Monotone Randomized Apportionment

Ulrike Schmidt-Kraepelin

(TU Eindhoven)

José Correa (U Chile)

Paul Gölz (UC Berkeley)

Jamie Tucker-Foltz (Harvard)

Victor Verdugo (UC Chile)

Apportionment

Let *n* be the number of parties.

Input: vote count vector $\overrightarrow{v} \in \mathbb{R}^n$, house size h

Output: allocation vector $\overrightarrow{a} \in \mathbb{N}^n$ summing to h

Quota

The **quota** of party $i \in [n]$ is $q_i = \frac{v_i}{\sum_{j \in [n]} v_j} h$.

An apportionment rule satisfies the **quota** axiom, if $\lfloor q_i \rfloor \leq a_i \leq \lceil q_i \rceil$ holds for all parties.

Quota

The **quota** of party $i \in [n]$ is $q_i = \frac{v_i}{\sum_{j \in [n]} v_j} h$.

An apportionment rule satisfies the **quota** axiom, if $\lfloor q_i \rfloor \leq a_i \leq \lceil q_i \rceil$ holds for all parties.

Hamilton's method: First allocate $\lfloor q_i \rfloor$ to every party. Then, allocate remaining seats by largest residues, i.e., $q_i - \lfloor q_i \rfloor$.

Alexander Hamilton

Quota

The **quota** of party $i \in [n]$ is $q_i = \frac{v_i}{\sum_{j \in [n]} v_j} h$.

An apportionment rule satisfies the **quota** axiom, if $\lfloor q_i \rfloor \leq a_i \leq \lceil q_i \rceil$ holds for all parties.

Hamilton's method: First allocate $\lfloor q_i \rfloor$ to every party. Then, allocate remaining seats by largest residues, i.e., $q_i - \lfloor q_i \rfloor$.

Alexander Hamilton

Population Monotonicity

An apportionment rule is **population monotone** if for every vote count vectors v and v' with

- $v_i' > v_i$ and $v_j' < v_j$ it **does not** hold that
- $a_i' < a_i$ and $a_j' > a_j$.

Impossibility (Balinski and Young, 1982):

There exists no apportionment rule that satisfies quota and is population monotone.

Goal: randomized apportionment rule satisfying

- ex-ante proportionality, i.e., $\mathbb{E}[a_i] = q_i$
- ex-post quota, i.e., $\lfloor q_i \rfloor \leq a_i \leq \lceil q_i \rceil$

Observation: An apportionment rule satisfying ex-ante proportionality also satisfies ex-ante population monotonicity.

Goal: randomized apportionment rule satisfying

- ex-ante proportionality, i.e., $\mathbb{E}[a_i] = q_i$
- ex-post quota, i.e., $\lfloor q_i \rfloor \leq a_i \leq \lceil q_i \rceil$

Idea: Give every party $[q_i]$ seats and one additional seat with **probability** $p_i = q_i - [q_i]$.

Goal: randomized apportionment rule satisfying

- ex-ante proportionality, i.e., $\mathbb{E}[a_i] = q_i$
- ex-post quota, i.e., $\lfloor q_i \rfloor \leq a_i \leq \lceil q_i \rceil$

Idea: Give every party $[q_i]$ seats and one additional seat with **probability** $p_i = q_i - [q_i]$.

Goal: randomized apportionment rule satisfying

- ex-ante proportionality, i.e., $\mathbb{E}[a_i] = q_i$
- ex-post quota, i.e., $\lfloor q_i \rfloor \leq a_i \leq \lceil q_i \rceil$

Idea: Give every party $\lfloor q_i \rfloor$ seats and one additional seat with probability $p_i = q_i - \lfloor q_i \rfloor$.

A rounding rule maps residues $\overrightarrow{p} \in [0,1)^n$ to a random set $S \subset [n]$ of size $k := \sum_{i \in [n]} p_i$ such that:

$$\mathbb{P}[i \in S] = p_i$$

Grimmett's Rounding Rule

Grimmett's Rounding Rule

A New Apportionment Paradox

Monotone Rounding Rules

Selection Monotonicity

Let \overrightarrow{p} and \overrightarrow{p}' be two residue vectors summing to k and T be a coalition of k parties such that

- $p_i' \ge p_i$ for $i \in T$, and
- $p_i' \leq p_i$ for $i \notin T$.

