for all ¢ € C, we have F(v'(®),¢) < v'(x).
Therefore, (C,~) = Vy(F( "(@),7) < v'(x )) Since (C,~) = II(p), we have (C,~) E G/ () < v'(x).
Thus, as G(v'(9)) < v'(x) in C, we have G(v(p)) < v(x) in B. Consequently, v(G(p) — x) = 15. Applying
Theorem 4.11 again yields that Fsic G(@) — X, and hence p is admissible in SIC.

(2) The proof is similar to that of (1) and uses the fact that S?IC is strongly sound and complete with
respect to Con. 0O
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Corollary 6.13.

(1) (p6) is admissible in SIC and S?IC.
(2) (p7) is admissible in SIC and S?IC.

Proof. (1) For admissibility of (p6) in SIC apply Theorem 6.12(1) and Lemmas 6.1(1) and 5.4(1). For
admissibility of (p6) in S?IC, apply Theorem 6.12(2) and Lemmas 6.1(1) and 5.4(2).

(2) For admissibility of (p7) in SIC apply Theorem 6.12(1) and Lemmas 6.1(2) and 5.6. For admissibility
of (p7) in S2IC apply Theorem 6.12(2) and Lemmas 6.1(2) and 5.6. O

6.3. Calculi for zero-dimensional and connected compact Hausdorff spaces

In the remainder of this section, we will consider zero-dimensional and connected compact Hausdorff
models, and identify their logics. Starting with zero-dimensionality, we consider the following property,
studied in [4]:

(S9) a < b implies ¢ : ¢ < cand a < ¢ < b.

The corresponding V3-statement is

(I19) Vx,y,z(xwyfz—)Elu: (uwu)/\(:cwu)/\(uwy)fz).
Lemma 6.14. Let (B,~») € Com. Then (B,~) = (S9) iff (B,~) = (119).

Proof. (=) Suppose a ~» b £ d. Then d # 1 and a ~ b # 0, so a ~» b = 1. Therefore, a < b, and so by
(S9), there is ¢ such that ¢ < ¢ and a < ¢ < b. Thus, (¢ ~ ¢) A (a ~ ¢) A (¢ ~ b) =1 £ d. Consequently,
(B, ~) |= (119).

(<) Suppose a < b. Then a ~» b = 1 £ 0. Therefore, by (I19), there is ¢ such that (¢ ~ ¢) A (@ ~
¢) A (¢~ b) £ 0, which implies (¢ ~ ¢) A (a ~ ¢) A (¢~ b) = 1. Thus, ¢ < ¢ and a < ¢ < b. Consequently,
(B,~) = (89). O

The IIp-rule corresponding to (I19) is

(p~p)A(p~p) AP~ 1) = x

(+9) (@~ ) = x

Theorem 6.15. (p9) is admissible in SIC and SIC.

Proof. It is easy to see that the (C, <) constructed in the proof of Lemma 5.4 satisfies (S9). Therefore, for
admissibility in SIC, we can apply Theorem 6.12(1), Lemma 6.14, and Lemma 5.4(1); and for admissibility
in S2IC, we can apply Theorem 6.12(2), Lemma 6.14, and Lemma 5.4(2). O

As a consequence of Theorem 6.15 we obtain:

Corollary 6.16. SIC is strongly sound and complete with respect to the class of compingent algebras satisfying

(S9).

Following [4, Def. 4.5], we call a de Vries algebra zero-dimensional if it satisfies (S9), and denote the class
of zero-dimensional de Vries algebras by zDeV. Let (B,~+) € Com satisfy (S9), and let X be the de Vries
dual of (B,~-). It follows from de Vries duality and [4, Lem. 4.11] that X is zero-dimensional, and hence
(RO(X),~>) is a zero-dimensional de Vries algebra. Thus, each (B,~>) € Com satisfying (S9) embeds in a
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zero-dimensional de Vries algebra. We recall from Section 2 that zero-dimensional compact Hausdorff spaces
are called Stone spaces, and denote the class of Stone spaces by Stone. As a consequence of Corollary 6.16
we then have:

Theorem 6.17.

