Monotone Randomized Apportionment

Ulrike Schmidt-Kraepelin
(TU Eindhoven)

José Correa
(U Chile)

Paul Gölz (UC Berkeley)

Jamie Tucker-Foltz Victor Verdugo (Harvard) (UC Chile)

Apportionment

Let n be the number of parties.
$\begin{array}{r}8 \\ \hline \quad 8 \\ \hline \quad 8 \\ \hline\end{array}$

Input: vote count vector $\vec{v} \in \mathbb{R}^{n}$, house size h
Output: allocation vector $\vec{a} \in \mathbb{N}^{n}$ summing to h

Quota

The quota of party $i \in[n]$ is $q_{i}=\frac{v_{i}}{\sum_{j \in[n]} v_{j}} h$.
An apportionment rule satisfies the quota axiom, if $\left\lfloor q_{i}\right\rfloor \leq a_{i} \leq\left\lceil q_{i}\right\rceil$ holds for all parties.

Quota

The quota of party $i \in[n]$ is $q_{i}=\frac{v_{i}}{\sum_{j \in[n]} v_{j}} h$.
An apportionment rule satisfies the quota axiom, if $\left\lfloor q_{i}\right\rfloor \leq a_{i} \leq\left\lceil q_{i}\right\rceil$ holds for all parties.

Hamilton's method: First allocate $\left\lfloor q_{i}\right\rfloor$ to every party. Then, allocate remaining seats by largest residues, i.e., $q_{i}-\left\lfloor q_{i}\right\rfloor$.

Quota

The quota of party $i \in[n]$ is $q_{i}=\frac{v_{i}}{\sum_{j \in[n]} v_{j}} h$.
An apportionment rule satisfies the quota axiom, if $\left\lfloor q_{i}\right\rfloor \leq a_{i} \leq\left\lceil q_{i}\right\rceil$ holds for all parties.

Hamilton's method: First allocate $\left\lfloor q_{i}\right\rfloor$ to every party. Then, allocate remaining seats by largest residues, i.e., $q_{i}-\left\lfloor q_{i}\right\rfloor$.

Population Monotonicity

An apportionment rule is population monotone if for every vote count vectors v and v^{\prime} with

- $v_{i}^{\prime}>v_{i}$ and $v_{j}^{\prime}<v_{j}$ it does not hold that
- $a_{i}^{\prime}<a_{i}$ and $a_{j}^{\prime}>a_{j}$.

Impossibility (Balinski and Young, 1982):
There exists no apportionment rule that satisfies
 quota and is population monotone.

Randomized Apportionment

Goal: randomized apportionment rule satisfying

- ex-ante proportionality, i.e., $\mathbb{E}\left[a_{i}\right]=q_{i}$
- ex-post quota, i.e., $\left\lfloor q_{i}\right\rfloor \leq a_{i} \leq\left\lceil q_{i}\right\rceil$

Observation: An apportionment rule satisfying ex-ante proportionality also
 satisfies ex-ante population monotonicity.

Randomized Apportionment

Goal: randomized apportionment rule satisfying

- ex-ante proportionality, i.e., $\mathbb{E}\left[a_{i}\right]=q_{i}$
- ex-post quota, i.e., $\left\lfloor q_{i}\right\rfloor \leq a_{i} \leq\left\lceil q_{i}\right\rceil$

Idea: Give every party $\left\lfloor q_{i}\right\rfloor$ seats and one additional seat with probability $p_{i}=q_{i}-\left\lfloor q_{i}\right\rfloor$.

Randomized Apportionment

Goal: randomized apportionment rule satisfying

- ex-ante proportionality, i.e., $\mathbb{E}\left[a_{i}\right]=q_{i}$
- ex-post quota, i.e., $\left\lfloor q_{i}\right\rfloor \leq a_{i} \leq\left\lceil q_{i}\right\rceil$

Idea: Give every party $\left\lfloor q_{i}\right\rfloor$ seats and one additional seat with probability $p_{i}=q_{i}-\left\lfloor q_{i}\right\rfloor$.

Randomized Apportionment

Goal: randomized apportionment rule satisfying

- ex-ante proportionality, i.e., $\mathbb{E}\left[a_{i}\right]=q_{i}$
- ex-post quota, i.e., $\left\lfloor q_{i}\right\rfloor \leq a_{i} \leq\left\lceil q_{i}\right\rceil$

Idea: Give every party $\left\lfloor q_{i}\right\rfloor$ seats and one additional seat with probability $p_{i}=q_{i}-\left\lfloor q_{i}\right\rfloor$.

A rounding rule maps residues $\vec{p} \in[0,1)^{n}$ to a random set $S \subset[n]$ of size $k:=\sum_{i \in[n]} p_{i}$ such that:

$$
\mathbb{P}[i \in S]=p_{i}
$$

Grimmett's Rounding Rule

Grimmett's Rounding Rule

A New Apportionment Paradox

Monotone

Rounding Rules

Selection Monotonicity

Let \vec{p} and \vec{p}^{\prime} be two residue vectors summing to k and T be a coalition of k parties such that

- $p_{i}^{\prime} \geq p_{i}$ for $i \in T$, and
- $p_{i}^{\prime} \leq p_{i}$ for $i \notin T$.

