Symmetric mechanisms for two-sided matching problems

Michele Gori

Dipartimento di Scienze per l'Economia e I'Impresa Università degli Studi di Firenze

The 2024 Amsterdam/Saint-Étienne Workshop on Social Choice

Saint-Étienne

March 14-15, 2024

Joint work with

Daniela Bubboloni, University of Florence

Claudia Meo, University of Naples

One-to-one two-sided matching problem

- two sets of agents having equal size
- each agent of a set has preferences on the agents of the other set (linear orders)

Problem

Find a procedure that "properly" matches any agent of the first set with one and only one agent of the other set.

Gale-Shapley algorithm

- agents interpreted as individuals
- the first group is denoted by W the members of W are called women
- the second group is denoted by M the members of M are called men

$$
\begin{aligned}
& |W|=|M|=n \geqslant 2 \\
& W=\{1, \ldots, n\} \quad M=\{n+1, \ldots, 2 n\} \\
& I=W \cup M
\end{aligned}
$$

$$
\text { every woman has preferences in } \mathbf{L}(M) \text { (linear orders on } M \text {) }
$$

$$
\text { every man has preferences in } \mathbf{L}(W) \quad \text { (linear orders on } W \text {) }
$$

A preference profile is a function

$$
p: I \rightarrow \mathbf{L}(W) \cup \mathbf{L}(M)
$$

such that, for every $z \in I,\left\{\begin{array}{l}\text { if } z \in W \text {, then } p(z) \in \mathbf{L}(M) \\ \text { if } z \in M, \text { then } p(z) \in \mathbf{L}(W)\end{array}\right.$
$\mathbf{P}=$ set of preference profiles

$$
W=\{1,2,3\} \quad M=\{4,5,6\}
$$

$$
p=\begin{array}{|lll||lll|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \hline 4 & 5 & 6 & 3 & 1 & 2 \\
5 & 6 & 4 & 1 & 2 & 3 \\
6 & 4 & 5 & 2 & 3 & 1 \\
\hline
\end{array}
$$

Definition

A matching is an element μ of $\operatorname{Sym}(I)$ such that

- for every $x \in W, \mu(x) \in M$
- for every $y \in M, \mu(y) \in W$
- for every $z \in I, \mu(\mu(z))=z$
$\mathbf{M}=$ set of matchings

$$
W=\{1,2,3\} \quad M=\{4,5,6\}
$$

The elements of \mathbf{M} are

$$
\begin{array}{lll}
(14)(25)(36) & (14)(26)(35) & (16)(25)(34) \\
(15)(24)(36) & (15)(26)(34) & (16)(24)(35)
\end{array}
$$

Let $p \in \mathbf{P}$ and $\mu \in \mathbf{M}$

- μ is stable if there is no $(x, y) \in W \times M$ such that $y>_{p(x)} \mu(x)$ and $x>_{p(y)} \mu(y)$.
- μ is minimally optimal if there is an individual who is not matched by μ to her/his worst choice.

Stability \Rightarrow Minimal optimality

Theorem (Gale-Shapley, 1962)
 For every $p \in \mathbf{P}$ there exists a stable matching.

woman-oriented Gale-Shapley algorithm
\Downarrow
woman-optimal stable matching
man-oriented Gale-Shapley algorithm
\Downarrow
man-optimal stable matching

$$
p=\begin{array}{|lll||lll|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \hline 4 & 5 & 6 & 3 & 1 & 2 \\
5 & 6 & 4 & 1 & 2 & 3 \\
6 & 4 & 5 & 2 & 3 & 1 \\
\hline
\end{array}
$$

- woman-optimal stable: $(14)(25)(36)$
- man-optimal stable: $(15)(26)(34)$
- stable: $(14)(25)(36),(15)(26)(34)$
- minimally optimal: all the matchings but (16)(24)(35)

Definition

A matching mechanism (MM) is a nonempty-valued correspondence from \mathbf{P} to \mathbf{M}.

Problem

Find a MM satisfying "good" properties.

