HOW DIVISIVE IS AN ALTERNATIVE IN A PROFILE OF RANKINGS?

Umberto Grandi

IRIT (Institut de Recherche en Informatique de Toulouse)
Université Toulouse Capitole, France

OUTLINE

I. The context: measuring consensus, diversity, polarisation, cohesiveness in profiles of rankings
2. Definition of divisiveness metric, analysis of bounds, algorithmic questions: robustness and control
3. Empirical analysis of divisiveness measures, platforms for building a collective government program

DETECTING WINNERS

Standard input in social choice and rank aggregation: a set of strict rankings over alternatives (a profile)

4 voters 3 voters 2 voters		
A	B	C
E	C	D
D	E	E
C	D	B
B	A	A

Table 0.1. Five candidates, five winners

What else can we detect/measure in profiles of strict rankings?

NOTATION AND RUNNING EXAMPLE

In the running example we are prioritising over projects that a city hall will invest on The "generating question" is: Rank the following projects in order of priority

There are n users and 5 issues (not alternative, possibly interdependent)

MEASURING AGREEMENT: CONSENSUS, COHESIVENESS

Define a numerical function that measure how consensual or cohesive is a profile of rankings

Independence axiom: a swap of a contiguous pair towards the majority strictly improves cohesiveness
A large number of
axiomatic
characterisations
(mostly based on
pairwise comparisons
with some exceptions)

Various papers by Alcalde-Unzu and Vorsatz. General setting by Bosch (2006).

MEASURING (DIS?)AGREEMENT: DIVERSITY

How to decide which of two preference profiles is more diverse?
Three possible approaches:
I. Counting the different rankings
2. Averaging the disagreements among rankings
3. Measuring distance to a compromise ranking

Research question: does diversity influence classical social choice problems?

Hashemi and Endriss. ECAI 2014. Karpov, Group Dec Negot. 2017.

MEASURING DISAGREEMENT: POLARISATION

Classical work in Economics distinguished measures of polarisation from measures of inequality

From left to right: less inequality, more polarisation

POLARISED PROFILES OF RANKINGS

Compare profiles of rankings based on average disagreement of pairwise comparisons:

$$
\text { Formal definition (then normalised over pairs and users): } \sum_{(a, b) \in A^{2}} n-d(a, b)
$$

Minimum polarisation

Maximum polarisation

Two completely
opposed camps

$$
\begin{aligned}
& \text { submitting a } \\
& \text { different } \\
& \text { ordering }
\end{aligned}
$$

Can, Ozkes, Storcken. Measuring polarization in preferences. MSS 2015

KEMENY-BASED MEASURES

k-Kemeny distance as the minimal swap distance of a set of k rankings to the profile (I -Kemeny is the standard Kemeny distance)

Diversity index basically averaging the k-Kemeny distances, polarisation index as the difference between 2-Kemeny and I-Kemeny

Two completely opposed camps

> Polarisation index I
> Diversity index I/2

Polarisation index ~0
Diversity index
high (depends on m)

Faliszewski et al. Diversity, agreement, and polarization in elections. IJCAI 2023

OBSERVATIONS

Averaging pairwise agreement/disagreement is a popular notion studied under several different names

All proposed measures are applied on entire preference profiles, global measures

Measures are hard to compute and require complete data (apart from the simplest average agreement/disagreement)

Our research questions:

Can we explain what makes one particular profile polarised/diverse? Can we identify "divisive" issues or proposals in a given profile of rankings? Can we do with large numbers of alternatives?

