Measuring Diversity of Preferences

Vahid M. Hashemi
joint work with Ulle Endriss

ILLC, University of Amsterdam

March 20, 2015
Introduction

- Real world vs. synthetic preference profiles

- Diverse vs. consensus preferences
 - less diverse: better behavior?
 - fewer paradoxes
 - easier to reach an agreement
 - less disappointment
Example

Which one is more diverse?

<table>
<thead>
<tr>
<th>1: $a \succ b \succ c$</th>
<th>2: $a \succ b \succ c$</th>
<th>3: $a \succ b \succ c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: $a \succ c \succ b$</td>
<td>2: $b \succ a \succ c$</td>
<td>3: $c \succ a \succ b$</td>
</tr>
<tr>
<td>1: $b \succ a \succ c$</td>
<td>1: $b \succ c \succ a$</td>
<td>1: $c \succ a \succ b$</td>
</tr>
<tr>
<td>1: $c \succ b \succ a$</td>
<td>2: $b \succ a \succ c$</td>
<td>2: $a \succ c \succ b$</td>
</tr>
</tbody>
</table>
Example

Which one is more diverse?

<table>
<thead>
<tr>
<th></th>
<th>1: (\text{a} \succ \text{b} \succ \text{c})</th>
<th>2: (\text{b} \succ \text{a} \succ \text{c})</th>
<th>3: (\text{c} \succ \text{a} \succ \text{b})</th>
<th>1: (\text{a} \succ \text{b} \succ \text{c})</th>
<th>2: (\text{b} \succ \text{a} \succ \text{c})</th>
<th>3: (\text{c} \succ \text{a} \succ \text{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{a} \succ \text{b} \succ \text{c})</td>
<td>(\text{b} \succ \text{a} \succ \text{c})</td>
<td>(\text{c} \succ \text{a} \succ \text{b})</td>
<td>(\text{a} \succ \text{b} \succ \text{c})</td>
<td>(\text{b} \succ \text{a} \succ \text{c})</td>
<td>(\text{c} \succ \text{a} \succ \text{b})</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Example

Which one is more diverse?

<table>
<thead>
<tr>
<th>1 : a ≻ b ≻ c</th>
<th>2 : a ≻ b ≻ c</th>
<th>3 : a ≻ b ≻ c</th>
<th>1 : a ≻ b ≻ c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 : b ≻ c ≻ a</td>
<td>3 : c ≻ b ≻ a</td>
<td>1 : a ≻ c ≻ b</td>
<td>2 : b ≻ a ≻ c</td>
</tr>
<tr>
<td>2 : c ≻ a ≻ b</td>
<td>3 : c ≻ b ≻ a</td>
<td>1 : b ≻ a ≻ c</td>
<td>2 : a ≻ c ≻ b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 : a ≻ b ≻ c</th>
<th>2 : a ≻ b ≻ c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 : b ≻ a ≻ c</td>
<td>2 : a ≻ c ≻ b</td>
</tr>
<tr>
<td>2 : c ≻ a ≻ b</td>
<td>2 : c ≻ b ≻ a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
Example

Which one is more diverse?

<table>
<thead>
<tr>
<th></th>
<th>2 : a ≻ b ≻ c</th>
<th>3 : a ≻ b ≻ c</th>
<th>1 : a ≻ b ≻ c</th>
<th>2 : a ≻ b ≻ c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 : b ≻ c ≻ a</td>
<td>3 : c ≻ b ≻ a</td>
<td>1 : a ≻ c ≻ b</td>
<td>2 : b ≻ a ≻ c</td>
</tr>
<tr>
<td></td>
<td>2 : c ≻ a ≻ b</td>
<td></td>
<td>1 : b ≻ a ≻ c</td>
<td>2 : a ≻ c ≻ b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 : c ≻ b ≻ a</td>
<td>1 : c ≻ a ≻ b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>
Example

Which one is more diverse?

<table>
<thead>
<tr>
<th></th>
<th>1: $a \succ b \succ c$</th>
<th>1: $a \succ c \succ b$</th>
<th>2: $a \succ b \succ c$</th>
<th>2: $b \succ a \succ c$</th>
<th>2: $a \succ c \succ b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2: a \succ b \succ c$</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>$2: b \succ c \succ a$</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>$2: c \succ a \succ b$</td>
<td>12</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Example

Which one is more diverse?