A rounding rule satisfies selection monotonicity if

$$
\mathbb{P}\left[S^{\prime}=T\right] \geq \mathbb{P}[S=T]
$$

If a k-sized coalition gains residues, their joint selection probability may not decrease.

Rounding Rules Violating Selection Monotonicity

Grimmett's (systematic rounding)

[Grimmett 04, Madow 49]

Conditional Poisson (maximum entropy)

$$
\operatorname{Pr}[S=T]=\prod_{i \in T} \pi_{i}
$$

Sampford Sampling

1. Sample i_{1} from [n] with probability $\propto p_{i}$

2. For every $i \in[n]$, perform Bernoulli trial with success probability p_{i}
3. If we observed $k-1$ successes and a failure for i_{1} return. Else, start over.

$$
f(A)=\sum_{i \in A}\left(1-p_{i}\right) \prod_{j \in A} p_{j} \prod_{j \notin A}\left(1-p_{j}\right) \quad \operatorname{Pr}[S=T]=\frac{f(T)}{\sum_{A \in\binom{[n]}{k}} f(A)}
$$

Magic Lemma

$$
\operatorname{Pr}[S=T]=\frac{f(T)}{\sum_{A \in\binom{[n]}{k}} f(A)}
$$

Observation: To prove selection monotonicity, it suffices to show that for any $\vec{p} \in[0,1)^{n}$ summing to k and $T=[k]$ it holds that: 0.8

$$
\left(\frac{\partial}{\partial p_{1}}-\frac{\partial}{\partial p_{n}}\right) P[S=T] \geq 0 .
$$

Magic Lemma: Let B be the random set containing each $i \in[n]$ independently with probability p_{i}. Then,

$$
\sum_{A \in\binom{[n]}{k}} f(A)=\frac{1}{2} \mathbb{E}[\quad B-k]
$$

Sampford Sampling is Selection Monotone

Main Result: Sampford sampling is selection monotone.
(Very rough) proof sketch: From the Magic Lemma we know that

$$
P[S=T]=\frac{2 f(T)}{\mathbb{E}[B-k]}
$$

Selection Monotonicity Revisited

$$
h=11 \quad k=3
$$

$$
h=11 \quad k=2
$$

What if lower quotas change?

Monotone Apportionment Rules

Threshold Monotonicity

Let \vec{q} and \vec{q}^{\prime} be two vote share (or quota) vectors and T be a coalition such that

- $q_{i}^{\prime} \geq q_{i}$ for $i \in T$, and
- $q_{i}^{\prime} \leq q_{i}$ for $i \notin T$.

An apportionment rule is threshold-monotone if for all $\ell \in[h]$ it holds that:

$$
\mathbb{P}\left[\sum_{i \in T} a_{i}^{\prime} \geq \ell\right] \geq \mathbb{P}\left[\sum_{i \in T} a_{i} \geq \ell\right]
$$

If a coalition gains vote share, their probability of receiving any threshold of seats may not decrease.

Grimmett's Satisfies Threshold Monotonicity

For Coalitions of Size 2

Grimmett's Satisfies Threshold Monotonicity

For Coalitions of Size 2

Conjecture: Sampford's apportionment method satisfied threshold monotonicity.

Vote-Count Threshold Monotonicity

Let \vec{v} and \vec{v}^{\prime} be two vote vectors and T be a coalition such that

- $v_{i}^{\prime} \geq v_{i}$ for $i \in T$, and
- $v_{i}^{\prime} \leq v_{i}$ for $i \notin T$.

An apportionment rule is vote-count thresholdmonotone if for all $\ell \in[h]$ it holds that:

$$
\mathbb{P}\left[\sum_{i \in T} a_{i}^{\prime} \geq \ell\right] \geq \mathbb{P}\left[\sum_{i \in T} a_{i} \geq \ell\right]
$$

If a coalition gains votes, their probability of receiving any threshold of seats may not decrease.

Impossibility: No apportionment method satisfying ex-ante proportionality and ex-post quota can satisfy vote-count threshold monotonicity.

Conclusion

The Axiomatic Landscape

Of Monotone Randomized Apportionment

Applications Beyond Apportionment

Pipage rounding yields approximation algorithms for Steiner tree problems, k-median, committee selection and online algorithms.

Important properties:

1. ex-ante proportionality
2. selection of k elements
3. negative correlation

Sampford sampling satisfies properties 1-3 plus selection monotonicity.

Applications Beyond Apportionment

Pipage rounding yields approximation algorithms for Steiner tree problems, k-median, committee selection and online algorithms.
Sampford

[Sampford 67]

Important properties:

1. ex-ante proportionality
2. selection of k elements
3. negative correlation

Sampford sampling satisfies properties 1-3 plus selection monotonicity.

Thank you!