2. Definition of divisiveness metric, analysis of bounds, algorithmic questions: robustness and control

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Measuring and Controlling Divisiveness in Rank Aggregation
Rachael Colley ${ }^{1}$, Umberto Grandi ${ }^{1}$, César Hidalgo ${ }^{2,3,4}$, Mariana Macedo ${ }^{2}$, Carlos Navarrete ${ }^{2}$ ${ }^{1}$ IRIT, Université Toulouse Capitole, France
${ }^{2}$ Center for Collective Learning, ANITI, TSE, IAST, IRIT, Université de Toulouse, France
${ }^{3}$ Alliance Manchester Business School, University of Manchester, UK
${ }^{4}$ Center for Collective Learning, CIAS, Corvinus University, Hungary
\{rachael.colley,umberto.grandi\} @irit.fr, \{cesar.hidalgo, mariana.macedo, carlos.navarrete\}@univ-toulouse.fr

UNPACKING POLARISATION

3 users

I user

I user

This profile has high polarisation. If we wanted to decrease
polarisation, or to take advantage of it, where should we start? Can we explain why is it polarised?

We aim at moving from comparing profiles (in terms of polarisation), to comparing issues inside a single profile

$$
\frac{1}{n} \sum_{i}\left(\operatorname{rank}\left(a, \succ_{i}\right)-\operatorname{avg-rank}(a)\right)^{2}
$$

RANKVARIANCE

The variance of a distribution is widely used in social sciences to measure polarisation

Two issues: the variance is not related to the aggregation function used (eg Borda) It is hard to compute on incomplete data without imputing missing preferences

DIVISIVENESS IN CHILE

During the Chilean protests in 2019-20, César Hidalgo and Carlos Navarrete (now also affiliated to IAST!) run a successful application which extracted pairwise comparions over hundreds of proposals to be included in the new constitution

Resultados
Cuarto ciclo (14/11/2019-28/11/2019)

Más relevantes
Fijar el sueldo de los politicos como una proporción del sueldo mínimo
Desprivatizaciön del Agla
Reducción de sueldos y eliminación de asignaciones parlamentarias
Pensión Minima Igual o Mayor al Sueldo Mínimo
Mejorar Aporte del Estado a Pensiones de los Más Necesitados
Eliminación de elección de parlamentarios por arrastre
¿Qué priorizarías?
Tus votos: 0
(1) con capacidad de trabajo salarial dentro de empresas

They collected 7.4M responses (pairwise comparisons). See last
part of the talk for similar experiment in France and Brazil.

Users can see collective measures: A ranking of agreement (Borda score)

DIVISIVENESS, FIXED SUB-POPULATION

The divisiveness of issue b for subpopulation S is the difference of the score (Borda, Copeland) of issue bin S and its score in the complement subpopulation N-S

DIVISIVENESS

Let $N(b>c)$ be the set of all users that prefer issue b to c
The divisiveness of issue b in profile P is the average divisiveness of b wrt subpopulation $\mathbf{N}(b>c)$ for all other issues c, discounted by the size of the two subpopulations (alpha between 0 and I)

$$
\operatorname{DIV}(a)=\frac{1}{m-1} \sum_{b \neq a}^{n}\left(\ell \frac{\#\left(N_{a>b}\right) \cdot \#\left(N_{b>a}\right)}{n^{2}}\right)^{\alpha} D I V\left(a, N_{a \succ b}\right) \text { disappear } \quad \begin{aligned}
& \text { Divisiveness of } \\
& \text { issue a } \\
& \text { Number of users } \\
& \text { prefer a to } \mathrm{b} \\
& \text { that prefers a to } \mathrm{b}
\end{aligned}
$$

POLARISATION AND MINORITY OPINIONS

I user

Assuming
$k>=5,1=4$
(normalisation)
If alpha=0 then and are the most divisive issues

BOUNDS EXAMPLES

Fully polarised profile:

m ! users each submitting a different ordering

Uniform profile:
all issues have the same divisiveness

RESULTS

When the number of issues >10 the Kendall-Tau correlation between the rankings obtained from Rank-Variance and Divisiveness (with Borda, Copeland) is lower than 0.4

we can find in poly time the subpopulation S that is most divided on

Divisiveness is not robust
(=easy to disrupt): deleting between 10/20\% of pairs is sufficient to drop KT correlation below 0.5