<table>
<thead>
<tr>
<th>1</th>
<th>2 : $a \succ b \succ c$</th>
<th>3 : $a \succ b \succ c$</th>
<th>1 : $a \succ b \succ c$</th>
<th>2 : $a \succ b \succ c$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>$4(2 + 2 + 2) = 24$</td>
<td>$9 \times 3 = 27$</td>
<td>$\frac{6}{2}(1 + 1 + 2 + 2 + 3) = 27$</td>
<td>$4(1 + 1 + 2) = 16$</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Introduction
 - Diversity

2. Measuring Preference Diversity
 - Notation
 - Preference Diversity Orderings and Indices
 - Specific preference diversity indices

3. Axiomatic Analysis
 - Axioms
 - Results

4. Experimental Analysis
 - Diversity distribution across cultures
 - Impact on social choice-theoretic effects

5. Conclusion
Basic Definitions

Individuals \(N = \{1, 2, \ldots, n\} \), finite set of \(n \) individuals (voters)

Alternatives \(X = \{x_1, \ldots, x_m\} \), finite set of \(m \) alternatives (candidates)

Preferences Members of \(L(X) \) (the set of strict linear orders over \(X \))

Profile \(R = (R_1, \ldots, R_n) \in L(X)^n \), vector of preference orders

Example

For \(X = \{a, b, c\} \) and 5 voters, a possible profile is:

\[
R = (abc, abc, acb, cab, cba)
\]
Preference Diversity Orderings and Indices

PDO & PDI

Definition (Preference diversity index)

A *preference diversity index* (PDI) is a function \(\Delta : \mathcal{L}(\mathcal{X})^n \rightarrow \mathbb{R}^+ \cup \{0\} \), mapping profiles to the nonnegative reals, that respects \(\Delta(R, \ldots, R) = 0 \) for any \(R \in \mathcal{L}(\mathcal{X}) \).

A PDI \(\Delta \) is *normalised* if it maps any given profile to the interval \([0, 1]\), and the maximum of 1 is reached for at least one profile, i.e., \(\max \{ \Delta(R) \mid R \in \mathcal{L}(\mathcal{X})^n \} = 1 \).

Definition (Preference diversity order)

A *preference diversity order* (PDO) is a weak order \(\succeq \) declared on the space of preference profiles \(\mathcal{L}(\mathcal{X})^n \) that respects \(R \succeq (R, \ldots, R) \) for all \(R \in \mathcal{L}(\mathcal{X})^n \) and all \(R \in \mathcal{L}(\mathcal{X}) \).
Preference Diversity Orderings and Indices

PDO & PDI

Definition (Preference diversity index)

A **preference diversity index** (PDI) is a function \(\Delta : \mathcal{L}(\mathcal{X})^n \to \mathbb{R}^+ \cup \{0\} \), mapping profiles to the nonnegative reals, that respects \(\Delta(R, \ldots, R) = 0 \) for any \(R \in \mathcal{L}(\mathcal{X}) \).

A PDI \(\Delta \) is **normalised** if it maps any given profile to the interval \([0, 1]\), and the maximum of 1 is reached for at least one profile, i.e., \(\max\{\Delta(R) \mid R \in \mathcal{L}(\mathcal{X})^n\} = 1 \).

Definition (Preference diversity order)

A **preference diversity order** (PDO) is a weak order \(\succeq \) declared on the space of preference profiles \(\mathcal{L}(\mathcal{X})^n \) that respects \(R \succeq (R, \ldots, R) \) for all \(R \in \mathcal{L}(\mathcal{X})^n \) and all \(R \in \mathcal{L}(\mathcal{X}) \).
Specific preference diversity indices

Definition (support-based PDI)

\[\Delta^\ell_{\supp}^k (R) : \text{number of ordered } k\text{-tuples of alternatives occurring in at least one individual preference in profile } R. \]

\[\Delta^\ell_{\supp}^m (R) : \text{simple support-based PDI, counts number of different preferences in } R. \]

Definition (distance-based PDI)

\[\Delta^{\Phi, \delta}_{\dist} (R) : \text{aggregated (e.g., } \Phi = \Sigma) \text{ distance (} \delta \text{) between all pairs of individual preferences in profile } R. \]

Kendall tau distance:

\[K(R, R') = \frac{1}{2} \cdot |\{(x, y) \mid xRy \text{ and } yR'x\}| \]