A rounding rule satisfies selection monotonicity if

$$\mathbb{P}[S'=T] \geq \mathbb{P}[S=T].$$

If a k-sized coalition gains residues, their joint selection probability may not decrease.

Rounding Rules Violating Selection Monotonicity

Conditional Poisson (maximum ontropy)

(maximum entropy)

$$\Pr[S = T] = \prod_{i \in T} \pi_i$$

[Chen/Dempster/Liu 94]

Sampford Sampling

- 2. For every $i \in [n]$, perform Bernoulli trial with success probability p_i
- 3. If we observed k-1 successes and a failure for i_1 return. Else, start over.

$$f(A) = \sum_{i \in A} (1 - p_i) \prod_{j \in A} p_j \prod_{j \notin A} (1 - p_j)$$

$$\Pr[S = T] = \frac{f(T)}{\sum_{A \in \binom{[n]}{k}} f(A)}$$

Magic Lemma

$$\Pr[S = T] = \frac{f(T)}{\sum_{A \in \binom{[n]}{k}} f(A)}$$

Observation: To prove selection monotonicity, it suffices to show that for any $\overrightarrow{p} \in [0,1)^n$ summing to k and T = [k] it holds that: 0.8

$$\left(\frac{\partial}{\partial p_1} - \frac{\partial}{\partial p_n}\right) P[S = T] \ge 0.$$

Magic Lemma: Let B be the random set containing each $i \in [n]$ independently with probability p_i . Then,

$$\sum_{A \in \binom{[n]}{k}} f(A) = \frac{1}{2} \mathbb{E} \left[B - k \right].$$

Sampford Sampling is Selection Monotone

Main Result: Sampford sampling is selection monotone.

(Very rough) proof sketch: From the Magic Lemma we know that

$$P[S = T] = \frac{2f(T)}{\mathbb{E}[B - k]}.$$

Easy Case: $\sum_{i \in T} p_i \le k - 1$

Selection Monotonicity Revisited

What if lower quotas change?

Monotone Apportionment Rules

Threshold Monotonicity

Let \overrightarrow{q} and \overrightarrow{q}' be two vote share (or quota) vectors and T be a coalition such that

- $q_i' \ge q_i$ for $i \in T$, and
- $q_i' \leq q_i$ for $i \notin T$.

An apportionment rule is **threshold-monotone** if for all $\ell \in [h]$ it holds that:

$$\mathbb{P}\left[\sum_{i\in T} a_i' \geq \ell\right] \geq \mathbb{P}\left[\sum_{i\in T} a_i \geq \ell\right].$$

If a coalition gains vote share, their probability of receiving any threshold of seats may not decrease.

Grimmett's Satisfies Threshold Monotonicity

For Coalitions of Size 2

Grimmett's Satisfies Threshold Monotonicity

For Coalitions of Size 2

Conjecture: Sampford's apportionment method satisfied threshold monotonicity.

Vote-Count Threshold Monotonicity

Let \overrightarrow{v} and \overrightarrow{v}' be two vote vectors and T be a coalition such that

- $v_i' \ge v_i$ for $i \in T$, and
- $v_i' \leq v_i$ for $i \notin T$.

An apportionment rule is vote-count threshold-monotone if for all $\ell \in [h]$ it holds that:

$$\mathbb{P}\left[\sum_{i\in T}a_i'\geq \ell\right]\geq \mathbb{P}\left[\sum_{i\in T}a_i\geq \ell\right].$$

If a coalition gains **votes**, their probability of receiving any threshold of seats may not decrease.

Impossibility: No apportionment method satisfying ex-ante proportionality and ex-post quota can satisfy vote-count threshold monotonicity.

Conclusion

The Axiomatic Landscape

Of Monotone Randomized Apportionment

Applications Beyond Apportionment

Pipage (pivotal method)

Output

Deville/Tilee 98, Srinivasan 01]

Pipage rounding yields approximation algorithms for Steiner tree problems, k-median, committee selection and online algorithms.

Important properties:

- 1. ex-ante proportionality
- 2. selection of k elements
- 3. negative correlation

Sampford sampling satisfies properties 1-3 plus selection monotonicity.

Applications Beyond Apportionment

Pipage rounding yields approximation algorithms for Steiner tree problems, k-median, committee selection and online algorithms.

Important properties:

- 1. ex-ante proportionality
- 2. selection of k elements
- 3. negative correlation

Sampford sampling satisfies properties 1-3 plus selection monotonicity.

Thank you!