Need to add 20-30\% fake profiles to
manipulate an issue on top of divisiveness
nature human behaviour

Article
https://doi.org/10.1038/s41562-023-01755-x

Understanding political divisiveness using online participation data from the 2022
 French and Brazilian presidential elections

3. Empirical analysis of divisiveness measures, building a collective government program

PREFERENCE ELICITATION PLATFORMS

COLLECTIVE GOVERNMENT PROGRAM

~100 political proposals extracted from the programs of the candidates

Drag and sort the proposals according to your preferences

Id	Name	Win percentage
1	Plan to use 100\% renewable energies by 2050	74.7\%
2	Increase personnel in public hospitals	72.0\%
3	Increase the minimum wage	70.6\%
4	Further develop the French nuclear park	70.5\%
5	Include ecology in the Constitution bora score on	68.2\%
6	Reduce working hours to 32 hours per week incomplete data	67.1\%
7	Create a citizen income	66.5\%
8	Cap prices of essential products: gas, electricity, food	66.0\%
9	Prohibit any salary difference of more than 1 to 20 in a company	65.9\%
10	Devote 3\% of GDP to research and development	65.7\%
11	Create a Constituent Assembly to pass to the Sixth Republic	65.7\%
12	Lower retirement age to 60	64.8\%
13	Increase the industrialization of the country	63.8\%
14	Ensure a minimum pension is equivalent to the minimum wage	62.5\%
15	Restore the solidarity tax on wealth (ISF)	62.0\%
16	Increase number of doctors in rural underserved areas	62.0\%
17	Increase teacher salaries	61.8\%
18	Nationalize or renationalize some large companies (EG Telecom / Orange)	59.4\%
19	Ban dangerous pesticides (eg neonicotinoides)	59.1\%
20	Establish a Citizens' Initiative Referendum	58.2\%

Results are only representative of the opinion of the participants

$\mathbf{1 1 5}$	Remove of the TV licence fee	29.0%
$\mathbf{1 1 6}$	Defend regional languages and cultures	27.6%
$\mathbf{1 1 7}$	Restore ENA (the National School of Administration)	25.9%
$\mathbf{1 1 8}$	Protect hunting and fishing rights	24.5%
$\mathbf{1 1 9}$	Establish full autonomy for Corsica	22.5%
$\mathbf{1 2 0}$	Prohibit the burkini at municipal swimming pools	18.1%

DO (RIGHT) LEFT WING VOTERS AGREE MORE WITH (RIGHT) LEFT VOTERS?

Excluding Macron's proposals

DIVISIVENESS AND POLITICAL ORIENTATION

Labeled proposals have a 15% difference between the win percentage (=divisiveness wrt political orientation split of the population)
0.38 divisive: the difference in "win rate" is 38% points between L and R

DIVISIVENESS AND AGE

40.Reserve social
 security assistance to people with French

nationality
| I O.Reduce
the tax on real estate wealth by
exempting it from 50% of the

Divisiveness seems to be a multidimensional phenomenon: need to use an "agnostic" measure

DIVISIVENESS (AGNOSTIC)

Divisiveness provides information that is unavailable to the respective aggregation function (in this case Borda, Copeland)
a national assembly to
move to the VI

republic

Divisiveness

- rank issues within a profile
- explicit dependence on the score used to aggregate rankings
- It can be used to understand the tensions inside a democracy: asking people what they want, measuring what divides them

Theoretical analysis

- from polarisation to minority detection depending on alpha
- easy to disrupt by deleting pairwise comparisons
- can be controlled by adding (large numbers of) users, size of population matters

Many open directions for future work!

