
Search PSS 2018

Problem Solving and Search

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

[
http://www.illc.uva.nl/~ulle/teaching/pss/

]
Ulle Endriss 1

http://www.illc.uva.nl/~ulle/teaching/pss/


Search PSS 2018

Table of Contents

Lecture 8: State-Space Representation and Depth-first Search . . . . . 3

Lecture 9: Breadth-first Search and Iterative Deepening . . . . . . . . . 33

Lecture 10: Heuristic Search with the A* Algorithm . . . . . . . . . . . 57

Lecture 11: Adversarial Search with the Minimax Algorithm . . . . . . 81

Lecture 12: Alpha-Beta Pruning and Heuristic Evaluation . . . . . . . . 108

Ulle Endriss 2



Search PSS 2018

Lecture 8: State-Space Representation and
Depth-first Search

Ulle Endriss 3



Search PSS 2018

Search Techniques for Artificial Intelligence

Search is a central topic in AI. This part of the course will clarify why

search is such an important topic, present a general approach to

representing search problems, introduce several search algorithms, and

demonstrate how to implement these algorithms in Prolog.

• Motivation: Applications and Toy Examples

• The State-Space Representation

• Basic (Uninformed) Search Techniques:

– Depth-first Search (several variants)

– Breadth-first Search

– Iterative Deepening

• Heuristic-guided (Best-first) Search with the A* Algorithm

• Adversarial Search for Game Playing with the Minimax Algorithm

Ulle Endriss 4



Search PSS 2018

Plan for Today

In this first lecture on search techniques for AI, we are going to see:

• Motivation: Applications and Toy Examples

• The State-Space Representation (+ example: “Blocks World”)

• Three Depth-first Search Algorithms

Ulle Endriss 5



Search PSS 2018

Route Planning

Source: Google Maps

Ulle Endriss 6



Search PSS 2018

Robot Navigation

Source: http://www.ics.forth.gr/cvrl/

Ulle Endriss 7

http://www.ics.forth.gr/cvrl/


Search PSS 2018

Planning in the Blocks World

How can we get from the situation on the left to the one on the right?

Ulle Endriss 8



Search PSS 2018

The Eight-Queens Problem

Arrange eight queens on a chess board in such a manner that none of

them can attack any of the others!

Source: Russell & Norvig, Artificial Intelligence

The above is almost a solution, but not quite . . .

Ulle Endriss 9



Search PSS 2018

Eight-Puzzle

Yet another puzzle . . .

Source: Russell & Norvig, Artificial Intelligence

Ulle Endriss 10



Search PSS 2018

Search and Optimisation Problems

All these problems have got a common structure:

• We are faced with an initial situation and we would like to achieve

a certain goal .

• At any point in time we have different simple actions available to

us (e.g., “turn left” vs. “turn right”). Executing a particular

sequence of such actions may or may not achieve the goal.

• Search is the process of inspecting several such sequences and

choosing one that achieves the goal.

• For some applications, each individual action has a certain cost.

A search problem where we aim not only at reaching our goal but

also at doing so at minimal cost is an optimisation problem.

Ulle Endriss 11



Search PSS 2018

The State-Space Representation

• State space: What are the possible states? Examples:

– Route planning: positions on the map

– Blocks World: configurations of blocks

A concrete problem must also specify the initial state.

• Moves: What are legal moves between states? Examples:

– Turning 45◦ to the right could be a legal move for a robot.

– Putting block A on top of block B is not a legal move if

block C is currently on top of A.

• Goal state: When have we found a solution? Example:

– Route planning: Position = ’Science Park 904’

• Cost function: How costly is a given move? Example:

– Route planning: The cost of moving from position X to

position Y could be the distance between the two.

Ulle Endriss 12



Search PSS 2018

Prolog Representation

For now, we are going to ignore the cost of moving from one node to

the next. Thus, for now we only deal with pure search problems.

A problem specification has to include the following:

• The representation of states is problem-specific. In the simplest

case, a state is represented by its name (e.g., a Prolog atom).

• move(+State, -NextState)

Given the current State, instantiate the variable NextState with

a possible next state (and all next states upon backtracking).

• goal(+State)

Succeed in case State represents a goal state.

Ulle Endriss 13



Search PSS 2018

Example: Modelling the Blocks World

• State representation: We use a list of three lists with the atoms a,

b, and c somewhere in these lists. Each sublist represents a stack.

The first element in a sublist is the top block. The order of the

sublists in the main list does not matter. Example:

[ [c,a], [b], [] ]

• Possible moves: You can move the top block of any stack onto

any other stack:

move(Stacks, NewStacks) :-

select([Top|Stack1], Stacks, Rest),

select(Stack2, Rest, OtherStacks),

NewStacks = [Stack1,[Top|Stack2]|OtherStacks].

• Goal state: We assume our goal is always to get a stack with a on

top of b on top of c (other goals, of course, are possible):

goal(Stacks) :- member([a,b,c], Stacks).

Ulle Endriss 14



Search PSS 2018

Searching the State Space

The possible sequences of legal moves together form a tree:

• The nodes of the tree are labelled with states (the same state

could label many different nodes).

• The initial state is the root of the tree.

• For every legal follow-up move of a given state, any node labelled

with that state will have a child labelled with the follow-up state.

• Every branch in the tree corresponds to a sequence of states (and

thus also to a sequence of moves).

There are, at least, two ways of moving through such a tree:

depth-first and breadth-first search . . .

Ulle Endriss 15



Search PSS 2018

Depth-first Search

In depth-first search, we start with the root node and completely

explore the descendants of a node before exploring its siblings

(with siblings being explored in a left-to-right fashion).

A

B C

D E F G

Depth-first traversal: A → B → D → E → C → F → G

Implementing depth-first search in Prolog is very easy, because Prolog

itself uses depth-first search during backtracking.

Ulle Endriss 16



Search PSS 2018

Depth-first Search in Prolog

We are going to define a “user interface” like the following for each of

our search algorithms:

solve_depthfirst(Node, [Node|Path]) :-

depthfirst(Node, Path).

Next the actual algorithm: Stop if the current Node is a goal state;

otherwise move to the NextNode and continue to search.

Collect the nodes that have been visited in Path.

depthfirst(Node, []) :-

goal(Node).

depthfirst(Node, [NextNode|Path]) :-

move(Node, NextNode),

depthfirst(NextNode, Path).

Ulle Endriss 17



Search PSS 2018

Testing: Blocks World

It works pretty well for some problem instances . . .

?- solve_depthfirst([[c,b,a],[],[]], Plan).

Plan = [[[c,b,a], [], []],

[[b,a], [c], []],

[[a], [b,c], []],

[[], [a,b,c], []]]

Yes

. . . but not for others . . .

?- solve_depthfirst([[c,a],[b],[]], Plan).

ERROR: Out of local stack

Ulle Endriss 18



Search PSS 2018

Explanation

Debugging reveals that we are stuck in a loop:

?- spy(depthfirst).

[debug] ?- solve_depthfirst([[c,a],[b],[]], Plan).

Call: (9) depthfirst([[c, a], [b], []], _G403) ? leap

Redo: (9) depthfirst([[c, a], [b], []], _G403) ? leap

Call: (10) depthfirst([[a], [c, b], []], _G406) ? leap

Redo: (10) depthfirst([[a], [c, b], []], _G406) ? leap

Call: (11) depthfirst([[], [a, c, b], []], _G421) ? leap

Redo: (11) depthfirst([[], [a, c, b], []], _G421) ? leap

Call: (12) depthfirst([[c, b], [a], []], _G436) ? leap

Redo: (12) depthfirst([[c, b], [a], []], _G436) ? leap

Call: (13) depthfirst([[b], [c, a], []], _G454) ? leap

Redo: (13) depthfirst([[b], [c, a], []], _G454) ? leap

Call: (14) depthfirst([[], [b, c, a], []], _G469) ? leap

Redo: (14) depthfirst([[], [b, c, a], []], _G469) ? leap

Call: (15) depthfirst([[c, a], [b], []], _G484) ?

Ulle Endriss 19



Search PSS 2018

Cycle Detection

The solution is simple: we need to disallow any moves that would

result in a loop. Thus, if the next state is already present in the set of

nodes visited so far, choose another follow-up state instead.

From now on we are going to use a “wrapper” around the move/2

predicate defined by the application (e.g., the Blocks World):

move_cyclefree(Visited, Node, NextNode) :-

move(Node, NextNode),

\+ member(NextNode, Visited).

Visited should be instantiated with the list of nodes visited already.

But note that we cannot just replace move/2 by move_cyclefree/3

in depthfirst/2, because Visited is not available where needed.

Ulle Endriss 20



Search PSS 2018

Cycle-free Depth-first Search in Prolog

Now the nodes will be collected as we go along, so we have to reverse

the list of nodes in the end:

solve_depthfirst_cyclefree(Node, Path) :-

depthfirst_cyclefree([Node], Node, RevPath),

reverse(RevPath, Path).

