Symmetric mechanisms for two-sided matching problems

Michele Gori

Dipartimento di Scienze per l'Economia e l'Impresa Università degli Studi di Firenze

The 2024 Amsterdam/Saint-Étienne Workshop on Social Choice Saint-Étienne March 14-15, 2024 Joint work with

Daniela Bubboloni, University of Florence

Claudia Meo, University of Naples

One-to-one two-sided matching problem

- two sets of agents having equal size
- each agent of a set has preferences on the agents of the other set (linear orders)

Problem

Find a procedure that "properly" matches any agent of the first set with **one and only one** agent of the other set.

Gale-Shapley algorithm

- agents interpreted as individuals
- the first group is denoted by *W* the members of *W* are called **women**
- the second group is denoted by *M* the members of *M* are called **men**

$$|W| = |M| = n \ge 2$$

$$W = \{1, \ldots, n\}$$
 $M = \{n + 1, \ldots, 2n\}$

 $I = W \cup M$

every woman has preferences in L(M) (linear orders on M)

every man has preferences in L(W) (linear orders on W)

A preference profile is a function

$$p: I \to \mathbf{L}(W) \cup \mathbf{L}(M)$$

such that, for every $z \in I$,
$$\begin{cases} \text{ if } z \in W, \text{ then } p(z) \in \mathbf{L}(M) \\ \text{ if } z \in M, \text{ then } p(z) \in \mathbf{L}(W) \end{cases}$$

.

 \mathbf{P} = set of preference profiles

• (•••) • (•••)

 $W = \{1, 2, 3\}$ $M = \{4, 5, 6\}$

$$p = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 3 & 1 & 2 \\ 5 & 6 & 4 & 1 & 2 & 3 \\ 6 & 4 & 5 & 2 & 3 & 1 \end{bmatrix}$$

A matching is an element μ of $\mathit{Sym}(I)$ such that

- for every $x \in W$, $\mu(x) \in M$
- for every $y \in M$, $\mu(y) \in W$

• for every
$$z\in I$$
, $\mu(\mu(z))=z$

 $\boldsymbol{\mathsf{M}} \ = \mathsf{set} \ \mathsf{of} \ \mathsf{matchings}$

$$W = \{1, 2, 3\}$$
 $M = \{4, 5, 6\}$

The elements of ${\boldsymbol{\mathsf{M}}}$ are

$$(14)(25)(36)$$
 $(14)(26)(35)$ $(16)(25)(34)$
 $(15)(24)(36)$ $(15)(26)(34)$ $(16)(24)(35)$

Let $p \in \mathbf{P}$ and $\mu \in \mathbf{M}$

- μ is stable if there is no $(x, y) \in W \times M$ such that $y >_{p(x)} \mu(x)$ and $x >_{p(y)} \mu(y)$.
- μ is minimally optimal if there is an individual who is not matched by μ to her/his worst choice.

Stability \Rightarrow Minimal optimality

Theorem (Gale-Shapley, 1962)

For every $p \in \mathbf{P}$ there exists a stable matching.

woman-oriented Gale-Shapley algorithm ↓ woman-optimal stable matching

man-oriented Gale-Shapley algorithm ↓ man-optimal stable matching

<i>p</i> =	1	2	3	4	5	6
	4	5	6	3	1	2
	5	6	4	1	2	3
	6	4	5	2	3	1

- woman-optimal stable: (14)(25)(36)
- man-optimal stable: (15)(26)(34)
- stable: (14)(25)(36), (15)(26)(34)
- minimally optimal: all the matchings but (16)(24)(35)

A matching mechanism (MM) is a nonempty-valued correspondence from ${\bm P}$ to ${\bm M}.$

Problem

Find a MM satisfying "good" properties.

Some matching mechanisms

$$GS_w(p) = \left\{ \text{the woman-optimal stable matching for } p \right\}$$
$$GS_m(p) = \left\{ \text{the man-optimal stable matching for } p \right\}$$
$$ST(p) = \left\{ \text{stable matchings for } p \right\}$$
$$MO(p) = \left\{ \text{minimally optimal matchings for } p \right\}$$

Let F be a MM.

F is resolute if, for every $p \in \mathbf{P}$, |F(p)| = 1.

- ST and MO are not resolute
- GS_w and GS_m are resolute

 GS_w is not fair: it gives a systematic advantage to women.

 GS_m is not fair: it gives a systematic advantage to men.

How to define and measure fairness?

- We identify the level of fairness of a matching mechanism with its level of symmetry
- We study symmetry via an algebraic approach developed by Bubboloni and Gori in SCT

$$G^* = \left\{ \varphi \in Sym(I) : \left\{ \varphi(W), \varphi(M) \right\} = \left\{ W, M \right\} \right\} \qquad \mathsf{M} \subseteq G^*$$

$$G = \left\{ \varphi \in Sym(I) : \varphi(W) = W \text{ and } \varphi(M) = M \right\} \triangleleft G^*$$

 $\varphi \in G$ exchanges $\left\{ \begin{array}{l} \text{women's names among women} \\ \text{men's names among men} \end{array} \right.$

 $\varphi \in G^* \backslash G$ exchanges women's and men's names.

