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ABSTRACT. Semantics of propositional logic can be formulated in terms
of 2-player games of perfect information. In the present paper the question is
posed what would a generalization of propositional logic to a 3-player setting
look like. Two formulations of such a ‘3-player propositional logic’ are given,
denoted PL3

0 and PL3. An overview of some metalogical properties of these
logics is provided.

Semantics of classical propositional logic is typically given by laying down re-
cursive rules which compute the truth-values of complex formulas from valuations
that specify the truth-values of propositional atoms. Alternatively, the very same
truth-conditions can be captured by defining semantics in terms of games of per-
fect information between two players (say Eloise, Abelard), with the property that
a formula ϕ is true (false) under a valuation V in the usual sense if and only if
there is a winning strategy for Eloise (Abelard) in the associated game G(ϕ,V).1

Conjunction and disjunction are interpreted by choices (between conjuncts and
disjuncts) made by the two players, while negation is interpreted in terms of role
switch (from ‘Verifier’ to ‘Falsifier’ and vice versa).

Classical propositional logic can, then, be seen as a logic for choice and role
switching in a 2-player setting. In the present paper we wish to ask what ‘logics
for choice and role switching’ would look like in multi-player settings.2 In particu-
lar, we take first steps in exploring how to generalize propositional logic to the case
where there are three players. The main goal of this paper is conceptual: to see
how such a generalization can be carried out. The success of the proposed gener-
alizations can, of course, only be assessed by reference to their formal properties,
which is why we take up various related technical issues. The framework of the

1The original definition stems from Hintikka’s [10]. Game-theoretic ideas were systematically ap-
plied in 20th century logic before Hintikka, in dialogical logic (starting with Lorenzen’s [11, 12]).
However, dialogic deals primarily with uninterpreted formulas and proof theory, while Hintikka’s ap-
proach, influenced by Henkin’s [9], is model-theoretic.

2Just before sending off the final version of the paper to the editors, we became aware of two other
publications on multi-player logic. In [1, 2], Abramsky develops a compositional semantics of such
logics in terms of multiple concurrent strategies (formalized as closure operators on certain concrete
domains). It will be of obvious interest to further investigate this connection.
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present paper can be approached from many perspectives: besides technical devel-
opments, one can analyze the use of game-theoretical notions for logical purposes
and vice versa; also the philosophical significance of the emerging framework can
be discussed. Given that the ground being covered is previously unexplored, we
consider it as rewarding to ask questions on several fronts, and to follow in our
discussion more than one lead from more than one viewpoint.

Two formulations of a ‘3-player propositional logic’ will be presented, denoted
PL3

0 and PL3. (Whether these are stricto sensu logics or not, it turns out that they
can be studied as if they were.) Concerning these logics, we ask: Which are the
‘semantic attributes’ corresponding to the truth-values true and false? In which
form, if any, do analogues of the law of excluded middle, law of double negation,
negation normal form, or conjunctive and disjunctive normal forms emerge? What
is the computational complexity of determining the semantic attribute of a formula
relative to a valuation in the 3-player setting? Regarding one of the formulations,
PL3, some remarks are further made concerning the existence of a tableau-based
proof system; 32 related decision problems are furthermore solved. Interestingly,
many properties that fall together in classical propositional logic — typically due
to the determinacy of the corresponding games — turn out to be distinguished in
the multi-player setting.

1 Propositional logic or PL2

Throughout the present paper, prop will be a countable set of propositional atoms.
Formulas of propositional logic are generated by the grammar

ϕ ::= p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ¬ϕ,

with p ∈ prop. Propositional logic will be denoted by PL2. The basic semantic
notion of PL2 is, of course, that of a valuation. Valuations for PL2 are functions
V : prop −→ {true, false}; they provide a distribution of truth-values over the
propositional atoms considered. Well-known recursive clauses compute the truth-
values of complex formulas, relative to a valuation V, from the truth-values that V
gives to the atoms. We write V |= ϕ to indicate that ϕ is true under the valuation
V, whereby V &|= ϕ will indicate that ϕ is false under V. The truth-values true
and false will occasionally be referred to as semantic attributes of propositional
formulas.

There is an alternative way to define the semantics of PL2, employing tools from
game theory. Let us associate, with every formula ϕ and valuation V, a 2-player
game G(ϕ,V) of perfect information (between Eloise and Abelard). The following
game rules determine the set of all (partial) plays of game G(ϕ,V). The players
are associated roles. In the beginning, Eloise occupies the role of ‘Verifier’ and
Abelard that of ‘Falsifier’; in the course of a play, the roles may get switched.
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• If ϕ := p, a play of the game has come to an end. If V(p) = true, the
player whose current role is ‘Verifier’ wins and the one whose current role
is ‘Falsifier’ loses; otherwise ‘Falsifier’ wins and ‘Verifier’ loses.

• If ϕ := (ψ∨χ), then ‘Verifier’ chooses a disjunct θ ∈ {ψ, χ} and the play of
the game continues as G(θ,V).

• If ϕ := (ψ ∧ χ), then ‘Falsifier’ chooses a conjunct θ ∈ {ψ, χ} and the play
of the game continues as G(θ,V).

• If ϕ := ¬ψ, the players switch their roles (‘Verifier’ assumes the role of
‘Falsifier’, and vice versa), and the play continues as G(ψ,V).

If P is one of the players, a strategy for P is any function that specifies a move
for P corresponding to each partial play at which it isP’s turn to move, depending
on the opponent’s earlier moves. A strategy for P is winning, if it leads to a play
won by P against any sequence of the opponent’s moves. The usual propositional
semantics is captured by the above games:

FACT 1. Let ϕ be a formula of PL2 and V a valuation. Then: V |= ϕ iff there is a
winning strategy for Eloise in G(ϕ,V); and V &|= ϕ iff there is a winning strategy
for Abelard in G(ϕ,V). !

2 From two to three — basic ideas

In n-player logic games, there will be n roles in addition to n players. This gen-
eralizes the 2-player case where there are two players (Eloise, Abelard) and two
roles (‘Verifier’, ‘Falsifier’). The roles are bijectively distributed to the players at
each stage in a play of a game. Conceptually, players and their roles must be kept
apart. In order to be able to say who is having which role at a given stage of a play,
one cannot simply identify players with their roles. The same player may assume
different roles during a play. Various semantically crucial notions will be defined
by reference to the initial role distribution: the roles the players have when the
playing of the game begins.

When generalizing PL2 to multi-player settings, there are two mutually inde-
pendent parameters that admit of variation: (1) the payoff function, and (2) the
interpretation of negation symbols. Two generalizations of PL2 to the 3-player set-
ting will be presented, to be denoted PL3

0 and PL3. The former will be technically
somewhat simpler to deal with. It will retain the binary character of the payoff
function: each play is won by some players and lost by the others. Further, for
each pair (i, j) of distinct roles there is a negation symbol ∼i j, interpreted in terms
of a transposition of the roles i and j. By contrast, in PL3 payoffs are defined in
terms of rankings of the players. In this respect it represents a more straightfor-
ward generalization of PL2 than PL3

0 does. On the other hand, the treatment of
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negations is more complicated: the syntax of PL3 provides two negation symbols,
which are interpreted by functions mapping role distributions to role distributions
— instead of being interpreted simply by permutations of roles.

It should be noted that the parameters (1) and (2) could be instantiated in further
ways. In particular, it might be of interest to combine the definition of payoffs
as rankings with the interpretation of negations in terms of transpositions. The
investigations into the ‘logics’ PL3

0 and PL3 presented in this paper are best viewed
as case studies.

The most central question in the generalization of classical propositional logic
is what happens to negation. Games defining the semantics of PL2 are determined:
in each game either Eloise or Abelard has a winning strategy.3 Hence in PL2, the
truth of ¬ϕ under V can be equivalently characterized in one of the two ways: (a)
there is a winning strategy for ‘Falsifier’ in G(ϕ,V); and (b) there is no winning
strategy for ‘Verifier’ in G(ϕ,V). In the former case negation is defined in terms
of role shift, in the latter case by the absence of a winning strategy. In multi-player
settings no analogous equivalence holds. Precisely because the two characteriza-
tions of negation in PL2 — (a) and (b) — are equivalent, the classical framework
as such does not dictate which characterization we should take as the model of
our generalization. In connection with PL3

0 and PL3, we will continue to interpret
negations in terms of changing roles. There is, admittedly, a rather strong pretheo-
retical tendency to construe negation in terms of ‘complementation’ or ‘absence’.
Therefore one might wish to think of the negations in the logics PL3

0 and PL3 as
contrarieties rather than negations proper.

2.1 First formulation: logic PL3
0

Syntax. Formulas of PL3
0 are generated by the grammar

ϕ ::= p | (ϕ ∨i ϕ) | ∼i jϕ,

where i, j ∈ {0, 1, 2}, i ! j, and p ∈ prop. Intuitively, there are three players.
The numbers 0, 1, 2 stand for the roles that the players may have. The connective
∨i is interpreted by the player whose current role is i. Note that the syntax of
PL3

0 involves 3 disjunction signs and 6 negation signs. Whenever no confusion
threatens, brackets may be dropped.

Valuations. Valuations of the logic PL3
0 assign to propositional atoms subsets of

the set {0, 1, 2} of all roles, viz. they are functions V : prop −→ Pow({0, 1, 2}).
Intuitively, those players whose roles at the end of a play are in the set V(p) all win
the play, and the rest lose the play.

3This follows from the Gale-Stewart theorem [8]. The theorem saying that all two-player zero-
sum perfect information games of finite length are determined, is often termed ‘Zermelo’s theorem’.
However, the result is not due to Zermelo. For details, see [13].
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If arbitrary subsets of {0, 1, 2} are allowed as values of V, it may happen that
all players win a play, or that no player does. Not to deviate from the 2-player
setting in our generalization, we should ban ∅ and {0, 1, 2} as possible values of a
valuation function. In what follows, valuations V of PL3

0 meeting the extra require-
ment that neither ∅ nor {0, 1, 2} lies in the image of V, will be termed restricted
valuations.4 The counterpart in PL2 of arbitrary PL3

0-valuations would be the gen-
eralized valuations allowing any of the sets ∅, {true}, {false} and {true, false} as
possible values. A 4-valued propositional logic evaluated precisely relative to such
valuations was introduced by Belnap in [3]. (See also Dunn’s article [7].)
Game rules. The games are played by three players: Alice, Bob and Cecile (in
short: a, b, c). Relative to valuations V : prop −→ Pow({0, 1, 2}), the semantics
of PL3

0-formulas is specified by means of 3-player games G(ϕ,V). To introduce
these games, we first define something a bit more general, namely 3-player games
G(ϕ,V, ρ), where the extra input ρ is a bijection {0, 1, 2} −→ {a, b, c}, i.e., a distri-
bution of roles to the players. If ρ is a role distribution, let ρi j be its transposition
satisfying: ρi j(i) = ρ( j) and ρi j( j) = ρ(i) and ρi j(k) = ρ(k) for k " {i, j}. With every
formula ϕ of PL3, valuation V and role distribution ρ, a 3-player game G(ϕ,V, ρ)
of perfect information between a, b and c is introduced. The game rules are these:

• If ϕ ∈ prop, a play of the game has come to an end. Those players whose
roles are in the set V(ϕ) win the play, the others lose it. That is, a player P
is one of the winners of the play iff ρ−1(P) ∈ V(ϕ).5

• Let i ∈ {0, 1, 2}. If ϕ = (ψ ∨i χ), then the player ρ(i) chooses θ ∈ {ψ, χ},
and the play goes on as G(θ,V, ρ).

