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Abstract One of van Benthem’s seminal results is the Bisimulation Theorem char-
acterizing modal logic as the bisimulation-invariant fragment of first-order logic.
Janin and Walukiewicz extended this theorem to include fixpoint operators, showing
that the modal µ-calculus µML is the bisimulation-invariant fragment of monadic
second-order logic MSO. Their proof uses parity automata that operate on Kripke
models, and feature a transition map defined in terms of certain fragments of
monadic first-order logic. In this paper we decompose their proof in three parts:
(1) two automata-theoretic characterizations, of MSO and µML respectively, (2)
a simple model-theoretic characterization of the identity-free fragment of monadic
first-order logic, and (3) an automata-theoretic result, stating that (a strong version
of) the second result somehow propagates to the level of full fixpoint logics.
Our main contribution shows that the third result is an instance of a more general
phenomenon that is essentially coalgebraic in nature. We prove that if one set Λ of
predicate liftings (or modalities) for a certain set functor T uniformly corresponds
to the T -natural fragment of another such set Λ ′, then the fixpoint logic associated
with Λ is the bisimulation-invariant logic of the fixpoint logic associated with Λ ′.

Keywords modal fixpoint logic, bisimulation invariance, coalgebra, coalgebraic
modal logic, predicate liftings, monadic second-order logic.

1 Introduction

Johan van Benthem is one of the founders of correspondence theory [3] as a branch
of modal logic where the expressiveness of modal logic as a language for describing
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Kripke structures is compared to that of more classical languages such as first-order
logic. Perhaps his most important contribution to this area is the Bisimulation The-
orem stating that modal logic is the bisimulation-invariant fragment of first-order
logic [2], in a slogan:

ML = FO/↔. (1)

More precisely, van Benthem showed that a formula ϕ(x), in the language of
first-order logic for Kripke models, is invariant under bisimulations iff it is equiva-
lent to (the standard translation of) a modal formula. This observation fits the model-
theoretic tradition of preservation results, characterizing fragments of (first-order)
logic through a certain semantic property. What makes the result important is that
in many applications of modal logic, it is natural to identify bisimilar states, and so
properties that are not bisimulation invariant are irrelevant. From this perspective,
the Bisimulation Theorem states an expressive completeness result: when it comes to
relevant properties, modal logic has the same expressive power as first-order logic.

Van Benthem’s result has inspired many modal logicians, and over the years a
wealth of variants of the Bisimulation Theorem have been obtained. Roughly, these
can be classified as follows:

• Results showing that van Benthem’s result still holds on restricted classes of
models. In particular, Rosen proved that van Benthem’s result is one of the
few preservation results that transfers to the setting of finite models [18]; for a
recent, rich source of van Benthem-style characterization results, see Dawar &
Otto [7].

• Results characterizing extensions of basic modal logic as the bisimulation-
invariant fragment of some extension of first-order logic. Here a key example is
the theorem by Janin & Walukiewicz [13], characterizing the modal µ-calculus
as the bisimulation-invariant fragment of monadic second-order logic.

• Results characterizing variants of modal logic as fragments of first-order logic
that are invariant under some appropriate variant of the standard notion of bisim-
ulation. Here we mention the result by Andréka, van Benthem and Németi, who
characterized the guarded fragment [1] as the fragment of first-order logic that
is invariant under guarded bisimulations; Otto [16] provides a overview of the
results in this area, and of the (game-theoretic) methods used to prove these.

• Results on variants of modal logic where the modalities find their interpretation
in different structures than the standard Kripke models. For instance, ten Cate,
Gabelaia & Sustretov proved a van Benthem-style characterisation result for
topological structures [20]. Recently, coalgebraic variations and generalizations
of van Benthem’s result have been obtained by Litak et alii [14].

• Clearly, researchers have been considering combinations of the above varia-
tions and generalizations; for example, Grädel, Hirsch & Otto [10] proved a
characterization result for guarded fixpoint logic. An outstanding open prob-
lem is whether the Janin-Walukiewicz theorem also holds for finite models, or
equivalently, whether Rosen’s result can be extended to the modal µ-calculus.
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In this paper we will look in some detail at the result by Janin and Walukiewicz,
which we can formulate as:

µML = MSO/↔. (2)

Taking a coalgebraic perspective, we will show how the proof of (2) can be decom-
posed into three more or less independent parts:

1. a (non-trivial) result showing that both the modal µ-calculus and (on the class
of tree models) monadic second-order logic can be characterized by certain
automata,

2. a fairly simple model-theoretic characterisation result in monadic first-order
logic, and

3. a general result on coalgebra automata.

Towards the end of this section we briefly discuss the relation of this chapter
to Johan’s work, and to the theme of this volume, viz., Logical Dynamics. First
we turn to a fairly detailed explanation of the above decomposition, motivating our
coalgebraic perspective. For this purpose we need to introduce automata. We fix a set
Q of proposition letters. Elements of PQ will be called colors, and given a valuation
V : Q→ PS, we define its associated coloring as the transposed map V [ : S→ PQ
given by V [ : s→{p ∈ Q | p ∈V (s)}.

The automata that we will consider here will be of the shape A=(A,δ ,Ω), where
A is a finite set of states and Ω is a parity map, Ω : A→N. We will see a state a∈A as
a propositional variable, or, very much in the spirit of modal correspondence theory,
as a monadic predicate. In this way, A provides a (monadic) first-order signature,
which we will also denote as A. We define Φ=(A) and Φ(A) as the sets of sentences
(with and without equality, respectively) in this signature. We may initialize the
automaton A by selecting an initial state a ∈ A. What shall interest us most is the
transition map δ associating, with each state a ∈ A and each color c ∈ PQ, a first-
order sentence δ (a,c) ∈Φ(A).

Acceptance of a pointed Kripke model (S,s) by such an initialized automaton
(A,a) is defined in terms of an infinite two-player acceptance game A (A,S). A
match of this game consists of the two players, ∀ and ∃, moving a token from one
position to another. In a so-called basic position, which is of the form (a,s) ∈ A×S,
∃ needs to define an A-valuation M : A→ PS on S, with the proviso that M turns
the set of successors of s into a structure for the signature A where the formula
δ (a,V [(s)) is true. That, is we require that

(σR(s),M�σR(s) ) |= δ (a,c),

where c = V [(s) ∈ PQ is the color of s in S, σR(s) is the set of successors of
s, and M�σR(s) is the A-valuation M restricted to σR(s). In other words, the pair
(σR(s),M�σR(s) ) is an A-structure (in the sense of first-order model theory), and it
is the aim of ∃ to make the sentence δ (a,V [(s)) true in this structure by chosing an
appropriate A-valuation M. Given such a choice M : A→ PS, the game moves on
with ∀ picking a next basic position from the set {(b, t) | t ∈M(b)}. In this way, a
match proceeds from one basic position (ai,si) to the next (ai+1,si+1). An infinite
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match of this game is won by ∃ if the highest parity Ω(ai) occurring infinitely often
during this match is even.

If ∃ has a winning strategy in the instantiation of the game that starts at the
basic position (a,s), we say that the initialized automaton (A,a) accepts the pointed
model (S,s). Initialized automata thus determine classes of pointed Kripke models,
and we may compare the expressive power of such automata to that of a logic such
as the modal µ-calculus or monadic second-order logic.

Definition 1.1 Given a fragment Θ of monadic first-order logic (in the sense that Θ

assigns to each A a set of sentences Θ(A)⊆Φ=(A)), we obtain an associated class
AutΘ of initialized automata (A,a) by requiring that Θ(A) is the co-domain of the
transition function of A, that is, we have δ : A×PQ→Θ(A). �

Definition 1.2 We let Π=(A) and Π(A) denote the sets of sentences in Φ=(A), with
and without equality, respectively, where each occurrence of a monadic predicate is
positive. �

In particular, we can now substantiate the claim that both monadic second-order
logic (on the class of tree models) and the modal µ-calculus can be captured by
automata-theoretic means. This link between logic and automata theory essentially
goes back to the work of Rabin and Büchi on stream and tree automata. The
two statements in Fact 1.3 below can be found in Walukiewicz [23] and Janin &
Walukiewicz [12], respectively.

Fact 1.3 1. On tree models, monadic second-order logic corresponds to AutΠ= .
2. The modal µ-calculus corresponds to AutΠ .

The main point of this paper is that, for any fragment Θ of Φ=, properties of Θ -
automata are determined by properties of Θ . In particular, given two distinct frag-
ments Θ and Θ ′, we will see how the question whether Aut(Θ) is the bisimulation
invariant fragment of Aut(Θ ′), may already be determined at the level of Θ and Θ ′.

For this purpose we introduce the notion of P-invariance. We say that two A-
structures (D,V ) and (D′,V ′) are P-equivalent, notation: (D,V ) ≡P (D′,V ′), if for
all d ∈ D there is a d′ ∈ D′ with the same A-color, and vice versa. A first-order
sentence α ∈ Φ=(A) is P-invariant if (D,V ) |= α ⇐⇒ (D′,V ′) |= α , for all pairs
of P-equivalent A-structures (D,V ) and (D′,V ′). (As we will see, this property is
equivalent to being preserved under surjective homomorphisms.) Given two frag-
ments Θ ,Θ ′ of Φ=, we say that Θ corresponds to the P-invariant fragment of Θ ′ if
any sentence α ∈Θ ′(A) is P-invariant iff it is equivalent to a formula α∗ ∈Θ(A).
The ‘fairly simple result in monadic first-order logic’ mentioned as the second item
above, can now be stated as follows.

Proposition 1.4 Π corresponds to the P-invariant fragment of Π=.

