New fairness concepts for allocating indivisible items

Ioannis Caragiannis Aarhus University iannis@cs.au.dk

This talk ...

- An overview of well-known results in fair division with indivisible items
- New technical results (C., Garg, Rathi, Sharma, & Varriccio, 2023)

Fair division: some indicative problems

- An inheritance, consisting of a jewellery collection, pieces of antique furniture, and estate property, is to be divided among heirs
- Food donated to a food bank has to be given to charities
- Access to rainwater reservoirs has to be granted to farmers
- A territorial dispute has to be resolved between neighbouring countries
- A partnership is dissolved, and the ex-partners have to split assets and liabilities
- Responsibility for the protection of refugees has to be shared among EU countries

The research agenda: conceptual and computational challenges in fair division

- Computational questions: How should fair division procedures for these scenarios work?
- Before that: need to define fairness as a concept

Allocating indivisible items

The basic setting

• Indivisible items

Agents with valuations for the items (additivity)

• Goal: divide the items among the agents in a fair manner

An example

An example

- Two interpretations of fairness:
 - Comparative: to evaluate an allocation as fair, each agent compares the bundle of items allocated to her to the bundles allocated to other agents
 - In absolute terms: each agent defines a threshold value based on her view of the items to be allocated and evaluates as fair those allocations which give her value higher than the threshold

- Two interpretations of fairness:
 - Comparative: to evaluate an allocation as fair, each agent compares the bundle of items allocated to her to the bundles allocated to other agents
 - In absolute terms: each agent defines a threshold value based on her view of the items to be allocated and evaluates as fair those allocations which give her value higher than the threshold
- Fairness notions
 - Envy freeness: every agent prefers her bundle to that given to any other agent $\forall i, j \colon v_i(A_i) \geq v_i(A_j)$

- Two interpretations of fairness:
 - Comparative: to evaluate an allocation as fair, each agent compares the bundle of items allocated to her to value of agent i for the to other agents
 - For every pair of agents i and j bundle A_i allocated to her bundle A_j allocated to agent j and j allocated to agent j
- Fairness nous
 - Envy freeness: every agent prefers her bundle to that given to any other agent $\forall i, j \colon v_i(A_i) \geq v_i(A_i)$

- Two interpretations of fairness:
 - Comparative: to evaluate an allocation as fair, each agent compares the bundle of items allocated to her to the bundles allocated to other agents
 - In absolute terms: each agent defines a threshold value based on her view of the items to be allocated and evaluates as fair those allocations which give her value higher than the threshold

Fairness notions

- Envy freeness: every agent prefers her bundle to that given to any other agent $\forall i, j \colon v_i(A_i) \geq v_i(A_j)$
- Proportionality: every agent feels that she gets at least 1/n-th of all items

$$\forall i: v_i(A_i) \ge \frac{1}{n} v_i(G)$$

gent

- Two interpretations of fairness:
 - Comparative: to evaluate an allocation as fair, each agent compares the bundle of items allocated to her to the bundles allocated to other agents
 - In absolute terms: each agent defines a threshold value based on her view of the items to be allocated and value of agent i for the higher than the threshold bundle A_i allocated to

Threshold value: 1/nth of the total value of

- Fair For every agent i
 - gent preference $\forall i,j \colon \iota \quad A_i) \geq v_i(A_j)$ agent i for all items
 - Proportionality: every agent feels that she gets a reast 1/n-th of all items

her

$$\forall i: v_i(A_i) \ge \frac{1}{n} v_i(G)$$

- Two interpretations of fairness:
 - Comparative: to evaluate an allocation as fair, each agent compares the bundle of items allocated to her to the bundles allocated to other agents
 - In absolute terms: each agent defines a threshold value based on her view of the items to be allocated and evaluates as fair those allocations which give her value higher than the threshold

Fairness notions

Unfortunately, envy free and proportional allocations may not exist

When is a fairness concept important/useful?