• Let i, j ∈ {0, 1, 2} and i ! j. If ϕ = ∼i jψ, the play continues as G(ψ,V, ρi j).

By stipulation the game G(ϕ,V) equals the game G(ϕ,V, ρ0), where ρ0 is specified
by putting ρ0(0) = a, ρ0(1) = b, and ρ0(2) = c. This particular role distribution ρ0

will be referred to as the ‘standard initial role distribution’.
Strategies. Any sequence of moves made according to the game rules is a partial
play. A play is a partial play at which no player is to move. If P is any of the
players, a strategy for P is any function providing a choice for P at any partial
play at which it is his or her turn to move; the choice may depend on the moves
made by P’s opponents earlier in the course of the relevant partial play. A strategy
forP is winning, if against any sequence of moves by his or her opponents, it leads
to a play won by P.

4If f : A −→ B is a function, its image, denoted Im( f ), is the set { f (a) : a ∈ A}.
5Were payoffs taken to be numbers, the games being defined would not in general be constant-sum

games. If winning corresponds to 1 and losing to 0, the sum of the players’ payoffs may be any integer
m with 0 ≤ m ≤ 3.
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Semantic attributes. For each set S of players, exactly the members of S might
have a winning strategy in a game G(ψ,V). Each subset S of {a, b, c} constitutes
a semantic attribute such that ϕ has by definition the attribute S relative to V, if
the set of players having a winning strategy in G(ϕ,V) is S. There are, then, 8
semantic attributes. We will write |ϕ,V| = S to indicate that the semantic attribute
of ϕ relative to V is S.

REMARK 2. Semantic attributes were just defined in terms of players. Arguably
a more intrinsic definition would be in terms of roles. However, throughout this
paper we will think of formulas as evaluated starting with the standard initial role
distribution, assigning to Alice the role 0, to Bob the role 1, and to Cecile the
role 2. We could indeed leave the semantics neutral with respect to the initial
role distribution, and let semantic attributes to be sets of roles rather than sets of
players. The players corresponding to these attributes would then vary with the
particular initial role distribution. We stay with a fixed initial role distribution for
clarity of exposition. !

Observe that directly by the semantics, for any formula ϕ, any valuation V, and
any distinct roles i and j, we have: |∼i jϕ,V| = |∼ jiϕ,V|. Therefore the logic PL3

0
involves ‘really’ only three negations.

Let us think of the 8 attributes. There is a one-one correspondence between sets
of roles and sets of players via the standard initial role distribution ρ0. Given a
set S of players, we write ρ−1

0 (S) for the set {ρ−1
0 (P) : P ∈ S}. Similarly, given

a set R of roles, we write ρ0(R) for {ρ0(i) : i ∈ R}. Observe that trivially, each
attribute can appear as an attribute of an atomic formula. If S is a set of players and
V(p) = ρ−1

0 (S), then |p,V| = S. Next, note that even if ∅ were not allowed in the
image of a valuation function — as when considering only restricted valuations —
still there would be formulas having ∅ as their semantic attribute relative to some
valuation. To see this, let V(p) = {1}, V(q) = {2}, and consider determining the
value |p ∨0 q,V|. Now no player has a winning strategy in G(p ∨0 q,V). For, no
matter which disjunct Alice chooses, she herself loses. On the other hand, choosing
‘left’ she will prevent Cecile from winning, and choosing ‘right’ she will prevent
Bob from winning. Thus |p ∨0 q,V| = ∅.

By contrast, no similar fact holds for the other extreme. If V is a valuation
whose image does not involve the full set {0, 1, 2}, no formula can have {a, b, c} as
its semantic value relative to V. For, suppose that {0, 1, 2} " Im(V), but still all
players have a winning strategy in G(ϕ,V). Let f , g and h be winning strategies
of Alice, Bob resp. Cecile. These strategies determine a certain play of G(ϕ,V).
Let p be the atom reached at the end of the play. Since the play is determined by
the three winning strategies, it is won by all players, i.e., V(p) = {0, 1, 2}. This is a
contradiction.

It is noteworthy that when arbitrary valuations are employed, the very same 8
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semantic attributes are available for all formulas, both atomic and complex. But
if restricted valuations are used — valuations whose image excludes both ∅ and
the full set {0, 1, 2} — then there are 6 semantic attributes available for atomic
formulas, but 7 attributes for complex formulas.

Every formula ϕ ∈ PL3
0 determines a map, call it |ϕ|, from restricted valuations

to semantic attributes, namely |ϕ| : V )→ S, with S = |ϕ,V|. On the other hand,
as noted above, any semantic attribute except {a, b, c} is realizable by a formula of
PL3 under restricted valuations. Let prop be a finite set of propositional atoms,
and f a map from restricted valuations on prop to realizable semantic attributes.
An important systematic question related to PL3

0 then is whether there always is a
formula ϕ of PL3

0 such that f = |ϕ|. This issue of functional completeness is left
as an open question.
Case of n players. It would be straightforward to generalize PL3

0 to the case of
an arbitrary finite number n of players. This would involve having in the syntax
n disjunction symbols and n · (n − 1) negation symbols. The semantics would
require n roles in addition to the n players. The disjunction symbol ∨i would be
interpreted by the player having the role i, and the negation symbol ∼i j by the
transposition of the roles i and j. Semantic attributes would simply be subsets of
the set of all players. Hence there would be 2n distinct semantic attributes.

2.2 Second formulation: logic PL3

In PL3
0, certain features of the 2-player framework were preserved that admit of

generalization. For one thing, payoffs in games for PL3
0 are simply win and loss —

the relevant difference with respect to PL2 is just that several players may receive
a given payoff. For another thing, the negations of PL3

0 are interpreted by means
of transpositions — just like the negation of PL2. One might consider interpret-
ing negation symbols of a 3-player logic by permutations of the three roles, not in
general merely switching two roles at a time. Such permutations are arbitrary bi-
jections of type {0, 1, 2} −→ {0, 1, 2}. However, in PL3 we will go one step further,
and interpret negation symbols by bijections taking role distributions as arguments,
and yielding role distributions as values: bijections of type P −→ P, where P is the
set of all role distributions (the set of all bijections in the set {a, b, c}{0,1,2}). In PL3,
negations are hence interpreted by permutations of role distributions rather than by
permutations of the set of roles. Such a ‘higher-order’ interpretation of negation
symbols has obvious drawbacks. There are 6! = 720 such bijections, so which
ones should we consider? Should all these functions be expressible by means of
those we introduce explicitly? In connection with PL3 a more modest approach
is adopted: we introduce 2 negation symbols, and simply content ourselves with
being able to express the 6 permutations of the set of roles in terms of these 2
negation symbols — interpreted by means of permutations of role distributions.
Syntax. Formulas of PL3 are generated by the following grammar:
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ϕ ::= p | (ϕ ∨i ϕ) | ¬ϕ | ∼ϕ,

with i ∈ {0, 1, 2} and p ∈ prop. Again, there are intuitively three players, each
of whom occupies one of the roles 0, 1, 2. And as before, the connective ∨i is
interpreted by the player whose current role is i. To the two negation signs, ¬ and
∼, two permutations of role distributions will correspond.
Valuations. Valuations of the logic PL3 are functions from propositional atoms to
role distributions, i.e., functions of type prop −→ P. Let us write V(p) = (r, r′, r′′)
to indicate that V(p)(r) = a, V(p)(r′) = b, and V(p)(r′′) = c. Intuitively, the value
V(p) serves to rank the players in a linear order with respect to the propositional
atom p. If V(p) = (r, r′, r′′), this means that relative to the atom p, Alice has the
role r, Bob the role r′, and Cecile the role r′′. The numerical values of r, r′ and
r′′ then determine a ranking among the three players. Such a numerical value is
termed the rank of the player. The best rank is 0, the next best 1, and the worst 2.
If, e.g., V(p) = (2, 0, 1), then relative to p Alice gets the worst rank, Bob the best
rank and Cecile the next best rank.6

Negations. Negation of PL2 turns truths into falsehoods and vice versa; game-
theoretically this negation is interpreted by a transposition acting on a pair of roles.
transpositions are a (representative) special case of permutations of a finite set.
The generalization to be considered next involves interpreting the two negations
of PL3 by permutations of role distributions. The ‘higher order’ permutations to
be considered are π¬ and π∼:

π¬(0, 1, 2) = (1, 2, 0) π¬(0, 2, 1) = (1, 0, 2)
π¬(1, 2, 0) = (2, 0, 1) π¬(1, 0, 2) = (2, 1, 0)
π¬(2, 0, 1) = (0, 1, 2) π¬(2, 1, 0) = (0, 2, 1)

π∼(0, 1, 2) = (0, 2, 1) π∼(0, 2, 1) = (0, 1, 2)
π∼(1, 2, 0) = (1, 0, 2) π∼(1, 0, 2) = (1, 2, 0)
π∼(2, 0, 1) = (2, 1, 0) π∼(2, 1, 0) = (2, 0, 1)

FIGURE 1

The two negations ¬ and ∼ will, then, correspond to two different ways in which
distributions of roles to the players are changed: in one case according to π¬, in
the other according to π∼. It can be noted that π¬ is definable as a permutation of
roles, mapping the role 0 to 1, the role 1 to 2, and the role 2 to 0. By contrast, π∼
cannot be defined simply by reference to roles, but is genuinely a permutation of
entire role distributions. As a matter of fact, all permutations of roles can now be
defined by means of compositions of these two permutations of role distributions.
(Certainly not all of the 720 permutations of role distributions are definable in

6For games with rankings as payoffs, see [4, 5].
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terms of π¬ and π∼, but then again, this is not posed as a desideratum in our case
study of PL3.)
Game rules. With every formula ϕ of PL3, valuation V : prop −→ P and role
distribution ρ : {0, 1, 2} −→ {a, b, c}, a 3-player game G(ϕ,V, ρ) of perfect in-
formation between Alice, Bob and Cecile is introduced.7 The game rules are as
follows:

• If ϕ ∈ prop, a play of the game has come to an end. If V(ϕ) = (r, r′, r′′),
then r determines the payoff for Alice, r′ for Bob, and r′′ for Cecile. Role
0 yields payoff g, role 1 payoff s, and role 2 payoff b. (Mnemonics: g for
‘gold’, s for ‘silver’ and b for ‘bronze’.)