Our observation is that the Janin-Walukiewicz Theorem is a direct corollary of
Fact 1.3 and Proposition 1.4. To be more precise, we will define a translation (·)∗
mapping a Π=(A)-sentence α to Π(A)-sentence α∗ satisfying
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α ≡ α
∗ iff α is P-invariant. (3)

On the basis of this, we can present the proof of Janin & Walukiewicz as follows.
First, given a MSO-formula ϕ , consider the equivalent initialized Π=-automaton

(Aϕ ,aϕ) given by Fact 1.3(1). Where Aϕ = (A,δ ,Ω), with δ : A×PQ→ Π=(A),
define the Π -automaton A∗ϕ := (A,δ ∗,Ω), with δ ∗ : A×PQ→ Π(A) by putting
δ ∗(a,c) := (δ (a,c))∗. Let ϕ∗ be the µML-formula that is equivalent to (A∗ϕ ,aϕ),
given by Fact 1.3(2). Using (3) one may then show that for any pointed Kripke
model (S,s) there is a pointed Kripke model (S′,s′), and a bounded morphism f :
S′→ S such that f s′ = s, while for any MSO-formula ϕ we have

S,s 
 ϕ
∗ iff S′,s′ 
 ϕ. (4)

Now suppose that ϕ is a bisimulation-invariant MSO-formula. Then for any pointed
Kripke model (S,s) we have that

S,s 
 ϕ iff S′,s′ 
 ϕ (assumption on ϕ)
iff S,s 
 ϕ

∗ (4)

Clearly this shows that ϕ is equivalent to ϕ∗, and since ϕ∗ is a formula in the modal
µ-calculus, this suffices to prove the Janin-Walukiewicz theorem.

In fact, the argument just given can be generalized to prove the following result.

Theorem 1.5 Let Θ and Θ ′ be fragments of monadic first-order logic. If Θ corre-
sponds to the P-invariant fragment of Θ ′, then AutΘ corresponds to the bisimulation-
invariant fragment of AutΘ ′ .

The second and main contribution of this paper is the observation that The-
orem 1.5 is itself an instance of a more general phenomenon that is essentially
coalgebraic in nature. Universal Coalgebra [19] provides the notion of a coal-
gebra as the natural mathematical generalization of state-based evolving systems
such as streams, (infinite) trees, finite state automata, Kripke frames and models,
(probabilistic) transition systems, and many others. Formally, a coalgebra is a pair
S = (S,σ), where S is the carrier or state space of the coalgebra, and σ : S→ T S
is its unfolding or transition map. This approach combines simplicity with general-
ity and wide applicability: many features, including input, output, nondeterminism,
probability, and interaction, can easily be encoded in the coalgebra type T (formally
an endofunctor on the category Set of sets as objects with functions as arrows).

Logic enters the picture if one wants to specify and reason about behavior, one of
the most fundamental notions admitting a coalgebraic formalization. With Kripke
structures constituting key examples of coalgebras, it should come as no surprise
that most coalgebraic logics are some kind of modification or generalization of
modal logic [5]. Moss [15] introduced a modality ∇T generalizing the so-called
‘cover modality’ from Kripke structures to coalgebras of arbitrary type. This ap-
proach is uniform in the functor T , but as a drawback only works properly if T sat-
isfies a certain category-theoretic property (viz., it should preserve weak pullbacks);
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also the nabla modality is syntactically rather nonstandard. As an alternative, Pat-
tinson [17] and others developed coalgebraic modal formalisms, based on a com-
pletely standard syntax, that work for coalgebras of arbitrary type. In this approach,
the semantics of each modality is determined by a so-called predicate lifting (see
Definition 2.15 below). Many well-known variations of modal logic in fact arise as
the coalgebraic logic LΛ associated with a set Λ of such predicate liftings; exam-
ples include both standard and (monotone) neighborhood modal logic, graded and
probabilistic modal logic, coalition logic, and conditional logic.

In order to reason about ongoing coalgebraic behavior, modal logicians have
introduced fixpoint extensions of coalgebraic logics [22, 4] and developed the cor-
responding automata theory [8]. For instance, each set Λ of predicate liftings comes
with a modal logic LΛ , a coalgebraic µ-calculus µLΛ , and an equivalent class of
automata AutΛ .

Kripke frames are coalgebras for the power set functor P, and each sentence α

in monadic first-order logic induces a predicate lifting α̂ for the power set functor.
However, corresponding to the fact that we are looking at logics that are not bisimu-
lation invariant, not all of these predicate liftings will be natural (in some technical
sense to be defined below). In fact, we will introduce a coalgebraic novelty in this
paper, in that we will consider non-natural predicate liftings for an arbitrary functor
T . Generalizing the notion of P-invariance discussed above, we will define what it
means for one set of predicate lifting to be the natural fragment of another set. Our
coalgebraic generalization of Theorem 1.5 then roughly states the following:

if Λ provides the T -natural fragment of Λ ′, then µLΛ is the bisimulation-
invariant fragment of µLΛ ′ .

For a more precise formulation, we refer to Theorem 5.1 below.

To conclude this introduction, we briefly discuss the relation of this chapter with
van Benthem’s work. First of all, it may have struck the reader’s attention that while
van Benthem’s Bisimulation Theorem concerns the bisimulation-invariant fragment
of first-order logic, our focus is on monadic second-order logic. We certainly believe
that our coalgebraic perspective has some bearing on first-order logic as well, but we
will leave this topic for later work. The main reason for this is that we wanted to give
a detailed account of the coalgebraic perspective on fixpoint logics and automata
theory. Note that in a general coalgebraic context, it is always clear how to define
modal fixpoint logics and their associated automata. This is not necessarily the case
with first-order logic, although recently some interesting proposals have been made,
see for instance Litak et alii [14].

Another matter concerns the link between this chapter and the volume’s theme,
viz., Logical Dynamics. Here, again, coalgebra is the key word: as mentioned, uni-
versal coalgebra is a very natural mathematical framework for the kind of state-
based evolving systems that play a fundamental role in the study of dynamics. In
particular, many of the game-like processes that van Benthem is interested in, al-
low for a coalgebraic presentation. From this perspective coalgebraic modal logics,
and in particular their fixed-point variants, provide natural logics for representing
dynamic phenomena. The question of bisimulation invariance then makes us focus
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on the power of logical languages to express those properties that are relevant from
the perspective of modelling dynamics. As such, our chapter not only connects with
van Benthem’s earliest technical work, but also with his foundational studies to the
nature of the dynamics of information-related processes.

2 Coalgebra and modal logic

This section contains an introducton to coalgebra and coalgebraic modal logic.
We assume familiarity with basic notions from category theory, but not going

beyond categories, functors, and natural transformations. We let Set denote the cat-
egory with sets as objects and functions as arrows. Functors that feature prominently
in this paper are the co- and the contravariant power set functor, P and P̆, respec-
tively. Both act on objects by mapping a set S to its power set PS = P̆S; a function
f : S′ → S is mapped by P to the direct image function P f : PS′ → PS given by
(P f )X ′ := { f s′ ∈ S | s′ ∈ X ′}, and by P̆ to the inverse image function P̆ f : PS→ PS′

given by (P̆ f )X := {s′ ∈ S′ | f s′ ∈ X}.

2.1 Coalgebra

We start with introducing coalgebras and their morphisms.

Definition 2.1 Let T : Set→ Set be a (covariant) set functor. A T -coalgebra is a
pair S = 〈S,σ〉 where S is a set and σ is a function σ : S→ T S. Elements of S are
called states of the coalgebra and σ is called the transition map of coalgebra map
of S. We may refer to T as the type of S. A pointed T -coalgebra is a pair (S,s)
consisting of a T -coalgebra S and a state s ∈ S.

If, for a function f : S′→ S, the following diagram commutes:

S′

σ ′

��

f // S

σ

��
T S′

T f // T S

(5)

we call f a (coalgebra) morphism from S′ = 〈S′,σ〉 to S= 〈S,σ〉, and write f : S′→
S. �

Convention 2.2 Throughout this paper we will discuss an arbitrary but fixed (co-
variant) set functor that we denote as T : Set→ Set.

Many structures that are well-known from theoretical computer science or from
modal logic admit a natural presentation as coalgebras.
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Example 2.3 (•) Kripke frames are coalgebras for the power set functor P: a Kripke
frame 〈S,R〉 with R ⊆ S× S can be represented as the coalgebra 〈S,ρR〉, where ρR
maps a state in S to the collection of its successors: ρR : s 7→ {t ∈ S | Rst}. It is
straightforward to verify that the notion of a coalgebra morphism for P-coalgebras
coincides with that of a bounded morphism between Kripke frames. In other words,
the category of P-coalgebras is isomorphic to that of Kripke frames (with bounded
morphisms).

(•) Kripke models are coalgebras as well. Fix a set Q of proposition letters, and
observe that the information given by a valuation V : Q→ PS can just as well be
provided by its transpose V [ : S→ PQ given by V [ : s→{p ∈Q | p ∈V (s)}. On the
basis of this, we may represent a Kripke model 〈S,R,V 〉 as a a coalgebra 〈S,σV,R〉,
where σR,V : S→ PQ×PS is given by σR,V : s 7→ (V [(s),ρR(s). In other words,
Kripke models (over Q) are coalgebras for the functor PQ := PQ×P−.

(•) Recall that a deterministic finite state automaton (DFA) over a finite alphabet
(or color set) C is a triple 〈S,δ ,F〉 with δ : S×C → S and F ⊆ S. Representing
the transition map δ , through currying, by a function δ ′ : S→ SC, and the set F
of accepting states by its characteristic function χF : S→ {0,1}, we may think of
this DFA as a coalgebra 〈S,(χF ,δ

′)〉 for the functor DC := {0,1}× (−)C. Here
(as in subsequent examples) we omit to check that the morphisms induced by the
coalgebra framework are the natural, standard ones.

(•) Given a set A of atomic actions, we can represent a transition system
(S,(Ra)a∈A), where each atomic action a is interpreted as a binary relation Ra ⊆
S×S, as a coalgebra for the functor (P−)A.

(•) Define the covariant set functor N : Set→ Set as the composition of the con-
travariant power set with itself, N := P̆ ◦ P̆. Coalgebras for this functor correspond
to the well-known neighborhood models in modal logic.

Restricting this example somewhat, we may obtain various interesting classes of
structures. For instance, take the functor M given by MS := {U ∈NS |U is upward
closed with respect to ⊆ } and M f = N f . M-coalgebras are known in modal logic
as monotone neighborhood frames.