The first argument is an accumulator collecting the nodes visited so

far; the second argument is the current node; the third argument will

be instantiated with the solution path (which equals the accumulator

once we’ve hit a goal node):

depthfirst_cyclefree(Visited, Node, Visited) :-

goal(Node).

depthfirst_cyclefree(Visited, Node, Path) :-

move_cyclefree(Visited, Node, NextNode),

depthfirst_cyclefree([NextNode|Visited], NextNode, Path).

Ulle Endriss 21



Search PSS 2018

Remark: Repetitions and Loops

Note that our “cycle-free” algorithm does not avoid all repetitions.

It only avoids repetitions on the same branch, but if the same state

occurs on two different branches, then both nodes might get visited.

As long as branching is finite, this still avoids looping.

Ulle Endriss 22



Search PSS 2018

Testing Again

With our new cycle-free algorithm, we can now get an answer to the

query that did cause an infinite loop earlier:

?- solve_depthfirst_cyclefree([[c,a],[b],[]], Plan).

Plan = [[[c,a],[b],[]], [[a],[c,b],[]], [[],[a,c,b],[]],

[[c,b],[a],[]], [[b],[c,a],[]], [[],[b],[c,a]],

[[a],[c],[b]], [[],[a,c],[b]], [[c],[a],[b]],

[[],[c,b],[a]], [[b],[c],[a]], [[],[b,c],[a]],

[[c],[b],[a]], [[],[b,a], [c]], [[a],[b,c],[]],

[[],[a,b,c],[]]]

Yes

But surely there must be a better solution than a path with 16 nodes!

Ulle Endriss 23



Search PSS 2018

Idea: Restricting Search to Short Paths

A possible solution to our problem of getting an unnecessarily long

solution path is to restrict search to “short” paths:

Stop expanding the current branch once it has reached a

certain maximal depth (the bound) and move on to the next.

Of course, we may miss some solutions further down the current path.

On the other hand, we increase the chance of finding a short solution

on another branch within a reasonable amount of time.

Ulle Endriss 24



Search PSS 2018

Depth-bounded Depth-first Search in Prolog

The program is basically the same as for cycle-free depth-first search.

We have one additional argument, the Bound (set by the user).

solve_depthfirst_bound(Bound, Node, Path) :-

depthfirst_bound(Bound, [Node], Node, RevPath),

reverse(RevPath, Path).

depthfirst_bound(_, Visited, Node, Visited) :-

goal(Node).

depthfirst_bound(Bound, Visited, Node, Path) :-

Bound > 0,

move_cyclefree(Visited, Node, NextNode),

NewBound is Bound - 1,

depthfirst_bound(NewBound, [NextNode|Visited], NextNode, Path).

Ulle Endriss 25



Search PSS 2018

Testing Again

Now we can generate a short plan for our Blocks World problem, at

least if we can guess a suitable value for the bound required as input

to the depth-bounded depth-first search algorithm:

?- solve_depthfirst_bound(2, [[c,a],[b],[]], Plan).

No

?- solve_depthfirst_bound(3, [[c,a],[b],[]], Plan).

Plan = [[[c,a], [b], []],

[[a], [c], [b]],

[[], [b, c], [a]],

[[], [a, b, c], []]]

Yes

Ulle Endriss 26



Search PSS 2018

Complexity of Depth-first Search

We want to analyse the complexity of our search algorithms . . .

As there can be infinite loops, in the worst case, the plain depth-first

algorithm will never stop. So analyse depth-bounded depth-first search.

Two assumptions:

• Let d be the maximal depth allowed. (If we happen to know that

no branch in the tree can be longer than d, then our analysis will

also apply to the other two depth-first algorithms.)

• For simplicity, assume that for every possible state there are

exactly b possible follow-up states. So b is the branching factor

of the search tree.

We think of d as the parameter determining the size of our problem,

and of b as a constant.

Ulle Endriss 27



Search PSS 2018

Complexity of Depth-first Search (continued)

• What is the worst case?

In the worst case, every branch has length d (or more) and the

only node labelled with a goal state is the last node on the

rightmost branch. Hence, depth-first search will visit all the nodes

in the tree (up to depth d) before finding a solution.

• So: how many nodes in a tree of height d with branching factor b?

⇒ 1 + b+ b2 + b3 + · · ·+ bd < 2 · bd

Example: b = 2 and d = 2

1 + 21 + 22 = 22+1 − 1 = 7

A

B C

D E F G

Ulle Endriss 28



Search PSS 2018

Recap: The Big-O Notation

Let n be the problem size and let f(n) be the precise complexity .

Suppose g is a “nice” function that is a “good approximation” of f .

The Big-O Notation is a way of making this mathematically precise.

We say that f(n) is in O(g(n)) if and only if there exist an

n0 ∈ N and a c ∈ R+ such that f(n) 6 c · g(n) for all n > n0.

Thus, from some n0 onwards, the difference between f and g will be

at most some constant factor c.

We have shown that the worst-case time complexity of depth-bounded

depth-first search is in O(bd). We also say that the complexity of this

algorithm is exponential in d.

Ulle Endriss 29



Search PSS 2018

Exponential Complexity

In general, in Computer Science, anything exponential is considered

bad news. Indeed, our simple search techniques will usually not work

very well (or at all) for larger problem instances.

Suppose the branching factor is b = 4 and suppose it takes us

1 millisecond to check one node. What kind of depth bound would be

feasible to use in depth-first search?

Depth Nodes Time

2 21 0.021 seconds

5 1365 1.365 seconds

10 1398101 23.3 minutes

15 1431655765 16.6 days

20 1466015503701 46.5 years

Ulle Endriss 30



Search PSS 2018

Space Complexity of Depth-first Search

The good news is that depth-first search is very efficient in view of its

memory requirements:

• At any given time, we only need to keep the path from the root to

the current node in memory, and—depending on implementation

details—possibly also the sibling nodes of each node on that path.

• The length of the path is at most d+ 1 and each of the nodes on

the path will have at most b− 1 siblings left to consider.

• Thus, (as b is constant) the worst-case space complexity is O(d).

That is, the complexity is linear in d.

In fact, because Prolog uses backtracking, sibling nodes do not need to

be kept in memory explicitly.

Ulle Endriss 31



Search PSS 2018

Summary: Depth-first Search Algorithms

We have seen three variants of the basic depth-first search algorithm:

• plain depth-first search: sometimes just what you want

• cycle-free depth-first search: remember which states you have

seen already on the current branch to avoid loops

• depth-bounded depth-first search: only explore branches up to a

given maximum depth d (our implementation also is cycle-free)

The time complexity of depth-first search is exponential in the

exploration depth d (bad!). The space complexity is linear (good!).

Above algorithms can be applied to any search problem modelled using

the state-space representation (so far just one example: Blocks World).

Ulle Endriss 32



Search PSS 2018

Lecture 9: Breadth-first Search and
Iterative Deepening

Ulle Endriss 33



Search PSS 2018

Plan for Today

We are going to introduce two further basic search algorithms:

• Breadth-first Search

• Iterative Deepening

We are also going to see a further example (besides the Blocks World)

for modelling a search problem using the state-space representation:

• Solving the Eight-Queens Problem

Ulle Endriss 34



Search PSS 2018

Breadth-first Search

The problem with (plain and cycle-free) depth-first search is that we

may get lost in a very long (or even infinite branch), while there could

be another branch leading to a short solution.

The problem with depth-bounded depth-first search is that it can be

difficult to correctly estimate a good value for the bound.

Such problems can be overcome by using breadth-first search, where

we explore (righthand) siblings before children.

A

B C

D E F G

Breadth-first traversal: A → B → C → D → E → F → G

Ulle Endriss 35



Search PSS 2018

Breadth-first Search: Implementation Difficulties

How do we keep track of which nodes we have already visited and how

do we identify the next node to go to?

Recall: For depth-first search, in theory, you have to keep track of the

current branch, but in Prolog we actually get this functionality for free

(Prolog keeps the current branch on its recursion stack).

For breadth-first search, we are going to have to take care of the

memory management ourselves.

Ulle Endriss 36



Search PSS 2018

Breadth-first Search: Implementation Idea

The algorithm will maintain a list of the currently active paths.

Each round of the algorithm consists of three steps:

(1) Remove the first path from the list of paths.

(2) Generate a new path for every possible follow-up state of the state

labelling the last node in the selected path.

(3) Append the list of newly generated paths to the end of the list of

paths (to ensure paths are really visited breadth-first).

Ulle Endriss 37



Search PSS 2018

Breadth-first Search in Prolog

Our usual “user interface” takes care of initialising the list of active

paths and of reversing the solution path in the end:

solve_breadthfirst(Node, Path) :-

breadthfirst([[Node]], RevPath),

reverse(RevPath, Path).

And here is the actual algorithm:

breadthfirst([[Node|Path]|_], [Node|Path]) :-

goal(Node).

breadthfirst([Path|Paths], SolutionPath) :-

expand_breadthfirst(Path, ExpPaths),

append(Paths, ExpPaths, NewPaths),

breadthfirst(NewPaths, SolutionPath).