• Let i ∈ {0, 1, 2}. If ϕ = (ψ ∨i χ), then the player ρ(i) chooses θ ∈ {ψ, χ},
and the play goes on as G(θ,V, ρ).

• If ϕ = ¬ψ, then the play continues as G(ψ,V, ρ′) with ρ′ = π¬(ρ).

• If ϕ = ∼ψ, then the play continues as G(ψ,V, ρ′) with ρ′ = π∼(ρ).

We stipulate that the game G(ϕ,V) equals the game G(ϕ,V, ρ0), where ρ0 is the
standard initial role distribution, defined as in Subsection 2.1.
Strategies. The notions of (partial) play and strategy are defined as with PL3

0.
Since in PL3 a play has more than two possible outcomes (there are 3! = 6 possible
outcomes), unqualified talk of winning strategies would not make sense. This fact
motivates the following definitions: a g-strategy for player P is a strategy for P
leading to the payoff g for P, against any sequence of moves by P’s opponents;
and an s-strategy forP is a strategy forPwhich is not a g-strategy, and which leads
at least to the payoff s for P, against any sequence of moves by P’s opponents.
If Alice, say, has an s-strategy, she cannot use it to gain g against all sequences
of moves by Bob and Cecile. Yet, if she follows her s-strategy, she may obtain g
against some moves by them, and whenever she does not, she gains the payoff s.
Semantic attributes. When extending the semantics from atomic to complex for-
mulas, there are the following questions to consider: Is there a g-strategy for one
of the players? Is there an s-strategy for (at least) one of the players? It can
happen that no player has a g-strategy, and it can happen that exactly one has.
Further, it can happen that no player has an s-strategy, and it can happen that one
player has or that two players have an s-strategy. If no player has a y-strategy (for
y ∈ {g, s}) in a game, the game is said to be non-determined with respect to having
a y-strategy; if more than one player has a y-strategy (for y = s), the game is over-
determined with respect to having a y-strategy. Schematically, we are interested

7Unlike games for PL3
0, games for PL3 would indeed be constant-sum games, should we define

payoffs as numbers.
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in global properties of games G(ϕ,V) represented by the following 16 pairs (‘?’
stands for non-determinacy, ‘!P,P′’ for overdeterminacy due to players’ P and P′
both having an s-strategy):

(a, b) (a, c) (a, ?)
(b, a) (b, c) (b, ?) (?, !a,b)
(c, a) (c, b) (c, ?) (?, !a,c)
(?, a) (?, b) (?, c) (?, ?) (?, !b,c)

FIGURE 2

The first member x of a pair (x, y) indicates whether one of the players has a g-
strategy, and if one of them has, it also indicates who does. The second member
y indicates whether some of the players have an s-strategy, and if at least one of
them has, it indicates which one does or which ones do.

We distinguish between 16 semantic attributes of a formula: each pair P listed in
Figure 2 constitutes a semantic attribute such that ϕ has by definition the attribute
P relative to a valuation V, if the players’ status in terms of having or lacking a
g-strategy resp. an s-strategy in game G(ϕ,V) is as specified by the pair P. Hence
for instance the attribute (a, b) corresponds to Alice’s having a g-strategy and Bob’s
(and only Bob’s) having an s-strategy; while (?, !b,c) corresponds to no player’s
having a g-strategy and both of the players’ Bob and Cecile having an s-strategy.
We write |ϕ,V| = P to indicate that the semantic attribute of ϕ relative to V is P.

Like with PL3
0, also in connection with PL3 the semantics might be left neutral

with respect to the initial role distribution, and we could define the semantic at-
tributes by reference to roles rather than players. However, we believe it to serve
clarity of exposition to refer to players and stay with the standard initial role dis-
tribution (cf. Remark 2).

REMARK 3. Semantic attributes in logics PL2, PL3
0 and PL3 can be viewed from a

unifying perspective using the game-theoretic notion of security level (guaranteed
minimum payoff);8 for this notion see e.g. [5]. In each case semantic attributes can
be considered as maps representing the security levels of the players. With PL2,
the only possible maps are {(Eloise, 1), (Abelard, 0)} and {(Eloise, 0), (Abelard, 1)}
— since the corresponding games are determined. Semantic attributes S of PL3

0
give rise to maps fS of type {a, b, c} −→ {0, 1}, where fS(P) = 1 iff P ∈ S. Finally,
in PL3 semantic attributes P induce maps fP : {a, b, c} −→ {g, s, b}, where the
value fP(P) indicates the optimal minimum rank that player P can guarantee by a
suitable choice of strategy. We leave systematic investigation of the use of security
levels and related game-theoretic notions in connection with game-theoretically
defined logics for future research. !

8We are indebted to an anonymous referee for this observation.



Propositional Logics for Three 409

Let us now check in detail that all the 16 pairs of Figure 2 can indeed oc-
cur as semantic attributes of a formula. Let us begin by considering g-strategies.
The number of players having a g-strategy in a game G(ϕ,V) can be zero or one.
(Evidently there are no games where more than one player has a g-strategy.)

EXAMPLE 4 (No one has a g-strategy). Put V(p) = (2, 0, 1), V(q) = (0, 2, 1),
and V(r) = (1, 2, 0); and let ϕ := (p ∨0 (q ∨1 r)). No player has a g-strategy
in G(ϕ,V): Alice gets second position if Bob chooses ‘right’ for ∨1 (Alice having
first herself chosen ‘right’ for ∨0). Cecile gets second position if Alice chooses
‘left’ for ∨0. And Bob gets only the last position if Alice chooses ‘right’ for ∨0, no
matter what Bob himself chooses for ∨1. !

EXAMPLE 5 (Exactly one player has a g-strategy). Let V(p) = (0, 1, 2). Then
trivially Alice has a g-strategy in game G(p,V). !

Let us proceed to think of s-strategies. The number of players having an s-
strategy in a game G(ϕ,V) can be zero, one or two. (Two players can have an
s-strategy only if no player has a g-strategy.)

EXAMPLE 6 (No one has a g-strategy, nor an s-strategy). Consider the formula
ϕ := ((p ∨1 q) ∨0 (r ∨2 s)). Let V(p) = (0, 1, 2), V(q) = (2, 1, 0), V(r) = (0, 2, 1),
V(s) = (2, 0, 1). In the left 0-disjunct Bob (i.e., the player responsible for moving)
becomes second no matter which 1-disjunct he chooses, but he can decide whether
Alice becomes first or third; and in the right 0-disjunct Cecile (i.e., the player
responsible for moving) becomes second no matter which 2-disjunct she chooses,
but she can decide whether Alice becomes first or third. It is Alice who decides
whether the play proceeds to the left or to the right 0-disjunct. Hence in G(ϕ,V)
no player has a g-strategy. Actually no player even has an s-strategy. For, by what
noted above, Alice cannot exclude the possibility that she becomes third. And
jointly Alice and Bob can guarantee that Cecile becomes third, and likewise jointly
Alice and Cecile can guarantee that Bob becomes third. !

EXAMPLE 7 (Someone has a g-strategy; no one has an s-strategy). Consider
the formula ϕ := (p ∨0 q), and the valuation V with V(p) = (0, 1, 2) and V(q) =
(0, 2, 1). Alice has a g-strategy in G(ϕ,V), but neither Bob nor Cecile can guarantee
second position: it is up to Alice to decide. !

Trivially there are games where some player has a g-strategy and another one
has an s-strategy. E.g., in the game of Example 5, Alice has a g-strategy and Bob
an s-strategy. Let us look at games where no one has a g-strategy.

EXAMPLE 8 (No one has a g-strategy; exactly one player has an s-startegy).
Consider the formula ϕ := (p∨0 (q∨1 r)), and let V(p) = (2, 1, 0), V(q) = (2, 0, 1),
V(r) = (0, 1, 2). Clearly no player has a g-strategy in G(ϕ,V): Alice cannot force
that all plays of the game end with the atom r; Bob cannot force that all plays end
with q; and Cecile cannot force that all plays end with p. On the other hand, Bob
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has an s-strategy: it consists of doing nothing if Alice picks out the left 0-disjunct,
and choosing either of the 1-disjuncts if Alice picks out the right 0-disjunct. By
contrast, Cecile cannot guarantee becoming second (since Alice can choose ‘right’
for ∨0 and Bob can continue by picking out ‘right’ for ∨1). And Alice cannot ex-
clude ending up third (for if she chooses ‘right’ for ∨0, Bob can choose ‘left’ for
∨1). Hence Bob alone has an s-strategy in G(ϕ,V). !

EXAMPLE 9 (No one has a g-strategy; two players have an s-strategy). A case in
point is the formula ϕ := (p∨0 q) and the valuation V such that V(p) = (2, 0, 1) and
V(q) = (2, 1, 0). No player has a g-strategy in G(ϕ,V); but both Bob and Cecile
have a way of guaranteeing (without any personal effort, for that matter) that they
receive at least the payoff s. By contrast, Alice ends inevitably last no matter how
the play goes. !

The following fact holds trivially:

FACT 10. (a) It cannot happen that each of the three players has either a g-strategy
or an s-strategy. (b) It cannot happen that one of the players has a g-strategy, and
both remaining players have an s-strategy. !

The above considerations show that indeed each of the 16 pairs listed in Figure
2 determines a possible semantic attribute of a PL3-formula.

Like in the case of PL3
0, also in connection with PL3 the question of functional

completeness naturally arises. Every PL3-formula ϕ determines a map — let us
call it |ϕ| — from valuations to semantic attributes, namely |ϕ| : V )→ P, where
P = |ϕ,V|. Let, then, prop be a finite set of propositional atoms, and f any
map from valuations on prop to the 16 semantic attributes. The question then is
whether there always is a formula ϕ of PL3 such that f = |ϕ|. We leave this as an
open question.
Case of n players. Could PL3 be naturally generalized to the case of n play-
ers? Insofar as the payoff function is considered, the answer is affirmative. There
would be n! possible rankings of the n players. The semantic attribute of a for-
mula relative to a valuation would be defined by specifying for each player his or
her optimal minimum rank in the correlated game. It would be straightforward to
define the semantics of disjunction symbols. By contrast, it is less evident how to
effect a generalization with respect to negations. If Pn is the set of all distributions
of the n roles to the n players, the requirement would be to choose a minimal set
of bijections of type Pn −→ Pn which would suffice for defining all bijections of
type n −→ n. The fact that the relevant set of permutations of role distributions
is not uniquely determined can be seen as diminishing the theoretical interest of
PL3. Another theoretically problematic feature of PL3 and its generalizations is
that if we are willing to climb to the level of permutations of role distributions,
why should not all permutations of role distributions be studied within the logic?
In the n-player case there are (n!)! of them.
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3 Basic features of PL3
0 or PL3

Let L be one of the logics PL3
0 or PL3. Valuations for L will be called L-valuations.