(•) For a slightly more involved example, consider the finitary multiset or bag
functor Bω . This functor takes a set S to the collection Bω S of maps µ : S→ N of
finite support (that is, for which the set Supp(µ) := {s∈ S | µ(s)> 0} is finite), while
its action on arrows is defined as follows. Given an arrow f : S→ S′ and a map µ ∈
Bω S, we define (Bω f )(µ) : S′→N by putting (Bω f )(µ)(s′) := ∑{µ(s) | f (s) = s′}.
Coalgebras for this functor are weighted transition systems, where each transition
from one state to another carries a weight given by a natural number. Observe that a
Kripke frame 〈S,R〉 can be seen as a Bω -coalgebra 〈S,ρ ′R〉 by putting ρ ′R(s)(t) = 1
if Rst, and ρR(s)(t) = 0 otherwise.

(•) As a variant of Bω , consider the finitary probability functor Dω , where Dω S =
{δ : S → [0,1] | Supp(δ ) is finite and ∑s∈S δ (s) = 1}, while the action of Dω on
arrows is just like that of Bω . Coalgebras for this functor are known as Markov
chains.
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The connection between Kripke frames and Kripke models can be generalized to
coalgebras of arbitrary type.

Definition 2.4 Let T be a set functor and let Q be a set of proposition letters. We
define the set functor TQ := PQ×T . A T -model over Q is a pair (S,V ) consisting of
a T -coalgebra S= 〈S,σ〉 and a Q-valuation V on S, that is, a function V : Q→ PS.
The coloring associated with V is the transpose map V [ : S→ PQ given by

V [(s) := {p ∈ Q | s ∈V (p)}.

Hence the pair (S,V ) induces a TQ-coalgebra 〈S,(V [,σ)〉. �

Convention 2.5 In the remainder of this paper we will identify T -models over Q
with the TQ-coalgebras they induce. For instance, morphisms between T -models
are implicitly defined as coalgebra morphisms between the induced TQ-coalgebras.
That is, a map f : S′→ S is a morphism from (S′,V ′) to (S,V ) if (1) f : S′→ S and
(2) s′ ∈V ′(p) iff f s′ ∈V (p), for all s′ ∈ S′ and all p ∈ Q.

The key coalgebraic notion of equivalence is that of two pointed coalgebras be-
ing behaviorally equivalent. In case the functor T admits a coalgebra Z = 〈Z,ζ 〉
which is final (in the sense that for every T -coalgebra S there is a unique coalgebra
morphism !S : S→ Z), the elements of Z often provide an intuitive encoding of the
notion of behaviour, and the unique coalgebra morphism !S can be seen as a map
that assigns to a state x in S its behaviour. In this case we call two pointed coal-
gebras, (S,s) and (S′,s′), behaviorally equivalent if !Ss =!S′s′. In the general case,
when we may not assume the existence of a set-based final coalgebra, we define the
notion as follows.

Definition 2.6 Let (S,s) and (S′,s′) be two pointed coalgebras. If there are coalge-
bra morphisms f , f ′ with a common codomain such that f (s) = f ′(s′), we call the
two pointed coalgebras behaviorally equivalent, notation: S,s' S′,s′. We will often
apply this notion to the states s and s′. �

Remark 2.7 In many cases, including those of Kripke frames and models, behav-
ioral equivalence is the same as bisimilarity, but in cases where the two notions
diverge, behavioral equivalence is the more natural notion. For the purpose of this
paper it suffices to work with behavorial equivalence, and we do not need to dis-
cuss generalisations of the notion of a bisimulation to coalgebras of arbitrary type,
referring the reader to [21] for more information.

2.2 Coalgebraic Logics

It will be convenient to have a rather abstract notion of coalgebraic languages and
logics for T (so that for instance, we can think of automata as proper formulas).
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Definition 2.8 An abstract coalgebraic logic is a pair (L,
L) such that L is a set
and 
 is a collection of relations associating with each T -coalgebra S = 〈S,σ ,V 〉
a binary relation 
L

S ⊆ S×L. The set L is called the language of the logic, and its
elements will be called formulas. If s 
L

S ϕ we say that the formula ϕ is true or
satisfied at s in S, and we will often write S,s 
 ϕ .

The satisfaction relation 
L
S induces a meaning function [[·]]S : L→ PS given by

s ∈ [[ϕ]]S iff s 
L
S ϕ. (6)

�

Example 2.9 Let us see how monadic second-order logic fits as a coalgebraic logic
for PQ-coalgebras (Kripke models over some fixed set Q of proposition letters).
Clearly we may also see elements of Q as monadic predicate symbols.

To define the syntax of this logic, let IVar= {u,v, . . .} be a set of individual (first-
order) variables, and let Var = {x,y, . . .} be a set of objects that one may think of
alternatively as propositional variables or monadic predicate (that is, second-order)
variables. Define the set of MSO(Q)-formulas by the following grammar:

ϕ ::= p(v) | x(v) | Ruv | ⊥ | ¬ϕ | ϕ0∨ϕ1 | ∃v.ϕ | ∃x.ϕ,

where p ∈Q, v ∈ IVar, and x ∈ Var. The interpretation of this language on a Kripke
model 〈S,R,V 〉 is standard.

Finally, we define MSOv(Q) as the set of MSO(Q)-formulas ϕ(v) that contain
a single free individual variable v, and no free variables in Var. (We need the free
variable v in order to interpret formulas in pointed models.) Thus we obtain a coal-
gebraic logic (MSOv(Q),
MSO) by putting S,s 
 ϕ iff S |= ϕ(s).

Coalgebraic logics naturally induce equivalence relations between formulas, and
between pointed coalgebras.

Definition 2.10 Let (L,
) be a coalgebraic logic. Two formulas ϕ and ψ are called
equivalent, notation: ϕ ≡L,
 ψ , if for all pointed coalgebras (S,s) we have S,s 

ϕ ⇐⇒ S,s 
 ψ .

Similarly, two pointed coalgebras (S,s) and (S′,s′) are called equivalent, nota-
tion: S,s≡L,
 S′,s′, if S,s 
 ϕ ⇐⇒ S′,s′ 
 ϕ , for all ϕ ∈ L. �

Since the satisfaction relation is usually determined by the language, in practice
we will often blur the distinction between logics and their languages. For instance,
we will write ≡L rather than ≡(L,
), etc.

Generally, in abstract model theory, an abstract logic is required not to distinguish
isomorphic structures. Clearly such a condition would make sense here as well, but
it is not relevant to our story. On the other hand, a condition that features crucially in
our story is the requirement that coalgebraic logics cannot distinguish behaviorally
equivalent states. Since we are generally much more interested in the behavior of a
system then in its precise representation, this so-called adequacy property is a very
natural one.
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Definition 2.11 A formula ϕ is behaviorally invariant if for all pairs of behaviorally
equivalent pointed coalgebras S,s ' S′,s′ it holds that S,s 
 ϕ ⇐⇒ S′,s′ 
 ϕ . A
coalgebraic language is behaviorally invariant or adequate if all its formulas are
behaviorally invariant, or equivalently, if 'T ⊆≡L. �

We have now arrived at the central notion in this paper, namely, that of one logic
corresponding to the behaviorally invariant fragment of another.

For its definition, observe that if (L,
) is a coalgebraic logic, then any set L′ ⊆
L induces a logic (L′,
�L′ ), where 
�L′ is the obviously defined restriction of the
relation 
 to L′. In the sequel we will simply write 
 rather than 
�L′ .

Definition 2.12 Let (L,
) be a coalgebraic logic, and let L′ ⊆ L. We say that L′

corresponds to the behaviorally invariant fragment of L, notation: L′ ≡ L/T , if (1)
(L′,
) is behaviorally invariant, and (2) every behaviorally invariant formula ϕ ∈ L
is equivalent to some formula ϕ ′ ∈ L′. �

The technical work in this paper will be based on a stronger, somewhat more
‘constructive’ version of this notion.

Definition 2.13 Let (L,
) be a coalgebraic logic, and let L′ ⊆ L. We say that L′

strongly corresponds to the behaviorally invariant fragment of L, notation: L′ ≡s

L/T , if (1) (L′,
) is behaviorally invariant, and (2′) there is a translation (·)∗ : L→
L′ and a map associating with each pointed coalgebra (S,s) a pointed coalgebra
(S′,s′), together with a morphism f : (S′,s′)→ (S,s) such that

S,s 
 ϕ
∗ iff S′,s′ 
 ϕ. (7)

for all formulas ϕ ∈ L. �

The following proposition justifies our terminology.

Proposition 2.14 If L′ ≡s L/T then L′ ≡ L/T .

Proof. Assume that L′ strongly corresponds to the behaviorally invariant fragment
of L, via the translation (·)∗ : L→ L′, and let ϕ be an arbitrary behaviorally invariant
formula in L. In order to prove the Proposition, it suffices to show that ϕ ≡ ϕ∗. For
this purpose, take an arbitrary pointed coalgebra (S,s). By our assumption there is
a morphism f : S′→ S and a state s′ in S′ with f s′ = s, and satisfying

S,s 
 ϕ iff S′,s′ 
 ϕ iff S,s 
 ϕ
∗. (8)

Here the first equivalence is by our assumption on ϕ , and the second equivalence is
by (7). The equivalence of ϕ and ϕ∗ is immediate from (8). QED

2.3 Predicate Liftings

Many coalgebraic logics are induced by a set of so-called predicate liftings. In this
subsection we will be interested in T -models; we fix a set Q of proposition letters.
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Definition 2.15 An n-ary predicate lifting for T is a collection λ of maps, associat-
ing a function

λS : (PS)n→ PT S

with each set S. �

In other words, an n-ary predicate lifting λ associates, with each set S, a map that
yields a subset λS(X1, . . . ,Xn)⊆ T S for each n-tuple X1, . . . ,Xn of subsets of S.

Note that our definition deviates from the usual one in that we do not require
predicate liftings to be natural (see Definition 2.23).

Example 2.16 Here are some predicate liftings for the functors discussed in Exam-
ple 2.3.

(•) Given a set S, a unary predicate lifting λ for the power set functor yields a
map λS : PS→ PPS. Here are three examples, ♦, 2 and ∞:

♦S : X 7→ {D ∈ PS | D∩X 6=∅},
2S : X 7→ {D ∈ PS | D⊆ X},
∞S : X 7→ {D ∈ PS | |D∩X | ≥ ω}.