Some matching mechanisms
$G S_{w}(p)=\{$ the woman-optimal stable matching for $p\}$
$G S_{m}(p)=\{$ the man-optimal stable matching for $p\}$
$S T(p)=\{$ stable matchings for $p\}$
$M O(p)=\{$ minimally optimal matchings for $p\}$

Definition

Let F be a мM.
F is resolute if, for every $p \in \mathbf{P},|F(p)|=1$.

- $S T$ and $M O$ are not resolute
- $G S_{w}$ and $G S_{m}$ are resolute
$G S_{w}$ is not fair: it gives a systematic advantage to women.
$G S_{m}$ is not fair: it gives a systematic advantage to men.

How to define and measure fairness?

- We identify the level of fairness of a matching mechanism with its level of symmetry
- We study symmetry via an algebraic approach developed by Bubboloni and Gori in SCT

$$
\begin{aligned}
& G^{*}=\{\varphi \in \operatorname{Sym}(I):\{\varphi(W), \varphi(M)\}=\{W, M\}\} \quad \mathbf{M} \subseteq G^{*} \\
& G=\{\varphi \in \operatorname{Sym}(I): \varphi(W)=W \text { and } \varphi(M)=M\} \vDash G^{*}
\end{aligned}
$$

$$
\varphi \in G \text { exchanges }\left\{\begin{array}{l}
\text { women's names among women } \\
\text { men's names among men }
\end{array}\right.
$$

$$
\varphi \in G^{*} \backslash G \text { exchanges women's and men's names. }
$$

Given $p \in \mathbf{P}$ and $\varphi \in G^{*}$,
$p^{\varphi}=$ preference profile obtained by p by exchanging individual names according to φ

$$
\begin{aligned}
& p=\begin{array}{|lll||lll|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 4 & 5 & 6 & 3 & 1 & 2 \\
5 & 6 & 4 & 1 & 2 & 3 \\
6 & 4 & 5 & 2 & 3 & 1 \\
\hline
\end{array} \quad \varphi=(123)(46) \in G \\
& p^{\varphi}=\begin{array}{|lll||lll}
\hline 2 & 3 & 1 & 6 & 5 & 4 \\
\hline 6 & 5 & 4 & 1 & 2 & 3 \\
5 & 4 & 6 & 2 & 3 & 1 \\
4 & 6 & 5 & 3 & 1 & 2
\end{array}
\end{aligned}=\begin{array}{|lll|lll|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 4 & 6 & 5 & 3 & 2 & 1 \\
6 & 5 & 4 & 1 & 3 & 2 \\
5 & 4 & 6 & 2 & 1 & 3 \\
\hline
\end{array} .
$$

Definition

Let F be a Mm and $U \subseteq G^{*}$. F is U-symmetric if, for every $p \in \mathbf{P}$ and $\varphi \in U$,

$$
F\left(p^{\varphi}\right)=\left\{\varphi \mu \varphi^{-1} \in \operatorname{Sym}(I): \mu \in F(p)\right\}
$$

U-symmetry is interpreted as a measure of fairness

If $V \subseteq U$, then U-symmetry implies V-symmetry

$$
\begin{gathered}
W=\{1,2,3\} \quad M=\{4,5,6\} \quad F \text { a } G^{*} \text {-symmetric MM } \\
p \in \mathbf{P} \quad \varphi=(1426)(35) \in G^{*} \\
F(p)=\{(14)(25)(36),(15)(26)(34)\} \\
\Downarrow \\
F\left(p^{\varphi}\right)=\left\{\varphi(14)(25)(36) \varphi^{-1}, \varphi(15)(26)(34) \varphi^{-1}\right\} \\
=\{(42)(63)(51),(43)(61)(52)\}=\{(15)(24)(36),(16)(25)(34)\}
\end{gathered}
$$

anonimity or peer indifference $=G$-symmetry Masarani-Gokturk (1989), Sasaki-Toda (1992)
gender indifference $=\{\mu\}$-symmetry Masarani-Gokturk (1989), Endriss (2020)
gender fairness $=\left(G^{*} \backslash G\right)$-symmetry
Özkal-Sanver (2004)

Resoluteness and G^{*}-symmetry are highly desirable

- $G S_{w}$ and $G S_{m}$ are resolute but not G^{*}-symmetric
- $S T$ and $M O$ are G^{*}-symmetric but not resolute

Problem

Is there a resolute and G^{*}-symmetric MM?