The possible semantic attributes of L-formulas will be called L-attributes. In
what follows, L-formulas ϕ and ψ are said to be logically equivalent, in symbols
ϕ "# ψ, if for all L-valuations V and L-attributes A, we have that |ϕ,V| = A
iff |ψ,V| = A. Formulas ϕ,ψ ∈ L are incompatible, if there is no L-valuation V
such that |ϕ,V| = |ψ,V|. Let us proceed to make some basic observations about
the behavior of negations, literals, and the definability of semantic attributes in the
logics PL3

0 and PL3.

3.1 Behavior of negations

In PL2, the negation ¬ obeys the law of double negation: ϕ and ¬¬ϕ are logi-
cally equivalent, for any formula ϕ. Let us consider what types of laws hold for
iterations of negation symbols in PL3

0 and PL3.
Let us begin with PL3

0. Let ϕ ∈ PL3
0 be arbitrary. We have already seen that

whenever i, j are distinct roles, the formulas∼i jϕ and ∼ jiϕ are logically equivalent.
Furthermore, it is easily observed that the following laws of double negation hold
in PL3

0: ∼i j∼i jϕ"# ϕ.
What about the interaction of different negation signs? To begin with, it is

readily checked that ∼01∼02ϕ "# ∼02∼12ϕ "# ∼12∼01ϕ, and ∼01∼12ϕ "#
∼02∼01ϕ"# ∼12∼02ϕ.

Obviously all six role distributions ρ ∈ {a, b, c}{0,1,2} can be expressed in terms
of the three negations ∼01, ∼02, and ∼12. That is, for any such ρ there is a string
n̄ of length at most 2, formed in the alphabet {∼01,∼02,∼12}, such that if πn̄ ∈
{0, 1, 2}{0,1,2} is the permutation corresponding to the string of negations n̄, then
ρ = (ρ0 ◦ πn̄), where ρ0 is the standard initial role distribution.9 Identifying
role distributions with the triples of roles they give to Alice, Bob and Cecile in
this order, we may note that for the role distributions (0, 1, 2), (0, 2, 1), (1, 0, 2),
(1, 2, 0), (2, 1, 0) and (2, 0, 1), the corresponding strings n̄ are:10 empty string; ∼12;
∼01; ∼01∼02; ∼02; and ∼01∼12. It should be observed that from the viewpoint
of expressive power, not all negations ∼01, ∼02 and ∼12 are actually needed for
expressing all role distributions. For instance ∼12 is definable in terms of ∼01 and
∼02: namely, ∼12ϕ"# ∼01∼02∼01ϕ, for any formula ϕ.

Negations of the logic PL3 behave rather differently from the case of PL3
0. Let

ϕ ∈ PL3 be arbitrary. It is straightforward to see that ∼ obeys the law of double
negation, ∼∼ϕ "# ϕ, while ¬ obeys the law of triple negation: ¬¬¬ϕ "#
ϕ. Further, the relative order of the different negation symbols obeys the law of

9If f : A −→ B and g : B −→ C are functions, the composite function (g ◦ f ) : A −→ C satisfies:
(g ◦ f )(a) = g( f (a)), for any a ∈ A.

10Instead of the combination ∼01∼02, we might just as well use either ∼02∼12 or ∼12∼01; and in
place of ∼01∼12 either ∼02∼01 or ∼12∼02 could be used.
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order invariance: ∼¬ϕ "# ¬∼ϕ. (That is, π¬ and π∼ commute.) By contrast,
the following six formulas are pairwise incompatible: ϕ, ¬ϕ, ¬¬ϕ, ∼ϕ, ¬∼ϕ,
¬¬∼ϕ. Note that on the other hand, by the law of order invariance we have:
∼¬¬ϕ "# ¬∼¬ϕ "# ¬¬∼ϕ. Inspecting the definitions of the permutations
π¬ and π∼ (given in Fig. 1), it is evident that the two negations ¬ and ∼ are not
interdefinable.

3.2 Literals

In PL2, there are for each propositional atom p precisely two mutually incompati-
ble literals, namely p and ¬p. Let L be either of the logics PL3

0 or PL3. If p ∈ prop,
a formula ' of L is a p-literal, if ' is syntactically built from p using the negation
symbols of L only. A set Λ of p-literals is basic, if (i) any two elements in Λ
are pairwise incompatible, and (ii) every p-literal is logically equivalent to some
element of Λ. (Recall the definition of incompatibility from the beginning of the
present section.) Extending this terminology to PL2, for instance sets {p,¬p} and
{¬¬p,¬p} are both basic sets of p-literals, while the sets {¬p} and {p,¬p,¬¬p} are
not. A formula of L is a literal, if it is a p-literal for some atom p. What interests
us in connection with L is determining whether some basic set of p-literals exists,
for any given atom p.

Consider PL3
0 first. By observations made in Subsection 3.1, in order to find out

whether PL3
0 admits of basic sets of p-literals in the first place, it suffices to check

whether X := {p, ∼01 p, ∼02 p, ∼12 p, ∼01∼02 p, ∼01∼12 p} is such a set. Let S be
either {a, b, c} or ∅. Now if V(p) = ρ−1

0 (S), then actually the semantic attribute
of all formulas of the set X is S, relative to V. It follows that relative to arbitrary
valuations, there simply exists no basic set of p-literals at all.

What about considering restricted valuations only — valuations whose value
on an atom is neither ∅ nor {0, 1, 2}? Under this assumption, if V(p) = R and
S = ρ0(R), we can find distinct roles i, j such that {i, j} coincides either with R or
with {0, 1, 2} \ R. In both cases |p,V| = |∼i j p,V| = S. It follows that the p-literals
p, ∼01 p, ∼02 p and ∼12 p are not pairwise incompatible in the sense that under no
valuation no two of them would have the same semantic attribute. Actually, under
any restricted valuation exactly two of them have the same attribute. Hence no ba-
sic set of p-literals exists, even when attention is confined to restricted valuations.
With respect to literals, PL3

0 behaves, then, very differently from PL2.

By contrast, PL3 comes closer to PL2 in its behavior with respect to literals.
The p-literals p, ¬p, ¬¬p, ∼p, ¬∼p and ¬¬∼p are indeed pairwise incompatible,
and moreover any further p-literal is equivalent to one of them. Therefore these
formulas form a basic set of p-literals in PL3.
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3.3 Capturing semantic attributes

In PL2, both truth-values can be captured by a formula — or are definable —
in the sense that there is a formula , of PL2 whose truth-value is true under all
valuations, and likewise there is a formula ⊥ of PL2 whose truth-value is false
under all valuations. For instance (p ∨ ¬p) is such a formula ,, and (p ∧ ¬p)
such a formula ⊥. Letting L be one of the logics PL3

0 or PL3, let us now consider
the question whether all L-attributes can be similarly captured within L, that is,
whether for each L-attribute A there is a formula ϕA of L such that |ϕA,V| = A,
for all L-valuations V.

Let us begin by considering the logic PL3
0. First we may notice that relative to

arbitrary valuations such capturing is not possible in PL3
0. This is a corollary to the

following lemma:

LEMMA 11. Let R be either {0, 1, 2} or ∅; and let V be a valuation mapping all
propositional atoms to the set R. Then all formulas of PL3

0 receive, relative to V,
the semantic attribute S = ρ0(R).

Proof. By assumption the claim holds for atoms. Assuming inductively that the
claim holds for formulas ϕ,ψ, it immediately follows that it also holds for formu-
las (ϕ ∨i ψ) and ∼i jϕ. $

If {a, b, c} ! S ! ∅, then by Lemma 11 the semantic attribute S cannot be
captured by any formula of PL3

0. For, relative to a valuation as in the statement of
the lemma, any formula will receive a semantic attribute other than S. What about
turning attention to restricted valuations, then?

Consider the attribute {a}. Evidently under any restricted valuation V, Alice has
a winning strategy in one of the games G(p,V), G(∼01 p,V) and G(∼02 p,V). Now
in order for a formula to have the semantic attribute {a}, it is required, not just that
Alice has a winning strategy, but also that neither of the other two players has one.
Actually the formula

(p ∨0 ∼12 p) ∨0 (∼01 p ∨0 ∼01∼02 p) ∨0 (∼02 p ∨0 ∼01∼12 p)

captures the attribute {a} relative to restricted valuations. To see this, let V be any
such valuation. If 0 ∈ V(p), then already by her first choice Alice can guarantee
that she will win: by choosing the leftmost disjunct. What is more, by her next
choice she may prevent any of the other two players from winning. Namely, since
V is a restricted valuation, either 1 or 2 falls outside of V(p). Hence neither Bob
nor Cecile has a winning strategy in both games G(p,V) and G(∼12 p,V), and
consequently neither of them has a winning strategy for (p ∨0 ∼12 p), since it is
Alice who chooses the disjunct. Similarly, if 1 ∈ V(p), Alice may choose the
middle disjunct, and if 2 ∈ V(p), the rightmost disjunct, being able to make sure
by her remaining move that neither of the other players can also win the play.
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The attributes {b} and {c} are captured similarly. On the other hand, by
Lemma 12 the attributes {a, b}, {a, c} and {b, c} are not definable.

LEMMA 12. Suppose |V(p)| = 1 for all propositional atoms p.11 Then no formula
ϕ of PL3

0 has relative to V an attribute S, for any S with |S| = 2.

Proof. Suppose V satisfies the premise of the lemma. Then the claim holds for
atomic formulas. Go on to assume inductively that the claim holds for formulas
ϕ,ψ, and let i, j be any two roles. Consider the formula (ϕ ∨i ψ). By inductive
hypothesis, in both games G(ϕ,V) and G(ψ,V) at most one player has a win-
ning strategy. Clearly the number of players with a winning strategy in game
G(ϕ ∨i ψ,V) can be at most max{nϕ,nψ}, where nθ ≤ 1 is the number of players
having a winning strategy in G(θ,V), with θ ∈ {ϕ,ψ}. Further, given the inductive
hypothesis, evidently at most one player has a winning strategy in G(∼i jϕ,V). $

As witnessed by the fact that the singleton attributes S can be captured relative
to restricted valuations, the ‘mirror image’ of Lemma 12 does not hold: it can very
well happen that a formula has the semantic attribute S for a singleton S, even
relative to a valuation V with |V(p)| = 2, for all atoms p. Generally, the number of
players having a winning strategy for a complex formula can very well be smaller
than the number of players having a winning strategy for its components.