For an example of a binary predicate lifting, consider the following definition, for a
set S:

?S : (X ,Y ) 7→ {D ∈ S | X ⊆ D⊆ Y}.

(•) A nullary predicate lifting λ assigns to each set S, a function λS from (PS)0 to
PT S; such a function can be identified with a subset of T S that we will also denote
as λS. As a particularly interesting example, consider the functor TQ. With each
proposition letter p ∈ Q we may associate a nullary predicate lifting p by defining,
for each set S, the following subset of TQS:

pS := {(Π ,τ) ∈ PQ×T S | p ∈Π}.

(•) Regarding the functor DC corresponding to finite state automata over C, con-
sider the nullary predicate lifting

√
and the unary c© (for any c ∈C), defined, for a

set S, by √
S := {(i, f ) ∈ 2×SC | i = 1},

c©S : X 7→ {(i, f ) ∈ 2×SC | f (c) ∈ X}.

(•) For the functor PA of A-labelled transition systems, consider the unary lifting
〈a〉 given by

〈a〉S : X 7→ {D ∈ (PS)A | D(a)∩X 6=∅},

(•) With respect to the neighborhood functor N, we define a unary predicate
lifting ♦ by putting, for a set S:

♦S : X 7→ {A ∈ NS | X ∈A }.

(•) Finally, consider the functor Bω . Given a natural number k ∈ω , we define the
predicate lifting k by putting
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kS : X 7→ {µ ∈ Bω S | ∑
x∈X

µ(x)≥ k}.

Definition 2.17 With each predicate lifting λ we associate a modality ♥λ with the
same arity as λ . Given a set Λ of predicate liftings, we obtain the modal language
LΛ (Q) by defining its set of formulas by the following grammar:

ϕ ::= p | ⊥ | ¬ϕ | ϕ0∨ϕ1 | ♥λ (ϕ1, . . . ,ϕn)

where p ∈ Q, and λ ∈Λ is n-ary. �

Definition 2.18 Let Λ be a set of predicate liftings. For any T -model S= 〈S,σ ,V 〉,
by induction on the complexity of LΛ -formulas, we define the meaning function
[[·]]S : LΛ → PS:

[[⊥]]S := ∅
[[p]]S := V (p)
[[¬ϕ]]S := S\ [[ϕ]]S
[[ϕ0∨ϕ1]]

S := [[ϕ0]]
S∪ [[ϕ1]]

S

[[♥λ (ϕ1, . . . ,ϕn)]]
S := (P̆σ)(λS([[ϕ1]]

S, . . . , [[ϕn]]
S)).

The meaning function [[·]]S induces a satisfaction relation 
S given by (6). �

In terms of the satisfaction relation 
, the meaning of the modality ♥λ is given by

S,s 
♥λ (ϕ1, . . . ,ϕn) iff σ(s) ∈ λS([[ϕ1]], . . . , [[ϕn]]).

Example 2.19 (•) It is easy to see that, for a Kripke model S= 〈S,R,V 〉, we have

S,s 
♥♦ϕ ⇐⇒ S, t 
 ϕ for some t ∈ R(s)
S,s 
♥2ϕ ⇐⇒ S, t 
 ϕ for all t ∈ R(s)
S,s 
♥∞ϕ ⇐⇒ S, t 
 ϕ for infinitely many t ∈ R(s)
S,s 
♥?(ϕ,ψ) ⇐⇒ S, t 
 ϕ for all t ∈ R(s), and Rsu for all u with S,u 
 ψ.

The first two examples shows in particular that the well-known diamond and box
operator from modal logic are coalgebraic modalities indeed.

(•) The definition of the predicate lifting p, for a proposition letter p∈Q, ensures
that for any T -model S= (S,σ ,V ) we have

S,s 
 p iff p ∈V [(p) (semantics p)

iff s ∈V (p) (definition V [)
iff S,s 
 p (semantics p)

(•) For a model S based on a finite state automaton 〈S,F,δ 〉, we have

S,s 
♥√ϕ ⇐⇒ s ∈ F,
S,s 
♥ c©ϕ ⇐⇒ S,δ (c,s) 
 ϕ.
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(•) If S is a model based on an A-labelled transition system, we find

S,s 
♥〈a〉ϕ ⇐⇒ S, t 
 ϕ for some t ∈ Ra(s)

(•) For a neighborhood model S we obtain

S,s 
♥3ϕ ⇐⇒ [[ϕ]]S ∈ σ(s),

showing that classical modal logic is a coalgebraic logic indeed.
(•) Finally, suppose that we consider a Kripke frame as a coalgebra S for the

functor Bω . Then for any natural number k ∈ ω we obtain

S,s 
♥kϕ ⇐⇒ s has at least k successors t such that S, t 
 ϕ.

In other words, graded modal logic can be presented as a coalgebraic logic too.

We now turn to coalgebraic µ-calculi, that is, extensions of coalgebraic logics
with fixpoint operators. In order to guarantee well-definedness of the semantics, we
need to restrict attention to monotone predicate liftings.

Definition 2.20 An n-ary predicate lfiting λ is monotone if for every set S, the map
λS : (PS)n→ PT S is order-preserving in each coordinate (with respect to the subset
order). The predicate lifting λ : (P−)n→ PT−, given by

λ S(X1, . . . ,Xn) := T S\λS(S\X1, . . . ,S\X1),

is called the (Boolean) dual of Λ . �

Since we are working with a fixed set Q of proposition letters, we need to intro-
duce a set Var = {x,y,z,x0, . . .} of propositional variables in our formal set-up.

Definition 2.21 Let Λ be a set of monotone predicate liftings. The modal language
µLΛ (Q) is defined by the following grammar:

ϕ ::= p | x | ⊥ | ¬ϕ | ϕ0∨ϕ1 | ♥λ (ϕ1, . . . ,ϕn) | µx.ϕ

where p ∈ Q, x ∈ Var, and the application of the fixpoint operator µx is subject to
the proviso that all occurrences of x in ϕ are positive (that is, under an even number
of negations).

The sets of free and bound variables in a formula is defined as usual, and we
define a µLΛ (Q)-sentence as a formula with no bound variables. �

The semantics of this language contains no surprises.

Definition 2.22 Let Λ be a set of monotone predicate liftings, and let S be a T -
model. An assignment is a map h : Var→ PS assigning a meaning to each variable
in Var. By induction on the complexity of µLΛ (Q)-formulas we define, for each
assignment h, a meaning function [[·]]S,h : µLΛ (Q)→ PS. Here we only give the
following two clauses:
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[[x]]S,h := h(x)
[[µx.ϕ)]]S,h :=

⋂
X⊆S

[[ϕ]]S,h[x 7→X ],

where h[x 7→ X ] is the assignment sending every y ∈ Var to V (y), except for x which
is sent to X . �

It is a routine exercise to verify that with this definition, the formula µx.ϕ is
interpreted as the least fixed point of the formula ϕ(x).

Returning to the notion of adequacy, for logics generated by predicate liftings
this property follows from naturality of the predicate liftings.

Definition 2.23 A predicate lifting λ is natural for T if it is a natural transformation
λ : (P̆−)n →̇ (P̆T−), i.e. if for each function f : S′ → S, the following diagram
commutes:

S (PS)n

(P̆ f )n

��

λS // PT S

P̆T f
��

S′

f

OO

(PS′)n
λS′ // PT S′

(9)

A set of predicate liftings is natural for T if this property applies to each of its
members. �

Proposition 2.24 If Λ is natural for T , then LΛ (Q) and µLΛ (Q) are behaviorally
invariant for each set Q.

Proof. By definition of behavioral equivalence it suffices to prove that for every
morphism f : S′→ S, every formula ϕ , and every state s′ ∈ S′, it holds that

S′,s′ 
 ϕ iff S, f s′ 
 ϕ. (10)

In terms of the meaning function [[·]], we may prove equivalently that for all formulas
ϕ

[[ϕ]]S
′
= (P̆ f )[[ϕ]]S. (11)

We prove (11) by induction on ϕ . For the key inductive clause, assume that ϕ =
♥λ ψ (for notational simplicity we assume that λ is unary). Then

[[ϕ]]S
′
= (P̆σ

′)λS′([[ψ]]S
′
) (semantics of ♥λ )

= (P̆σ
′)λS′(P̆ f )([[ψ]]S) (induction hypothesis)

= (P̆σ
′)(P̆T f )λS([[ψ]]S) (naturality of λ (9))

= (P̆ f )(P̆σ)λS([[ψ]]S) ( f a morphism)

= (P̆ f )[[ϕ]]S
′

(semantics of ♥λ )

QED
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We leave it as an exercise for the reader to check that all predicate liftings of
Example 2.16 are natural, except ∞ and ?.

For concreteness, we define (basic) modal logic and the modal µ-calculus as
follows.

Definition 2.25 We define ML(Q), basic modal logic over Q, as the coalgebraic
logic L♦,2(Q), and µML(Q), the modal µ-calculus over Q, as its fixpoint extension:
µML(Q) := µL♦,2(Q). �

3 Coalgebra Automata & MSO

As usual in the theory of fixpoint logics, it will be easier to work with automata
rather than with formulas. In this section we define the notion of a coalgebra au-
tomaton associated with a set Λ of monotone predicate liftings (and a set Q of
proposition letters). These devices will provide the automata-theoretic counterpart
to the coalgebraic µ-calculus, and we will see how monadic second-order can be
captured by automata (and thus correspond to a coalgebraic fixed point logic), when
we restrict attention to the class of tree models. This is also a good place to introduce
the one-step perspective on coalgebraic logic, a key coalgebraic concept.

3.1 One-step syntax and semantics

Definition 3.1 Given a set A of propositional variables and a collection Λ of predi-
cate liftings, we define the set L1

Λ
(A) via the following grammar:

ϕ ::= ♥λ (a1, . . . ,an) | ⊥ | > | ϕ0∨ϕ1 | ϕ0∧ϕ1

where λ ∈Λ is n-ary, and ai ∈A, for each i. Elements of L1
Λ
(A) will be called rank-1

Λ -formulas over A, or simply: rank-1 formulas. �

Observe that we do not allow negations to occur in rank-1 formulas. Given a set
S, we can interpret rank-1 formulas over A as subsets of T S, once we have been
given a valuation assigning a meaning to the variables in A.