Still to do: implement expand_breadthfirst/2

Ulle Endriss 38



Search PSS 2018

Expanding Branches

Given a Path (in reverse order), generate the list of expanded paths we

get by making a single move from the last Node in the input path.

expand_breadthfirst([Node|Path], ExpPaths) :-

findall([NewNode,Node|Path],

move_cyclefree(Path,Node,NewNode),

ExpPaths).

Ulle Endriss 39



Search PSS 2018

Example

We are now able to find the shortest possible plan for our Blocks

World scenario, without having to guess a suitable bound first:

?- solve_breadthfirst([[c,a],[b],[]], Plan).

Plan = [[[c,a], [b], []],

[[a], [c], [b]],

[[], [b,c], [a]],

[[], [a,b,c], []]]

Yes

Ulle Endriss 40



Search PSS 2018

Completeness and Optimality

Some good news about breadth-first search:

• Breadth-first search guarantees completeness:

if there exists a solution, it will be found eventually.

• Breadth-first search also guarantees optimality :

the first solution returned will be as short as possible.

Remark: This interpretation of optimality presupposes that every

move has a cost of 1. Proper cost functions to be discussed later.

Recall: Depth-first search does not ensure optimality (and only the

cycle-free variant without depth bound can ensure completeness).

Ulle Endriss 41



Search PSS 2018

Complexity Analysis of Breadth-first Search

Time complexity : In the worst case, we have to search through the

entire tree for any search algorithm. Both depth-first and breadth-first

search visit each node exactly once, so time complexity is the same.

Let d be the the depth of the first solution and let b be the branching

factor (again, assumed to be constant for simplicity). Then worst-case

time complexity is O(bd). Bad! (just as before)

Space complexity : Big difference. Now we have to store every path

visited before, while for depth-first search we only had to keep a single

branch in memory. Hence, space complexity is also O(bd). Bad!

So there is a trade-off between memory-requirements on the one hand

and completeness/optimality considerations on the other.

Ulle Endriss 42



Search PSS 2018

Best of Both Worlds

Would like: an algorithm that, like breadth-first search,

(1) ensures completeness by visiting every node eventually and

(2) ensures optimality by returning the shortest possible solution.

But at the same time, like depth-first search, it should

(3) have very low memory requirements (linear space complexity).

Observation: Depth-bounded depth-first search almost fits the bill.

The only problem is that we may choose the bound either

• too low (losing completeness by stopping early) or

• too high (becoming too similar to normal depth-first with the

danger of getting lost in a single deep branch).

Idea: Run depth-bounded depth-first search again and again, with

increasing values for the bound! This is called iterative deepening .

Ulle Endriss 43



Search PSS 2018

Iterative Deepening

We can specify the iterative deepening algorithm as follows:

(1) Set n to 0.

(2) Run depth-bounded depth-first search with bound n.

(3) Stop and return answer in case of success;

increment n by 1 and go back to (2) otherwise.

However, in Prolog we can find a more compact implementation . . .

Ulle Endriss 44



Search PSS 2018

Finding a Path from A to B

A central idea in our implementation of iterative deepening in Prolog

will be to provide a predicate that can compute a path of moves from

a given start node to some end node.

path(Node, Node, [Node]).

path(FirstNode, LastNode, [LastNode|Path]) :-

path(FirstNode, PenultimateNode, Path),

move_cyclefree(Path, PenultimateNode, LastNode).

Ulle Endriss 45



Search PSS 2018

Iterative Deepening in Prolog

The implementation of iterative deepening now becomes surprisingly

easy. We can rely on the fact that Prolog will enumerate candidate

paths, of increasing lengths, from the initial node to a goal node.

solve_iterative_deepening(Node, Path) :-

path(Node, GoalNode, RevPath),

goal(GoalNode),

reverse(RevPath, Path).

Ulle Endriss 46



Search PSS 2018

Example

And it really works:

?- solve_iterative_deepening([[a,c,b],[],[]], Plan).

Plan = [[[a,c,b], [], []],

[[c,b], [a], []],

[[b], [c], [a]],

[[], [b,c], [a]],

[[], [a,b,c], []]]

Yes

Note: Iterative deepening will go into an infinite loop when there are

no more answers (even when the search tree is finite). Of course, a

more sophisticated implementation could avoid this problem.

Ulle Endriss 47



Search PSS 2018

Complexity Analysis of Iterative Deepening

Space complexity : As for depth-first search, at any moment in time we

only keep a single path in memory ; O(d).

Time complexity : This seems worse than for the other algorithms,

because the same nodes will get generated again and again.

However, time complexity is of the same order of magnitude as before.

If we add the complexities for depth-bounded depth-first search for

maximal depths 0, 1, . . . , d (somewhat abusing notation), we still get:

O(b0) +O(b1) +O(b2) + · · ·+O(bd) = O(bd)

This follows from the following inequality (we have seen already):

b0 + b1 + b2 + · · ·+ bd < 2 · bd

In practice, memory issues are often the greater problem, and iterative

deepening is typically the best of the algorithms considered so far.

Ulle Endriss 48



Search PSS 2018

Comparison of Basic Search Algorithms

Let b be the maximal branching factor in the search tree (taken to be

constant) and d the maximal depth of the search tree explored.

Algorithm Time Complexity Space Complexity

Depth-first Search O(bd) O(d)

Breadth-first Search O(bd) O(bd)

Iterative Deepening O(bd) O(d)

Note that for plain depth-first search, depth d may be undefined

(as branches could be of infinite length).

Both breadth-first search and iterative deepening are complete (no

solution is missed) and optimal (the shortest solution is found first).

None of our three depth-first search algorithms is optimal.

Only cycle-free depth-first search is complete.

Ulle Endriss 49



Search PSS 2018

Summary: Basic Search Algorithms

We have introduced the following general-purpose algorithms:

• Depth-first search:

– Plain version: solve_depthfirst/2

– Cycle-free version: solve_depthfirst_cyclefree/2

– Depth-bounded version: solve_depthfirst_bound/3

• Breadth-first search: solve_breadthfirst/2

• Iterative deepening: solve_iterative_deepening/2

These algorithms (and their implementations, as given on these slides)

are applicable to any problem that can be formalised using the

state-space approach. The Blocks World is just one example!

Next we will see how to model a second (very different) problem.

(We won’t have to change our algorithms at all!)

Ulle Endriss 50



Search PSS 2018

Recall the Eight-Queens Problem

Arrange eight queens on a chess board in such a manner that none of

them can attack any of the others!

Source: Russell & Norvig, Artificial Intelligence

The above is almost a solution, but not quite . . .

Ulle Endriss 51



Search PSS 2018

Modelling the Eight-Queens Problem

Imagine you are trying to solve the problem by going through the

columns one by one (we’ll do it right-to-left), placing a queen in an

appropriate row for each column.

• States: States are partial solutions, with a queen placed in

columns n to 8, but not 1 to n− 1. We represent them as lists of

pairs (abusing the built-in infix operator /). Example:

[4/2, 5/7, 6/5, 7/3, 8/1]

The initial state is the empty list: []

• Moves: A move amounts to adding a queen in the rightmost

empty column. Moves are only legal if the new queen does not

attack any of the queens already present on the board.

• Goal state: The goal has been achieved once there are 8 queens

on the board. By construction, no queen will attack any other.

Ulle Endriss 52



Search PSS 2018

Specifying the Attack-Relation

The predicate noattack/2 succeeds if the queen given in the first

argument position does not attack any of the queens in the list given

as the second argument.

noattack(_, []).

noattack(X/Y, [X1/Y1|Queens]) :-

X =\= X1, % not in same column

Y =\= Y1, % not in same row

Y1-Y =\= X1-X, % not on ascending diagonal

Y1-Y =\= X-X1, % not on descending diagonal

noattack(X/Y, Queens).

Examples:

?- noattack(3/4, [1/8,2/6]). ?- noattack(2/7, [1/8]).

Yes No

Ulle Endriss 53



Search PSS 2018

Representing Moves and Goal States

We are now in a position to define the predicates move/2 and goal/1

for the eight-queens problem:

• Moves. Making a move means adding one more queen X/Y, where

X is the next column and Y could be anything, such that the new

queen does not attack any of the old ones:

move(Queens, [X/Y|Queens]) :-

length(Queens, Length),

X is 8 - Length,

member(Y, [1,2,3,4,5,6,7,8]),

noattack(X/Y, Queens).

• Goal state. We have achieved our goal once we have placed

8 queens on the board:

goal(Queens) :- length(Queens, 8).

Ulle Endriss 54



Search PSS 2018

Solution

What is special about (our formalisation of) the eight-queens problem

is that there are no cycles or infinite branches in the search tree.

Therefore, all of our search algorithms will work.

Here’s the (first) solution found by the plain depth-first algorithm:

?- solve_depthfirst([], Path), last(Path, Solution).

Path = [[], [8/1], [7/5, 8/1], [6/8, 7/5, 8/1], ...]