(1) S2IC is strongly sound and complete with respect to zDeV.
(2) S?IC is strongly sound and complete with respect to Stone.

Turning to connectedness, consider the following property:
(510) a < @ implies a =0 or a = 1.

Clearly (B,~) € Com satisfies (S10) iff a ~» a < Oa V O-a holds in (B, ~»). Therefore, (B, ~) satisfies
(S10) iff (B,~) = (C), where (C) is the formula

(C) (¢~ p) = (OpV Omp).

Definition 6.18. The connected symmetric strict implication calculus CS?IC is the extension of S?IC with the
axiom (C).

We call (A, ~) € S2IA connected if (A, ~) satisfies a ~ a < Da V O—a for each a € A. Let CS?IA be the
subvariety of S?IA consisting of connected symmetric strict implication algebras. We also call a compingent
algebra connected if it satisfies (S10), and denote the class of connected compingent algebras by CCom. As
a simple consequence of Theorems 5.2 and 6.6 we have:

Corollary 6.19.

(1) CS2IC is strongly sound and complete with respect to CS2IA.
(2) CS?IC is strongly sound and complete with respect to CCom.

Lemma 6.20. A compingent algebra (B, <) satisfies (S10) iff its dual compact Hausdorff space X is connected.

Proof. If X is connected, then &, X are the only clopen subsets of X. Therefore, for U € RO(X), we
have U < U implies U = @ or U = X. Thus, (RO(X), <) satisfies (510). Since (B, <) is isomorphic to a
subalgebra of (RO(X), <), we conclude that (B, <) satisfies (S10).

Conversely, let U be clopen in X. Then U = |J{f(a) : f(a) C U} and the family {8(a) : f(a) C U} is
up-directed. Because U is compact, there is a € B such that §(a) =U. As 8 : B — RO(X) is an embedding
and (B, <) satisfies (S10), U = 5(0) = @ or U = 5(1) = X. Thus, X is connected. O

As an immediate consequence we obtain:
Lemma 6.21. A de Vries algebra (B, <) satisfies (S10) iff its de Vries dual X is connected.

We call a de Vries algebra connected if it satisfies (S10), and denote the class of connected de Vries
algebras by cDeV. By Lemma 6.21, each (B, <) € CCom embeds in a connected de Vries algebra. Let
cKHaus be the class of connected compact Hausdorff spaces. Then Corollary 6.19 and Lemma 6.21 imply:

Theorem 6.22.

(1) CS2IC is strongly sound and complete with respect to cDeV.
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(2) CS?IC is strongly sound and complete with respect to cKHaus.

The table below summarizes our completeness results.

Logic Complete with respect to

SIC SIA; RSub

S2IC S?IA; Con; Com; DeV; zDeV
KHaus; Stone

CS%IC  CS?IA; CCom; cDeV: cKHaus

Remark 6.23. By Theorems 5.2 and 5.10, S?IC is strongly sound and complete with respect to Con and
DeV. Thus, the logic of contact algebras is the same as the logic of de Vries algebras. On the other hand,
the TIo-theories (the sets of valid IIy-rules) of Con and DeV are obviously different as the IIy-rules (p6) and
(p7) belong to the latter, and hence to the theory of compact Hausdorff spaces, but not to the former. This
generates an interesting methodological question of what the right logical formalism should be to reason
about compact Hausdorff spaces. Should we be concerned only with the logics or should we also consider
the theories of IIs-rules? Although in this paper we are only concerned with logics, our results suggest that
a theory of IIs-rules may be a more appropriate framework to reason about compact Hausdorff spaces. We
leave it as a future work to develop the Ils-theory for compact Hausdorff spaces together with the general
theory of such calculi.