Definition (compromise-based PDI)

\[\Delta^{\Phi, F}_{\com} (R) : \text{aggregated (e.g., } \Phi = \Sigma) \text{ Kendall tau distance of individual preferences in } R \text{ to a compromise preference } F(R) \text{ (e.g., } F = \text{Borda rule}). \]

Example

\[\Delta^\ell_{\supp}^m (abc, abc, acb, cab, cba) = 4 \]

\[\Delta^{\Sigma, K}_{\dist} (abc, abc, acb, cab, cba) = 0 + 1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 1 = 16 \]

\[\Delta^{\Sigma, \text{Borda}}_{\com} (abc, abc, acb, cab, cba) = \sum_{r \in R} K(acb, r) = 1 + 1 + 0 + 1 + 2 = 5 \]
Specific preference diversity indices

Definition (support-based PDI)

\[\Delta^{\ell=k}_{\text{supp}}(R) : \text{number of ordered } k\text{-tuples of alternatives occurring in at least one individual preference in profile } R. \]

\[\Delta^{\ell=m}_{\text{supp}}(R) : \text{simple support-based PDI, counts number of different preferences in } R. \]

Definition (distance-based PDI)

\[\Delta^{\Phi,\delta}_{\text{dist}}(R) : \text{aggregated (e.g., } \Phi = \Sigma) \text{ distance (} \delta \text{) between all pairs of individual preferences in profile } R. \]

Kendall tau distance: \[K(R, R') = \frac{1}{2} \cdot |\{(x, y) \mid xRy \text{ and } yR'x\}| \]

Definition (compromise-based PDI)

\[\Delta^{\Phi, F}_{\text{com}}(R) : \text{aggregated (e.g., } \Phi = \Sigma) \text{ Kendall tau distance of individual preferences in } R \text{ to a compromise preference } F(R) \text{ (e.g., } F = \text{Borda rule).} \]

Example

\[\Delta^{\ell=m}_{\text{supp}}(abc, abc, acb, cab, cba) = 4 \]

\[\Delta^{\Sigma, K}_{\text{dist}}(abc, abc, acb, cab, cba) = 0 + 1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 1 = 16 \]

\[\Delta^{\Sigma, \text{Borda}}_{\text{com}}(abc, abc, acb, cab, cba) = \sum_{r \in R} K(acb, r) = 1 + 1 + 0 + 1 + 2 = 5 \]
Specific preference diversity indices

Definition (support-based PDI)

\[\Delta^k_{\text{supp}}(R) : \text{number of ordered } k\text{-tuples of alternatives occurring in at least one individual preference in profile } R. \]

\[\Delta^m_{\text{supp}}(R) : \text{simple support-based PDI, counts number of different preferences in } R. \]

Definition (distance-based PDI)

\[\Delta^{\Phi,\delta}_{\text{dist}}(R) : \text{aggregated (e.g., } \Phi = \Sigma\) distance (\(\delta\)) between all pairs of individual preferences in profile } R. \]

Kendall tau distance:
\[K(R, R') = \frac{1}{2} \cdot | \{(x, y) \mid xRy \text{ and } yR'x\} | \]

Definition (compromise-based PDI)

\[\Delta^{\Phi, F}_{\text{com}}(R) : \text{aggregated (e.g., } \Phi = \Sigma\) Kendall tau distance of individual preferences in } R \text{ to a compromise preference } F(R) \text{ (e.g., } F = \text{Borda rule).} \]

Example

\[\Delta^m_{\text{supp}}(abc, abc, acb, cab, cba) = 4 \]

\[\Delta^{\Sigma, K}_{\text{dist}}(abc, abc, acb, cab, cba) = 0 + 1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 1 = 16 \]

\[\Delta^{\Sigma, \text{Borda}}_{\text{com}}(abc, abc, acb, cab, cba) = \sum_{r \in R} K(acb, r) = 1 + 1 + 0 + 1 + 2 = 5 \]
Specific preference diversity indices

Definition (support-based PDI)

\[\Delta^k_{\text{supp}}(R) : \text{number of ordered } k\text{-tuples of alternatives occurring in at least one individual preference in profile } R. \]

\[\Delta^m_{\text{supp}}(R) : \text{simple support-based PDI}, \text{ counts number of different preferences in } R. \]

Definition (distance-based PDI)

\[\Delta^{\Phi, \delta_{\text{dist}}}(R) : \text{aggregated (e.g., } \Phi = \Sigma) \text{ distance (}\delta\text{) between all pairs of individual preferences in profile } R. \]