Solution = [1/4, 2/2, 3/7, 4/3, 5/6, 6/8, 7/5, 8/1]

Yes

Note that here we are not actually interested in the path to the final

state, but only the final state itself (hence the use of last/2).

Ulle Endriss 55



Search PSS 2018

Summary: Modelling Search Problems

We have now seen two examples for modelling basic search problems:

• Blocks World

• Eight-Queens Problem

Although they look very different, they can be modelled using the

same general approach, namely the state-space representation:

• States: define what the set of all possible states is

• Moves: for any given state, define the possible next states

• Goals: for any given state, define whether it is a goal state

Once modelled this way, all our basic search algorithms can be used.

Which works best depends on problem features and our requirements.

Ulle Endriss 56



Search PSS 2018

Lecture 10: Heuristic Search with the A* Algorithm

Ulle Endriss 57



Search PSS 2018

Plan for Today

Our complexity analysis of basic search algorithms showed that these

algorithms are unlikely to work well for more complex problems.

No way around this: cannot exhaustively inspect huge search space.

But: sometimes can use heuristics to figure out which parts of the

search space to focus on and get workable algorithms that way.

Topics to be covered today:

• optimisation problems: now every move has a cost

• heuristic functions to estimate cost to reach closest goal state

• family of best-first search algorithms, including the A* algorithm

• implementation and theoretical analysis of A*

Ulle Endriss 58



Search PSS 2018

Optimisation Problems

Today we consider optimisation problems (not plain search problems):

• Now every move is associated with a cost.

• We look for solution paths that minimise overall cost.

• For our implementations, we use move/3 instead of move/2.

The third argument is used for the cost of an individual move.

Ulle Endriss 59



Search PSS 2018

Best-first Search and Heuristic Functions

Recall: For depth-first and breadth-first search, which node in the

search tree is explored next only depends on the structure of the tree.

The rationale in best-first search is to expand those paths next that

seem the most “promising”. Making the vague idea of what may be

promising precise means defining heuristics.

We fix heuristics by means of a heuristic function h that is used to

estimate the “distance” of the current node x to a goal node:

h(x) = estimated cost from node x to closest goal node

The definition of h is highly application-dependent. Examples:

• Route planning: straight-line distance to destination, . . .

• Eight-puzzle: number of misplaced tiles, . . .

Ulle Endriss 60



Search PSS 2018

Best-first Search Algorithms

There are many different ways of defining a heuristic function h.

But there are also different ways of using h to decide which path to

expand next, giving rise to different best-first search algorithms.

One option is greedy best-first search:

expand a path with an end node x such that h(x) is minimal

Ulle Endriss 61



Search PSS 2018

Example: Greedy Best-first Search

Greedy best-first search means always trying to continue with the node

that seems (according to h) closest to the goal.

This can work well in some case, but in other cases it does not:

A

B C

D

Suppose you want to go from A to D. Greedy best-first search would

move to B first, as it appears to be closer to the goal than C, but in

fact the path via C is shorter.

Thus, greedy best-first search is not optimal .

Like depth-first search, it is also not complete. (Can you see why?)

Ulle Endriss 62



Search PSS 2018

The A* Algorithm

The central idea underlying the so-called A* algorithm is to guide

best-first search by two parameters:

• the estimated cost to the goal (as given by h)

• the actual cost of the path developed so far

Let x be a node, g(x) the actual cost of moving from the initial node

to x along the current path, and h(x) the estimated cost of reaching a

goal node from x. Define f(x) as follows:

f(x) = g(x) + h(x)

This is the estimated cost of the cheapest path through x leading from

the initial node to a goal node. A* is defined as the best-first search

algorithm that always expands a node x such that f(x) is minimal.

Ulle Endriss 63



Search PSS 2018

A* in Prolog

We now give an implementation of A*. Users of this algorithm will

have to implement these application-dependent predicates themselves:

• move(+State, -NextState, -Cost)

Given the current State, instantiate NextState with a possible

follow-up state and Cost with the associated cost (all possible

follow-up states should get generated through backtracking).

• goal(+State)

Succeed in case State represents a goal state.

• estimate(+State, -Estimate)

Given a State, instantiate Estimate with an estimate of the cost

of reaching a goal state. This implements the heuristic function h.

Ulle Endriss 64



Search PSS 2018

A* in Prolog: User Interface

Now we do not maintain a list of paths (as for breadth-first search),

but a list of (reversed) paths labelled with the current cost g(x) and

the current estimate h(x):

General form: Path/Cost/Estimate

Example: [c,b,a,s]/6/4

Our usual “user interface” initialises the list of labelled paths with the

path consisting of just the initial node, labelled with cost 0 and the

appropriate estimate:

solve_astar(Node, Path/Cost) :-

estimate(Node, Estimate),

astar([[Node]/0/Estimate], RevPath/Cost/_),

reverse(RevPath, Path).

So for the final output we are not interested in the estimate anymore,

but we do report the cost of solution paths.

Ulle Endriss 65



Search PSS 2018

A* in Prolog: Moves

This predicate serves as a “wrapper” around the move/3 predicate

supplied by the application developer:

move_astar([Node|Path]/Cost/_, [NextNode,Node|Path]/NewCost/Est) :-

move(Node, NextNode, StepCost),

\+ member(NextNode, Path),

NewCost is Cost + StepCost,

estimate(NextNode, Est).

After calling move/3 itself, the predicate (1) checks for cycles,

(2) updates the cost of the current path, and (3) labels the new path

with the estimate for the new node.

We can now generate all expansions of a given path by a single state:

expand_astar(Path, ExpPaths) :-

findall(NewPath, move_astar(Path,NewPath), ExpPaths).

Ulle Endriss 66



Search PSS 2018

A* in Prolog: Getting the Best Path

The following predicate implements the search strategy of A*:

from a list of labelled paths, select one that minimises the sum of

current cost and current estimate.

get_best([Path], Path) :- !.

get_best([Path1/Cost1/Est1,_/Cost2/Est2|Paths], BestPath) :-

Cost1 + Est1 =< Cost2 + Est2, !,

get_best([Path1/Cost1/Est1|Paths], BestPath).

get_best([_|Paths], BestPath) :-

get_best(Paths, BestPath).

Remark: Implementing a different best-first search algorithm only

involves changing get_best/2. The rest can stay the same.

Ulle Endriss 67



Search PSS 2018

A* in Prolog: Main Algorithm

Stop in case the best path ends in a goal node:

astar(Paths, Path) :-

get_best(Paths, Path),

Path = [Node|_]/_/_,

goal(Node).

Otherwise, extract the best path, generate all its expansions, and

continue with the union of the remaining and the expanded paths:

astar(Paths, SolutionPath) :-

get_best(Paths, BestPath),

select(BestPath, Paths, OtherPaths),

expand_astar(BestPath, ExpPaths),

append(OtherPaths, ExpPaths, NewPaths),

astar(NewPaths, SolutionPath).

Ulle Endriss 68



Search PSS 2018

Example

Source: Bratko, Prolog Programming for AI

move(s, a, 2). estimate(a, 5).

move(a, b, 2). estimate(b, 4).

move(b, c, 2). estimate(c, 4).

move(c, d, 3). estimate(d, 3).

move(d, t, 3). estimate(e, 7).

move(s, e, 2). estimate(f, 4).

move(e, f, 5). estimate(g, 2).

move(f, g, 2).

move(g, t, 2). estimate(s, 100).

goal(t). estimate(t, 0).

Ulle Endriss 69



Search PSS 2018

Example (continued)

If we run A* on this problem specification, we first obtain the optimal

solution path and then one more alternative path:

?- solve_astar(s, Path).

Path = [s, e, f, g, t]/11 ;

Path = [s, a, b, c, d, t]/12 ;

No

Ulle Endriss 70



Search PSS 2018

Debugging

We can use debugging to reconstruct the workings of A* for this

example (trace edited for readability):

?- spy(expand_astar).

Yes

[debug] ?- solve_astar(s, Path).

Call: (10) expand_astar([s]/0/100, _L233) ? leap

Call: (11) expand_astar([a, s]/2/5, _L266) ? leap

Call: (12) expand_astar([b, a, s]/4/4, _L299) ? leap

Call: (13) expand_astar([e, s]/2/7, _L353) ? leap

Call: (14) expand_astar([c, b, a, s]/6/4, _L386) ? leap

Call: (15) expand_astar([f, e, s]/7/4, _L419) ? leap

Call: (16) expand_astar([g, f, e, s]/9/2, _L452) ? leap

Path = [s, e, f, g, t]/11

Yes

Ulle Endriss 71



Search PSS 2018

Aside: Using Basic Search Algorithms

To test our basic (uninformed) search algorithms with this data,

we can introduce the following rule to map problem descriptions

involving a cost function to simple problem descriptions:

move(Node, NextNode) :- move(Node, NextNode, _).

We can now use, say, depth-first search as well:

?- solve_depthfirst(s, Path).

Path = [s, a, b, c, d, t] ; % [Cost = 12]

Path = [s, e, f, g, t] ; % [Cost = 11]

No

Now we (obviously) cannot guarantee the best solution is found first.