- Must be fair ©
- Should always exist
- Must be efficiently computable

Relaxing envy-freeness

 Envy freeness up to some item (EF1): every agent prefers her own bundle to the bundle of any other agent after eliminating some item from the latter

$$\forall i, j: \exists g \in A_j \text{ s. t. } v_i(A_i) \geq v_i(A_j \setminus \{g\})$$

Proposed by Budish (2011)

 Envy freeness up to some item (EF1): every agent prefers her own bundle to the bundle of any other agent after eliminating some item from the latter

$$\forall i, j: \exists g \in A_j \text{ s.t. } v_i(A_i) \geq v_i(A_j \setminus \{g\})$$

- Proposed by Budish (2011)
- EF1 always exist and can be computed in polynomial time
- Via the draft mechanism (folklore), envy-cycle elimination (Lipton, Markakis, Mossel, & Saberi, 2004), the maximum Nash welfare allocation (C., Kurokawa, Moulin, Procaccia, Shah, & Wang, 2019)

• Drafting order:

\$1200

\$200

\$300

\$200

\$100

\$800

\$500

\$200

\$300

\$200

\$800

\$400

\$400

\$300

• Drafting order:

\$1200

\$200

\$300

\$200

\$100

\$800

\$500

\$200

\$300

\$200

\$800

\$400

\$400

\$300

• Drafting order:

\$1200

\$200

\$300

\$200

\$100

\$800

\$500

\$200

\$300

\$200

\$800

\$400

\$400

\$300

• Drafting order:

\$1200

\$200

\$300

\$200

\$100

\$800

\$500

\$200

\$300

\$200

\$800

\$400

\$300

\$1200

\$200

\$300

\$200

\$100

\$800

\$500

\$200

\$300

\$200

\$400

\$300

• Drafting order:

\$1200

\$200

\$300

\$200

\$100

\$800

\$500

\$200

\$300

\$200

\$800

\$400

\$300

Envy-cycle elimination

- Allocate items one by one
- In each step *j*:
 - Allocate item j to an agent that nobody envies
 - If this creates a "cycle of envy", redistribute the bundles along the cycle
- Crucial property:
 - Envy can be eliminated by removing just a single good
 - Implies EF1
- Lipton, Markakis, Mossel, & Saberi (2004)

Relaxing envy-freeness

- Envy freeness up to any item (EFX): every agent prefers her own bundle to the bundle of any other agent after eliminating any item from the latter $\forall i, j, \forall g \in A_i : v_i(A_i) \geq v_i(A_j \setminus \{g\})$
- Proposed by C., Kurokawa, Moulin, Procaccia, Shah, & Wang (2019), Gourves, Monnot, & Tilane (2014)

Relaxing envy-freeness

- Envy freeness up to any item (EFX): every agent prefers her own bundle to the bundle of any other agent after eliminating any item from the latter $\forall i, j, \forall g \in A_i : v_i(A_i) \geq v_i(A_j \setminus \{g\})$
- Proposed by C., Kurokawa, Moulin, Procaccia, Shah, & Wang (2019), Gourves, Monnot, & Tilane (2014)
- Not known whether it always exists for general instances
- Known results for agents with identical valuations, ordered valuations, three agents, and a few more
 - Plaut & Roughgarden (2020), Chaudhuri, Garg, & Mehlhorn (2020)
- Known results for relaxations of EFX (approximations, EFX with charity, etc.)
 - Amanatidis, Markakis, & Ntokos (2020), C., Gravin, & Huang (2019), Chaudhuri, Kayitha Mehlhorn & Sgouritsa (2021), Chaudhuri, Garg, Mehlhorn, Ruta, & Misra,

• Maximin share fairness (MMS): each agent's threshold is equal to the best guarantee when dividing the items into n bundles and getting the least valuable bundle

$$\forall i, v_i(A_i) \ge \theta_i = \max_B \min_j v_i(B_j)$$

Proposed by Budish (2011)

For every agent *i*

Agent *i*'s value is above the MMS threshold

MMS threshold = the maximum over all allocations B of the minimum value agent i has from B's bundles

• Maximin share fairness (MMS): The agent's threshold is equal to the best guarantee when dividing the item into n bundles and getting the least valuable bundles.

$$\forall i, v_i(A_i) \ge \theta_i = \max_B \min_j v_i(B_j)$$

Proposed by Budish (2011)