Definition 3.2 Given sets A and S, an A-valuation or A-marking on S is a map V :
A→ PS. Given such a valuation, we inductively define the one-step satisfaction
relation 
1

V ⊆ T S× L1
Λ
(A). For the basic formulas of the form ♥λ (a1, . . . ,an) we

put, for τ ∈ T S,

τ 
1
V ♥λ (a1, . . . ,an) iff τ ∈ λS(V (a1), . . . ,V (an)),

while inductively each Boolean connective receives its standard set-theoretic inter-
pretation. Frequently we will write T S,V,τ 
1 ϕ rather than τ 
1

V ϕ . �
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The link with the ordinary semantics for coalgebraic logic is given by the coal-
gebra map. That is, given a T -coalgebra S = (S,σ : S → T S) and a valuation
V : A→ PS, we have

(S,V ),s 
♥λ (a1, . . . ,an) iff T S,V,σ(s) 
1 ♥λ (a1, . . . ,an).

3.2 Coalgebra Automata

We are now ready to introduce coalgebra automata, which will be parametrized by
a set Λ of predicate liftings, and a set Q of proposition letters.

Definition 3.3 Let Λ be a set of monotone predicate liftings for T . A (Λ ,Q)-
automaton A is a triple A= (A,δ ,Ω), where A is a finite set of states, δ : A×PQ→
L1

Λ
(A) is the transition map, and Ω : A→ N is a parity map.
An initialized automaton is a pair (A,aI) where aI ∈ A. The class of initialized

(Λ ,Q)-automata is denoted as AutΛ (Q). �

The semantics of these automata is defined in terms of an infinite parity graph
game. We assume that the reader has some familiarity with these games, and with
associated notions such as matches, (positional) strategies, etc. (Details can be found
in [11]).

Definition 3.4 Let S = 〈S,σ ,V 〉 be a T -model and let A = (A,δ ,Ω) be a (Λ ,Q)-
automaton. The associated acceptance game A (A,S) is the parity game given by
the table below.

Position Player Admissible moves Priority
(a,s) ∈ A×S ∃ {M : A→ PS | T S,V,σ(s) 
1 δ (a,M[(s))} Ω(a)
M ∈ (PS)A ∀ {(b, t) | t ∈M(b)} 0

A pointed coalgebra (S,r) is accepted by an initialized automaton (A,aI), notation:
S,r 
 (A,aI), if the pair (aI ,r) is a winning position for player ∃ in A (A,S). �

Observe that the acceptance game of (Λ ,Q)-automata proceeds in rounds mov-
ing from one basic position in A×S to another. In each round, at position (a,s) first
∃ picks an A-marking M on S that makes the depth-one formula δ (a,V [(s)) true at
σ(s). Looking at this M : A→ PS as a binary relation {(b, t) | t ∈M(b)} between A
and S consisting of witnesses picked by ∃, it is ∀ who closes the round by choosing
a witness (b, t) from this relation, which will then serve as the starting position of
the next round of the game.

Acceptance games feature both maps of the form V : Q→ PS (valuations that are
part of the models S on which the automaton operates) and maps M : A→ PS (that
correspond to sets of witnesses picked by ∃). To emphasize the distinct roles that
these two kinds of maps play, we will refer to the first ones as valuations and to the
second ones as markings in situations where both types occur.
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The following proposition instantiates the connection between fixpoint logics and
parity automata in our setting of coalgebraic logic. Observe that we may think of
the set AutΛ ,Q of initialized (Λ ,Q)-automata, together with the acceptance relation,
as a coalgebraic logic.

Proposition 3.5 Let Λ be a set of monotone predicate liftings for T which is closed
under taking Boolean duals. Then µLΛ (Q)≡ AutΛ (Q).

We omit the (completely routine) proof.

3.3 MSO as a coalgebraic fixpoint logic

We will now see how we may think of MSO as a coalgebraic fixpoint logic, at least
if we restrict our attention to tree models.

Definition 3.6 A tree model is a Kripke model 〈S,R,V 〉 in which there is a unique
path to each point from a certain, fixed, state called the root of the tree. �

Throughout this subsection we fix a set A of syntactic objects that, as mentioned
in the introduction, we may think of as either propositional variables or monadic
predicate symbols of some first-order language. In other words, we will see A as a
first-order signature (that we will also denote as A). The formulas in this language
are given by the following grammar:

α ::= x = y | a(x) | ¬α | α ∨α | ∃x.α

If we use the notation α(a1, . . . ,an) for a sentence in this language, this indicates
that the predicate symbols in α (not the first-order variables) are among a1, . . . ,an.

Definition 3.7 We let Φ=(A) and Φ(A) denote the sets of all first-order sentences
over the signature A, respectively with and without identity. Π=(A) and Π(A) are
the positive fragments of Φ=(A) and Φ(A), respectively, consisting of those sen-
tences in which all occurrences of atomic formulas are positive. �

We have now arrived at the key observation underlying this paper. In the case that
our coalgebra functor T is the power set functor, given an A-valuation V on S and
an element D ∈ PS, we may think of the pair 〈D,V 〉 as a structure for the signature
A (in the sense of first-order model theory), where the predicate symbol a ∈ A is
interpreted as the subset V (a)∩D ⊆ D. Consequently, we will now see that each
first-order sentence α(a1, . . . ,an) of this signature induces a (not necessarily natural)
n-ary predicate lifting α̂ for the power set functor.

Definition 3.8 Let α(a1, . . . ,an) ∈ Φ=(A). For any set S, α induces a map α̂ :
(PS)n→ PPS, given by

α̂(X1, . . . ,Xn) := {D ∈ PS | 〈D,VX 〉 |= α},
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where VX is the A-valuation on S given by VX (ai) :=Xi. By a slight abuse of notation,
for any fragment Θ of Φ=, we let Θ also denote the corresponding set of predicate
liftings {α̂ | α ∈Θ}. �

That this approach makes sense follows by the following Proposition which states
that the coalgebraic and the first-order perspective coincide.

Proposition 3.9 Let α(a1, . . . ,an) ∈ Φ=(A). For any set S, any valuation V : A→
PS and any subset D⊆ S we have

PS,V,D 
1 ♥α̂(a1, . . . ,an) iff 〈D,V 〉 |= α(a1, . . . ,an). (12)

Proof. The proof of Proposition 3.9 consists of a four line unravelling of the defini-
tions. Consider a first-order sentence α(a1, . . . ,an) ∈Φ=. Then

PS,V,D 
1 ♥α̂(a1, . . . ,an) iff D ∈ â(V (a1), . . . ,V (an)) (semantics ♥)
iff 〈D,VV (a1),...,V (an)〉 |= α (definition α̂)

iff 〈D,V 〉 |= α (†)

where the last equivalence (†) follows from the fact that the predicate symbols in α

are among a1, . . . ,an. QED

In section 4 we will see that all predicate liftings in Φ and Π are natural for P,
while this is definitely not the case for Φ= and Π (cf. Theorem 4.9).

As we will see further on, the following theorem is the reason why our coalge-
braic approach can be applied to the Janin-Walukiewicz theorem. It states that, on
the class of tree models, monadic second order logic can be captured by automata-
theoretic means. As a corollary of this result and Proposition 3.5, MSO (see Exam-
ple 2.9) is in fact a coalgebraic fixpoint logic. Theorem 3.10 below can be seen as a
more precise formulation of Fact 1.3; as mentioned there, the two statements can be
found in Walukiewicz [23] and Janin & Walukiewicz [12], respectively.

Theorem 3.10 1. MSOv(Q)≡P µLΠ=(Q) on tree models1;
2. µML(Q)≡P µLΠ (Q).

Unfortunately, a proof of this Theorem would go beyond the scope of this pa-
per. For proof details, the reader is referred to the above-mentioned papers, or to
Chapter 16 of [11].

Remark 3.11 For the interested reader, we give a very rough sketch of the proof
for part 1, which consists of two parts. First, rather than working with MSO(Q) one
defines a variant MSO′ with only second-order variables. For a definition of the set
of MSO′-formulas, consider the following grammar:

ϕ ::= pv q | p�q | ⇓p | ¬ϕ | ϕ ∨ψ | ∃p.ϕ

1 Here the tacit understanding is that the variable v is interpreted as the root of the tree.
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where p,q belong to some set Q′ ⊇ Q of variables. Then we define MSO′(Q) as the
set of MSO′-formulas whose free variables belong to Q.

Intuitively, it may be useful to think of MSO′ as a first-order logic in which the
variables are interpreted on the power set of (the state space of) a Kripke frame.
The valuation of a Kripke model is then to be seen as a first-order assignment of an
element V (p)∈ PS to an arbitrary letter p∈Q. More precisely, the semantics of this
language on a pointed Kripke model (S,r) is defined inductively — we only give
the clause of the atomic formulas:

(S,r) |= pv q iff V (p)⊆V (q)
(S,r) |= p�q iff for all s ∈V (p) there is a t ∈V (q) with Rst.
(S,r) |= ⇓p iff V (p) = {r}

It is not too difficult to see why this language corresponds to standard MSO. To
start with, it is easy to interpret MSO′-formulas in standard MSO; for a translation in
the opposite direction, the key idea is to encode elements of S as the corresponding
singleton sets, and define a formula sing(p) ∈ MSO′ characterizing the singleton
subsets of S in the sense that S,r |= sing(p) iff V (p) is a singleton.

In the second part of the proof of Theorem 3.10(1) one defines, by induction on
the complexity of a formula ϕ ∈MSO′(Q′), an automaton Aϕ ∈ AutΠ=,Q′ which is
equivalent to ϕ in the sense that for any tree model T with root r, we have (T,r) |= ϕ

iff Aϕ accepts (T,r). This part of the proof is nontrivial, involving closure properties
of specific classes of automata 〈A,δ ,Ω〉 that are defined by restricting the range of
the transition map δ to fragments of Φ= (such as, in particular, the set N=,+ defined
in the next section).

4 One-step adequacy

4.1 The general case

In this section we define and compare various one-step versions of the notion of
adequacy, and of the notion of one logic corresponding the one-step behaviorally
invariant fragment of another. First we need a notion of one-step equivalence; to
understand this notion, consider an A-valuation V : A→ PS. Lifting the associated
coloring V [ : S→ PA, we obtain a map TV [ : T S→ T PA, which associates, with an
element τ ∈ T S an object TV [(τ) that one may think of as a ‘T -color’.