7. Comparison with relevant work

In this final section we compare our approach to that of Balbiani et al. [1]. Namely, we show how to
translate fully and faithfully the language L(C, <) of [1] into our language. We start by recalling the concept
of contact relation, one of the key concepts of region-based theory of space; see, e.g., [27]. A binary relation
C on a Boolean algebra B is a precontact relation if it satisfies:

(C1) aCb = a,b#0.
(C2) aC(bV ¢) < aCb or aCe.
(C3) (aVb)Cec«= aCe or bCe.

A precontact relation is a contact relation if it satisfies:

(C4) a # 0 implies aCa.
(C5) aCb implies bCa.

As was pointed out in [6, Rem. 2.5] (cf. Remark 3.2), there is a one-to-one correspondence between subor-
dinations and precontact relations. Namely, if < is a subordination, then the relation C< defined by aCb
iff @ £ —b is a precontact relation; if C is a precontact relation, then the relation <¢ defined by a <c¢ b iff
a¢'—|b is a subordination; and this correspondence is one-to-one. Moreover, a subordination < satisfies (S5)
iff the corresponding precontact relation C satisfies (C4), and < satisfies (S6) iff C< satisfies (C5). Thus,
contact relations are in one-to-one correspondence with subordinations satisfying (S5) and (S6).

On regular open sets of a compact Hausdorff space X the contact relation is defined by UCV iff CI(U) N
CI(V) # @. If R is a reflexive and symmetric relation on a set X, then the contact relation Cg is defined on
P(X) by UCRV iff R[UINV # @.

We next recall that the formulas of the language L(C, <) are built from atomic formulas using Boolean
connectives —, A, V,—, L, T; atomic formulas are of the form tCs and ¢ < s, where t, s are Boolean terms
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(C stands for the contact relation and < for the inclusion relation). In turn, Boolean terms are built from
Boolean variables using Boolean operations M, U, (—)*,0, 1.

As usual, a Kripke frame is a pair (W, R), where W is a nonempty set and R is a binary relation on W,
and a valuation is a map v from the set of Boolean variables to the powerset P(W). It extends to the set
of all Boolean terms as follows:

A Kripke model is a triple (W, R, v) consisting of a Kripke frame (W, R) and a valuation v. Atomic formulas
are interpreted in (W, R, v) as follows:

(W,R,v) E(t<s) & v(t) Cu(s),
(W,R,v) = (tCs) < R[v(t)] Nwv(s) # .

Complex formulas are then interpreted by the induction clauses for propositional connectives.

In [1, Sec. 6] the authors define the propositional calculus PWRCC in the language L(C, <) and prove
that PWRCC is sound and complete with respect to the class of Kripke frames where the binary relation
R is reflexive and symmetric. Such Kripke frames are closely related to contact algebras. Namely, as we
already pointed out in Sections 2 and 5, the following lemma holds.

Lemma 7.1.

(1) Suppose (W, R) is a reflexive and symmetric Kripke frame. Define <g on P(W) by U <r V iff R[U] C
V. Then (P(W), <g) is a contact algebra.

(2) Suppose (B, <) is a contact algebra and (X, R) is the dual of (B,<). Then (X, R) is a reflexive and
symmetric Kripke frame, and the Stone map 5 : B — P(X), given by B(a) = {x € X | a € x}, is an
embedding of (B, <) into (P(X), <r).

We next translate L(C, <) into our language £. We identify the set of Boolean variables of L(C, <) with
the set of propositional letters of £. Then Boolean terms can be translated into formulas of £ as follows:

a’ = a, for a Boolean variable a,

(tns)t =tT nsT,

(tl_ls)T—tT\/s

For atomic formulas, we define:
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(t<s)T =o@" — s7),

(tCs)T = = (tT ~= —sT).

Finally, complex formulas are translated inductively as follows:

‘i

(=)
(@Aw)T—w AT,
)
)

(soVﬁJT—cp va
T

1T =1,
T =T.

