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Introduction and Overview



Fair Allocation

Fairness is a natural goal in:

Divorce Settlement, Inheritance, Cost Sharing in Communication Networks,

Distributed Resource Allocation/Wireless Systems, Birthday Parties (Cake Cutting)..

Main Problems:

What’s ’fair’? People have subjective ideas of that...

Can we be fair? Often, not really...
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Fair Allocation

Fairness is a natural goal in:

Divorce Settlement, Inheritance, Cost Sharing in Communication Networks,

Distributed Resource Allocation/Wireless Systems, Birthday Parties (Cake Cutting)..

Assumptions:

No Free Disposal Can’t just throw away items to make the outcome ’fair’.

Indivisible Goods Can’t just give everyone a ’fair share’ of each good!
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Formal Problem Definition

Additive Combinatorial Assignment

Given a set M of m indivisible goods, and a set N of n agents. Each agent

has an additive valuation function defining

vij = value derived by agent i for obtaining good j

and vi (S) =
∑

j∈S vij , for any set S of goods.

An allocation is a partition S = (S1,S2, ..., Sn) of the set M of goods.
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Fairness Notions

Proportionality (PROP) [Steinhaus, 1949]

An allocation S = {S1, S2, . . .Sn} is proportional if each agent receives at

least 1/n of his total valuation on all goods, where n = |N|.

Maximin-Share Fairness (MMS) [Budish, 2011]

An allocation S = {S1, S2, . . .Sn} is MMS if each agent receives at least the

value he would when after optimally dividing all goods into n bundles, the

worst of these is assigned to him.
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Fairness Notions

Envy-Freeness (EF) [Foley ’67, Varian ’74]

An allocation S = {S1, S2, . . .Sn} is envy-free if for all i , j ∈ N

vi (Si ) ≥ vi (Sj)

Envy-Fr. up to Any Good (EFX) [Gourves et al. ’14, Carag. et al. ’19]

An allocation S = {S1, S2, . . .Sn} is EFX if for all i , j ∈ N

vi (Si ) ≥ vi (Sj \ {mmin}), , where mmin = min
m∈Sj

{vim}

6



Fairness Notions

Envy-Freeness (EF) [Foley ’67, Varian ’74]

An allocation S = {S1, S2, . . .Sn} is envy-free if for all i , j ∈ N

vi (Si ) ≥ vi (Sj)

Envy-Fr. up to Any Good (EFX) [Gourves et al. ’14, Carag. et al. ’19]

An allocation S = {S1, S2, . . .Sn} is EFX if for all i , j ∈ N

vi (Si ) ≥ vi (Sj \ {mmin}), , where mmin = min
m∈Sj

{vim}

6



Fairness Notions

Envy-Freeness (EF) [Foley ’67, Varian ’74]

An allocation S = {S1, S2, . . .Sn} is envy-free if for all i , j ∈ N

vi (Si ) ≥ vi (Sj)

Envy-Fr. up to One Good (EF1) [Lipton et al. ’04, Budish ’11]

An allocation S = {S1, S2, . . .Sn} is EF1 if for all i , j ∈ N

vi (Si ) ≥ vi (Sj \ {mmax}), , where mmax = max
m∈Sj

{vim}
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Goals: Fairness and Incentive Compatibility

Fairness Notion

Guarantee, e.g.
• Proportionality (PROP)

• Maximin-Share Fairness (MMS)

• Envy-Freeness (EF)

• Envy-Freeness up to Any Good (EFX)

• Envy-Freeness up to One Good (EF1)

Incentive-Compatibility/Truthfulness

Give a mechanism (here: an algorithm, but with inputs that might misrepresent the

actual values) such that it is every agent’s best strategy to report their true

valuations.

Can we combine fair and truthful in the same routine?
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Impossibility: Fairness and Incentive Compatibility

Can we combine fair and truthful in the same routine?

Impossibility Results [Amanatidis et al. 2017]

Truthfulness and Fairness are incompatible even for only two players, for

various fairness notions!