Ulle Endriss 72



Search PSS 2018

Properties of A*

A heuristic function h is called admissible if h(x) is never more than

the actual cost of the best path from x to a goal node.

An important theoretical result is the following:

A* with an admissible heuristic function guarantees

optimality: the first solution found has minimal cost.

Proof: Let x be any node on an optimal solution path and let y be

any non-optimal goal node. We need to show that A* will correctly

pick x over y. Let c? be the cost of the optimal solution. Then we get

(1) f(y) = g(y) + h(y) = g(y) + 0 > c? and, due to admissibility of h,

(2) f(x) = g(x) + h(x) 6 c?. Hence, f(x) < f(y), which means that

A* will correctly pick x over y. This completes the proof. X

Ulle Endriss 73



Search PSS 2018

Admissible Heuristic Functions

How do we choose a “good” admissible heuristic function?

Two general examples:

• The trivial heuristic function h0(x) = 0 (for all x) is admissible.

It guarantees optimality, but it is of no help whatsoever in

focusing the search. So using h0 is not efficient.

• The perfect heuristic function h?, mapping any given x to the

actual cost of reaching a goal node from x, is also admissible.

This function would lead us straight to the best solution

(but, of course, we don’t know what h? is!).

Finding a good heuristic function is often a challenging problem . . .

Ulle Endriss 74



Search PSS 2018

Recall the Route Planning Problem

Source: Google Maps

Ulle Endriss 75



Search PSS 2018

Examples for Admissible Heuristics

For the route planning domain, here are two heuristic functions:

• Let h1(x) be the straight-line distance to the goal location.

This is an admissible heuristic, because no solution path will ever

be shorter than the straight-line connection.

• Let h2(x) = 1.2 · h1(x) (adding 20% to the straight-line distance).

An intuitive justification would be that there are no completely

straight streets, so this would be a better estimate than h1(x).

Indeed, h2 may often work better (be more efficient) than h1.

But h2 generally is not admissible, because there could be two

locations connected by a street that is almost straight.

So h2 does not guarantee optimality.

Ulle Endriss 76



Search PSS 2018

Recall the Eight-Puzzle

Source: Russell & Norvig, Artificial Intelligence

Ulle Endriss 77



Search PSS 2018

Examples for Admissible Heuristics

For the eight-puzzle, here are two admissible heuristic functions:

• Let h3(x) be the number of misplaced tiles.

So h3(x) will always be a number between 0 and 8.

This is clearly a lower bound for the number of moves to the goal,

so h3 is an admissible heuristic.

• Assume we could freely move tiles without regard for other tiles.

Let h4(x) be the number of 1-step moves required to get to the

goal configuration under this assumption.

This is also an admissible heuristic, because in reality we will

always need at least h4(x) moves (and typically more, because

other tiles will be in the way). Furthermore, h4 is better than h3,

because we have h3(x) 6 h4(x) for all nodes x.

Ulle Endriss 78



Search PSS 2018

Complexity Analysis of A*

Both worst-case time and space complexity are exponential in the

depth of the search tree (as for breadth-first search): in the worst case,

we still have to visit all the nodes on the tree and ultimately keep the

full tree in memory.

The reason why, in spite of the above, A* usually works much better

than basic breadth-first search is that the heuristic function will

typically guide us to the solution much more directly.

Ulle Endriss 79



Search PSS 2018

Summary: Best-first Search with A*

• Heuristics can be used to guide a search algorithm in a large

search space. The central idea of best-first search is to expand the

path that seems “most promising”.

• There are different ways of defining a heuristic function h to

estimate how far off the goal a given node is, and there are

different ways of using h to decide which node is “best”.

• In the A* algorithm, the node x minimising the sum of the cost

g(x) to reach the current node x and the estimate h(x) of the

cost to reach a goal node from x is chosen for expansion.

• A heuristic function h is called admissible if it never over-estimates

the true cost of reaching a goal node.

• If h is an admissible heuristic function, then A* guarantees that an

optimal solution will be found (first).

Ulle Endriss 80



Search PSS 2018

Lecture 11: Adversarial Search with the
Minimax Algorithm

Ulle Endriss 81



Search PSS 2018

Plan for Today

The “games” we have discussed so far (such as the Eight-Puzzle) were

not really games but rather puzzles: there is no opponent.

Today we introduce adversarial search, where you play a game against

an opponent and search the space defined by the moves permitted:

• definition of two-player perfect-information zero-sum games

• variant of the state-space representation for modelling games

and in-depth discussion of applying it to one specific game

• the minimax algorithm to search for optimal moves in a game

Ulle Endriss 82



Search PSS 2018

Tic-Tac-Toe

Also known as Noughts-and-Crosses or Boter-Kaas-en-Eieren . . .

Many people know how to play this game optimally and—at least

when they focus—will never lose a game. We’ll also solve it today.

Ulle Endriss 83



Search PSS 2018

Chess

No different from Tic-Tac-Toe in principle: both players have perfect

information about the state of the game at every point in time.

But: the search space is much, much bigger than for Tic-Tac-Toe.

Still, the techniques we’ll see in this and the next lecture are at the

core of all successfull Chess playing programs.

Ulle Endriss 84



Search PSS 2018

Poker

Yet another popular game that has been tackled by AI researchers . . .

Caveat: Poker (like most other card games) is qualititatively different

from perfect-information games such as Tic-Tac-Toe and Chess.

You don’t know your opponent’s hand, so you cannot simulate in your

mind what moves your opponent will consider optimal.

Ulle Endriss 85



Search PSS 2018

What Games?

We consider games for two players. We call them Max and Mindy.

The players take turns making moves on a board . We only consider

perfect-information games: all relevant information is on this board.

Examples: Chess, Go, Tic-Tac-Toe are two-player perfect-information

games, but most card games (even those for two players) are not.

Given outcome x, Max gets utility u+(x) and Min gets utility u−(x).

We only consider zero-sum games: u+(x) + u−(x) = 0 for all x.

Examples: Suppose your utility for a win is +1, for a loss −1, and for

a draw 0. So most games (e.g., Chess, Go, Tic-Tac-Toe) are zero-sum.

As u−(x) = −u+(x), we can model games using just one number per

outcome. So associate every possible terminal state with a value:

+1 : Max wins 0 : draw −1 : Min wins

Other numbers are also possible, but we won’t use them here.

Ulle Endriss 86



Search PSS 2018

Representation of Games

We will use a variant of the state-space representation to model games.

To specify a game you need to fix the following parameters:

• States. The description of a state has two parts:

– the board configuration (representation depends on the game)

– the name of the player to move next (i.e., whose turn it is)

In Prolog: terms of the form (Board,P) with P ∈ {max, min}

• Moves. Given the current state, specify possible follow-up states.

In Prolog: move(+State, -NextState)

• Terminal states and their values. Given the current state, specify

whether it is a terminal state and, if so, what its value is.

In Prolog: terminal(+State, -Value) with Value ∈ [−1,+1]

To play a full game (rather than just compute the next move), we also

need a specification of the initial state (in Prolog: initial(-State)).

Ulle Endriss 87



Search PSS 2018

Two Useful Auxiliary Predicates

We represent player Max using atom max and player Min using min.

The following auxiliary predicates are useful when modelling a variety

of different games using the state-space representation for games.

• Given the name of one player, return the name of the other player :

other(max, min).

other(min, max).

• Given the name of a player, return the value associated with the

terminal states where that player is winning:

value(max, +1).

value(min, -1).

Ulle Endriss 88



Search PSS 2018

Example: Modelling Tic-Tac-Toe

States are of the form (Board,Player) with Player ∈ {max, min}.

A board configuration is a list of three three-element lists, chosen from

o (Max’s symbol) x, (Min’s symbol), and - (empty). Example:

Board = [ [x, -, o],

[-, x, o],

[-, o, x] ]

In the initial state the entire board is empty and it is Max’s turn:

initial((Board,max)) :-

Board = [ [-,-,-], [-,-,-], [-,-,-] ].

Still to do:

• move/2: to specify what makes a legal move

• terminal/2: to specify terminal states and their values

Ulle Endriss 89



Search PSS 2018

Another Useful Auxiliary Predicate

Specifically about Tic-Tac-Toe (other/2 and value/2 are general).

Associate each player with the symbol they use to make marks:

symbol(max, o).

symbol(min, x).

Ulle Endriss 90



Search PSS 2018

Modelling Moves in Tic-Tac-Toe

Suppose we are in state (Board,Player). Then Player has to pick

a cell on the Board that is still empty and replace the - found there

with his/her symbol (o or x). And then it is the other player’s turn.

In Prolog, all of this can be done with a smart use of append/3:

move((Board,Player), (NewBoard,OtherPlayer)) :-

append(TopRows, [Row|BottomRows], Board),

append(LeftCells, [-|RightCells], Row),

symbol(Player, Symbol),

append(LeftCells, [Symbol|RightCells], NewRow),

append(TopRows, [NewRow|BottomRows], NewBoard),

other(Player, OtherPlayer).