Theorem 7.2. For any formula ¢ of L(C, <), we have
PWRCC I ¢ iff SP2IC - 7.

Proof. By [1, Cor. 6.1], PWRCC is sound and complete with respect to the class of reflexive and symmetric
Kripke frames (W, R); and by Theorem 5.2, S?IC is sound and complete with respect to the class of contact
algebras. Given a Kripke model (W, R,v), the valuation v of Boolean variables of L(C, <) into P(W) can
be seen as a valuation of propositional letters of £ into the algebra (P(W),~g).

Claim. (W, R,v) | ¢ iff (P(W),~g,v) E 7.

Proof of Claim. For a Boolean term ¢, we have v(t) = v(tT) C W. If ¢ is an atomic formula of the form
t <s, then

(W, R,v) = ¢ iff v(t) Cwv(s)

=
<
—~ —
~
J
N
N—
=
i)
=

(W, R,v) = ¢ iff Rlv(t)]Nw(s) # @
iff Rlv(t)] € W\ v(s)
it R[o(t7)] € v(~sT)

Finally, if ¢ is a complex formula, then a straightforward induction completes the proof. 0O

Now, if PWRCC ¥ ¢, then there is a reflexive and symmetric Kripke model (W, R,v) refuting ¢. By
the Claim, ¢7 is refuted in (P(W),~g,v). Therefore, S?IC ¥ ¢T. Conversely, if S?IC ¥ ¢T, then there
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T

is a contact algebra (B, <) and a valuation v on (B, <) refuting »?. By Lemma 7.1(2), ¢7 is refuted in

(P(X),~g,v). By the Claim, ¢ is refuted in (X, R,v). Thus, PWRCCF ¢. O

As was pointed out to us by D. Vakarelov, our language, like the language of [1], admits a translation
tr into the basic language of modal logic enriched with the universal modality. We conclude the paper by
spelling out this connection.

We recall that K denotes the basic modal logic, KT := K + (0p — p), KTB := KT + (p — 0O<p), and
S5 := KTB + (Op — O0Op) (see, e.g., [7, Sec. 4.1]). We also recall that the universal modality [V] is an
S5-modality satisfying [V]p — Op. Let KTy, KTBy, and S5y be the extensions of KT, KTB, and S5 with the
universal modality (see, e.g., [7, Sec. 7.1]).

It is well known that all the above logics are Kripke complete and have the finite model property (see,
e.g., [7]). In particular, it is known that KTy has the finite model property with respect to the finite reflexive
Kripke frames enriched with the universal relation, that KTBy has the finite model property with respect
to the finite reflexive and symmetric frames enriched with the universal relation, and that S5y has the
finite model property with respect to the finite reflexive, symmetric, and transitive frames enriched with
the universal relation (see, e.g., [20]).

Consider the following translation tr from our language into the modal language enriched with the
universal modality:

tr(p) =
tr(-p) =
tr(e AY) = tr(p) Atr(),
tr(p ~ ) = [V|(tr(p) = Otr(¥)).

b,
—tr(p),

Theorem 7.3. Let ¢ be a formula of L.

(1) SICE @ iff KTy F tr(y).
(2) S2ICHE ¢ iff KTBy F tr(y).
(3) S?IC I ¢ iff Sby I tr(p).

Proof. (1) Let (B, <) € RSub and let (X, R) be the dual of (B, <). By Lemma 2.2(1), R is reflexive. Let
v be a valuation on Clop(X). By defining the universal relation on X, we can view (X, R,v) as a model of
KTy. We prove that for each formula v and = € X,

x € v(y) iff (X, R,v),z E tr(y). (1)

This can be done by induction on the complexity of v, and the only nontrivial case is ¥ = x ~» £. If
z ¢ v(x ~ &), then R[v(x)] € v(§). So there exist y,z € X such that y € v(x), yRz and z ¢ v(£). By the
induction hypothesis, (X, R,v),y = tr(x) and (X, R,v),z = tr(§). Thus, (X, R,v),y ¥~ tr(x) — Otr(€),
and so (X, R,v),z [~ [V](tr(x) — Otr(§)). The converse implication is proved similarly. From (1) we obtain
that