Definition 4.1 Given two A-valuations Vi : A→ PSi (i = 0,1), we define a relation
∼V0,V1 ⊆ T S0×T S1 by putting τ0 ∼V0,V1 τ1 iff τ0 and τ1 have the same T -color, that
is,

τ0 ∼V0,V1 τ1 iff (TV [
0 )τ0 = (TV [

1 )τ1.

We call a rank-1 formula ϕ one-step T -invariant if for all pairs of valuations
Vi : A→ PSi, and all pairs of elements τi ∈ T Si (i = 0,1) such that τ0 ∼V0,V1 τ1 it
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holds that T S0,V0,τ0 
1 ϕ iff T S1,V1,τ1 
1 ϕ . A coalgebraic logic is called one-
step behaviorally invariant if each of its rank-1 formulas is one-step T -invariant.
�

In the sequel we will need a characterization of the notion of one-step adequacy
that involves pairs of valuations on two sets that are linked by some function.

Definition 4.2 Fix two sets S,S′ and a map f : S′ → S. Then with every valuation
V : A→ PS we may associate an A-valuation Vf on S′ given by

Vf := P̆ f ◦V,

while for a valuation U : A→ PS′ defining

U f := P f ◦U.

we obtain an A-valuation U f on S. �

Concerning these definitions we need the following fact, which can be proved
via routine verification.

Proposition 4.3 Let f : S′→ S be some map, and let V : A→ PS and U : A→ PS′

be two valuations. Then

1. V = (Vf )
f and U ⊆ (U f ) f (in the sense that U(a)⊆ (U f ) f (a) for all a ∈ A).

2. U =Vf iff U [ =V [ ◦ f .

The following proposition provides a useful characterization of one-step invari-
ance.

Proposition 4.4 Let Λ and A be sets of predicate liftings and proposition letters,
respectively. A formula ϕ ∈ L1

Λ
(A) is one-step T -invariant iff for each map f : S′→

S, for each V : A→ PS, and for each σ ′ ∈ T S′:

T S,V,(T f )σ ′ 
1
ϕ iff T S′,Vf ,σ

′ 
1
ϕ. (13)

Proof. For the direction from left to right, assume that ϕ ∈ L1
Λ

is one-step T -
invariant, and let f ,V , and σ ′ be as in the formulation of the proposition. It fol-
lows from Proposition 4.3(2) that V [

f = V [ ◦ f , and from this it is immediate that
(T f )σ ′ ∼V,V f σ ′. But then (13) follows from the one-step T -invariance of ϕ .

Conversely, suppose that ϕ satisfies the condition on the right hand side of the
Proposition. Let Vi : A→ PSi (i = 0,1) be two A-valuations, and let σi ∈ T Si be
objects such that σ0 ∼V0,V1 σ1. Our aim is to prove that

T S0,V0,σ0 

1

ϕ iff T S1,V1,σ1 

1

ϕ. (14)

For this purpose, consider the natural valuation N : A → PPA on PA given by
N(a) := {B ∈ PA | a ∈ B}. We leave it as an exercise for the reader to verify that
(i) N[ = idPA, that (ii) (P̆V [)N(a) =V (a) for all a ∈ A, and that (iii) VV [

i
=Vi. From
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this we conclude that, taking S = PA, S′ = Si, f = V [
i and σi = σ ′, we may read

equation (13) as follows:

T PA,N,(TV [
i )σi 


1
ϕ iff T Si,Vi,σi 


1
ϕ.

From this, (14) is immediate by the assumption that (TV [
0 )σ0 = (TV [

1 )σ1. QED

The next theorem makes a link between some of the notions we have been dis-
cussing.

Theorem 4.5 The following are equivalent, for any set Λ of predicate liftings:

1. Λ is natural;
2. Λ is one-step behaviorally invariant;
3. for each set A of proposition letters, for each function f : S′ → S, for each

V : A→ PS, and for each σ ′ ∈ T S′, (13) holds for each formula ϕ ∈ LΛ (A).

Proof. Since the equivalence of (2) and (3) is an immediate consequence of Propo-
sition 4.4, it suffices to show that (1) ⇐⇒ (3).

For this purpose, first assume that (1) Λ is natural, and let A,S′,S, and f be as
in item 3. Clearly it suffices to prove (13) for an arbitrary atomic rank-1 formula
♥λ (a):

T S,V,(T f )σ ′ 
1 ♥λ (a) iff (T f )σ ′ ∈ λS(V (a1), . . . ,V (an)) (semantics ♥λ )

iff σ
′ ∈ (P̆T f )λS(V (a1), . . . ,V (an)) (definition P̆T f )

iff σ
′ ∈ λS′

(
(P̆ f )V (a1), . . . ,(P̆ f )V (an)

)
(naturality of λ )

iff σ
′ ∈ λS′

(
Vf (a1), . . . ,Vf (an)

)
(definition Vf )

iff T S′,Vf ,σ
′ 
1 ♥λ (a) (semantics ♥λ )

Conversely, assume (3) and consider an arbitrary n-ary predicate lifting λ ∈Λ . In
order to prove that λ is natural, take an arbitrary function f : S′→ S, and an arbitrary
n-tuple X = (X1, . . . ,Xn) of subsets of S. We need to show that

λS′
(
(P̆ f )X1, . . . ,(P̆ f )Xn

)
= (P̆T f )λS(X1, . . . ,Xn). (15)

For this purpose, define A := {a1, . . . ,an}, and consider the valuation V : A→ PS
such that V (ai) = Xi; observe that by definition of Vf , this implies that Vf (ai) =
(P̆ f )Xi. Hence it suffices to prove, for an arbitrary element σ ′ ∈ S′, that

σ
′ ∈ λS′

(
Vf (a1), . . . ,Vf (an)

)
iff σ

′ ∈ (P̆T f )λS(V (a1), . . . ,V (an)).

This we prove as follows:
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σ
′ ∈ λS′

(
Vf (a1), . . . ,Vf (an)

)
iff T S′,Vf ,σ

′ 
1 ♥λ (a) (semantics ♥λ )

iff T S,V,(T f )σ ′ 
1 ♥λ (a) (assumption)
iff (T f )σ ′ ∈ λS(V (a1), . . . ,V (an)) (semantics ♥λ )

iff σ
′ ∈ (P̆T f )λS(V (a1), . . . ,V (an)) (definition P̆T f )

QED

We now turn to the one-step version of one coalgebraic logic corresponding to
the T -invariant fragment of another. On the basis of Theorem 4.5, we may nicely
formulate this property in terms of predicate liftings.

Definition 4.6 Let Λ and Λ ′ be two sets of predicate liftings for the functor T . We
say that Λ ′ corresponds to the behaviorally invariant fragment of Λ at the one-step
level, notation: Λ ′ ≡1 Λ/T , if

1. Λ ′ ⊆Λ ,
2. Λ ′ is natural, and
3. every one-step T -invariant formula ϕ ∈ L1

Λ
(A) is equivalent to a formula ϕ∗ in

L1
Λ ′(A).

If Λ and Λ ′ satisfy the conditions 1, 2 and 3′ below:

3′. there is a translation (·)∗ : L1
Λ
(A)→ L1

Λ ′(A) and a construction associating, with
each set S, a set S′ together with a map f : S′ → S, such that for each σ ∈ T S
there is a σ ′ ∈ T S′ with σ = (T f )σ ′, and for each valuation V : A→ PS, and
each formula ϕ ∈ L1

Λ
(A) it holds that

T S,V,σ 
1
ϕ
∗ iff T S′,Vf ,σ

′ 
1
ϕ. (16)

we say that Λ ′ uniformly corresponds to the behaviorally invariant fragment of Λ

at the one-step level, notation: Λ ′ ≡u
1 Λ/T . �

Similarly to Proposition 2.14, the following Proposition states that uniform cor-
respondence implies correspondence.

Proposition 4.7 If Λ ′ ≡u
1 Λ/T , then Λ ′ ≡1 Λ/T .

Proof. Similarly to the proof of Proposition 2.14, one may show that if ϕ ∈ L1
Λ

is
one-step T -invariant, then ϕ is equivalent to ϕ∗, where (·)∗ : L1

Λ
(A)→ L1

Λ ′(A) is the
translation given by uniform correspondence. QED

Remark 4.8 There are many variants of the notion of uniform one-step correspon-
dence that may be of interest as well. For instance, it makes sense to weaken the
condition (1), stating that Λ ′ is an actual subset of Λ , to a condition requiring that
there is a translation (·)† mapping any formula ϕ ∈ L1

Λ ′(A) to an equivalent formula
ϕ† ∈ L1

Λ
(A). As a second example, all of the results in this paper still hold if we

weaken condition 3′ to a non-uniform version in which the set S′ and the function
f : S′ → S depend on the object σ ∈ T S. In detail, this condition would read as
follows
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3′′. there is a translation (·)∗ : L1
Λ
(A)→ L1

Λ ′(A) and a construction associating, with
each set S, and each σ ∈ T S, a set S′, a map f : S′→ S, and an object σ ′ ∈ T S′

such that σ = (T f )σ ′, and for each valuation V : A→ PS, (16) holds for each
formula ϕ ∈ L1

Λ
(A).

Finally, in some cases it may be convenient to consider (one-step) languages in
which we admit only a (not necessarily functionally complete) selection of Boolean
connectives.

4.2 The case of Kripke models

Our key example of the notions just defined is given by the predicate liftings for
Kripke structures, that are induced by monadic first-order sentences. Our main goal
in this section will be to prove the following Theorem, which states that Π uniformly
corresponds to the behaviorally invariant fragment of Π=. This theorem will be
crucial in our proof of the Janin-Walukiewicz theorem.

Theorem 4.9 Π ≡u
1 Π=/P.

Let us first see what one-step invariance means in this context. Recall from
the introduction the notions of P-equivalence of structures, and of P-invariance of
monadic sentences. We will say that a monadic first-order sentence α ∈ Φ= is in-
variant under surjective homomorphisms iff for each valuation V : A→PD and each
surjection f : D′→ D,

〈D,V 〉 |= α iff 〈D′,Vf 〉 |= α.