- Finding divisiveness measures that are more robust (need less data to be accurate)
- Use divisiveness to compare profiles, relation with latest polarisation measures

MEASURING DISAGREEMENT: POLARISATION

Simple version of polarisation measure: $K \sum \pi_{i}^{1+\alpha} \pi_{j}\left|y_{i}-y_{j}\right|$

Among the postulates assumed:

- High degree of homogeneity within group
- High degree of heterogeneity across groups
- Groups of insignificant size carry little weight
- The size of the overall population has no influence

ADAPT POLARISATION ON RANKINGS

 Idea: rank pairs of issues by their disagreement $d(a, b)$Population I

.

Further observation: all four alternatives will have a similar Borda score (agreement)
Possible idea: average the pairwise disagreement of "requ against all other alternatives?

From now on

RELATIONWITHVARIANCE

we assume alpha=0!

UM10

We generated 100 profiles of 100 linear orders using IC, UMIO, UM50 (Urn model, different correlation factors)

When the number of issues >10 the KendallTau correlation between the rankings obtained from Rank-Variance and Divisiveness (with Borda, Copeland) is lower than 0.4

But note that on small number of issues the measures are correlated

MOST DIVIDED POPULATION

Simple polynomial algorithm for Borda score:

- order agents on decreasing ranking of
- any S that maximises divisiveness will be a split of the re-ordered profile
- "moving window" to find the maximal split

Does not seem trivial for the Copeland score

ROBUSTNESS/DISRUPTION

We generated 100 profiles of 100 linear orders using IC, UMIO, UM50. We deleted $\mathrm{X} \%$ of pairwise comparisons and computed the ranking of divisiveness

Divisiveness is not robust (=easy to disrupt): deleting between 10/20\% of pairs is sufficient to drop KT correlation below 0.5

Curve inversion between less and more than 7 issues

CONTROL BY ADDING USERS (BOTS)

To make issue b the most divisive we tested a simple algorithm INJECT-s: that adds fake rankings:

- Compute the ranking <s given by score s
- add one user with ranking <s moving a to top
- add one user with ranking <s moving a to bottom
- repeat until success

We can prove that INJECT-s terminates in poly time

ALGORITHM:

MANIPULATE RANKING USING BOTS

$$
s=\text { Borda }
$$

We generated 100 profiles of 100 linear orders using IC, UMIO, UM50. We considered three objectives: make most divisive the issue ranked 2 nd , 4th, last

Result depend on size of the population (adding 25\%/35\% fake profiles could be easy to detect over large populations)

More correlated profiles (UM50) are harder to control

GENERATION OF RANKING PROFILES

all m! possible rankings over
m issues

IC - impartial culture
Draw n rankings
uniformly at random with replacement

UMX - Urn model X\% correlation

Draw rankings uniformly at random replacing m!/9 (for UMIO) copies of the drawn ranking in the urn

WHY RANKINGS?

Ordinal information is arguably easier to elicit (e.g. via pairwise comparisons)

Drag and sort the proposals according to your preferences

Which proposal do you prefer?

Easier user interfaces = more data, citizen engagement, improved participation

It is also the classical data format of social choice theory (because of assumptions on little interpersonal comparison of utility)

NOT ENOUGH RAISED HANDS?

Computational problem
size $O(n \times m)$
INPUT: a profile of rankings, a proposal b, a partition S of the users
OUTPUT: is S the maximally divisive partition?

Polynomial time solvable

There is a polynomial $p(X)$ such that the answer to the problem can be computed in time $p(I N P U T$ SIZE)

Most divisive population: the algorithm considers n partitions, the Borda score can be computed in linear time, and we need to consider m partition of users to compute the average

The brute-force algorithm would consider all possible partitions of n users ($2^{(n-1)}$, not poly)

NOT ENOUGH RAISED HANDS?

Normalised Copeland scoring I (Cond. winner)

Borda scoring

扇领

1/9

WHAT NEXT? INTERDISCIPLINARY APPROACH

Human computer interaction
Learning of preferences
Definition of public opinion
Manipulation and incentives

Field studies in Brazil and France