Relaxing proportionality

• Maximin share fairness (MMS): each agent's threshold is equal to the best guarantee when dividing the items into n bundles and getting the least valuable bundle

$$\forall i, v_i(A_i) \ge \theta_i = \max_B \min_j v_i(B_j)$$

- Proposed by Budish (2011)
- Unfortunately, MMS allocations may not exist
 - Procaccia & Wang (2014), Kurokawa, Procaccia, & Wang (2018)
- Research has focused on achieving MMS-approximations in poly time
 - Amanatidis, Markakis, Nikzad, & Saberi (2017), Ghodsi, Hajiaghayi, Seddighin, Seddighin, & Yami (2018), Barman & Krishnamurthy (2020), Garg & Taki (2020)

Summarizing so far

- EF1: always exists, easy to achieve, not fair
- EFX: not known whether it can be always satisfied, fair
- MMS: may not exist, fair (if exists)

• See Bouveret & Lemaitre (2016), Aziz, Bouveret, C., Giagkousi, & Lang (2018) for taxonomies including more fairness concepts

Summarizing so far

• EF1: always exists, easy to achieve, nq

EFX: not known whether it can be alw

• MMS: may not exist, fair (if existed

EF EFX EF1

Prop MMS

Still, EFX seems to be the most promising fairness property we have for indivisible items

• See Bouveret & Lemaitre (2016), Aziz, Bouveret, C., Giagkousi, & Lang (2018) for taxonomies including more fairness concepts

New fairness concepts

Fairness and knowledge

- What kind of knowledge do the agents need to have?
- Knowledge about the items and the number of agents only:
 - Proportionality, MMS
- Knowledge about the whole allocation:
 - EF, EFX, EF1

Epistemic envy-freeness (EEF)

- Informally: a relaxation of EF with a definition that uses only knowledge about items and number of agents
- Formal definition: the allocation $(A_1, A_2, ..., A_n)$ is EEF if, for every agent i, there is a **reallocation** $(B_1, ..., B_{i-1}, A_i, B_{i+1}, ..., B_n)$ of the items in which agent i is not envious, i.e., $v_i(A_i) \geq v_i(B_j)$ for every other agent j
- Aziz, C., Bouveret, Giagkousi, & Lang (2018)
- Unfortunately, EEF allocations may not exist

Epistemic envy-freeness up to any item (EEFX)

- Informally: a relaxation of EFX with a definition that uses only knowledge about items and number of agents
- Formal definition: the allocation $(A_1, A_2, ..., A_n)$ is EEFX if, for every agent i, there is a **reallocation** $(B_1, ..., B_{i-1}, A_i, B_{i+1}, ..., B_n)$ of the items in which the EFX conditions for agent i are satisfied

$$\forall i, j \neq i, \forall g \in B_j: v_i(A_i) \geq v_i(A_j \setminus \{g\})$$

• C., Garg, Rathi, Sharma, & Varricchio (2023)

Minimum EFX value fairness (MXS)

- Informally: Each agent i gets a value that is at least as high as the minimum value agent i gets among all allocations where the EFX conditions for her are satisfied
- Formal definition: the allocation $(A_1, A_2, ..., A_n)$ is MXS if $\forall i : v_i(A_i) \geq \theta_i = \min_{B \in EFX_i} v_i(B_i)$

where the set EFX_i consists of those allocations $B=(B_1,B_2,\ldots,B_n)$ such that

$$\forall j \neq i, g \in B_j: v_i(B_i) \geq v_i(B_j \setminus \{g\})$$

• C., Garg, Rathi, Sharma, & Varricchio (2023)

Let's compute the MXS threhsolds first

 θ_{i}

Let's compute the

Now let's compute the allocation

A geometry of fairness properties

EEFX — MXS

- Proof: Let $A = (A_1, ..., A_n)$ be **EEFX**. Then, for every agent i, there exists a reallocation $B = (B_1, ..., B_{i-1}, A_i, B_{i+1}, ..., B_n)$ so that the EFX conditions are satisfied for agent $i, B \in EFX_i$
- Hence,

$$v_i(A_i) \ge \min_{B' \in EFX_i} v_i(B'_i) = MXS_i$$

• I.e., *A* is also **MXS**

MMS — EEFX

MMS — EEFX (contd.)