Ulle Endriss 91



Search PSS 2018

Modelling Terminal States in Tic-Tac-Toe

Suppose we are in state (Board,Player). Note that the identity of

the Player is irrelevant to determining whether this state is terminal.

There are two kinds of terminal states:

• one of the players has completed a “line” ; value is +1 or −1
• there are no empty cells left (and there is no “line”) ; value is 0

In Prolog, we can implement this as follows:

terminal((Board,_), Value) :-

symbol(Player, Symbol),

line(Board, [Symbol,Symbol,Symbol]), !,

value(Player, Value).

terminal((Board,_), 0) :-

\+ ( member(Row, Board), member(-, Row) ).

Still to do: implement line/2 to extract “lines” from a given Board.

Ulle Endriss 92



Search PSS 2018

Lines in a Tic-Tac-Toe Board

There are 3 horizontal, 3 vertical, and 2 diagonal “lines” in a board.

We need a predicate to get all of them in turn through backtracking.

This is a straightforward programming exercise. One solution:

line([[A,B,C], [_,_,_], [_,_,_]], [A,B,C]).

line([[_,_,_], [A,B,C], [_,_,_]], [A,B,C]).

line([[_,_,_], [_,_,_], [A,B,C]], [A,B,C]).

line([[A,_,_], [B,_,_], [C,_,_]], [A,B,C]).

line([[_,A,_], [_,B,_], [_,C,_]], [A,B,C]).

line([[_,_,A], [_,_,B], [_,_,C]], [A,B,C]).

line([[A,_,_], [_,B,_], [_,_,C]], [A,B,C]).

line([[_,_,A], [_,B,_], [C,_,_]], [A,B,C]).

More elegant solutions that generalise beyond 3×3 grids are possible.

Advantage of this solution: fast!

Ulle Endriss 93



Search PSS 2018

Testing the Line-Extraction Predicate

This works as it should (also for nonstandard “boards” with numbers):

?- line([[1,2,3], [4,5,6], [7,8,9]], L).

L = [1, 2, 3] ;

L = [4, 5, 6] ;

L = [7, 8, 9] ; ?- line([[x,-,o], [-,x,o], [-,o,x]], L).

L = [1, 4, 7] ; L = [x, -, o] ;

L = [2, 5, 8] ; L = [-, x, o] ;

L = [3, 6, 9] ; L = [-, o, x] ;

L = [1, 5, 9] ; L = [x, -, -] ;

L = [3, 5, 7] ; L = [-, x, o] ;

No L = [o, o, x] ;

L = [x, x, x] ;

L = [o, x, -] ;

No

Ulle Endriss 94



Search PSS 2018

Finding an Optimal Move to Play

Now step back and consider the problem of finding an optimal move

to play in a given state for any game (not just Tic-Tac-Toe).

Consider the tree of all possible plays from the current state. Example:

+

− −

+ + + +

T

+1

T

0

T

0

T

−1

T

−1

T

−1

T

−1

T

+1

Can reason backwards (recursively!) to find optimal move in any state.

Ulle Endriss 95



Search PSS 2018

The Minimax Algorithm

Given a game tree, the root of which is the current state and the

leaves of which are the terminal states, the minimax algorithm uses

what is called backward induction (in other words: recursion) to

compute a value for every state on this game tree:

• If x is a terminal state, then the value of x is defined by the game.

• If x is a state in which it is Max’s turn to move, then the value of

x is the maximum of the values of the children of x.

• If x is a state in which it is Min’s turn to move, then the value of

x is the minimum of the values of the children of x.

Once we have evaluated all states on the game tree in this manner, we

immediately obtain optimal strategies for both players:

• Max should always pick a child with maximal value.

• Min should always pick a child with minimal value.

Ulle Endriss 96



Search PSS 2018

The Finiteness Assumption

The minimax algorithm only works when the game tree is finite: for an

infinite branch you would not be able to “start at the bottom”.

But is it ok to assume that all branches have finite length?

• Some (simple) games clearly satisfy this finiteness assumption.

Example: In Tic-Tac-Toe we only add (but never remove) marks,

so any game must end after at most 9 moves.

• Some games allow for loops and thus fail this assumption.

Example: A game of Chess can continue forever.

But for such (complex) games the real challenge is a different one.

Even if repetitions were not allowed in Chess, the sheer size of the

search space would still be too much for (plain) minimax and we

will need additional techniques (discussed in the next lecture).

So in practice our finiteness assumption does not restrict us a lot.

Ulle Endriss 97



Search PSS 2018

The Minimax Algorithm in Prolog

At the core of our implementation will be the following predicate:

• eval(+State, -Value)

Given a State, compute and return its Value.

We will implement it with the help of two further predicates:

• maxeval(+States, -State, -Value)

Given a list of States, compute their values and return a State

with maximal value amongst them, together with its Value.

• mineval(+States, -State, -Value)

Given a list of States, compute their values and return a State

with minimal value amongst them, together with its Value.

Remark: To evaluate states we only need to know the values returned,

while to recommend a move we only need to know the states returned.

Ulle Endriss 98



Search PSS 2018

Auxiliary Predicate: Collect All Next States

Recall: the programmer modelling the specific game we want to play

has to provide move/2 to compute possible follow-up states.

This predicate can then be used to collect all follow-up states in a list:

moves(State, NextStates) :-

findall(NextState, move(State, NextState), NextStates).

Ulle Endriss 99



Search PSS 2018

Evaluation of States

If the given state is a terminal state, just look up its value (base case):

eval(State, Value) :-

terminal(State, Value), !.

Otherwise, first compute the list of follow-up states for the given state.

Then, if it is Max’s turn, select the max-value state amongst them and

return the value of that state (not the state itself: anonymous variable).

eval((Board,max), Value) :-

moves((Board,max), NextStates),

maxeval(NextStates, _, Value).

Proceed analogously in case it is Min’s turn:

eval((Board,min), Value) :-

moves((Board,min), NextStates),

mineval(NextStates, _, Value).

Ulle Endriss 100



Search PSS 2018

Auxiliary Predicate: Making a Choice

Purely technical programming device, to be used on the next slide . . .

Given a condition and two terms X and Y, if the condition holds, then

bind the final argument to X, otherwise bind it to Y:

choose(Condition, X, _, X) :- call(Condition), !.

choose(_, _, Y, Y).

Examples:

?- choose(42 > 0, alpha, beta, Result).

Result = alpha

Yes

?- choose(42 < 0, alpha, beta, Result).

Result = beta

Yes

Ulle Endriss 101



Search PSS 2018

Selecting a State with a Maximal Value

Given a list of states, want to find the max-value state and its value.

If there is just one input state, return it and its value (base case):

maxeval([State], State, Value) :- !,

eval(State, Value).

Otherwise, compute the value of the first state as well as the

max-value state and its value for the tail of the list (recursion)

and choose the better state/value pair of the two:

maxeval([State1|States], MaxState, MaxValue) :-

eval(State1, Value1),

maxeval(States, State, Value),

choose(Value > Value1,

(State,Value),

(State1,Value1),

(MaxState,MaxValue)).

Note: If Value =:= Value1,

State1/Value1 is returned.

Ulle Endriss 102



Search PSS 2018

Selecting a State with a Minimal Value

Picking a state with minimal value from a given list works analogously:

mineval([State], State, Value) :- !,

eval(State, Value).

mineval([State1|States], MinState, MinValue) :-

eval(State1, Value1),

mineval(States, State, Value),

choose(Value < Value1,

(State,Value),

(State1,Value1),

(MinState,MinValue)).

Ulle Endriss 103



Search PSS 2018

Recommending a Best Move via Minimax

It is now straightforward to write a predicate that, for any given state

of the form (Board,Player), will return the best follow-up state the

Player whose turn it is can possibly move to:

minimax((Board,max), MaxState) :-

moves((Board,max), NextStates),

maxeval(NextStates, MaxState, _).

minimax((Board,min), MinState) :-

moves((Board,min), NextStates),

mineval(NextStates, MinState, _).

The value of the state returned is irrelevant (anonymous variable).

Ulle Endriss 104



Search PSS 2018

Testing

It works! If you use minimax/2 to compute your moves in a game of

Tic-Tac-Toe, you will never lose, whatever your opponent may do.

Here minimax recommends to Min (playing x) a real killer move:

?- minimax( ([[x,o,o], [-,x,o], [-,-,-]],min), (Board,_) ).

Board = [[x,o,o], [-,x,o], [-,-,x]]

Yes

But it’s slow! The most expensive move to compute is the first one:

?- initial(State), time( minimax(State, NextState) ).

% 19,170,066 inferences, 6.519 CPU in 6.524 seconds [...]

State = ([[-,-,-], [-,-,-], [-,-,-]], max),

NextState = ([[o,-,-], [-,-,-], [-,-,-]], min)

Yes

We will address this efficency issue in the next lecture.

Ulle Endriss 105



Search PSS 2018

Discussion: Optimal = Optimal ?

When minimax recommends a move, then that move is optimal under

the assumption that your opponent will also play optimally.