Modified Goal:

Can we at least have non-truthful mechanisms,

but which have equilibria that define fair allocations?
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Goals: Fair, Truthful Equilibria

Envy-Freeness up to One Good (EF1)

Produce an allocation such that everyone would prefer their own, assigned

items over the set of anyone else - after the best item from the other person’s

set was taken out...

’Truthful Equilibria’

Give a mechanism (here: an algorithm, but with inputs that might

misrepresent the actual values) such that the produced outcome is an

equilibrium (PNE) with respect to the actual valuations?

Note: by saying Equlibrium here, we mean Pure Nash Equilibrium (PNE), i.e.: when fixing the reports of all others,

no agent can obtain a better assignment by modifying his own report.
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The Algorithm: Round-Robin

Players 1, 2, . . . , n take turns being allocated their one highest-valued good
from the available ones, according to this order, until all goods are allocated.
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Example: Truthful Reports don’t make Equilibria

Saying the truth, in general, does not lead to a PNE, see the following minimal

example with two agents and three goods:
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Key Observation: EF1 for all, EF for Agent 1

Round-Robin Algorithm produces EF1 Allocations

When presented with the true, additive valuations of the agents, all outcomes

of Round-Robin are EF1 [Markakis 2017, Caragiannis et al. 2019].

• Round-Robin (as an algorithm, on the true values) is EF from view of agent 1

since, in every round, he gets more than anyone else!

• Round-Robin is EF1 from view of any agent i

since after ignoring all previous i − 1 picks of the first round, we can just pretend

he’s agent one!
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Additive Valuations



Round-Robin Results: Additive Valuations

Round-Robin always produces EF1 Allocations

When presented with the true, additive valuations of the agents, all outcomes

of Round-Robin are EF1 [Markakis 2017, Caragiannis et al. 2019].

Round-Robin always has PNE

The Bluff Profile is always a PNE of Round-Robin for additive valuations.

[Aziz et al. 2017]

We showed:

Round-Robin Mechanism produces truthful EF1-PNE!

For every instance I = {N,M, v}, each PNE of Round-Robin is EF1 with

respect to the true valuations.

[Amanatidis, Birmpas, Lazos, Leonardi, R.R. 2021]
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Proof Sketch: Round-Robin PNE are Truthful EF1 for Additive

Main Technical Lemma:

Assume b1 is a best response of agent 1 to b−1 = (b2, b3, . . . , bn). Then,

there exists a valuation function b∗
1 such that:

• Round-Robin produces the same allocation (S1, . . . , Sn) on b as on

(b∗
1 , b−1).

• b∗
1 (S1) = v1(S1)

• b∗
1 (j) = v1(j) for all j ∈ M \ S1.

Note: The allocation (S1, . . . , Sn) is then EF with regards to b∗
1 as well as v1!
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Proof Sketch: Round-Robin PNE are Truthful EF1 for Additive

Intuitive Strategy:

It is not harmful to agent 1 if he plays truthfully in the very last round.

However: Does not hold inductively for previous rounds (see ex.)!
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Proof Sketch: Round-Robin PNE are Truthful EF1 for Additive
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Proof of the Main Result: Rough Argument

• Replace values in b1 in order-preserving way (no changes to alloc.)

• Observe: When
∑

j∈S1
v1j ̸=

∑
j∈S1

b∗
1 (j) because the alloc. would change:

shift along a chain of adjustments!

(Possible, since set of available items would only change by one)

• Lucky: Because of essentially the EF-property of Round-Robin, value

adjustments always work out!
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Additive Result: Recap

Round-Robin for additive valuations

– always has pure Nash equilibria and

– these induce allocations that are EF1 w.r.t. the underlying true values.

That is, Round-Robin retains its fairness properties at its equilibria, even

when the input is given by strategic agents!
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Beyond Additive Valuations



Moving On: Beyond Additive Valuations

For each agent i ∈ N, we say that vi is

• subadditive, if vi (S ∪ T ) ≤ vi (S) + vi (T ) for every S ,T ⊆ M.