Definition

Let F and H be mms.
H is a refinement of F if, for every $p \in \mathbf{P}, H(p) \subseteq F(p)$.

General problem
Given a mм F and $U \subseteq G^{*}$, is there a U-symmetric resolute refinement of F ?

Crucial fact

$$
\begin{gathered}
f: G^{*} \rightarrow \operatorname{Sym}(\mathbf{P}) \\
\varphi \mapsto\left(f(\varphi): \mathbf{P} \rightarrow \mathbf{P}, \quad p \rightarrow p^{\varphi}\right)
\end{gathered}
$$

is a group homomorphism (an action of G^{*} on \mathbf{P})
for every $\varphi_{1}, \varphi_{2} \in G^{*}$ and $p \in \mathbf{P}, \quad p^{\varphi_{1} \varphi_{2}}=\left(p^{\varphi_{2}}\right)^{\varphi_{1}}$

Proposition
 Let F be a Mm and $U \subseteq G^{*}$. Then
 F is U-symmetric $\Leftrightarrow F$ is $\langle U\rangle$-symmetric

Only subgroups of G^{*} matter

$$
\left(G^{*} \backslash G\right) \text {-symmetry }=G^{*} \text {-symmetry }
$$

Definition

Let $U \leqslant G^{*}$ and $p \in \mathbf{P}$. Then

$$
\operatorname{Stab}_{U}(p)=\left\{\varphi \in U: p^{\varphi}=p\right\} \leqslant U
$$

Definition

Let $U \leqslant G^{*}$ and $p \in \mathbf{P}$. Then

$$
C^{U}(p)=\left\{\mu \in \mathbf{M}: \forall \varphi \in \operatorname{Stab}_{U}(p) \varphi \mu \varphi^{-1}=\mu\right\}
$$

General existence result

Theorem

Let F be a Mm and $U \leqslant G^{*}$. Assume that F is U-symmetric.
The following facts are equivalent:

- F admits a U-symmetric and resolute refinement
- for every $p \in \mathbf{P}, C^{U}(p) \cap F(p) \neq \varnothing$

Corollary

Let $U \leqslant G^{*}$. The following facts are equivalent:

- there exists a U-symmetric and resolute mm
- for every $p \in \mathbf{P}, C^{U}(p) \neq \varnothing$

G^{*}-symmetry

Theorem

If n is even, there exists no resolute and G^{*}-symmetric mm.
Proof. We find $p \in \mathbf{P}$ such that $C^{G^{*}}(p)=\varnothing$. \square

Theorem

If n is odd, there exists a resolute and G^{*}-symmetric Mm.
Proof. We consider $p \in \mathbf{P}$ and prove that $C^{G^{*}}(p) \neq \varnothing$.
Step 1. We prove that $\operatorname{Stab}_{G^{*}}(p)$ is a semi-regular group. Step 2. We use semi-regularity to build an element in $C^{G^{*}}(p) . \quad \square$ If $n=3$ there are $2^{298} \cdot 3^{362}$ resolute and G^{*}-symmetric MMs

Theorem

There exists no resolute, G^{*}-symmetric and minimally optimal mM.
Proof. If n is even, there are no resolute and G^{*}-symmetric MM. If n is odd, we find $p \in \mathbf{P}$ such that $C^{G^{*}}(p) \cap M O(p)=\varnothing$.

Corollary (Endriss, 2020, $n \geqslant 3$)

There exists no resolute, G^{*}-symmetric and stable MM.
Proof. Simply note that $S T$ is a refinement of $M O$.

The End

Thank you for your attention