But if your opponent does not always play optimally, then that may

not be the best strategy. For example, there may be no strategy that

guarantees you a win (only a draw), but along one branch chances are

higher your opponent will overlook a good move, allowing you to win.

Minimax cannot recognise such opportunities.

Ulle Endriss 106



Search PSS 2018

Summary: Adversarial Search with Minimax

We have introduced the topic of adversarial search to compute optimal

moves in two-player perfect-information zero-sum games:

• state-space representation to model any such game

– describe states of the form (Board,Player)

– define legal moves using move/2

– define values of terminal states using terminal/2

• minimax algorithm to evaluate states (so you can pick the best)

– compute values for nodes on the game tree recursively, starting

with leaves (terminal states) and simulating what each player

(Max and Min) would do when it is their turn

In theory this approach can solve games such as Chess and Go, but in

practice it won’t scale much beyond small games such as Tic-Tac-Toe.

Ulle Endriss 107



Search PSS 2018

Lecture 12: Alpha-Beta Pruning and
Heuristic Evaluation

Ulle Endriss 108



Search PSS 2018

Plan for Today

We have seen that the minimax algorithm can be used to solve

(= compute optimal moves for) any two-player perfect-information

zero-sum game in principle, but that in practice it will fail to do so for

somewhat larger games, due to the explosion of the search space.

Today is about techniques for speeding up the minimax algorithm:

• Alpha-beta pruning: smart exploration of the search space that

avoids evaluating moves that have no chance of being optimal

• Heuristic evaluation: making informed guesses for the values of

certain states, rather than computing them exactly using minimax

We will conclude with a brief review of famous examples for the use of

adversarial search techniques in AI (to tackle Chess, Go, and Poker).

Ulle Endriss 109



Search PSS 2018

Reminder: Minimax Algorithm

Recall how using the minimax algorithm we compute the value of each

state by starting from the terminal states (for which values are given).

• Max (+) states: take the maximum of the values of the children.

• Min (−) states: take the minimum of the values of the children.

+

− −

+ + + +

T

0

T

+1

T

−1

T

0

T

0

T

0

T

−1

T

+1

Ulle Endriss 110



Search PSS 2018

Pruning Irrelevant Parts of the Tree

Sometimes you do not need to inspect the full tree to evaluate the root

of the game tree. Max knows that if he moves right, then Min can

force at least a draw (6 0). As Max can get a draw also by moving

left, there is no need to further explore the rightmost part of the tree.

+

0

−

0

−
6 0

+

+1

+

0

+

0

+

T

0

T

+1

T

−1

T

0

T

0

T

0

T

?

T

?

Ulle Endriss 111



Search PSS 2018

Minimax with Alpha-Beta Pruning

Suppose you want to evaluate state x. Its (unknown) value is v?x ∈ [−1,+1].

Suppose you are satisfied if you can compute vx ∈ [−1,+1] such that these

conditions hold (for some numbers −1 6 αx 6 βx 6 +1):

• vx = v?x in case αx 6 v?x 6 βx (so: precise within critical interval)

• vx = αx in case v?x < αx (so: low default for very low values)

• vx = βx in case v?x > βx (so: high default for very high values)

Algorithm to compute vx (with vx = v?x for αx = −1 and βx = +1):

• If x is terminal , look up v?x and set vx to the closest point in [αx, βx].

• If x has children y1, . . . , yk and it is Max’s turn, first compute vy1 with

αy1 = αx and βy1 = βx. Then vy2 with αy2 = vy1 and βy2 = βx.

Then vy3 with αy3 = max{vy1 , vy2} and βy2 = βx. And so forth.

Finally, set vx = max{vy1 , . . . , vyk}.

• If x has children y1, . . . , yk and it is Min’s turn, proceed accordingly

(now always updating β) and set vx = min{vy1 , . . . , vyk}.

Note: for αx = βx you immediately get vx = αx = βx (no computation!).

Ulle Endriss 112



Search PSS 2018

Auxiliary Predicate: Rounding

Given numbers X, A, and B with A 6 B, find the number closest to X

within the interval [A, B]:

round(X, A, _, A) :- X < A, !.

round(X, _, B, B) :- X > B, !.

round(X, _, _, X).

Ulle Endriss 113



Search PSS 2018

Plan for Implementation in Prolog

Same basic setup as before, but now with two extra input arguments:

• eval(+State, +Alpha, +Beta, -Value)

Given a State (with initially unknown exact value v?) and two

numbers Alpha and Beta, return a number Value such that:

– Value = v? in case Alpha 6 v? 6 Beta

– Value = Alpha in case v? < Alpha

– Value = Beta in case v? > Beta

• maxeval(+States, +Alpha, +Beta, -State, -Value)

Given a list of States and numbers Alpha and Beta, return a

State (in States) with maximal value and a number Value that

satisfies the same condition as above w.r.t. the value v? of State.

• mineval(+States, +Alpha, +Beta, -State, -Value)

As above, but now with State having minimal value.

Ulle Endriss 114



Search PSS 2018

Evaluation of States

If Alpha = Beta, then this must also be the exact value (base case):

eval(_, Value, Value, Value) :- !.

If we are in a terminal state, look up its value and round (base case):

eval(State, Alpha, Beta, RoundedValue) :-

terminal(State, Value), !,

round(Value, Alpha, Beta, RoundedValue).

Otherwise, from the list of follow-up states return the (approximate)

value of the state chosen by the player whose turn it is (recursion):

eval((Board,max), Alpha, Beta, Value) :-

moves((Board,max), NextStates),

maxeval(NextStates, Alpha, Beta, _, Value).

eval((Board,min), Alpha, Beta, Value) :-

moves((Board,min), NextStates),

mineval(NextStates, Alpha, Beta, _, Value).

Ulle Endriss 115



Search PSS 2018

Selecting a State with a Maximal Value

Getting the max-value state from a list of states together with its value

(or an approximation thereof, in case it falls outside the α-β interval).

If the list has just one element, relegate to eval/4 (base case):

maxeval([State], Alpha, Beta, State, Value) :- !,

eval(State, Alpha, Beta, Value).

Else: evaluate head and tail (recursion). Return better state/value.

But use first value found as new lower bound during recursion:

maxeval([State1|States], Alpha, Beta, MaxState, MaxValue) :-

eval(State1, Alpha, Beta, Value1),

maxeval(States, Value1, Beta, State, Value),

choose(Value > Value1, (State,Value), (State1,Value1),

(MaxState,MaxValue)).

Ulle Endriss 116



Search PSS 2018

Selecting a State with a Minimal Value

Implementing mineval/5 is essentially the same as for maxeval/5:

mineval([State], Alpha, Beta, State, Value) :- !,

eval(State, Alpha, Beta, Value).

mineval([State1|States], Alpha, Beta, MinState, MinValue) :-

eval(State1, Alpha, Beta, Value1),

mineval(States, Alpha, Value1, State, Value),

choose(Value < Value1, (State,Value), (State1,Value1),

(MinState,MinValue)).

But note that this time we use the first value found (for the head of

the list of states) as a new upper bound during the recursive call.

Reason: Min knows she can achieve Value1, so when searching

through States, she is only interested in states with even lower value.

Ulle Endriss 117



Search PSS 2018

Recommending a Best Move

Now the predicate alphabeta/2 can be used to recommend a best

move for a given board configuration for a given player:

alphabeta((Board,max), MaxState) :-

moves((Board,max), NextStates),

maxeval(NextStates, -1, +1, MaxState, _).

alphabeta((Board,min), MinState) :-

moves((Board,min), NextStates),

mineval(NextStates, -1, +1, MinState, _).

Remark: Observe how we initialise Alpha with −1 and Beta with +1.

This is ok, as (for us) no terminal state has a value outside of [−1,+1].

For more general games, you have to initialise with −∞ and +∞.

Ulle Endriss 118



Search PSS 2018

Testing

The basic minimax algorithm was pretty slow for Tic-Tac-Toe:

?- initial(State), time( minimax(State, NextState) ).

% 19,170,066 inferences, 6.519 CPU in 6.524 seconds [...]

State = ([[-,-,-], [-,-,-], [-,-,-]], max),

NextState = ([[o,-,-], [-,-,-], [-,-,-]], min)

Yes

If we use minimax with alpha-beta pruning instead, we are more than

30 times faster when computing Max’s first move:

?- initial(State), time( alphabeta(State, NextState) ).

% 732,054 inferences, 0.198 CPU in 0.199 seconds [...]

State = ([[-,-,-], [-,-,-], [-,-,-]], max),

NextState = ([[o,-,-], [-,-,-], [-,-,-]], min)

Yes

Great! But still not enough for larger games, such as Chess or Go.

Ulle Endriss 119



Search PSS 2018

Using Heuristics to Evaluate States

Idea: When you do not manage to inspect all of the game tree to

evaluate states, estimate values (for some of them) instead!

When do you stop searching and start estimating instead?

Here are some possible approaches (we will only explore the first):

• once you have reached a certain depth in the tree

• once you have spent a certain amount of time searching

• whenever you encounter a state you feel confident evaluating

How do you actually estimate the value of a given state?