Let us, then, take a look at the logic PL3. As regards capacity to capture seman-
tic attributes, PL3 turns out to differ from PL3

0. Actually, each of the 16 semantic
attributes of PL3 can be captured.

First think of the attribute (a, b). Divide the p-literals into three ‘cells’: {p,∼p},
{¬p,¬∼p}, {¬¬p,¬¬∼p}, and observe that under any valuation, there is a cell
such that Alice receives the highest rank relative to both formulas of that cell.
For one of the formulas in that cell, it is Bob who becomes second in the rank-
ing, while for the other, Cecile becomes second. So the formula (p ∨1 ∼ p) ∨0

(¬p ∨1 ¬∼p) ∨0 (¬¬p ∨1 ¬¬∼p) receives under any valuation the attribute (a, b).
For, Alice may make sure that she becomes first, whereafter Bob can guarantee
that he becomes second. The attributes P with P ∈ {(a, c), (b, a), (b, c), (c, a), (c, b)}
are captured similarly.

Let us, then, consider the case of (a, ?). This attribute is simply captured by
the formula (p ∨0 ¬p ∨0 ¬¬p ∨0 ∼p ∨0 ¬∼p ∨0 ¬¬∼p). Namely, under
any valuation, there are two 0-disjuncts which Alice can choose so that she herself
reaches the highest rank. In one of them Bob becomes second, while in the other
Cecile becomes second. Bob and Cecile have no control over which 0-disjunct
Alice chooses. The attributes (b, ?) and (c, ?) are captured similarly.

For the remaining attributes, we state the relevant formulas; the reader is invited
to check in detail that indeed they fit the bill. Let Λ := {p,¬p,¬¬p,∼p,¬∼p,

11If X is a set, |X| stands for its cardinality.
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¬¬∼p}, and define formulas C1 and C2 by setting:

C1 :=
∨

0
'∈Λ

(' ∨1 ¬') and C2 :=
∨

0
'∈Λ

(∼' ∨1 ¬').

The formula (C1∨0 C2) captures (?, a); while (?, b) and (?, c) are captured similarly.
Further, (?, ?) is captured by the formula (D1 ∨0 D2), where

D1 :=
∨

1
'∈Λ
' and D2 :=

∨

2
'∈Λ
'.

Finally, the attribute (?, !a,c) is captured by

[(p ∨2 ∼p) ∨1 (¬p ∨2 ¬∼p)] ∨0 [(¬p ∨2 ¬∼p) ∨1 (¬¬p ∨2 ¬¬∼p)]
∨0 [(¬¬p ∨2 ¬¬∼p) ∨1 (p ∨2 ∼p)],

the attributes (?, !a,b) and (?, !b,c) being captured similarly.

3.4 The notion of consequence

In connection with PL2, logical consequence is defined in terms of truth-preserva-
tion: ψ is a logical consequence of ϕ, if all valuations making ϕ true, make ψ
true as well. The game-theoretic content of this condition is as follows: for every
valuation V, if there is a winning strategy for Eloise in G(ϕ,V), there also is one
for her in G(ψ,V). A corresponding consequence relation for Abelard is defined
by the requirement that for all valuations V, whenever there is a winning strategy
for Abelard in G(ϕ,V), there is one for him in G(ψ,V). The relation defined
by this condition is the converse of the relation of logical consequence, and is
characterized by falsity-preservation.

The notion of consequence relation is naturally generalized to the multi-player
setting by introducing one consequence relation for each player. Let P be one of
the three players. It is said that ψ is a P-consequence of ϕ in PL3

0, provided that
all valuations V satisfy: if P has a winning strategy in G(ϕ,V), then P also has
one in G(ψ,V). This condition can be otherwise expressed thus: for all valuations
V, if P ∈| ϕ,V|, then P ∈ |ψ,V|.

In games corresponding to PL3, the payoffs are in terms of rankings.
Accordingly, what is of interest to a given player P on the level of strategies is the
optimal minimum rank that P can guarantee by a suitable choice of strategy. In
Section 2 the relevant notions of strategy were conceptualized in terms of the no-
tions of g-strategy and s-strategy. (Alternatively, we might speak of security levels
g and s, respectively, as noted in Remark 3.) Now ψ is said to be a P-consequence
of ϕ in PL3, if for all valuations V, the optimal minimum rank that P can guar-
antee in G(ψ,V) is the same or better than the optimal minimum rank that P can
guarantee in G(ϕ,V). In terms of semantic attributes, this condition means the
following. Suppose that |ϕ,V| = (x, y) and |ψ,V| = (x′, y′). Then if x = P, also
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x′ = P, while if y marks P as a player with an s-strategy, then either x′ = P or y′

marks P as a player with an s-strategy.
From the viewpoint of PL2 one might equally well think of a generalization

where each semantic attribute would induce its own consequence relation. We
believe, however, that the generalization in terms of players is the fruitful one. In
particular, when consequence relations for PL3

0 and PL3 are defined as above, they
seem to have good algebraic counterparts in terms of semi-lattices. Systematically
studying the consequence relations is left for future research.

4 Further features

The logic PL2 satisfies the law of excluded middle: for any valuation V and any
formula ϕ, we have V |= (ϕ ∨ ¬ϕ). Furthermore, PL2 is subject to the semantic
principle of bivalence: relative to any valuation, any formula ϕ is either true or
false.12 Let us take a look whether the logics PL3

0 and PL3 admit of analogous log-
ical laws and semantic principles. We also take up the question whether analogues
to De Morgan’s laws and distributive laws can be formulated in PL3

0 and PL3.
The following definitions will be needed subsequently. Let L be any of the

logics PL2, PL3
0 or PL3. If ϕ is a formula of L, let us agree to write L(ϕ) for

the class of L-formulas that can be formed from (any number of tokens of) the
formula ϕ using the operators of L. Hence for instance ∼01 (p ∨0 q) ∈ L(p ∨0 q),
but p " L(p ∨0 q).

DEFINITION 13 (Uniform characterization; characterizability). If χ ∈ L(p), write
fχ for the syntactic transformation of type L −→ L defined by the following con-
dition: for all ϕ ∈ L,

fχ(ϕ) = χ[p/ϕ],

where χ[p/ϕ] stands for the result of substituting everywhere ϕ for p in χ. Let,
then, A0 be a fixed L-attribute, and A an arbitrary L-attribute. It is said that a
formula χ ∈ L(p) uniformly characterizes A in terms of A0, if for all formulas
ψ ∈ L and L-valuations V,

|ψ,V| = A iff | fχ(ψ),V| = A0.

It is merely said that A can be characterized in terms A0, if for all ψ ∈ L, there is
χψ ∈ L such that for all V: |ψ,V| = A iff |χψ,V| = A0. !

Whenever a formula χ ∈ L(p) uniformly characterizes A in terms of A0, the
attribute A can of course be characterized in terms of A0, but the converse does
not hold. Crucially, in connection with the stronger notion, the form of the formula

12As stressed notably by Dummett (see, e.g., [6]), logical laws must be distinguished from semantic
principles. From the perspective of the present paper, what is crucial about logical laws is that they are
expressed in terms of a designated truth-value (true).
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fχ(ψ) does not depend on the particular input ψ: the form of fχ(ψ) is that of χ,
modulo ψ being substituted everywhere for p. With the weaker notion, again,
there is no guarantee of syntactic similarity between formulas χψ corresponding
to distinct formulas ψ.

4.1 Analogues of the law of excluded middle

In PL2, the truth-value true is captured by the formula (p ∨ ¬p). As it happens,
the atom p can be replaced by an arbitrary formula ϕ, and the result will continue
to capture true. This fact alone shows that the law of excluded middle holds for
PL2. In the case of a logic subject to the semantic principle of bivalence, the law
of excluded middle can be understood as providing at the object language level
an exhaustive list of the semantic values that an arbitrary formula ϕ may have.
Expressing the different truth-values on the object language level is possible in
PL2, since falsity of a formula can be expressed by truth of another formula. Let
us consider whether similar phenomena occur in the 3-player setting.

Logic PL3
0. A necessary condition for the existence of an analogue of the law of

excluded middle in PL3
0 would be that any semantic attribute S of any given for-

mula χ could be expressed in terms of some designated attribute S0 of some other
formula ψχ

S
, i.e., that for all valuations V, we had |χ,V| = S iff |ψχ

S
,V| = S0. Let

us take {a} as the designated attribute. The choice is to some extent arbitrary. In
particular, one might ask why the designated attribute should be a singleton rather
than a pair. To this a possible reply would be that the former are better-behaved
from the logic-internal viewpoint: singleton attributes are definable in PL3

0, while
two-element attributes are not (see Lemma 12). Let us now turn attention to propo-
sitional atoms, and show that indeed for each atom p there is a formula ϕp which
lists all the six semantic attributes that p may have relative to restricted valua-
tions. (By Lemma 11 we know such a result cannot hold with respect to arbitrary
valuations.) We first prove a lemma.

LEMMA 14. Let V be an arbitrary restricted valuation. Define formulas ψ{a,b},
ψ{a,c} and ψ{b,c} as follows:

ψ{a,b} := (p ∨0 ∼12 p) ∨2 (∼01 p ∨1 ∼12 p),
ψ{a,c} := (p ∨0 ∼12 p) ∨1 (∼02 p ∨2 ∼12 p),
ψ{b,c} := (∼01 p ∨1 ∼02 p) ∨0 (∼01 p ∨2 ∼02 p).

For all sets S ∈ {{a, b}, {a, c}, {b, c}}: |p,V| = S iff |ψS,V| = {a}.

Proof. Let us check the case S := {a, b}; the other cases can be proven simi-
larly. Let V be a restricted valuation. Suppose first that |ψ{a,b},V| = {a}. Hence
Alice has a winning strategy in both games G(∼01 p,V) and G(∼12 p,V). Therefore
0, 1 ∈ V(p), and since V is restricted, in fact V(p) = {0, 1}. So |p,V| = {a, b}. Con-
versely, suppose |p,V| = {a, b}. Thus Alice has a winning strategy in all games
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G(∼01p,V), G(∼12p,V) and G(p,V), and therefore in G(ψ{a,b},V). What is more,
Bob does not have a winning strategy in the game corresponding to ψ{a,b} (since
Cecile may choose ‘left’ after which Alice may choose ‘right’); and Cecile has no
winning strategy either, because if she chooses ‘left’, Alice may choose ‘left’ to
prevent Cecile from winning; and if she chooses ‘right’, Bob may choose ‘left’,
with the consequence that Cecile loses. Hence indeed |ψ{a,b},V| = {a}. $

THEOREM 15 (Atomic law of excluded seventh). Let S1, . . . , S6 be a list of all
subsets of {a, b, c} except {a, b, c} and∅. There is a formulaϕp := (ψS1∨0. . .∨0 ψS6 )
of PL3

0 with p as its only atom, such that for all restricted valuations V,

|ϕp,V| = {a}, and |ψSi ,V| = {a} iff |p,V| = Si (1 ≤ i ≤ 6).