Proposition 4.10 For any first-order sentence α(a) ∈Φ=, the following are equiv-
alent:

1. the predicate lifting â is natural;
2. the rank-1 formula ♥â(a) is P-invariant;
3. α is P-invariant;
4. α is invariant under surjective homomorphisms.

Proof. This Proposition is a straightforward consequence of Proposition 3.9 and
Proposition 4.4. QED

As a first corollary of this, we obtain the following.

Corollary 1. Φ and Π are P-invariant sets of predicate liftings.

Proof. By Proposition 4.10 it suffices to show that all identity-free sentences of
monadic first-order logic are invariant under surjective homomorphisms. This is a
routine exercise in first-order logic. QED

As a more important consequence of Proposition 4.10, we may prove Theo-
rem 4.9 as a corollary of the following result on monadic first-order logic.
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Proposition 4.11 There is a translation (·)∗ : Π=(A) → Π(A) such that for all
structures (D,V ) and all sentences α ∈Π= we have

(D,V ) |= α
∗ iff (D×ω,Vπ) |= α, (17)

where π : D×ω → D is the first projection function, π : (d,n) 7→ d.

In order to prove Proposition 4.11, we will need certain normal forms for
monadic first-order sentences. First we supply some preliminary definitions.

Definition 4.12 For a sequence x= x1, . . . ,xn of variables, write diff(x) :=
∧

1< j xi 6=
x j. Given a set B⊆ A and a variable x, abbreviate τB(x) :=

∧
a∈B a(x)∧

∧
a 6∈B¬a(x)

and τ
+
B (x) :=

∧
a∈B a(x). �

In words, diff(x) states that the variables x1, . . .xn denote distinct elements of
the domain. The formulas τB(x) and τ

+
B (x) state, respectively, that the type of the

element denoted by x is equal to (contains, respectively) B. Here the type of an
element d in a structure 〈D,V 〉 for A is the set V [(d).

Definition 4.13 Fix a set A of propositional variables. Let B = B1, . . . ,Bn and C =
C1, . . . ,Cm be two sequences of subsets of A, respectively. We define the following
formulas:

χ=,+(B,C) := ∃y1 · · ·yn

(
diff(y)∧

∧
i τ

+
Bi
(yi)∧∀z(diff(yz)→

∨
j τ

+
C j
(z))
)

χ=(B,C) := ∃y1 · · ·yn

(
diff(y)∧

∧
i τBi(yi)∧∀z(diff(yz)→

∨
j τC j(z))

)
χ+(B,C) := ∃y1 · · ·yn

(∧
i τ

+
Bi
(yi)∧∀z

∨
j τ

+
C j
(z)
)

χ(B,C) := ∃y1 · · ·yn

(∧
i τBi(yi)∧∀z

∨
j τC j(z)

)
We let N=,+(A) denote the set of sentences of the form χ=,+(B,C), and proceed
similarly for the sets N=(A), N+(A) and N(A). �

We need the following fact from first-order logic, which explains why we may think
of (disjunctions of) χ-type formulas as providing normal forms for monadic first-
order logic.

Proposition 4.14 Every sentence in Φ= is equivalent to a disjunction of sentences
in N=, and similarly for Φ and N, Π= and N=,+ and Π and N+, respectively.

Proof. The proof of this Proposition can be seen as an exercise in the theory of
Ehrenfeucht-Fraı̈ssé games. We confine ourselves to a sketch (rephrasing the proof
of Lemma 16.23 in [11]), and we only consider the case of Φ=.

Given a set B ⊆ A, and a first-order structure D = 〈D,V 〉 for A, let NB,D be the
number of elements in D of type B. We say that two such structures D and D′ are
n-equivalent, notation D∼n D′, if for every B⊆ A, either NB,D = NB,D′ ≤ n, or both
NB,D > n and NB,D′ > n. Clearly ∼n is an equivalence relation of finite index, and
each equivalence class of ∼n is described by a formula in N=. Using Ehrenfeucht-
Fraı̈ssé games it is not difficult to show that D ∼n D′ implies that D and D′ satisfy
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the same sentences of quantifier rank at most n. From this it follows that the class of
models of such a sentence is the union of a (finite) number of ∼n-cells, and that the
sentence itself is thus equivalent to the disjunction of the formulas asssociated with
these ∼n-cells. QED

Now we are ready for the proof of Proposition 4.11.

Proof of Proposition 4.11. Given a formula α ∈Π=(A), we need to come up with
a translation α∗ ∈Π(A) such that (17) holds.

First assume that α is of the form χ=,+(B,C) ∈ N=,+, and define

α
∗ := χ

+(B,C).

Proving (17) in this situation boils down to showing that

〈D,V 〉 |= χ
+(B,C) iff 〈D×ω,Vπ〉 |= χ

=,+(B,C). (18)

For this purpose, first observe that Vπ satisfies

d ∈V (a) iff (d,n) ∈Vπ(a) (19)

for each d ∈ S, a ∈ A, and n ∈ ω . Suppose that B = B1, . . . ,Bn and C =C1, . . . ,Cm.
For the left-to-right direction of (18), assume that 〈D,V 〉 |= χ+(B,C). Let d1, . . . ,dn

be elements in D satisfying the existential part of χ+(B,C), that is, for each i we find
di ∈

⋂
b∈Bi

V (b). From the universal part of the formula it follows that for each d ∈D
there is a subset Cd ⊆ A such that d ∈

⋂
c∈Cd

V (c). Now we move to D×ω; it is easy
to see that its elements (d1,1), . . . ,(dn,n) provide a sequence of n distinct elements
that satisfy (di, i) ∈

⋂
b∈Bi

Vπ(b) for each i. In addition, every element (d,n) distinct
from the ones in the mentioned tuple will satisfy (d,n) ∈

⋂
c∈Cd

Vπ(c). From these
observations it is immediate that 〈D×ω,Vπ〉 |= χ=,+(B,C).

For the opposite direction of (18), assume that 〈D×ω,Vπ〉 |= χ=,+(B,C). Let
(d1,k1),. . . , (dn,kn) be the sequence of distinct elements of D×ω witnessing the
existential part of χ=,+(B,C) in D′. Then clearly, d1, . . . ,dn witness the existential
part of χ+(B,C) in 〈D,V 〉. In order to show that 〈D,V 〉 also satisfies the universal
part ∀z

∨
j τ

+
C j
(z) of χ+, consider an arbitrary element d ∈ D. Take any m ∈ ω \

{k1, . . . ,kn}, then (d,m) is distinct from each (di,ki). It follows that for some j we
have (d,m) ∈

⋂
c∈C j

Vπ(c), and so we obtain d ∈
⋂

c∈C j
V (c). Since d was arbitrary

this shows that indeed 〈D,V 〉 |= ∀z
∨

j τ
+
C j
(z). So we have proved that 〈D,V 〉 |=

χ+(B,C).

Now consider the general case, where α is arbitrary. It follows from Proposi-
tion 4.14 that α is equivalent to a formula α ≡

∨
i αi, with each formula αi belongs

to N=,+. With
α
∗ :=

∨
iα
∗
i

it is straightforward to verify (17). QED
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Both Proposition 1.4 and Theorem 4.9 are straightforward corollaries of Propo-
sition 4.11.

Proof of Proposition 1.4. Assume that α ∈Π= is a P-invariant monadic sentence,
and let α∗ ∈ Π be the formula given by Proposition 4.11. Consider an arbitrary
structure (D,V ), and observe that (D,V ) ≡P (D×ω,Vπ). But then we obtain the
following equivalences:

(D,V ) |= α iff (D×ω,Vπ) |= α (assumption on α)
iff (D,V ) |= α (17)

From this it is immediate that α and α∗ are equivalent, which suffices to prove
Proposition 1.4. QED

Proof of Theorem 4.9. It is obvious that Π ⊆ Π=, and Proposition 1 states the
one-step P-invariance of Π . Hence we may focus on item 3′ of Definition 4.6.

We need to define a translation (·)∗ : L1
Π= → L1

Π
. By the definition of rank-1

formulas, it suffices to come up with a translation for atomic rank-1 formulas, that
is, formulas of the form ♥α̂(a) for some sentence α ∈Π=. But for such a formula,
we can simply put (

♥α̂(a)
)∗

:=♥α∗(a).

We leave it for the reader to verify that this defines a formula of the right shape and
with the right properties. QED

5 Main result

We are now ready for the main technical result of the paper. Intuitively, Theorem
5.1 states that, given two sets Λ ,Λ ′ of monotone predicate liftings for a functor T ,
if Λ corresponds to the T -invariant fragment of Λ ′ at the one-step level, then the
coalgebraic µ-calculus µLΛ ,Q is the bisimulation-invariant fragment of µLΛ ′,Q.

Theorem 5.1 Let T be some set functor, and let Λ ,Λ ′ be two sets of monotone
predicate liftings for T such that Λ ≡u

1 Λ ′/T . Then for any set Q,

AutΛ ,Q ≡s AutΛ ′,Q/'T .

As a corollary, if Λ ′ is closed under Boolean duals, then µLΛ ,Q ≡s µLΛ ′,Q/'T .