• submodular, if vi (g | S) ≥ vi (g |T ) for any S ⊆ T ⊆ M and g /∈ T .

• cancelable, if vi (S ∪ {g}) > vi (T ∪ {g}) ⇒ vi (S) > vi (T ) for any

S ,T ⊆ M and g ∈ M \ (S ∪ T ).

• additive, if vi (S ∪T ) = vi (S)+ vi (T ) for every S ,T ⊆ M with S ∩T = ∅.
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Beyond Additive: What’s Different

1. First, Round-Robin needs to be clearly defined

(what is the next-best item when v is some set function?)

We simply define it via assigning the next item due to each agent’s

submitted preference order.

2. Do PNE still exist?

Surprisingly, largely yes (at least approximately), and we can still construct

them!

3. If so, is there still a truthful (EF1) fairness guarantee?

Surprisingly, yes! (At least approximately)
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Cancelable Valuations

Reminder: valuation v is cancelable, if v(S ∪ {g}) > v(T ∪ {g}) ⇒ v(S) > v(T ) for

any S ,T ⊆ M and g ∈ M \ (S ∪ T ).

Useful Implication: argmaxg∈T v(g) ⊆ argmaxg∈T v(g | S)

Round-Robin and Bluff Profile for Cancelable Valuations

• Pick goods in RR according to best singleton value v(g), g ∈ M.

• Define Bluff Profile via the resulting order, analogously to additive case.
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Our Results: Cancelable Valuations

PNE via Bluff: Cancelable

When all agents have cancelable valuation functions,

• the Bluff Profile is an exact PNE of Round-Robin, and

• the obtained allocation is EF1.

Fairness Properties of General (Approx.) PNE: Cancelable

When all agents have subadditive cancelable valuation functions, any

α-approx. PNE of Round-Robin results in an α/2-EF1 allocation.
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Submodular Valuations

Reminder: valuation v is submodular, if vi (g | S) ≥ vi (g |T ) for any

S ⊆ T ⊆ M and g /∈ T .

Useful Implication: The Greedy Routine which assigns goods one-by-one, in

each step realizing the maximum-possible marginal gain, is a 2-approximation.

Round-Robin and Bluff Profile for Submodular Valuations

• Pick goods in RR according to best available marginal value

v(g |S), g ∈ M \ {S},S ⊆ M.

• Define Bluff Profile via the according assignment order.
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Our Results: Submodular Valuations

PNE via Bluff: Submodular

• The generalized Bluff Profile always is a 1/2-PNE of Round-Robin, and

this is tight (i.e., for any ϵ > 0 there exist instances where it is not a

(1/2 + ϵ)-PNE).

• The allocation produced by Bluff is always 1/2-EF1 with respect to the

true valuations vi , i ∈ [N]. This is tight (i.e., for any ϵ > 0, there exist

instances where this allocation is not (1/2 + ϵ)-EF1.

Fairness Properties of General (Approx.) PNE: Submodular

When all agents have submodular valuation functions, any α-approx. PNE of

Round-Robin results in an α/3-EF1 allocation.
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Overview: Round-Robin and its Truthful, Fair Equilibria

We showed, w.r.t. to the true, private valuations:

Additive Valuations:

RR always has PNE, e.g. the Bluff Profile, and all PNE are EF1.

Cancelable Valuations:

• RR always has PNE, e.g. Bluff by Singletons, and all PNE are EF1.

• For subadditive cancelable, any α-approx. PNE results in a α/2-EF1 allocation.

Submodular Valuations:

• For some instances, no (3/4 + ϵ)-PNE of RR exists.

• RR always has 1/2-PNE, e.g. Bluff by Marginals, which is always 1/2-EF1.

• Any α-approx. PNE results in an α/3-EF1 allocation.
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Future Directions

• Other, even more general valuation classes?

• Other algorithms?

• Other forms of alignment between selfish behavior and fairness goals?
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The End.

Thank you!
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