Proof. Let ψ{a} := p, ψ{b} := ∼01 p, and ψ{c} := ∼02 p. Further, let ψ{a,b}, ψ{a,c} and
ψ{b,c} be as in the statement of Lemma 14. Then we may take ϕp to be the formula
(ψ{a} ∨0 ψ{b} ∨0 ψ{c} ∨0 ψ{a,b} ∨0 ψ{a,c} ∨0 ψ{b,c}). $

The next thing to ask is whether the atomic law of excluded seventh can be
generalized so as to apply to arbitrary formulas. Let us first formulate the question
more precisely. To begin with, note that the law of excluded middle of PL2 has the
following general format: for any formulaϕ of PL2, the formula ( fp(ϕ)∨ f¬p(ϕ)) is
true under any valuation. Observe that p serves to uniformly characterize the truth-
value true in terms of true, while ¬p uniformly characterizes false in terms of true.
(Recall the notion of uniform characterizability from Definition 13.) Looking for
an analogue to the law of excluded middle in PL3

0, we must first of all ask whether
each of the relevant semantic attributes of PL3

0 can be uniformly characterized in
terms of a fixed attribute. But which are the relevant attributes?

As already noted at the end of Subsection 2.1, relative to restricted valuations
the number of possible semantic attributes increases from 6 to 7 when considering
arbitrary formulas instead of literals: there are complex formulas for which no
player has a winning strategy, i.e., which have the attribute ∅ relative to suitable
restricted valuations. It is not difficult to check that each of the PL3

0(p)-formulas
ψ{a}, ψ{b}, ψ{c}, ψ{a,b}, ψ{a,c}, ψ{b,c} referred to in the proof of Theorem 15 uniformly
characterizes the corresponding semantic attribute in terms of the attribute {a}. But
is there a formula uniformly characterizing the attribute ∅ in terms of {a}? That is,
can we find a formula χ such that |ψ,V| = ∅ iff | fχ(ψ),V| = {a}? By the argument
given for Lemma 11, it is immediate that the answer is negative: if the attribute
of ψ is ∅ relative to a valuation V, so will be the attribute of any formula of the
class PL3

0(ψ).
We may conclude that a natural generalization of the law of excluded middle,

applicable to arbitrary formulas, is not possible for PL3
0. As a semantic princi-

ple we still have the principle of 7-valence: any formula of PL3
0 has, relative to
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restricted valuations, one of seven semantic attributes.13

So the attribute ∅ cannot be uniformly characterized in terms of {a}. Might it
still not be possible to simply characterize ∅ in terms of {a}? We leave settling this
issue for future research. The following example however shows that at least for
some formulas ψ, a suitable formula χψ can be found such that for all restricted
valuations V: |ψ,V| = ∅ iff |χψ,V| = {a}.
EXAMPLE 16. Consider the formula (p∨0 q), letting V be a restricted valuation.
Evidently |p ∨0 q,V| = ∅ iff: [V(p) = {1} and V(q) = {2}] or [V(p) = {2} and
V(q) = {1}]. Let, then, ϕ be the following formula:

(∼01 p ∨1 ∼02 q) ∨0 (∼01 q ∨1 ∼02 p).

It is easy to check that |ϕ,V| = {a} iff |p ∨0 q,V| = ∅. !

Logic PL3. Let us turn to PL3. Does PL3 have an analogue of the law of excluded
middle? Again, an analogue is found when attention is restricted to propositional
atoms. Let us take (a, b) as the designated attribute. (It has a clearly better claim
on being a designated attribute than any attribute involving non-determinacy or
overdeterminacy.) Let Pi denote the i-th pair in the list (a, b), (a, c), (b, a), (b, c),
(c, a), (c, b); and let ψPi stand for the i-th formula in the list p, ∼p, ¬¬∼p, ¬¬p,
¬p, ¬∼p. It is straightforward to check that |ψPi ,V| = (a, b) iff |p,V| = Pi, for any
valuation V (1 ≤ i ≤ 6).

THEOREM 17 (Atomic law of excluded seventh). There is a formula ϕp :=
(ψP1 ∨1 ψP2 ) ∨0 (ψP3 ∨1 ψP4 ) ∨0 (ψP5 ∨1 ψP6 ) of PL3 with p as its only atom,
such that for all valuations V,

|ϕp,V| = (a, b), and |ψPi ,V| = (a, b) iff |p,V| = Pi (1 ≤ i ≤ 6).

Proof. Put ϕp := (p ∨1 ∼p) ∨0 (¬¬∼p ∨1 ¬¬p) ∨0 (¬p ∨1 ¬∼p). $

When formulating the atomic law of excluded seventh for PL3, two types of
disjunction symbol are needed — unlike in the cases of PL2 or PL3

0. This is due to
the ‘combinatorial’ nature of payoffs in games correlated with PL3-formulas: not
only must we express that one of the players has a g-strategy, but we also must
express that another player has an s-strategy.

As in the case of PL3
0, also in connection with PL3 the next thing to ask is

whether a variant of the atomic law of excluded seventh can be formulated which is
applicable to arbitrary formulas. Recall that in PL3 there are 16 semantic attributes

13Dummett [6, p. xix] remarks: “[W]hile acceptance of the semantic principle normally entails
acceptance of the corresponding logical law, the converse does not hold.” It may be of some interest
to observe that by these criteria, PL3

0 offers an instance of abnormality: while the semantic principle of
7-valence holds, the corresponding logical law, the law of excluded eighth, does not. (The latter cannot
even be formulated.)
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to consider: 10 attributes in addition to the 6 possible attributes Pi (1 ≤ i ≤ 6) of
atomic formulas. It is not difficult to check that the above PL3(p)-formula ψPi

uniformly characterizes the semantic attribute Pi in terms of the attribute (a, b)
(with 1 ≤ i ≤ 6). To see what happens with the further attributes, let us first prove
a result that can be compared to Lemma 11, the case R := ∅. It should be noted,
however, that whereas that lemma applies to all formulas of PL3

0, the present result
only pertains to complex PL3-formulas capable of non-determinacy.

LEMMA 18. Let (x, y) be any attribute such that {x, y} ∩{ ?} ! ∅. Suppose ψ is a
formula of PL3 and V is a valuation such that |ψ,V| = (x, y). Then for all formulas
χ ∈ PL3(ψ), we have that there is a pair (x′, y′) such that |χ,V| = (x′, y′), where:
(x′ = ?, if x = ?) and (y′ = ?, if y = ?).

Proof. By the premise of the lemma the claim holds for ψ. Assume inductively
that it holds for θ, θ′ ∈ PL3(ψ). No switching of roles can yield any of the players
a z-strategy (with z ∈ {g, s}) in G(¬θ,V) or in G(∼ θ,V), if no player has a z-
strategy in G(θ,V). Similarly no player can have a z-strategy in G(θ ∨i θ′,V)
without having one either in G(θ,V) or in G(θ′,V). $

It follows from Lemma 18 that whenever at least one of x, y equals ?, no for-
mula can uniformly characterize the attribute (x, y) in terms of the attribute (a, b).
Consequently only the attributes Pi (1 ≤ i ≤ 6) can be uniformly characterized.
Therefore we may conclude that a natural generalization of the law of excluded
middle, applicable to arbitrary formulas, is not possible for PL3 — just as we saw
that it is not possible for PL3

0. On the other hand, PL3 is subject to the semantic
principle of 16-valence.14

Not all semantic attributes can, then, be uniformly characterized in terms of
the attribute (a, b). Settling the issue whether all semantic attributes of PL3 could,
however, be characterized in the weak sense in terms of the attribute (a, b) is left
for another occasion. Let us conclude the present considerations by looking at a
particular semantic attribute involving non-determinacy, namely (?, a). We may
observe that actually there are formulas ψ for which another formula χψ can be
found such that |ψ,V| = (?, a) iff |χψ,V| = (a, b), for all valuations V.

EXAMPLE 19. Consider the formula (p∨0 q), letting V be an arbitrary valuation.
Let, then, ϕ be the following formula:

(¬¬∼p ∨2 ¬q) ∨0 (¬¬∼q ∨2 ¬p).

Now |ϕ,V| = (a, b) iff |p ∨0 q,V| = (?, a). Namely, |ϕ,V| = (a, b) iff: either
|¬¬∼p,V| = |¬q,V| = (a, b), or |¬¬∼q,V| = |¬p,V| = (a, b). This condition,
again, is equivalent to requiring that either V(p) = (1, 0, 2) and V(q) = (2, 0, 1),

14Hence also PL3 is ‘abnormal’, in the way PL3
0 was observed to be in footnote 13.
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or else V(q) = (1, 0, 2) and V(p) = (2, 0, 1), which is simply equivalent to the
condition |p ∨0 q,V| = (?, a). !

We have now seen that in the logics PL3
0 and PL3, those semantic attributes that

are possible attributes of propositional atoms can be uniformly characterized in
terms of the fixed attribute {a} resp. (a, b). By contrast, in both cases all attributes
that only emerge in connection with complex formulas defy uniform characteriza-
tion. This fact is perhaps made understandable by the negative character of those
attributes: each of them involves the failure of all players to have a strategy of a
certain type. The particular reason why in each relevant case this failure takes place
is not a straightforward matter of logical form. The ‘explanation’ of the failure is
sensitive to the syntax of the formula in a less robust way, in a way that precludes
the possibility of uniform characterizability.

An important closure property that can be formulated in terms of a designated
attribute A0 is closure under ‘complementary negation’. If L is one of the logics
PL3

0 or PL3, it may be asked whether for every formula ϕ of L there is a formula
neg(ϕ) of L such that every valuation V satisfies: |neg(ϕ),V| = A0 iff |ϕ,V| ! A0.
We conjecture that for neither logic PL3

0 or PL3 can an attribute A0 be so chosen
as to admit of this property; settling the issue is left for another occasion.

4.2 Normal forms

De Morgan’s laws for PL2 enable transforming formulas into negation normal
form, and distributive laws allow putting formulas, already in negation normal
form, further into disjunctive and conjunctive normal forms. All these normal
forms admit of analogues in the 3-player setting.