• very much depends on the game you are playing

Ulle Endriss 120



Search PSS 2018

Example: A Heuristic for Tic-Tac-Toe

Recall that there are 8 “lines” on the board. Consider a give state:

• Let A be the number of lines that Max could still complete.

• Let B be the number of lines that Min could still complete.

• Estimate the value of the state as (A−B) / 8.

This can be implemented in Prolog as follows:

estimate((Board,_), Value) :-

symbol(max, MaxSym),

symbol(min, MinSym),

findall(L, (line(Board,L), \+ member(MinSym,L)), MaxLines),

findall(L, (line(Board,L), \+ member(MaxSym,L)), MinLines),

length(MaxLines, MaxChances),

length(MinLines, MinChances),

Value is (MaxChances - MinChances) / 8.

Caveat: Not a great heuristic. But useful for experimentation.

Ulle Endriss 121



Search PSS 2018

Heuristic Minimax: Implementation in Prolog

Suppose a heuristic evaluation function is provided by estimate/2.

Next: an implementation of the minimax algorithm with alpha-beta

pruning that stops search at a given depth and instead consults this

heuristic evaluation function.

The code is almost exactly the same as before. Two refinements:

• We need to carry along an extra variable Depth everywhere and

decrement it by 1 in every recursive step (as we go down the tree).

• We need to add a third base case to our basic evaluation predicate

(now eval/5) that calls estimate/2 once Depth is 0.

Ulle Endriss 122



Search PSS 2018

Evaluation of States

eval(_, _, Value, Value, Value) :- !.

eval(State, _, Alpha, Beta, RoundedValue) :-

terminal(State, Value), !,

round(Value, Alpha, Beta, RoundedValue).

eval(State, 0, Alpha, Beta, RoundedValue) :- !, % new base case

estimate(State, Value),

round(Value, Alpha, Beta, RoundedValue).

eval((Board,max), Depth, Alpha, Beta, Value) :-

moves((Board,max), NextStates),

NewDepth is Depth - 1, % decementing depth counter

maxeval(NextStates, NewDepth, Alpha, Beta, _, Value).

eval((Board,min), Depth, Alpha, Beta, Value) :-

moves((Board,min), NextStates),

NewDepth is Depth - 1, % decrementing depth counter

mineval(NextStates, NewDepth, Alpha, Beta, _, Value).

Ulle Endriss 123



Search PSS 2018

Selecting a State with a Maximal Value

Note: The only change in this part of the code is that we need to

carry along the additional argument Depth.

maxeval([State], Depth, Alpha, Beta, State, Value) :- !,

eval(State, Depth, Alpha, Beta, Value).

maxeval([State1|States], Depth, Alpha, Beta, MaxState, MaxValue) :-

eval(State1, Depth, Alpha, Beta, Value1),

maxeval(States, Depth, Value1, Beta, State, Value),

choose(Value > Value1, (State,Value), (State1,Value1),

(MaxState,MaxValue)).

Ulle Endriss 124



Search PSS 2018

Selecting a State with a Minimal Value

Note: The only change in this part of the code is that we need to

carry along the additional argument Depth.

mineval([State], Depth, Alpha, Beta, State, Value) :- !,

eval(State, Depth, Alpha, Beta, Value).

mineval([State1|States], Depth, Alpha, Beta, MinState, MinValue) :-

eval(State1, Depth, Alpha, Beta, Value1),

mineval(States, Depth, Alpha, Value1, State, Value),

choose(Value < Value1, (State,Value), (State1,Value1),

(MinState,MinValue)).

Ulle Endriss 125



Search PSS 2018

Recommending a Best Move

Also for the predicate to recommend a move in a given state, all we

need to change is to include an argument to allow the user to specify

the Depth at which she wants to switch to heuristic evaluation:

alphabeta((Board,max), Depth, MaxState) :-

moves((Board,max), NextStates),

maxeval(NextStates, Depth, -1, +1, MaxState, _).

alphabeta((Board,min), Depth, MinState) :-

moves((Board,min), NextStates),

mineval(NextStates, Depth, -1, +1, MinState, _).

Ulle Endriss 126



Search PSS 2018

Testing

Suppose you are Min (playing x) and it is your turn:

o | 2 | 3
---+---+---
4 | x | 6
---+---+---
7 | 8 | o

You can force a draw by marking 2, 4, 6, or 8.

The other two moves are bad!

For a high bound (so: don’t use heuristic!), minimax gets it right:

?- time( alphabeta( ([[o,-,-],[-,x,-],[-,-,o]],min), 100, S) ).

% 11,462 inferences, 0.007 CPU in 0.007 seconds [...]

S = ([[o, x, -], [-, x, -], [-, -, o]], max)

For very low bounds, we get bad recommendations (but it’s faster!):

?- time( alphabeta( ([[o,-,-],[-,x,-],[-,-,o]],min), 1, S) ).

% 2,064 inferences, 0.001 CPU in 0.001 seconds [...]

S = ([[o, -, x], [-, x, -], [-, -, o]], max)

?- time( alphabeta( ([[o,-,-],[-,x,-],[-,-,o]],min), 0, S) ).

% 727 inferences, 0.000 CPU in 0.000 seconds [...]

S = ([[o, -, x], [-, x, -], [-, -, o]], max)

Ulle Endriss 127



Search PSS 2018

Monte Carlo Search

Designing heuristics is hard! Monte Carlo search is an approach to

automatically generate heuristic evaluation functions.

Here’s a sketch of the basic idea. To estimate the value of state x:

• Simulate 100 game continuations (“rollouts”) from state x,

assuming that both players always choose their moves at random.

• Let A be the number of simulations in which Max wins.

• Let B be the number of simulations in which Min wins.

• Estimate the value of state x as (A−B) / 100.

In other words: estimate the value of state x as the average value of

the terminal states reached in, say, 100 random rollouts from x.

Ulle Endriss 128



Search PSS 2018

Complexity Analysis

The minimax algorithm (with or w/o any of the refinements discussed)

is essentially a depth-first search algorithm. Thus:

• Space comlexity is very good: linear in the depth explored.

• Time complexity is problematic: exponential in the depth explored.

Alpha-beta pruning great in practice, yet exponential in worst case.

Above analysis concerns the search component only. Need to multiply

this with complexity of computing the heuristic evaluation function.

Idea here is that heuristics should be extremely fast to compute.

Ulle Endriss 129



Search PSS 2018

Playing Chess: Deep Blue (1997)

In May 1997 IBM’s Deep Blue beat world champion Garry Kasparov

under standard tournament conditions (3.5 to 2.5).

Deep Blue was based on minimax with alpha-beta pruning , as well as:

• specialised hardware to run minimax on, heavily parallelised

• sophisticated heuristic evaluation function using domain knoweldge

– function depending on ∼ 8,000 features of board configurations

– partly handcrafted with help of Chess grandmaster

– partly based on analysis of database of grandmaster games

Ulle Endriss 130



Search PSS 2018

Playing Go: AlphaGo (2016)

Go has an even larger search space than Chess.

In March 2016 Google DeepMind’s AlphaGo beat Lee Sedol, one of the

world’s best players, under standard tournament conditions (4 to 1).

AlphaGo was based on minimax with alpha-beta pruning , as well as:

• Monte Carlo approach to generate heuristic evaluation function,

but with higher probabilities for more promising moves

• machine learning with deep neural networks to learn a policy for

selecting those promising moves from expert plays

• reinforcement learning: refinements via simulated self-play

Extremely strong heuristics: even zero-depth minimax is competitive.

Remark: Neither Go nor Chess are “solved”. We do not yet know how

to compute the best move in every situation. These programs “only”

are good enough to beat the best human players most of the time.

Ulle Endriss 131



Search PSS 2018

Playing Poker: Libratus (2017)

Poker is a zero-sum game and it can be restricted to two players.

But is is not a perfect-information game.

In January 2017 Carnegie Mellon University’s Libratus beat four top

human players at a 20-day contest at the Rivers Casino in Pittsburgh.

Requires more sophisticated search and optimisation techniques than

covered in this course, as well as insights from game theory .

Ulle Endriss 132



Search PSS 2018

Summary: Alpha-Beta Pruning and Heuristics

We have discussed two refinements of the minimax algorithm for

computing the optimal move in a game:

• Alpha-beta pruning: smart propagation of bounds on possible

values of states, to cut out parts of the game tree to be searched.

• Heuristic evaluation of states to terminate search early, including

Monte Carlo techniques to automatically generate heuristics.

These techniques form the basis for building competitive game-playing

systems. Examples include some of the best known milestones in AI.

Ulle Endriss 133


	Lecture 8: State-Space Representation and Depth-first Search
	Lecture 9: Breadth-first Search and Iterative Deepening
	Lecture 10: Heuristic Search with the A* Algorithm
	Lecture 11: Adversarial Search with the Minimax Algorithm
	Lecture 12: Alpha-Beta Pruning and Heuristic Evaluation