MMS — EEFX (contd.)

A geometry of fairness properties

Main result: EEFX and MXS are awesome!

 Theorem: EEFX and MXS allocations always exist and can be computed in polynomial time

- Step 1: Enumerate the items as g_1, g_2, \dots, g_m and redistribute the values so that each agent has her j-th highest value for item g_j
- Step 2: Run envy-cycle elimination on this ordered instance
- Step 3: Redistribute the items to the bundles. For $j=1,\ldots,m$, agent who currently has item g_i is asked to pick her best available item

Envy-cycle elimination (implementation of step 2)

- Lipton, Markakis, Mossel, & Saberi (2004)
- Allocate items one by one (ordered from the most to the least valued one)
- In each step *j*:
 - Allocate item j to an agent that nobody envies
 - If this creates a "cycle of envy", redistribute the bundles along the cycle
- Crucial property:
 - Envy can be eliminated by removing a single item (the last one inserted in a bundle)
 - Implies EF1 (actually, EFX)
- Barman & Krishnamourthy (2020)

An example

Step 1: redistributing the values

	1	2	3	4	5
الم الم	\$600	\$500	\$400	\$300	\$200
	\$700	\$700	\$300	\$200	\$100
	\$900	\$600	\$200	\$200	\$100

	1	2	3	4	5
١	\$600	\$500	\$400	\$300	\$200
	\$700	\$700	\$300	\$200	\$100
	\$900	\$600	\$200	\$200	\$100

1	2	3	4	5
\$600	\$500	\$400	\$300	\$200
\$700	\$700	\$300	\$200	\$100
\$900	\$600	\$200	\$200	\$100

\$200

\$400

\$300

\$700

\$700

\$300

\$200

\$100

\$900

\$600

\$200

\$200

\$100

\$600

\$200

\$200

\$900

picking sequence

\$100

- Step 1: Enumerate the items as g_1, g_2, \ldots, g_m and redistribute the values so that each agent has her j-th highest value for item g_j
 - Bouveret & Lemaitre (2016)

- Step 1: Enumerate the items as g_1,g_2,\dots,g_m and redistribute the values so that each agent has her j-th highest value for item g_j
 - Bouveret & Lemaitre (2016)
- Step 2: Run envy-cycle elimination to this ordered instance
 - Yields an EFX allocation for the ordered instance (Barman & Krishnamourthy, 2020, Plaut & Roughgarden, 2020)

- Step 1: Enumerate the items as g_1,g_2,\dots,g_m and redistribute the values so that each agent has her j-th highest value for item g_j
 - Bouveret & Lemaitre (2016)
- Step 2: Run envy-cycle elimination to this ordered instance
 - Yields an EFX allocation for the ordered instance (Barman & Krishnamourthy, 2020, Plaut & Roughgarden, 2020)
- Step 3: Redistribute the items to the bundles. For $j=1,\ldots,m$, agent who currently has item g_i is asked to pick her best available item

What happens at step 3?

What happens at step 3?

What happens at step 3?

... and there is a redistribution of the items (i.e., their assignment at the end of step 2) which makes agent *i* EFX-happy

Takeaway message

- EFX is still an important property and we should further explore it
- But why not focusing on alternative fairness concepts in parallel?
- In particular, on concepts that are related to it, like EEFX and MXS
- Reconsider existing algorithms (they may do more than we think)

Takeaway message

- EFX is still an important property and we should further explore it
- But why not focusing on alternative fairness concepts in parallel?
- In particular, on concepts that are related to it, like EEFX and MXS
- Reconsider existing algorithms (they may do more than we think)

 Many open problems: variations of MXS, compatibility with paretooptimality, price of EEFX/MXS, complexity of computing MXS threshold, non-additive valuations, chores, etc.

Takeaway message

- EFX is still an important property and we should further explore it
- But why not focusing on alternative fairness concepts in parallel?
- In particular, on concepts that are related to it, like EEFX and MXS
- Reconsider existing algorithms (they may do more than we think)

 Many open problems: variations of MXS, compatibility with paretooptimality, price of EEFX/MXS, complexity of computing MXS threshold, non-additive valuations, chores, etc.

Thank you!