Let us first consider the logic PL3
0. If i, j are distinct roles andψ, χ any formulas,

the following De Morgan’s laws hold:

∼i j(ψ ∨i χ)"# (∼i jψ ∨ j ∼i jχ)
∼i j(ψ ∨ j χ)"# (∼i jψ ∨i ∼i jχ)
∼i j(ψ ∨k χ)"# (∼i jψ ∨k ∼i jχ) if i ! k ! j

By successive applications of these laws, together with the laws of double nega-
tion, any formula can be brought to an equivalent form where negation symbols
only appear in literals, and the literals furthermore contain at most two negation
signs. Such a formula is said to be in negation normal form, and can be formed
from literals of the forms p, ∼01 p, ∼02 p, ∼12 p, ∼01∼02 p, ∼01∼12 p using binary
connectives ∨0, ∨1 and ∨2 only.

Consider, then, the logic PL3. As already noted in Subsection 2.2, the map π¬ is
in effect a permutation of roles. For any argument (r, r′, r′′) ∈ P, it does the same:
replaces 0 by 1, 1 by 2, and 2 by 0. Define an operation / by putting 0 / 1 = 2,
1 / 1 = 0, and 2 / 1 = 1. The rule for driving ¬ deeper is this: if i is any role,
then ¬(ϕ ∨i ψ)"# (¬ϕ ∨i/1 ¬ψ).
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The behavior of ∼ is trickier: π∼ is genuinely a permutation of role distribu-
tions, as opposed to a permutation of roles. The rule for driving the negation ∼
deeper is sensitive to the relative location of the occurrence of ∼ within the larger
formula considered. To describe the effect of the map π∼, we must take into ac-
count who is having which role, or to be more precise, we must know which role
Alice is having. What π∼ does is this: it keeps Alice’s role intact, no matter which
role she has, while the roles of Bob and Cecile are interchanged. Since ∼ precisely
does not affect Alice’s role, her role relative to a subformula token ∼ψ only de-
pends on the number of occurrences of the negation ¬ to which ∼ψ is subordinate
in the relevant larger formula χ.

Let us write n[χ, θ] for the number of occurrences of ¬ to which a given sub-
formula token θ is subordinate in a formula χ. Define, then, a[χ, θ] as the unique
number m ∈ {0, 1, 2} such that

n[χ, θ] ≡ m (mod 3).

It is immediate that (relative to the standard initial role distribution) Alice’s role at
a subformula token θ in χ is a[χ, θ].

If i is a role and ∼(ϕ ∨i ψ) is a subformula token in χ, put

i∗ :=











i, if i = a[χ, (ϕ ∨i ψ)]

j, with i ! j ! a[χ, (ϕ ∨i ψ)], otherwise

If it is, e.g., Bob who has the role i at (ϕ ∨i ψ), then i∗ is Bob’s role at the negated
subformula token ∼(ϕ ∨i ψ). The following rule allows pushing ∼ deeper in a
formula: if ∼(ϕ∨iψ) is a subformula token in a formula χ, it may be replaced in χ
by the formula (∼ϕ ∨i∗ ∼ψ), and the resulting formula will be logically equivalent
to χ. Observe that since the result of pushing an occurrence of ∼ deeper in a
formula χ is sensitive to the relative location of this very occurrence within χ,
the rule under consideration actually must be formulated for subformula tokens
relative to a given larger formula.

By applying the given rules for driving the negation signs deeper, together with
the laws of double negation, triple negation and order invariance, one can produce
out of any PL3-formula a logically equivalent PL3-formula in which the negation
signs ¬ and ∼ appear on the atomic level only, and which can be built from literals
of the forms p, ¬p, ¬¬p, ∼p, ¬∼p, ¬¬∼p using only the binary connectives ∨0,
∨1 and ∨2. Such a formula of PL3 is said to be in negation normal form.

Let L be either of the logics PL3
0 or PL3. Having seen that L admits of a negation

normal form, let us proceed to ask whether it allows for analogues of disjunctive
and conjunctive normal forms of PL2. To begin with, straightforward distribution
laws hold in L for any distinct roles i and j:

ϕ ∨i (ψ ∨ j χ)"# (ϕ ∨i ψ) ∨ j (ϕ ∨i χ).
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Provided that (i, j, k) is a triple of pairwise distinct roles, a formula is said to be in
(i, j, k) normal form, if it has the form

∨x∈I
i

∨y∈Jx

j

∨z∈Kxy

k
θxyz,

where I, the Jx and the Kxy all are finite sets of natural numbers, and θdef is a
literal of L, for any assignment of suitable values d, e, f to the variables x, y, z,
respectively. For all six permutations (i, j, k) of the set {0, 1, 2} and any formula
ϕ of L, there is a logically equivalent formula ψϕ ∈ L which is in (i, j, k) normal
form. This follows immediately from the distribution laws together with the De
Morgan’s laws.

5 Computing semantic attributes

Model-checking PL2 can be done in linear time: there is an algorithm which, given
a formula ϕ and valuation V as inputs, decides whether the relation V |= ϕ holds
or not; and the number of computation steps the algorithm uses — computation
time — is bounded by a linear function of the size of ϕ. (The size of a formula is
the number of tokens of symbols it contains.) It turns out that in this respect, no
additional difficulties arise from moving to the logics PL3

0 and PL3.

THEOREM 20. Let L be either PL3
0 or PL3. There is an algorithm such that

given any L-formulaϕ and any L-valuation V, the algorithm computes the attribute
|ϕ,V| in computation time linear in the size of ϕ.

Proof. First note that each L-formula ϕ has a uniquely determined syntactic tree.
The root of the tree is the formula ϕ itself, and its leaves are propositional atoms.
Any node (ψ ∨i χ) has two immediate successors, namely ψ and χ; and any node
∼i jψ (case L := PL3

0) resp. any node ¬ψ or ∼ψ (case L := PL3) has ψ as its
unique immediate successor. Fix, then, a formula ϕ ∈ L and an L-valuation V.
The attribute |ϕ,V| may be determined by labeling the nodes of the syntactic tree
of ϕ. First label each leaf p with the attribute V(p). Then work the way towards
the root of the tree by computing the semantic attribute of each complex node from
its simpler parts: the attributes of ψ and χ determine in a straightforward way the
attribute of (ψ ∨i χ), and the attribute of ψ determines the attribute of the result of
applying any of the relevant negations to ψ. In this way the formula ϕ receives a
label; this label is the attribute |ϕ,V|. Since the number of nodes cannot exceed the
size of ϕ, the algorithm just described runs in time linear in the size of the input
formula ϕ. $

As pointed out in the proof of Theorem 20, it is straightforward to formulate
recursive rules that determine the semantic attribute of an arbitrary formula of
PL3

0 or PL3 from the attributes of its atomic components. That is to say, nothing
prevents from defining the semantics of these 3-player logics by laying down a
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set of recursive semantic clauses — in perfect analogy to the usual recursive rules
defining the semantics of PL2. It should, however, be noted that in the case of PL3

0

and PL3, the motivation of such recursive rules comes from their relation to the
game-theoretically defined semantics.

6 Issues of satisfiability and validity15

Let us take a look at some possible further developments in the context of 3-player
propositional logic. More specifically, let us see how various issues related to
satisfiability and validity can be studied in connection with PL3.

6.1 Tableaus

What would proof theory of PL3 look like? Let us restrict attention to formulas in
negation normal form. A proof system for such formulas can be defined in terms
of a set of tableau rules.16 Our tableaus will deal with ‘signed formulas’. There
are two basic signs T and F as usual, but they appear relativized both to a player (a,
b, or c) and to a feature (g for ‘having a g-strategy’, s for ‘having an s-strategy’):
the 12 signs T

g
a ,T

g

b
,Tg

c ,F
g
a ,F

g

b
, F

g
c ,T

s
a,T

s
b
,Ts

c,F
s
a,F

s
b
,Fs

c are introduced. A signed

formula is any expression S
y
xϕ with S ∈ {T,F}, y ∈ {g, s} and x ∈ {a, b, c}, where ϕ

is a formula of PL3. A set B of signed formulas is realizable, if there is a valuation
V such that any signed formula S

y
xϕ ∈ B satisfies: player x has (S := T) resp. lacks

(S := F) a y-strategy in game G(ϕ,V). Then V is said to realize the set B. From
the fact that V realizes B, it does not follow that all formulas ϕ with S

y
xϕ ∈ B (for

some S, y, x) have the same semantic attribute relative to V. It only follows that
the requirements induced by the signed formulas in B can all be simultaneously
satisfied by one and the same valuation.

No single sign S
y
x will correspond to a semantic attribute of PL3. On the other

hand, the attributes of PL3-formulas can be analyzed by reference to the players:
an attribute is expressed by specifying for each player his or her optimal minimum
rank in the relevant game. It is precisely for dealing with such an analysis that the
12 signs are introduced. An example may clarify the idea. A formula ϕ receives
the attribute (a, b) under all valuations, if for all valuations V, it is impossible for a
to fail having a g-strategy in G(ϕ,V), for b to fail having an s-strategy in G(ϕ,V),
and for c to have an s-strategy in G(ϕ,V). The idea will be that in order to check
whether these three conditions are met, it suffices to see whether the tableaus for
the following three signed formulas are ‘closed’: F

g
aϕ, Fs

b
ϕ, Ts

cϕ. Note that there is
no obvious way in which to dispense with the signs F

y
x in favor of the two negations

of PL3 and the signs T
y
x . The tableau for F

g
aϕ, for instance, will have an ‘open’

branch iff there is a valuation V such that a fails to have a g-strategy in G(ϕ,V). It
is far from evident that there are y ∈ {g, s} and x ∈ {a, b, c} such that for all ϕ there

15Sect. 6 describes continuing work by one of the authors (TT), cf. [15].
16For a classical presentation of tableau systems, see [14].
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is ϕ′ satisfying: a tableau for T
y
xϕ
′ has an ‘open’ branch iff a tableau for F

g
aϕ has

one. It is an open question whether PL3 enjoys such a player-relative property of
‘closure under complementation’; we conjecture that it does not.

There will be two types of tableau rules: those that allow extending a branch,
and those that allow closing a branch, or schematically:

S
y
xϕ
|
B

B
|

X

In the left rule, we have S ∈ {T,F}, y ∈ {g, s}, x ∈ {a, b, c}, and B is a set of sets of
signed formulas. In the right rule, B is a set of signed formulas and X is a specific
additional symbol. The rules of the latter kind are termed ‘closing rules’. Rules of
the former kind will be so chosen that they can be proven to satisfy the following
two properties: (P1) The singleton set {Sy

xϕ} is realized by a valuation V only if
one of the branches B ∈ B is realized by V; and (P2) If some of the sets B ∈ B is
realized by a valuation V, then {Sy

xϕ} is realized by V. Each closing rule, in turn,
will be chosen so that (Q1) the set B that triggers closing a branch is not realized
by any valuation. Furthermore, the totality of all closing rules is so selected that
(Q2) if B′ is a set of signed formulas not realized by any valuation, it has a subset
B to which some closing rule can be applied.