(Clop(X), ~r,v) = ¢ iff (X, R,v) |= tr(). (2)

Now, if SIC ¥ ¢, then by Theorem 4.11, there is (B, <) € RSub such that (B, ~) refutes ¢. Therefore,
there is a valuation v on Clop(X) such that (Clop(X),~g,v) & ¢. By (2), (X, R,v) & tr(y), and hence
KTy ¥ tr(p). Conversely, if KTy ¥ ¢r(p), then there is a finite reflexive model (X, R, v) with the universal
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relation such that (X, R,v) & tr(y). Since (X, R) is finite, we may view it as the dual of (P(X),<g). By
(2), (X, R,v) b~ tr(yp) implies (P(X),~r,v) = ¢. Since (P(X),<r) € RSub, we conclude that SIC¥ .

(1) but uses Theorem 5.2.

(

The proof of (2) is similar to (1)
1) and (2) but uses Theorem 5.8. O

o O

The proof of (3) is similar t

The theorem above also indicates that unlike the classical modal case, where reflexivity, symmetry,
and transitivity are all expressible, in our system we can only express reflexivity and symmetry, but not
transitivity as S?IC is complete with respect to (X, R) where R is an equivalence relation. Thus, our language
cannot distinguish between KTBy and S5y. This is yet another motivation to investigate non-standard rules
and inductive classes of subordination algebras further.

Declaration of Competing Interest
There is no competing interest.
Acknowledgements

We are extremely thankful to the referee for careful reading and substantial comments. This has resulted
in a completely revamped and restructured paper, with streamlined proofs, which is much more readable. In
addition, the referee has spotted a large number of inaccuracies, which have been corrected. We also thank
Philippe Balbiani and Dimiter Vakarelov for useful comments.

References

[1] Ph. Balbiani, T. Tinchev, D. Vakarelov, Modal logics for region-based theories of space, Fund. Inform. 81 (1-3) (2007)
29-82.

[2] J.L. Bell, A.B. Slomson, Models and Ultraproducts: An Introduction, North-Holland Publishing Co., Amsterdam-London,
1969.

[3] G. Bezhanishvili, Locally finite varieties, Algebra Universalis 46 (4) (2001) 531-548.

[4] G. Bezhanishvili, Stone duality and Gleason covers through de Vries duality, Topology Appl. 157 (6) (2010) 1064-1080.

[5] G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema, A simple propositional calculus for compact Hausdorfl spaces,
ILLC Prepublication Series, 2017-6.

[6] G. Bezhanishvili, N. Bezhanishvili, S. Sourabh, Y. Venema, Irreducible equivalence relations, Gleason spaces, and de Vries
duality, Appl. Categ. Structures 25 (3) (2017) 381-401.

[10

[11] C.C. Chang, H.J. Keisler, Model Theory, third edition, Studies in Logic and the Foundations of Mathematics, vol. 73,

North-Holland Publishing Co., Amsterdam, 1990.

[12] H. de Vries, Compact Spaces and Compactifications. An Algebraic Approach, PhD thesis, University of Amsterdam, 1962,
Available at the ILLC Historical Dissertations Series (HDS-23).

[13] I. Diintsch, D. Vakarelov, Region-based theory of discrete spaces: a proximity approach, Ann. Math. Artif. Intell. 49 (1-4)
(2007) 5-14.

[14] R. Engelking, General Topology, Vol. 6, second edition, Heldermann Verlag, Berlin, 1989.

[15] L. Esakia, Heyting algebras I. Duality theory (Russian). “Metsniereba”, Tbilisi, 1985.