Proof. Fix a set Q of proposition letters, and assume that Λ ≡u
1 Λ ′/T . It easily

follows from this assumption that AutΛ ,Q ⊆ AutΛ ′,Q and that AutΛ ,Q is invariant
under behavioral equivalence. This leaves the following tasks:

1. define a translation from initialized Λ ,Q-automata to initialized Λ ′,Q-automata,
2. outline a construction, that assocates with an arbitrary pointed T -model (S,r),

a pointed T -model (S′,r′) and a morphism f : S′→ S, and
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3. prove, for every initialized Λ ,Q-automaton (A,ai), and every pointed model
(S,r) that

S,r 
 (A,aI)
∗ iff S′,r′ 
 (A,aI). (20)

The first of these tasks is easy to accomplish. Given a Λ ,Q-automaton A= 〈A,δ ,Ω〉,
recall that δ (a,Π) is a rank-1 Λ -formula for each a ∈ A and Π ∈ PQ. Hence we ob-
tain a Λ ′,Q-automaton A∗ by putting A∗ := 〈A,δ ∗,Ω〉, where δ ∗ : A×PQ→ L1

Λ ′(A)
is given by Definition 4.6.3′: δ ∗(a,Π) := (δ (a,Π))∗. For the initialized automaton
(A,aI) we put (A,aI)

∗ := (A∗,aI).
Concerning the second task, consider an arbitrary T -model S = 〈S,σ ,W 〉. Take

the set S′ and the map f : S′ → S provided by clause 3 of Definition 4.6. In order
to endow the set S′ with coalgebra structure, consider an arbitrary element s′ ∈ S′.
Applying the properties of S,S′ and f (given by the mentioned clause) to the element
σ( f s′) ∈ T S, we obtain an element σ ′s′ ∈ T S′ such that

(T f )(σ ′s′) = σ( f s′) (21)

and such that for every rank-1 formula ϕ ∈ L1
Λ
(A) and every marking V : A→ PS

we have
T S,V,σ( f s′) 
1

ϕ
∗ iff T S′,Vf ,σ

′s′ 
 ϕ. (22)

Clearly this procedure defines a coalgebra structure σ ′ : S′→ T S′. For the valuation
W ′ on S′ we take W ′ :=Wf . It is immediate by (21) and the fact that W [

f =W [ ◦ f ,
that the map f : S′→ S is in fact a TQ-coalgebra morphism.

Finally, we need to come up with a designated point r′ of S′ := 〈S′,σ ′〉 which
is mapped to r by f . Clearly if S′ already contains such an element we are done;
if not, then we can simply adjoin a fresh element r′ to S′. We define σ ′r′ so that
(T f )(σ ′r′) = σr (this is possible by the assumptions), adapt the valuation W ′ so
that the type of r′ is that of r in S, and add the pair (r′,r) to (the graph of) f .
Modulo some renaming, this ensures that we obtain a pointed coalgebra (S′,r′),
with a map f : S′→ S satisfying (21) and (22), and such that W ′ =Wf and f r′ = r.
(Formally, we define a model S′′ based on the set S′′ := S′]{r′}, and in the sequel
work with the pointed model (S′′,r′). We omit the details of this construction which
are coalgebraically obvious but somewhat tedious).

We are now ready to prove (20). Fix an initialized Λ ,Q-automaton (A,aI) and a
pointed T -model (S,r). Clearly it suffices to show that

(aI ,r) ∈Win∃(A (A∗,S)) iff (aI ,r′) ∈Win∃(A (A,S′)). (23)

Abbreviate A ∗ = A (A∗,S) and A ′ = A (A,S′).

For the direction from left to right of (23), without loss of generality we may
assume that in A ∗, ∃ has a positional strategy θ : A×S→ (PS)A which is winning
when played from each position (a,s) ∈Win∃(A ∗). Now consider the following
(positional) strategy θ f for ∃ in A ′:
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at position (a,s′) ∃ picks the marking Vf ,
where V : A→ PS is the marking V = θ(a, f s′) provided in A ′ by θ at (a, f s′).

The legitimacy of this move is immediate by (22).
In order to show that θ f is in fact a winning strategy in A ′@(aI ,r), consider an

arbitary match
π = (aI ,r′)U1(a1,s′1)U2(a2,s′2) . . .

in which ∃ plays the strategy θ f just defined. The point is that there is an associated
θ -conform A ∗-match

π
∗ = (aI ,r)V1(a1,s1)V2(a2,s2) . . .

such that Ui = (Vi) f and f s′i = si for all i < ω . To see this, consider a round of the
game, starting at position (a,s′) ∈ A× S′ with (a, f s′) ∈Win∃(A ∗). If ∃ plays her
strategy θ f , picking the marking Vf with V = θ(a, f s′), then for every pair (b, t ′)
picked by ∀, by definition of Vf , the pair (b, f t ′) is a legitimate move for ∀ in A ∗.

By our assumptions on (aI ,r) and θ , the match π∗ is won by ∃. But since π and
π∗ project to exactly the same sequence of A-states, and the winning conditions of
A ∗ and A ′ are the same, this means that ∃ also wins π . Thus we conclude that θ f
is a winning strategy for ∃ in the game A ′ initialized at (aI ,r′).

For the opposite direction ‘⇐’ of (23), we may assume that in A ∗, ∃ has a
positional strategy η : A×S→ (PS)A which is winning from all positions (a,s′) ∈
Win∃(A ′). We will use this η to define a (partial) strategy η f for ∃ in A ∗.

For the definition of η f , consider a position in A ∗ of the form (a, f s′) for some
s′ ∈ S′ such that (a,s′) ∈Win∃(A ′). (Note that the position (aI ,r) has this shape.)
Suppose that in A ′, at position (a,s′), ∃’s strategy η tells her to pick a marking
U : A→ PS′. Our first claim is that the marking U f : A→ PS constitutes a legitimate
move for ∀ in the game A ∗ at position (a, f s′).

To see this we need to verify that T S,U f ,σ( f s′)
1 δ ∗(a,W [( f s′)). But because
U is a legitimate move at (a,s′) in A ′, we know that T S′,U,σ ′s′ 
1 δ (a,W [

f (s
′)).

Observe that U ⊆ (U f ) f (Proposition 4.3), so that by monotonicity it follows that
T S,(U f ) f ,σ

′s′ 
1 δ (a,W [
f (s
′)). From this it is immediate by (22) and the fact that

W [( f s′) = W [
f (s
′) (Proposition 4.3), that T S,U f ,σ( f s′) 
1 δ ∗(a,W [( f s′)), as re-

quired. Now consider an arbitrary response (b, t) of ∀ to ∃’s move U f at position
(a, f s′). It follows from t ∈ U f (b) that t is of the form f t ′ for some t ′ ∈ S′ such
that t = f t ′. This means that in A ′, the move (b, t ′) is legitimate at position U . Fur-
thermore, since we assumed that U was given by a winning strategy, the position
(b, t ′) belongs to the set Win∃(A ′). Summarizing, this shows that in any round of
A ∗ starting at a position (a, f s′) with (a,s′) ∈Win∃(A ′), ∃ has the power to end
the round at a position (b, t) of the same kind; and more specifically, she maintains
an η-conform ‘shadow round’ of the game A ′ starting at (a,s′) and ending at a
position (b, t ′) ∈Win∃(A ′) with f t ′ = t.

On the basis of the above observations, we may easily equip ∃ with a (partial)
strategy η f with the property, that for any η f -conform match
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π = (aI ,r)V1(a1,s1)V2(a2,s2) · · ·

there is an η-conform ‘shadow match’

π
′ = (aI ,r′)U1(a1,s′1)U2(a2,s′2) · · ·

such that si = f s′i and Vi =U f
i for all i∈ω . From this we may derive, using a similar

argument as given before, that π is won by ∃. Thus in this case we conclude that η f

is a winning strategy for ∃ in the game A ∗ initialized at (aI ,r). QED

Finally we show how to derive the Janin-Walukiewicz theorem, stating that µML
is the bisimulation-invariant fragment of MSO, from the results obtained (or men-
tioned) above.

Corollary 2 (Janin & Walukiewicz). For any set Q of proposition letters, µML(Q)≡s

MSOv(Q)/P.

Proof. This result is a straightforward corollary of the Theorems 3.10, 4.9 and 5.1,
together with Proposition 3.5.

To see this, fix a set Q of proposition letters, and note that by Theorem 3.10(1),
there is an initialized automaton (Aϕ ,aϕ) in AutΠ=(Q) such that

ϕ ≡ (Aϕ ,aϕ) on trees. (24)

By the Theorems 3.10(2), 4.9 and 5.1 and by Proposition 3.5, there is a translation
ξ : AutΠ=(Q)→ µML such that for all pointed Kripke models (S,s), there is a
pointed Kripke model (S′,s′) and a morphism f : (S′,s′)→ (S,s) such that for all
initialized automata (A,a) it holds that

S,s 
 ξ (A,a) iff S′,s′ 
 (A,a). (25)

Now let ϕ(v) ∈MSOv(Q) be invariant under bisimilarity, or behavioral equivalence
(these are the same for the power set functor P). We claim that ϕ ′ := ξ (Aϕ ,aϕ) ∈
µML is equivalent to ϕ . To see this, let (S0,s0) be an arbitrary pointed Kripke model,
and let (S1,s1) be a tree model bisimilar (or behaviorally equivalent) to (S0,s0).

Then we have the following chain of equivalences:

S0,s0 
 ϕ iff S1,s1 
 ϕ (assumption on ϕ)
iff S′1,s′1 
 ϕ (assumption on ϕ)
iff S′1,s′1 
 (Aϕ ,aϕ) (24)
iff S1,s1 
 ϕ

′ (25)
iff S0,s0 
 ϕ

′ (adequacy of µML)

which shows that ϕ ≡ ϕ ′ ∈ µML indeed. QED
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6 Conclusion

We finish the paper with some general observations and questions for further re-
search.

First of all, given the fact that it is an open problem whether the Janin-Walukiewicz
theorem also holds in the setting of finite models, it may be interesting to note
that both Proposition 1.4 and Theorem 1.5 can be proved in that setting, as can
Fact 1.3(2). Hence, the ‘only’ hurdle to prove a finite model theory version of their
result is the fact that the correspondence between monadic second-order logic and
Π=-automata is only proven for tree models (Fact 1.3(1)).

Second, commenting on an earlier version of this chapter, van Benthem asked
some questions concerning the translation (·)∗ from MSO to µML. His question
concerning interpolation can be answered positively: given two MSO-formulas ϕ

and χ , one may show that ϕ implies χ ‘along bisimilarity’ iff ϕ and χ have an
interpolant ψ in the modal µ-calculus.

The analysis of fixed-point logics at the level of syntax for the transition func-
tions of automata, which started with the work of Janin & Walukiewicz, has yielded
some other basic results about the modal µ-calculus. For instance, it was used by
d’Agostino & Hollenberg to prove uniform interpolation [6] and by Fontaine &
Venema to obtain various preservation results, such as the characterization of the
continuous fragment of µML [9].

Finally, it would be interesting to extend the coalgebraic analysis of the modal
µ-calculus from model-theoretic aspects to axiomatics and proof theory.
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