Kendall tau distance: \(K(R, R') = \frac{1}{2} \cdot |\{(x, y) | xRy \text{ and } yR'x\}| \)

Definition (compromise-based PDI)

\[\Delta^{\Phi, F_{\text{com}}}(R) : \text{aggregated (e.g., } \Phi = \Sigma) \text{ Kendall tau distance of individual preferences in } R \text{ to a compromise preference } F(R) \text{ (e.g., } F = \text{Borda rule}). \]

Example

\[\Delta^m_{\text{supp}}(abc, abc, acb, cab, cba) = 4 \]

\[\Delta^{\Sigma, K}_{\text{dist}}(abc, abc, acb, cab, cba) = 0 + 1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 1 = 16 \]

\[\Delta^{\Sigma, \text{Borda}}_{\text{com}}(abc, abc, acb, cab, cba) = \sum_{r\in R} K(\text{acb}, r) = 1 + 1 + 0 + 1 + 2 = 5 \]
Example

<table>
<thead>
<tr>
<th></th>
<th>2: (abc)</th>
<th>3: (abc)</th>
<th>1: (abc)</th>
<th>2: (abc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta^\ell=m) (\supp)</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>(\Delta^\ell=2) (\supp)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>(\Delta^{\Sigma,D}) (\dist)</td>
<td>12</td>
<td>9</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>(\Delta^{\Sigma,K}) (\dist)</td>
<td>24</td>
<td>27</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>(\Delta^{\Sigma,S}) (\dist)</td>
<td>24</td>
<td>18</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>(\Delta^{\max,K}) (\dist)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Axioms are used to evaluate/categorize methods.

PDO’s are easier to deal with analytically. The results will also apply to PDI’s indirectly.

A PDO \succeq is **anonymous** if, for every permutation $\sigma : \mathcal{N} \to \mathcal{N}$, we have $(R_1, \ldots, R_n) \sim (R_{\sigma(1)}, \ldots, R_{\sigma(n)})$.

A PDO \succeq is **neutral** if, for every permutation $\tau : \mathcal{X} \to \mathcal{X}$, we have $(R_1, \ldots, R_n) \sim (\tau(R_1), \ldots, \tau(R_n))$.

A PDO \succeq is **strongly discernible** if no two profiles are equally diverse, unless due to anonymity and neutrality.

A PDO \succeq is **weakly discernible** if R being unanimous and R' not being unanimous together imply $R' \succ R$.

A PDO \succeq is **support-invariant** if $\text{Supp}(R) = \text{Supp}(R')$ implies $R \sim R'$.

Support-invariance \implies anonymity.

A PDO \succeq is **independent** if it is the case that $R \succeq R'$ if and only if $R \oplus R \succeq R' \oplus R$ for every two profiles $R, R' \in \mathcal{L}(\mathcal{X})^n$ and every preference $R \not\in \text{Supp}(R) \cup \text{Supp}(R')$.
Theoretical results

Basic axioms are satisfied by most PDO's:

Fact

Every PDO induced by a PDI of the form Δ_{supp}^k, $\Delta_{\text{dist}}^\Phi$, δ_{com}, *or* Δ_{com}^Φ, *with* $k \in \{1, \ldots, m\}$, $\Phi \in \{\Sigma, \text{max}\}$, $\delta \in \{K, S, D\}$, *and* F *being an anonymous and neutral social welfare function is anonymous, neutral, and weakly discernible.*

Other axioms lead to impossibilities or narrow characterisations:

Proposition

For $m > 2$ *and* $n > m!$, *no PDO can be both support-invariant and strongly discernable.*

Proposition

A PDO is support-invariant, independent, and weakly discernible if and only if it is the simple support-based PDO.
Theoretical results

Basic axioms are satisfied by most PDO’s:

Fact

Every PDO induced by a PDI of the form \(\Delta_{\text{supp}}^k, \Delta_{\text{dist}}^{\Phi, \delta}, \) or \(\Delta_{\text{com}}^{\Phi, F} \) with \(k \in \{1, \ldots, m\}, \Phi \in \{\Sigma, \text{max}\}, \delta \in \{K, S, D\}, \) and \(F \) being an anonymous and neutral social welfare function is anonymous, neutral, and weakly discernible.