Familiarity with basic notions related to tableaus for PL2 is assumed (maxi-
mal/closed/open branch, extending a branch); the reader may consult e.g. [14] for
details. These notions are straightforwardly extended to the case of PL3, cf. [15].
Tableau rules. Let us introduce a tableau system, to be denoted TS. Its tableau
rules are divided into three groups: (1) ‘g-rules’, (2) ‘s-rules’, and (3) closing rules.
Here are the g-rules for the binary connective ∨0:

T
g
a (ϕ ∨0 ψ)
/ \

T
g
aϕ T

g
aψ

T
g

b
(ϕ ∨0 ψ)
|

T
g

b
ϕ
|

T
g

b
ψ

T
g
c (ϕ ∨0 ψ)
|

T
g
cϕ
|

T
g
cψ

F
g
a (ϕ ∨0 ψ)
|

F
g
aϕ
|

F
g
aψ

F
g

b
(ϕ ∨0 ψ)

/ \
F

g

b
ϕ F

g

b
ψ

F
g
c (ϕ ∨0 ψ)
/ \
F

g
cϕ F

g
cψ

g-rules for ∨1 (∨2) are entirely analogous: the only branching T-rule is the rule for
T

g

b
(resp. T

g
c ), and the only non-branching F-rule is the one for F

g

b
(resp. F

g
c ). The

s-rules for ∨0 are as follows:
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Ts
a(ϕ ∨0 ψ)
|

F
g
aϕ
|

F
g
aψ

/ \
Ts

aϕ Ts
aψ

Ts
b
(ϕ ∨0 ψ)

/ | \
Ts

b
ϕ Ts

b
ϕ Ts

b
ψ

| | |
T

g

b
ψ Ts

b
ψ T

g

b
ϕ

Ts
c(ϕ ∨0 ψ)

/ | \
Ts

cϕ Ts
cϕ Ts

cψ
| | |

T
g
cψ Ts

cψ T
g
cϕ

Fs
a(ϕ ∨0 ψ)

/ | \
T

g
aϕ Fs

aϕ T
g
aψ

|
Fs

aψ
|

F
g
aϕ
|

F
g
aψ

Fs
b
(ϕ ∨0 ψ)

/ | \
F

g

b
ϕ T

g

b
ϕ F

g

b
ψ

| | |
Fs

b
ϕ T

g

b
ψ Fs

b
ψ

Fs
c(ϕ ∨0 ψ)

/ | \
F

g
cϕ T

g
cϕ F

g
cψ

| | |
Fs

cϕ T
g
cψ Fs

cψ

s-rules for ∨1 (∨2) are again completely analogous. Now it can be shown that both
g-rules and s-rules satisfy the properties (P1) and (P2) mentioned in the beginning
of the present subsection.

Within the confines of this article, we cannot formulate a full collection of clos-
ing rules with properties (Q1) and (Q2). Therefore we content us with an entirely
‘non-constructive’ proof to the effect that a suitable set of closing rules exists. Let
' be a fixed literal, and let {'1, . . . , '6} be a basic set of p-literals, for a fixed atom
p. Define B' := {Sy

x' : S ∈ {T,F}, y ∈ {g, s} and x ∈ {a, b, c}}, and write Bp for
the set of sets of signed formulas obtained by assigning one of the 12 possible
signs to all members of some non-empty subset of {'1, . . . , '6}. Then the size of
the set B' ∪ Bp is 4,095+4,826,808 = 4,830,903. A fortiori, the number of closing
rules needed for meeting condition (Q2) cannot exceed 4,830,903. Hence there
unavoidably exists a set of closing rules such that each rule individually satisfies
(Q1), and they jointly satisfy (Q2). As a matter of fact — luckily enough! — we
can do with only a handful of closing rules; for details, cf. [15].

We may, then, be convinced that a suitable set TS of tableau rules can be for-
mulated. What are these rules applied to? As an input of a tableau we consider
(finite) sets of signed formulas. If C is a set of signed formulas, a tableau for C is
the result of applying the tableau rules of TS to formulas of the set C, and to the
formulas thereby recursively generated, until all branches produced are maximal,
i.e., cannot be further extended by the tableau rules. A tableau for a single signed
formula S

y
xϕ is by definition a tableau for the set {Sy

xϕ}. There are in general sev-
eral tableaus for a given set of signed formulas. The differences between these
tableaus are, however, immaterial for our purposes: If τ, τ′ are both tableaus for
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C, then τ is closed if and only if τ′ is closed; and τ has an open maximal branch if
and only if τ′ has an open maximal branch.

6.2 Collection of sound and complete proof systems

If P is one of the 16 semantic attributes, a formula is P-valid, if it has the attribute
P under all valuations. Dually, a formula is P-satisfiable, if it has the attribute P
under some valuation. For every attribute P and every formula ϕ, there are sets
CVAL

P,ϕ and CSAT
P,ϕ — each consisting of three signed formulas — with the following

properties: ϕ is P-valid iff each signed formula in the set CVAL
P,ϕ individually has

a closed tableau; and ϕ is P-satisfiable iff there is a closed tableau for the set
CSAT

P,ϕ . For instance, for the attribute P(a,b) the corresponding sets are CVAL
(a,b),ϕ :=

{Fg
aϕ,F

s
b
ϕ,Ts

cϕ} and CSAT
(a,b),ϕ := {Tg

aϕ,T
s
b
ϕ,Fs

cϕ}.
A P-proof of a formula ϕ is by definition a triple of closed tableaus, one for

each signed formula in the set CVAL
P,ϕ . It will be said that our tableau system TS is P-

sound, if actually every formula with a P-proof is P-valid. And TS is P-complete,
if every P-valid formula has a P-proof.

THEOREM 21 (P-soundness, P-completeness). For each of the 16 semantic at-
tributes, P, TS is P-sound and P-complete.

Proof. Let an attribute P and a formula ϕ be given. For P-soundness, it suffices
to prove that if ϕ is not P-valid, then a tableau for one of the signed formulas in
CVAL

P,ϕ is not closed. This can be done thanks to the properties (P1) and (Q1) of TS.
For P-completeness, it is enough to show that if a tableau for one of the signed
formulas in CVAL

P,ϕ is not closed, then ϕ is not P-valid. This, again, can be done by
virtue of the properties (P2) and (Q2) of TS. For details, cf. [15]. $

6.3 Decidability issues

If P is one of the 16 attributes, the P-satisfiability problem (or P-SAT) is by def-
inition the problem of deciding whether a given formula of PL3 is P-satisfiable.
Similarly, the P-validity problem (or P-VAL) is the problem of deciding whether
a given formula is P-valid. Actually, each of these 32 decision problems is decid-
able. What is more, the 16 satisfiability problems are decidable in NP and the 16
validity problems in coNP.

THEOREM 22. Let P be any PL3-attribute. Then P-VAL is in coNP and P-SAT is
in NP.

Proof. Consider the attribute (a, b); the claim can be similarly proven for the rest
of the attributes. Let ϕ be any formula of PL3. To decide whether ϕ is (a, b)-valid,
first non-deterministically guess a valuation V. (The guess will yield a counterex-
ample to the claim that ϕ is (a, b)-valid, if such a counterexample exists.) Then
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apply the polynomial time algorithm described in Section 5 to compute the at-
tribute |ϕ,V|. If |ϕ,V| = (a, b), then ϕ is (a, b)-valid, otherwise not. We have just
described an algorithm that solves (a, b)-VAL and runs in coNP. Consider, then,
(a, b)-SAT. Given a formula ϕ, non-deterministically guess a valuation V. (The
guess will yield a witness to the claim that ϕ is (a, b)-satisfiable, if such a witness
exists.) Then apply the polytime algorithm of Section 5 to determine whether
|ϕ,V| = (a, b). If yes, ϕ is (a, b)-satisfiable, otherwise not. The algorithm just
described solves (a, b)-SAT and runs in NP. $

It is possible to prove, at least for some semantic attributes, that the correspond-
ing validity problem is coNP-hard and the corresponding satisfiability problem
NP-hard.17 In those cases, then, we have NP-complete and coNP-complete deci-
sion problems about the logic PL3.

7 Concluding remarks

What has been accomplished in the present paper? Looking at the outcome, a
minimalist answer would be that we have introduced two ‘systems’ of the general
form (L,V,A), where L is a set of ‘formulas’, V is a set of ‘valuations’, and
A : L ×V −→ N is a function, mapping pairs of ‘formulas’ and ‘valuations’ to
encodings of what we called ‘semantic attributes’.

For each of the two systems, PL3
0 and PL3, the corresponding function A was, as

a matter of fact, determined by reference to certain 3-player games. These games
were obtained by generalizing in certain respects 2-player evaluation games of
classical propositional logic, PL2. Given this background, the two systems were
thought of as ‘logics’ in an extended sense of the word. As evidenced by the body
of the present paper, viewing PL3

0 and PL3 as logics is at least heuristically justified
— virtually any question that can be asked of PL2 can be formulated in connection
with the two systems. Studying the systems PL3

0 and PL3 from a logical viewpoint
may even be seen as throwing light on PL2 itself. For, properties of PL2 can be
classified according to whether they do or do not survive the transition to the 3-
player setting. The former properties can be regarded as ‘robust’. Applying these
criteria, for example model-checking in linear time is a robust property of PL2

(Sect. 5), while uniform characterizability of semantic attributes is not (Sect. 4).
Various specific questions suggest themselves for future work. Algebraic per-

spective on multi-player logics may turn out to be of considerable interest. It is
natural to study consequence relations proper to these logics in this connection.
Further, multi-player logics offer novel ways of introducing game-theoretical no-
tions into logical contexts — a case in point is the notion of security level, referred

17In [15] it is proven that whenever P ∈ {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}, P-SAT is NP-hard and
P-VAL is coNP-hard. The proof is based on showing that the satisfiability problem of PL2-formulas in
conjunctive normal form can be reduced in polynomial time to P-SAT, and that the validity problem of
PL2-formulas in disjunctive normal form has a polytime reduction to P-VAL.
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to in Remark 3. Indeed, the framework of multi-player logic games calls for a
systematic study of correspondences between theorems about multi-player logics
and game-theoretic principles.

Many-valued logics and n-player logic games could be compared. In particular,
one can ask for which many-valued logic PL3

0 resp. PL3 provides an alternative,
game-theoretical semantics. (The precise formulation of this question is depen-
dent on how consequence relations are defined for these 3-player logics.) Also,
it might be of interest to study the variant of game-theoretical semantics for PL2

with 4 possible payoffs: both players win, no player wins, and one of the two wins.
The resulting logic could then be compared with Belnap’s and Dunn’s 4-valued
logics [3, 7].
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