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Apportionment

Let  be the number of parties.


Input: vote count vector , house size 


Output: allocation vector  summing to 

n

⃗v ∈ ℝn h

⃗a ∈ ℕn h
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Quota
The quota of party  is 


An apportionment rule satisfies the quota 
axiom, if holds for all parties. 

i ∈ [n] qi = vi

∑j∈[n] vj
h .

⌊qi⌋ ≤ ai ≤ ⌈qi⌉ 0
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Hamilton’s method: First allocate  to every 
party. Then, allocate remaining seats by largest 
residues, i.e., . 

⌊qi⌋

qi − ⌊qi⌋

Alexander Hamilton
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Population Monotonicity
An apportionment rule is population monotone 
if for every vote count vectors  and  with 

•  and  it does not hold that 


•  and .

v v′ 

v′ i > vi v′ j < vj
a′ i < ai a′ j > aj

Impossibility (Balinski and Young, 1982): 
There exists no apportionment rule that satisfies 
quota and is population monotone.
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Randomized Apportionment [Grimmett 04]

Goal: randomized apportionment rule satisfying 

• ex-ante proportionality, i.e., 

• ex-post quota, i.e., 

𝔼[ai] = qi
⌊qi⌋ ≤ ai ≤ ⌈qi⌉

Observation: An apportionment rule 
satisfying ex-ante proportionality also 
satisfies ex-ante population monotonicity.
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Idea: Give every party  seats and one 
additional seat with probability .

⌊qi⌋
pi = qi − ⌊qi⌋

Randomized Apportionment

0

1

2

3

1 2 3 4 5 6

[Grimmett 04]

Goal: randomized apportionment rule satisfying 

• ex-ante proportionality, i.e., 

• ex-post quota, i.e., 

𝔼[ai] = qi
⌊qi⌋ ≤ ai ≤ ⌈qi⌉



Idea: Give every party  seats and one 
additional seat with probability .

⌊qi⌋
pi = qi − ⌊qi⌋

Randomized Apportionment

0

1

2

3

1 2 3 4 5 6

[Grimmett 04]

Goal: randomized apportionment rule satisfying 

• ex-ante proportionality, i.e., 

• ex-post quota, i.e., 

𝔼[ai] = qi
⌊qi⌋ ≤ ai ≤ ⌈qi⌉



Idea: Give every party  seats and one 
additional seat with probability .
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Randomized Apportionment

A rounding rule maps residues  to a 
random set  of size  such that:


⃗p ∈ [0,1)n

S ⊂ [n] k := ∑
i∈[n]

pi

ℙ[i ∈ S] = pi
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Grimmett’s Rounding Rule
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u ∼ U(0,1)
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A New Apportionment Paradox
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Monotone  
Rounding Rules
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Let  and  be two residue vectors summing to  
and  be a coalition of  parties such that 

•  for , and 

•  for . 


A rounding rule satisfies selection monotonicity if 

⃗p ⃗p ′ k
T k

p′ i ≥ pi i ∈ T
p′ i ≤ pi i ∉ T

Selection Monotonicity

ℙ[S′ = T] ≥ ℙ[S = T] .

If a -sized coalition gains residues, their joint selection probability 
may not decrease.

k



Rounding Rules Violating Selection Monotonicity

Grimmett’s

0 1 2 3 4

 (systematic rounding)

[Grimmett 04, Madow 49]

Pipage
 (pivotal method)

[Deville/Tilee 98, Srinivasan 01]
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Pr[S = T] = ∏
i∈T

πi

Conditional Poisson
 (maximum entropy)

[Chen/Dempster/Liu 94]



1. Sample  from  with probabilityi1 [n] ∝ pi

2. For every , perform Bernoulli trial with success probability i ∈ [n] pi

3. If we observed  successes and a failure for  return. Else, start over.k − 1 i1

Sampford Sampling

Pr[S = T] = f(T)
∑A∈([n]

k ) f(A)f(A) = ∑
i∈A

(1 − pi)∏
j∈A

pj∏
j∉A

(1 − pj)

[Sampford 67]
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Magic Lemma
Observation: To prove selection monotonicity, it suffices to show 
that for any  summing to  and  it holds that: 

 

⃗p ∈ [0,1)n k T = [k]

( ∂
∂p1

− ∂
∂pn )P[S = T] ≥ 0.

Pr[S = T] = f(T)
∑A∈([n]

k ) f(A)
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Magic Lemma: Let  be the random set containing each 
 independently with probability . Then,  

. 

B
i ∈ [n] pi

∑
A∈([n]

k )
f(A) = 1

2 𝔼[ � � B � − k � ]



Main Result: Sampford sampling is selection monotone. 


(Very rough) proof sketch: From the Magic Lemma we know that  

.


                  


P[S = T] = 2 f(T)
𝔼[ � � B � − k � ]

Sampford Sampling is Selection Monotone
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 Hard Case: ∑
i∈T

pi > k − 1
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Easy Case:      ∑
i∈T

pi ≤ k − 1

T



Selection Monotonicity Revisited
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What if lower quotas change?

k = 3 k = 2h = 11 h = 11



Monotone  
Apportionment Rules



Threshold Monotonicity 
Let  and  be two vote share (or quota) vectors 
and  be a coalition such that 

•  for , and 

•  for . 


An apportionment rule is threshold-monotone if for

all  it holds that:


⃗q ⃗q ′ 

T
q′ i ≥ qi i ∈ T
q′ i ≤ qi i ∉ T

ℓ ∈ [h]
0
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1 2 3 4 5 6ℙ[∑
i∈T

a′ i ≥ ℓ] ≥ ℙ[∑
i∈T

ai ≥ ℓ] .

If a coalition gains vote share, their probability of receiving 
any threshold of seats may not decrease.
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Conjecture: Sampford’s apportionment method satisfied 
threshold monotonicity.



Vote-Count Threshold Monotonicity 
Let  and  be two vote vectors and  be a 
coalition such that 

•  for , and 

•  for . 


An apportionment rule is vote-count threshold-
monotone if for all  it holds that:


⃗v ⃗v ′ T

v′ i ≥ vi i ∈ T
v′ i ≤ vi i ∉ T

ℓ ∈ [h]

ℙ[∑
i∈T

a′ i ≥ ℓ] ≥ ℙ[∑
i∈T

ai ≥ ℓ] . 0
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If a coalition gains votes, their probability of receiving any 
threshold of seats may not decrease.



Impossibility: No apportionment method satisfying 
ex-ante proportionality and ex-post quota can satisfy 

vote-count threshold monotonicity.



Conclusion
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The Axiomatic Landscape
Of Monotone Randomized Apportionment
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Applications Beyond Apportionment
Pipage rounding yields approximation algorithms 
for Steiner tree problems, k-median, committee 
selection and online algorithms. 


Important properties:  
1. ex-ante proportionality 

2. selection of k elements 

3. negative correlation


Pipage
 (pivotal method)
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Sampford sampling satisfies properties 1-3 
plus selection monotonicity.
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Sampford sampling satisfies properties 1-3 
plus selection monotonicity.

Thank you!