Given $p \in \mathbf{P}$ and $\varphi \in G^*$,

 $p^{\varphi} =$ preference profile obtained by p by exchanging individual names according to φ

$$p = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 3 & 1 & 2 \\ 5 & 6 & 4 & 1 & 2 & 3 \\ 6 & 4 & 5 & 2 & 3 & 1 \end{bmatrix} \qquad \varphi = (123)(46) \in G$$

$$p^{\varphi} = \begin{bmatrix} 2 & 3 & 1 & 6 & 5 & 4 \\ 6 & 5 & 4 & 1 & 2 & 3 \\ 5 & 4 & 6 & 2 & 3 & 1 \\ 4 & 6 & 5 & 3 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 5 & 3 & 2 & 1 \\ 6 & 5 & 4 & 1 & 3 & 2 \\ 5 & 4 & 6 & 2 & 1 & 3 \end{bmatrix}$$

Let F be a MM and $U \subseteq G^*$. F is U-symmetric if, for every $p \in \mathbf{P}$ and $\varphi \in U$,

$$F(p^{\varphi}) = \left\{ \varphi \mu \varphi^{-1} \in Sym(I) : \mu \in F(p) \right\}$$

U-symmetry is interpreted as a measure of fairness

If $V \subseteq U$, then U-symmetry implies V-symmetry

$$F(p) = \left\{ (14)(25)(36), (15)(26)(34) \right\}$$
$$\downarrow$$
$$F(p^{\varphi}) = \left\{ \varphi(14)(25)(36)\varphi^{-1}, \varphi(15)(26)(34)\varphi^{-1} \right\}$$
$$= \left\{ (42)(63)(51), (43)(61)(52) \right\} = \left\{ (15)(24)(36), (16)(25)(34) \right\}$$

$$W = \{1, 2, 3\}$$
 $M = \{4, 5, 6\}$ F a G^* -symmetric MM $p \in \mathbf{P}$ $\varphi = (1426)(35) \in G^*$

anonimity or peer indifference = G-symmetry Masarani-Gokturk (1989), Sasaki-Toda (1992)

gender indifference = $\{\mu\}$ -symmetry Masarani-Gokturk (1989), Endriss (2020)

gender fairness = $(G^* \setminus G)$ -symmetry Özkal-Sanver (2004) Resoluteness and G^* -symmetry are highly desirable

- GS_w and GS_m are resolute but not G^* -symmetric
- ST and MO are G*-symmetric but not resolute

Problem

Is there a resolute and G^* -symmetric MM?

Let F and H be MMs.

H is a refinement of *F* if, for every $p \in \mathbf{P}$, $H(p) \subseteq F(p)$.

General problem

Given a MM F and $U \subseteq G^*$, is there a U-symmetric resolute refinement of F?

$$f: G^* \to Sym(\mathbf{P}),$$
$$\varphi \mapsto \left(f(\varphi) : \mathbf{P} \to \mathbf{P}, \quad p \to p^{\varphi} \right)$$

is a group homomorphism (an action of G^* on \mathbf{P})

for every
$$\varphi_1, \, \varphi_2 \in G^*$$
 and $p \in \mathbf{P}, \quad p^{\varphi_1 \varphi_2} = (p^{\varphi_2})^{\varphi_1}$

Proposition

Let F be a MM and $U \subseteq G^*$. Then

F is *U*-symmetric \Leftrightarrow *F* is $\langle U \rangle$ -symmetric

Only subgroups of G^* matter

$$(G^* \setminus G)$$
-symmetry = G^* -symmetry

Let $U \leq G^*$ and $p \in \mathbf{P}$. Then

$$Stab_U(p) = \left\{ \varphi \in U : p^{\varphi} = p
ight\} \leqslant U$$

Definition

Let $U \leq G^*$ and $p \in \mathbf{P}$. Then

$$\mathcal{C}^{U}(p) = \left\{ \mu \in \mathbf{M} : \forall \, \varphi \in \mathit{Stab}_{U}(p) \; \; arphi \mu arphi^{-1} = \mu
ight\}$$

Theorem

Let F be a MM and $U \leq G^*$. Assume that F is U-symmetric. The following facts are equivalent:

- F admits a U-symmetric and resolute refinement
- for every $p \in \mathbf{P}$, $C^U(p) \cap F(p) \neq \emptyset$

Corollary

Let $U \leq G^*$. The following facts are equivalent:

- there exists a U-symmetric and resolute MM
- for every $p \in \mathbf{P}$, $C^U(p) \neq \emptyset$

Theorem

If *n* is even, there exists no resolute and G^* -symmetric MM.

Proof. We find $p \in \mathbf{P}$ such that $C^{G^*}(p) = \emptyset$. \Box

Theorem

If *n* is odd, there exists a resolute and G^* -symmetric MM.

Proof. We consider $p \in \mathbf{P}$ and prove that $C^{G^*}(p) \neq \emptyset$.

Step 1. We prove that $Stab_{G^*}(p)$ is a semi-regular group.

Step 2. We use semi-regularity to build an element in $C^{G^*}(p)$.

If n = 3 there are $2^{298} \cdot 3^{362}$ resolute and G^* -symmetric MMs

Theorem

There exists no resolute, G^* -symmetric and minimally optimal MM.

Proof. If *n* is even, there are no resolute and G^* -symmetric MM. If *n* is odd, we find $p \in \mathbf{P}$ such that $C^{G^*}(p) \cap MO(p) = \emptyset$.

Corollary (Endriss, 2020, $n \ge 3$)

There exists no resolute, G^* -symmetric and stable MM.

Proof. Simply note that ST is a refinement of MO.

The End

Thank you for your attention