[16] D. Gabbay, An irreflexivity lemma with applications to axiomatizations of conditions on tense frames, in: Aspects of
Philosophical Logic, Tibingen, 1977, in: Synthese Library, vol. 147, Reidel, Dordrecht-Boston, Mass, 1981, pp. 67-89.

[17] D. Gabbay, I. Hodkinson, An axiomatization of the temporal logic with Until and Since over the real numbers, J. Logic
Comput. 1 (2) (1990) 229-259.

[18] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, Continuous Lattices and Domains, Encyclopedia
of Mathematics and Its Applications, vol. 93, Cambridge University Press, Cambridge, 2003.

[19] A.M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958) 482-489.

[20] V. Goranko, S. Passy, Using the universal modality: gains and questions, J. Logic Comput. 2 (1) (1992) 5-30.

[21] P. Jipsen, Discriminator varieties of Boolean algebras with residuated operators, in: C. Rauszer (Ed.), Algebraic Methods
in Logic and Computer Science, in: Banach Center Publications, vol. 28, Polish Academy of Sciences, 1993, pp. 239-252.

[22] P.T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982.


http://refhub.elsevier.com/S0168-0072(19)30071-5/bib425456303762s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib425456303762s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib42533639s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib42533639s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib42657A3031s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib47423130s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib424253563137s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib424253563137s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib426452563031s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib4275723830s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib43656C3031s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib435A3937s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib434B3930s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib434B3930s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib4465563632s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib4465563632s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib44563037s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib44563037s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib456E673831s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib4761623831s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib4761623831s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib47483930s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib47483930s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib47484B4C4D533033s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib47484B4C4D533033s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib476C653538s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib47503932s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib6A6970733A646973633933s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib6A6970733A646973633933s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib4A6F683832s1

G. Bezhanishvili et al. / Annals of Pure and Applied Logic 170 (2019) 102714 29

[23] H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics. Monografie Matematyczne, Tom 41, Paiistwowe
Wydawnictwo Naukowe, Warsaw, 1963.

[24] T. Santoli, Logics for Compact Hausdorff Spaces via de Vries Duality, Master’s Thesis, ILLC, University of Amsterdam,
2016.

[25] M.H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1) (1936) 37-111.

[26] M.H. Stone, Topological representation of distributive lattices and Brouwerian logics, Cas. Pest. Mat. Fys. 67 (1937) 1-25.

[27] D. Vakarelov, Region-based theory of space: algebras of regions, representation theory, and logics, in: Mathematical
Problems From Applied Logic. II, in: Int. Math. Ser. (N. Y.), vol. 5, Springer, New York, 2007, pp. 267-348.

[28] Y. Venema, Derivation rules as anti-axioms in modal logic, J. Symbolic Logic 58 (3) (1993) 1003-1034.

[29] Y. Venema, Algebras and coalgebras, in: Handbook of Modal Logic, in: Stud. Log. Pract. Reason., vol. 3, Elsevier B. V.,
Amsterdam, 2007, pp. 331-426.


http://refhub.elsevier.com/S0168-0072(19)30071-5/bib52533633s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib52533633s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib53616E3136s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib53616E3136s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib53746F3336s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib53746F3337s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib56616B3037s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib56616B3037s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib56656E3933s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib76656E653A616C67653036s1
http://refhub.elsevier.com/S0168-0072(19)30071-5/bib76656E653A616C67653036s1

	A strict implication calculus for compact Hausdorff spaces
	1 Introduction
	2 Subordinations, contact algebras, and de Vries algebras
	3 The variety of strict implication algebras
	4 The strict implication calculus
	5 The symmetric strict implication calculus and its topological completeness
	6 Π2-rules, admissibility, and further completeness results
	6.1 Π2-rules
	6.2 Admissibility of Π2-rules
	6.3 Calculi for zero-dimensional and connected compact Hausdorff spaces

	7 Comparison with relevant work
	Acknowledgements
	References