Other axioms lead to impossibilities or narrow characterisations:

Proposition

For \(m > 2 \) and \(n > m! \), no PDO can be both support-invariant and strongly discernable.

Proposition

A PDO is support-invariant, independent, and weakly discernible if and only if it is the simple support-based PDO.
Results

Table of Results

<table>
<thead>
<tr>
<th></th>
<th>$\Delta_{\ell=k}^{\text{supp}}$</th>
<th>$\Delta_{\text{dist}}^{\Sigma,\delta}$</th>
<th>$\Delta_{\text{dist}}^{\text{max},\delta}$</th>
<th>$\Delta_{\text{com}}^{\Sigma,F}$</th>
<th>$\Delta_{\text{com}}^{\text{max},F}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Neutrality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Strong discernibility</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Weak discernibility</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Support-invariance</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nonlocality</td>
<td>$n \leq k!$</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Independence</td>
<td>$k = m$</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Swap-monotonicity</td>
<td>✓</td>
<td>$\delta = K$</td>
<td>$\delta = K$</td>
<td>$\Delta_{\text{com}}^{\Sigma,F} = F$ is Arrovian</td>
<td></td>
</tr>
</tbody>
</table>

- ✓: Satisfied
- X: Not satisfied
- $\Delta_{\ell=k}^{\text{supp}}$: Distance by the support
- $\Delta_{\text{dist}}^{\Sigma,\delta}$: Distance by the distribution
- $\Delta_{\text{dist}}^{\text{max},\delta}$: Maximum distance
- $\Delta_{\text{com}}^{\Sigma,F}$: Distance by the composite function
- $\Delta_{\text{com}}^{\text{max},F}$: Maximum distance by the composite function
Experimental analysis

- Compare diversity of synthetic vs. real preference profiles
 - Impartial Culture assumption (IC): every possible profile is equally likely to occur
 - Course selection dataset (AGH): complete preferences of 153 students over 7 courses

- Relation between diversity and social choice-theoretic properties
 - Condorcet winner/cycle
 - agreement between voting rules
 - voter satisfaction

All profiles are preferences of 50 voters over 5 alternatives.

For each experiment we have drawn 1 million profiles from the relevant distribution.

Note that the number of all possible distinct profiles is: \((5!)^{50} > 10^{100}\)
Diversity distribution across cultures

Preference diversity (x-axis) against frequency (y-axis) in IC and AGH. \([n = 50, m = 5]\)

<table>
<thead>
<tr>
<th>PDI</th>
<th>IC</th>
<th>AGH</th>
<th>PDI</th>
<th>IC</th>
<th>AGH</th>
<th>PDI</th>
<th>IC</th>
<th>AGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \ell = m)</td>
<td>22</td>
<td>13</td>
<td>(\Delta \Sigma, \text{com})</td>
<td>84</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \ell = 2)</td>
<td>1</td>
<td>2</td>
<td>(\Delta \Sigma, \text{dist})</td>
<td>462</td>
<td>1170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \ell = 3)</td>
<td>4</td>
<td>12</td>
<td>(\Delta \Sigma, \text{dist})</td>
<td>660</td>
<td>1561</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observed number of levels \((n = 50, m = 5)\)
Impact on social choice-theoretic effects

As diversity increases:

- the probability of encountering Condorcet cycles (winners) increases (decreases)
- average degree of agreement decreases
 - degree of agreement: \(\frac{|W_1 \cap W_2|}{|W_1| \times |W_2|} \)
 - plurality rule has much more disagreement with other rules and it becomes worse as diversity increases
- average voter satisfaction decreases
 - voter satisfaction: number of alternatives below the (Borda) winner in the voter's preference
 - normalised to percent: average value is in the range of 50% – 100%
Conclusion

- Preference diversity
 - Concept
 - Formal model
 - Axioms
 - Experiments
 - support our intuition/expectation
Future work

- Other options for measuring diversity
 - other distances and other aggregation operators (e.g., max-of-min)
 - for a given ℓ, maximum number of preferences with a common subpreference of length ℓ
 - for a given k, maximum length of a common subpreference of any k preferences
 - covering distance of the profile: how close a profile is to covering the full space of possibilities
 - measuring the distance from a single-peaked profile

- Normalization
 - Ratio
 - Percentile
 - Levels

- New axioms
Future work

- Distinguish (real data) profiles
 - Objective
 - Subjective

- Structure of profiles
 - Polarized/Divided
 - Central